Recent Updates Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 5:26 pm on July 23, 2021 Permalink | Reply
    Tags: "Needle in a haystack-planetary nebulae in distant galaxies", As the distance of a planetary nebula increases the apparent diameter in an image shrinks and the integrated apparent brightness decreases with the square of the distance., , , , , Leibniz Institute for Astrophysics [Leibniz-Institut für Astrophysik](AIP)(DE), , PNLF: luminosity function of planetary nebulae, The method used-a filter algorithm in image data processing-opens up new possibilities for cosmic distance measurement – and thus also for determining the Hubble constant., With modern large telescopes and long exposure times such objects can nevertheless be imaged and measured using optical filters or imaging spectroscopy.   

    From Leibniz Institute for Astrophysics [Leibniz-Institut für Astrophysik](AIP)(DE): “Needle in a haystack-planetary nebulae in distant galaxies” 

    From Leibniz Institute for Astrophysics [Leibniz-Institut für Astrophysik](AIP)(DE)

    July 22, 2021

    Science contacts:
    Prof. Dr.
    Martin M. Roth
    Phone: +49 331 7499 313
    mmroth@aip.de

    Dr. Peter Weilbacher
    Phone: +49 331 7499 667
    pweilbacher@aip.de

    Media contact:
    Sarah Hönig
    Phone: +49 331 7499 803
    presse@aip.de

    1
    The ring galaxy NGC 474 at a distance of about 110 million light years. The ring structure was formed by merging processes of colliding galaxies.
    Credit:DOE’s Fermi National Accelerator Laboratory (US)/Dark Energy Survey (US) /National Center for Supercomputing Applications at the University of Illinois (US) & Cerro Tololo Inter-American Observatory (CL) (US)/NSF NOIRLab (US)/National Science Foundation (US)/ Association of Universities for Research in Astronomy (US).

    Using data from the MUSE instrument, researchers at the Leibniz Institute for Astrophysics Potsdam (AIP) succeeded in detecting extremely faint planetary nebulae in distant galaxies.

    The method used-a filter algorithm in image data processing-opens up new possibilities for cosmic distance measurement – and thus also for determining the Hubble constant.

    Planetary nebulae are known in the neighbourhood of the Sun as colourful objects that appear at the end of a star’s life as it evolves from the red giant to white dwarf stage: when the star has used up its fuel for nuclear fusion, it blows off its gas envelope into interstellar space, contracts, becomes extremely hot, and excites the expanding gas envelope to glow.

    Unlike the continuous spectrum of the star, the ions of certain elements in this gas envelope, such as hydrogen, oxygen, helium and neon, emit light only at certain wavelengths. Special optical filters tuned to these wavelengths can make the faint nebulae visible. The closest object of this kind in our Milky Way is the Helix Nebula, 650 light years away.

    1
    The planetary nebula NGC 7294 (“Helix Nebula”), an object in the neighbourhood of the Sun.
    Credit: National Aeronautics Space Agency (US), NSF NOIRLab National Optical Astronomy Observatory (US), European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU), the Hubble Helix Nebula Team, M. Meixner (Space Telescope Science Institute (US)), and T.A. Rector (National Radio Astronomy Observatory (US))

    As the distance of a planetary nebula increases the apparent diameter in an image shrinks and the integrated apparent brightness decreases with the square of the distance. In our neighbouring galaxy, the Andromeda Galaxy, at a distance almost 4000 times greater, the Helix Nebula would only be visible as a dot, and its apparent brightness would be almost 15 million times fainter. With modern large telescopes and long exposure times such objects can nevertheless be imaged and measured using optical filters or imaging spectroscopy. Martin Roth, first author of the new study and head of the innoFSPEC department at AIP: “Using the PMAS instrument developed at AIP, we succeeded in doing this for the first time with integral field spectroscopy for a handful of planetary nebulae in the Andromeda Galaxy in 2001 to 2002 on the 3.5m telescope of the Calar Alto Observatory.


    However, the relatively small PMAS field-of-view did not allow yet to investigate a larger sample of objects.”

    It took a good 20 years to develop these first experiments further using a more powerful instrument with a more than 50 times larger field-of-view on a much larger telescope. MUSE [above] at the ESO Very Large Telescope in Chile [above] was developed primarily for the discovery of extremely faint objects at the edge of the universe currently observable to us – and has produced spectacular results for this purpose since the first observations. It is precisely this property that also comes into play in the detection of extremely faint PN in a distant galaxy.

    The galaxy NGC 474 is a particularly fine example of a galaxy that, through collision with other, smaller galaxies, has formed a conspicuous ring structure from the stars scattered by gravitational effects. It lies roughly 110 million light years away, which is about 170,000 times further than the Helix Nebula. The apparent brightness of a planetary nebula in this galaxy is therefore almost 30 billion times lower than that of the Helix Nebula and is in the range of cosmologically interesting galaxies for which the team designed the MUSE instrument.

    A team of researchers at the AIP, together with colleagues from the USA, has developed a method for using MUSE to isolate and precisely measure the extremely faint signals of planetary nebulae in distant galaxies with high sensitivity. A particularly effective filter algorithm in image data processing plays an important role here. For the ring galaxy NGC 474, ESO archive data were available, based on two very deep MUSE exposures with 5 hours of observation time each. The result of the data processing: after applying the filter algorithm, a total of 15 extremely faint planetary nebulae became visible.

    2
    MUSE image data in the two marked fields in the above image of the ring structure of NGC 474. Left: Image in the continuum with the band of unresolved stars as well as globular clusters marked by circles. Right: filtered image in the redshifted oxygen emission line, from which the planetary nebulae emerge as point sources from the noise. The artefacts created by instrumental effects have completely disappeared.
    Credit: AIP/M. Roth.

    This highly sensitive procedure opens up a new method for distance measurement that is suitable for contributing to the solution of the currently discussed discrepancy in the determination of the Hubble constant. Planetary nebulae have the property that, physically, a certain maximum luminosity cannot be exceeded. The distribution function of the luminosities of a sample in a galaxy, i.e. the luminosity function of planetary nebulae (PNLF), breaks off at the bright end. This property is that of a standard candle, which can be used to calculate a distance by statistical methods.

    The PNLF method has been developed already in 1989 by team members George Jacoby (NSF’s NOIRLab) and Robin Ciