From The College of Arts and Sciences And The College of Engineering At Cornell University Via “The Chronicle”: “Imaging shows how solar-powered microbes turn CO2 into bioplastic”

From The College of Arts and Sciences

And

2

The College of Engineering

At

Cornell University

Via

“The Chronicle”

7.27.23
David Nutt
dn234@cornell.edu

When considering ways to sustainably generate environmentally friendly products, bacteria might not immediately spring to mind.

However, in recent years scientists have created microbe-semiconductor biohybrids that merge the biosynthetic power of living systems with the ability of semiconductors to harvest light. These microorganisms use solar energy to convert carbon dioxide into value-added chemical products, such as bioplastics and biofuels. But how that energy transport occurs in such a tiny, complex system, and whether the process can be improved, is still unclear.

2
A scanning electron microscopy image shows bacterium Ralstonia eutropha cells on top of a bismuth vanadate semiconductor. Provided.

Cornell researchers have developed a multimodal platform to image these biohybrids with single-cell resolution, to better understand how they function and how they can be optimized for more efficient energy conversion.

The team’s paper is published July 27 in Nature Chemistry [below]. The co-lead authors are postdoctoral researcher Bing Fu and former postdoctoral researcher Xianwen Mao.

The project was led by Peng Chen, the Peter J.W. Debye Professor of Chemistry in the College of Arts and Sciences. The effort is an offshoot of a larger collaboration – with Tobias Hanrath, professor at the Smith School of Chemical and Biomolecular Engineering in Cornell Engineering, and Buz Barstow, Ph.D. ’09, assistant professor of biological and environmental engineering in the College of Agriculture and Life Sciences – that was funded by the U.S. Department of Energy (DOE) to explore microscopic imaging of microbes as a way to advance bioenergy research.

Biohybrid research has typically been conducted with bacteria in bulk – essentially a large amount of cells in a bucket, Peng said – emphasizing the overall yield of the value-added chemicals and the collective behaviors of the cells, rather than the underlying mechanism that enables the complex chemical transformation.

“Biology is very heterogeneous. The individual cells are very different. Now, in order to interrogate it better, you really need to measure it at a single-cell level,” Chen said. “This is where we come in. We provide quantitative assessments of protein behaviors and also a mechanistic understanding of how the electron transport occurs from the semiconductor to the bacteria cell.”

The new platform combined multi-channel fluorescence imaging with photoelectrochemical current mapping to survey the bacterium Ralstonia eutropha. The platform was able to simultaneously image, track and quantitate multiple proteins in the cell while also measuring the flow of electrons, ultimately correlating the cellular protein properties and electron transport processes.

The researchers successfully differentiated the functional roles of two types of hydrogenases – one bound to the cell’s membrane, and a soluble one in the cytoplasm – that help metabolize hydrogen and drive CO2 fixation. While the soluble hydrogenase is known to be critical for metabolizing hydrogen, the researchers found that the membrane-bound hydrogenase, while less important, actually facilitates the process and makes it more efficient.

In addition, the researchers obtained the first experimental evidence that the bacteria can uptake a large amount of electrons from semiconductor photocatalysts. The team measured the electron current and found it be three orders of magnitude larger than what scientists previously thought, which suggests that future bacteria strains could be engineered to improve the efficiency of energy conversion.

The researchers also discovered that membrane-bound and soluble hydrogenases play an important role in mediating the electron transport from the semiconductor into the cell. Meanwhile, not only can the cell accept electrons; it can also spit them out in the opposite direction, without the assistance of hydrogenases.

The imaging platform is generalizable enough that it can be used to study other biological-inorganic systems, including yeast, and for other processes, such as nitrogen fixation and pollutant removal.

“Our multimodal imaging platform is powerful, but it of course has its own limits,” Chen said. “We can image and study proteins, but our approach does not allow us to analyze small molecule compositions. And so one can think about further integrating our approach with other techniques – for example, nanoscale mass spectrometry – so it would be really powerful. We’re not there yet.”

Co-authors include Hanrath and Barstow; postdoctoral researcher Youngchan Park; doctoral students Zhiheng Zhao, Tianlei Yan, Farshid Salimijazi, and Mokshin Suri; Danielle H. Francis, M.S. ’17; Won Jung, Ph.D. ’18; former postdoctoral researcher Wenjie Li; and laboratory technician Brooke Pian ’13.

The research was supported by the DOE’s Biomolecular Characterization and Imaging Science program.

The researchers made use of the Cornell Center for Materials Research Shared Facilities, which is supported through the National Science Foundation’s MRSEC program.

Nature Chemistry

Abstract
Microbe–semiconductor biohybrids, which integrate microbial enzymatic synthesis with the light-harvesting capabilities of inorganic semiconductors, have emerged as promising solar-to-chemical conversion systems. Improving the electron transport at the nano–bio interface and inside cells is important for boosting conversion efficiencies, yet the underlying mechanism is challenging to study by bulk measurements owing to the heterogeneities of both constituents. Here we develop a generalizable, quantitative multimodal microscopy platform that combines multi-channel optical imaging and photocurrent mapping to probe such biohybrids down to single- to sub-cell/particle levels. We uncover and differentiate the critical roles of different hydrogenases in the lithoautotrophic bacterium Ralstonia eutropha for bioplastic formation, discover this bacterium’s surprisingly large nanoampere-level electron-uptake capability, and dissect the cross-membrane electron-transport pathways. This imaging platform, and the associated analytical framework, can uncover electron-transport mechanisms in various types of biohybrid, and potentially offers a means to use and engineer R. eutropha for efficient chemical production coupled with photocatalytic materials.
3

See the full article here .

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

The Cornell University College of Engineering is a division of Cornell University that was founded in 1870 as the Sibley College of Mechanical Engineering and Mechanic Arts. It is one of four private undergraduate colleges at Cornell that are not statutory colleges.

It currently grants bachelors, masters, and doctoral degrees in a variety of engineering and applied science fields, and is the third largest undergraduate college at Cornell by student enrollment. The college offers over 450 engineering courses, and has an annual research budget exceeding US$112 million.

The College of Engineering was founded in 1870 as the Sibley College of Mechanical Engineering and Mechanic Arts. The program was housed in Sibley Hall on what has since become the Arts Quad, both of which are named for Hiram Sibley, the original benefactor whose contributions were used to establish the program. The college took its current name in 1919 when the Sibley College merged with the College of Civil Engineering. It was housed in Sibley, Lincoln, Franklin, Rand, and Morse Halls. In the 1950s the college moved to the southern end of Cornell’s campus.

The college is known for a number of firsts. In 1889, the college took over electrical engineering from the Department of Physics, establishing the first department in the United States in this field. The college awarded the nation’s first doctorates in both electrical engineering and industrial engineering. The Department of Computer Science, established in 1965 jointly under the College of Engineering and the College of Arts and Sciences, is also one of the oldest in the country.

For many years, the college offered a five-year undergraduate degree program. However, in the 1960s, the course was shortened to four years for a B.S. degree with an optional fifth year leading to a masters of engineering degree. From the 1950s to the 1970s, Cornell offered a Master of Nuclear Engineering program, with graduates gaining employment in the nuclear industry. However, after the 1979 accident at Three Mile Island, employment opportunities in that field dimmed and the program was dropped. Cornell continued to operate its on-campus nuclear reactor as a research facility following the close of the program. For most of Cornell’s history, Geology was taught in the College of Arts and Sciences. However, in the 1970s, the department was shifted to the engineering college and Snee Hall was built to house the program. After World War II, the Graduate School of Aerospace Engineering was founded as a separate academic unit, but later merged into the engineering college.

Cornell Engineering is home to many teams that compete in student design competitions and other engineering competitions. Presently, there are teams that compete in the Baja SAE, Automotive X-Prize (see Cornell 100+ MPG Team), UNP Satellite Program, DARPA Grand Challenge, AUVSI Unmanned Aerial Systems and Underwater Vehicle Competition, Formula SAE, RoboCup, Solar Decathlon, Genetically Engineered Machines, and others.

Cornell’s College of Engineering is currently ranked 12th nationally by U.S. News and World Report, making it ranked 1st among engineering schools/programs in the Ivy League. The engineering physics program at Cornell was ranked as being No. 1 by U.S. News and World Report in 2008. Cornell’s operations research and industrial engineering program ranked fourth in nation, along with the master’s program in financial engineering. Cornell’s computer science program ranks among the top five in the world, and it ranks fourth in the quality of graduate education.

The college is a leader in nanotechnology. In a survey done by a nanotechnology magazine Cornell University was ranked as being the best at nanotechnology commercialization, 2nd best in terms of nanotechnology facilities, the 4th best at nanotechnology research and the 10th best at nanotechnology industrial outreach.

Departments and schools

With about 3,000 undergraduates and 1,300 graduate students, the college is the third-largest undergraduate college at Cornell by student enrollment. It is divided into twelve departments and schools:

School of Applied and Engineering Physics
Department of Biological and Environmental Engineering
Meinig School of Biomedical Engineering
Smith School of Chemical and Biomolecular Engineering
School of Civil & Environmental Engineering
Department of Computer Science
Department of Earth & Atmospheric Sciences
School of Electrical and Computer Engineering
Department of Materials Science and Engineering
Sibley School of Mechanical and Aerospace Engineering
School of Operations Research and Information Engineering
Department of Theoretical and Applied Mechanics
Department of Systems Engineering

Cornell University College of Arts and Sciences.

The College of Arts and Sciences is a division of Cornell University. It has been part of the university since its founding, although its name has changed over time. It grants bachelor’s degrees, and masters and doctorates through affiliation with the Cornell University Graduate School. Its major academic buildings are located on the Arts Quad and include some of the university’s oldest buildings. The college offers courses in many fields of study and is the largest college at Cornell by undergraduate enrollment.

Originally, the university’s faculty was undifferentiated, but with the founding of the Cornell Law School in 1886 and the concomitant self-segregation of the school’s lawyers, different departments and colleges formed.

Initially, the division that would become the College of Arts and Sciences was known as the Academic Department, but it was formally renamed in 1903. The College endowed the first professorships in American history, musicology, and American literature. Currently, the college teaches 4,100 undergraduates, with 600 full-time faculty members (and an unspecified number of lecturers) teaching 2,200 courses.

The Arts Quad is the site of Cornell’s original academic buildings and is home to many of the college’s programs. On the western side of the quad, at the top of Libe Slope, are Morrill Hall (completed in 1866), McGraw Hall (1872) and White Hall (1868). These simple but elegant buildings, built with native Cayuga bluestone, reflect Ezra Cornell’s utilitarianism and are known as Stone Row. The statue of Ezra Cornell, dating back to 1919, stands between Morrill and McGraw Halls. Across from this statue, in front of Goldwin Smith Hall, sits the statue of Andrew Dickson White, Cornell’s other co-founder and its first president.

Lincoln Hall (1888) also stands on the eastern face of the quad next to Goldwin Smith Hall. On the northern face are the domed Sibley Hall and Tjaden Hall (1883). Just off of the quad on the Slope, next to Tjaden, stands the Herbert F. Johnson Museum of Art, designed by I. M. Pei. Stimson Hall (1902), Olin Library (1959) and Uris Library (1892), with Cornell’s landmark clocktower, McGraw Tower, stand on the southern end of the quad.

Olin Library replaced Boardman Hall (1892), the original location of the Cornell Law School. In 1992, an underground addition was made to the quad with Kroch Library, an extension of Olin Library that houses several special collections of the Cornell University Library, including the Division of Rare and Manuscript Collections.

Klarman Hall, the first new humanities building at Cornell in over 100 years, opened in 2016. Klarman houses the offices of Comparative Literature and Romance Studies. The building is connected to, and surrounded on three sides by, Goldwin Smith Hall and fronts East Avenue.

Legends and lore about the Arts Quad and its statues can be found at Cornelliana.

The College of Arts and Sciences offers both undergraduate and graduate (through the Graduate School) degrees. The only undergraduate degree is the Bachelor of Arts. However, students may enroll in the dual-degree program, which allows them to pursue programs of study in two colleges and receive two different degrees. The faculties within the college are:

Africana Studies and Research Center*
American Studies
Anthropology
Archaeology
Asian-American Studies
Asian Studies
Astronomy/Astrophysics
Biology (with the College of Agriculture and Life Sciences)
Biology & Society Major (with the Colleges of Agriculture and Life Sciences and Human Ecology)
Chemistry and Chemical Biology
China and Asia-pacific Studies
Classics
Cognitive Studies
College Scholar Program (frees up to 40 selected students in each class from all degree requirements and allows them to fashion a plan of study conducive to achieving their ultimate intellectual goals; a senior thesis is required)
Comparative Literature
Computer Science (with the College of Engineering)
Earth and Atmospheric Sciences (with the Colleges of Agriculture and Life Sciences and Engineering)
Economics
English
Feminist, Gender, and Sexuality Studies
German Studies
Government
History
History of Art
Human Biology
Independent Major
Information Science (with the College of Agriculture and Life Sciences and College of Engineering)
Jewish Studies
John S. Knight Institute for Writing in the Disciplines
Latin American Studies
Latino Studies
Lesbian, Gay, Bisexual, and Transgender Studies
Linguistics
Mathematics
Medieval Studies
Modern European Studies Concentration
Music
Near Eastern Studies
Philosophy
Physics
Psychology
Religious Studies
Romance Studies
Russian
Science and Technology Studies
Society for the Humanities
Sociology
Theatre, Film, and Dance
Visual Studies Undergraduate Concentration

*Africana Studies was an independent center reporting directly to the Provost until July 1, 2011.

Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

Cornell University is a private, statutory, Ivy League and land-grant research university in Ithaca, New York. Founded in 1865 by Ezra Cornell and Andrew Dickson White, the university was intended to teach and make contributions in all fields of knowledge—from the classics to the sciences, and from the theoretical to the applied. These ideals, unconventional for the time, are captured in Cornell’s founding principle, a popular 1868 quotation from founder Ezra Cornell: “I would found an institution where any person can find instruction in any study.”

The university is broadly organized into seven undergraduate colleges and seven graduate divisions at its main Ithaca campus, with each college and division defining its specific admission standards and academic programs in near autonomy. The university also administers two satellite medical campuses, one in New York City and one in Education City, Qatar, and The Jacobs Technion-Cornell Institute in New York City, a graduate program that incorporates technology, business, and creative thinking. The program moved from Google’s Chelsea Building in New York City to its permanent campus on Roosevelt Island in September 2017.

Cornell is one of the few private land-grant universities in the United States. Of its seven undergraduate colleges, three are state-supported statutory or contract colleges through The State University of New York (SUNY) system, including its Agricultural and Human Ecology colleges as well as its Industrial Labor Relations school. Of Cornell’s graduate schools, only the veterinary college is state-supported. As a land grant college, Cornell operates a cooperative extension outreach program in every county of New York and receives annual funding from the State of New York for certain educational missions. The Cornell University Ithaca Campus comprises 745 acres, but is much larger when the Cornell Botanic Gardens (more than 4,300 acres) and the numerous university-owned lands in New York City are considered.

Alumni and affiliates of Cornell have reached many notable and influential positions in politics, media, and science. As of January 2021, 61 Nobel laureates, four Turing Award winners and one Fields Medalist have been affiliated with Cornell. Cornell counts more than 250,000 living alumni, and its former and present faculty and alumni include 34 Marshall Scholars, 33 Rhodes Scholars, 29 Truman Scholars, 7 Gates Scholars, 55 Olympic Medalists, 10 current Fortune 500 CEOs, and 35 billionaire alumni. Since its founding, Cornell has been a co-educational, non-sectarian institution where admission has not been restricted by religion or race. The student body consists of more than 15,000 undergraduate and 9,000 graduate students from all 50 American states and 119 countries.

History

Cornell University was founded on April 27, 1865; the New York State (NYS) Senate authorized the university as the state’s land grant institution. Senator Ezra Cornell offered his farm in Ithaca, New York, as a site and $500,000 of his personal fortune as an initial endowment. Fellow senator and educator Andrew Dickson White agreed to be the first president. During the next three years, White oversaw the construction of the first two buildings and traveled to attract students and faculty. The university was inaugurated on October 7, 1868, and 412 men were enrolled the next day.

Cornell developed as a technologically innovative institution, applying its research to its own campus and to outreach efforts. For example, in 1883 it was one of the first university campuses to use electricity from a water-powered dynamo to light the grounds. Since 1894, Cornell has included colleges that are state funded and fulfill statutory requirements; it has also administered research and extension activities that have been jointly funded by state and federal matching programs.

Cornell has had active alumni since its earliest classes. It was one of the first universities to include alumni-elected representatives on its Board of Trustees. Cornell was also among the Ivies that had heightened student activism during the 1960s related to cultural issues; civil rights; and opposition to the Vietnam War, with protests and occupations resulting in the resignation of Cornell’s president and the restructuring of university governance. Today the university has more than 4,000 courses. Cornell is also known for the Residential Club Fire of 1967, a fire in the Residential Club building that killed eight students and one professor.

Since 2000, Cornell has been expanding its international programs. In 2004, the university opened the Weill Cornell Medical College in Qatar. It has partnerships with institutions in India, Singapore, and the People’s Republic of China. Former president Jeffrey S. Lehman described the university, with its high international profile, a “transnational university”. On March 9, 2004, Cornell and Stanford University laid the cornerstone for a new ‘Bridging the Rift Center’ to be built and jointly operated for education on the Israel–Jordan border.

Research

Cornell, a research university, is ranked fourth in the world in producing the largest number of graduates who go on to pursue PhDs in engineering or the natural sciences at American institutions, and fifth in the world in producing graduates who pursue PhDs at American institutions in any field. Research is a central element of the university’s mission; in 2009 Cornell spent $671 million on science and engineering research and development, the 16th highest in the United States.

Cornell is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”.

For the 2016–17 fiscal year, the university spent $984.5 million on research. Federal sources constitute the largest source of research funding, with total federal investment of $438.2 million. The agencies contributing the largest share of that investment are The Department of Health and Human Services and the National Science Foundation, accounting for 49.6% and 24.4% of all federal investment, respectively. Cornell was on the top-ten list of U.S. universities receiving the most patents in 2003, and was one of the nation’s top five institutions in forming start-up companies. In 2004–05, Cornell received 200 invention disclosures; filed 203 U.S. patent applications; completed 77 commercial license agreements; and distributed royalties of more than $4.1 million to Cornell units and inventors.

Since 1962, Cornell has been involved in unmanned missions to Mars. In the 21st century, Cornell had a hand in the Mars Exploration Rover Mission. Cornell’s Steve Squyres, Principal Investigator for the Athena Science Payload, led the selection of the landing zones and requested data collection features for the Spirit and Opportunity rovers. NASA-JPL/Caltech engineers took those requests and designed the rovers to meet them. The rovers, both of which have operated long past their original life expectancies, are responsible for the discoveries that were awarded 2004 Breakthrough of the Year honors by Science. Control of the Mars rovers has shifted between National Aeronautics and Space Administration ’s Jet Propulsion Laboratory at The California Institute of Technology and Cornell’s Space Sciences Building.

Further, Cornell researchers discovered the rings around the planet Uranus, and Cornell built and operated the telescope at Arecibo Observatory located in Arecibo, Puerto Rico until 2011, when they transferred the operations to SRI International, the Universities Space Research Association and the Metropolitan University of Puerto Rico [Universidad Metropolitana de Puerto Rico].

The Automotive Crash Injury Research Project was begun in 1952. It pioneered the use of crash testing, originally using corpses rather than dummies. The project discovered that improved door locks; energy-absorbing steering wheels; padded dashboards; and seat belts could prevent an extraordinary percentage of injuries.

In the early 1980s, Cornell deployed the first IBM 3090-400VF and coupled two IBM 3090-600E systems to investigate coarse-grained parallel computing. In 1984, the National Science Foundation began work on establishing five new supercomputer centers, including the Cornell Center for Advanced Computing, to provide high-speed computing resources for research within the United States. As a National Science Foundation center, Cornell deployed the first IBM Scalable Parallel supercomputer.
In the 1990s, Cornell developed scheduling software and deployed the first supercomputer built by Dell. Most recently, Cornell deployed Red Cloud, one of the first cloud computing services designed specifically for research. Today, the center is a partner on the National Science Foundation XSEDE-Extreme Science Engineering Discovery Environment supercomputing program, providing coordination for XSEDE architecture and design, systems reliability testing, and online training using the Cornell Virtual Workshop learning platform.

Cornell scientists have researched the fundamental particles of nature for more than 70 years. Cornell physicists, such as Hans Bethe, contributed not only to the foundations of nuclear physics but also participated in the Manhattan Project. In the 1930s, Cornell built the second cyclotron in the United States. In the 1950s, Cornell physicists became the first to study synchrotron radiation.

During the 1990s, the Cornell Electron Storage Ring, located beneath Alumni Field, was the world’s highest-luminosity electron-positron collider. After building the synchrotron at Cornell, Robert R. Wilson took a leave of absence to become the founding director of The DOE’s Fermi National Accelerator Laboratory, which involved designing and building the largest accelerator in the United States.

Cornell’s accelerator and high-energy physics groups are involved in the design of the proposed ILC-International Linear Collider(JP) and plan to participate in its construction and operation. The International Linear Collider(JP), to be completed in the late 2010s, will complement the CERN Large Hadron Collider(CH) and shed light on questions such as the identity of dark matter and the existence of extra dimensions.
As part of its research work, Cornell has established several research collaborations with universities around the globe. For example, a partnership with the University of Sussex (UK) (including the Institute of Development Studies at Sussex) allows research and teaching collaboration between the two institutions.

Leave a comment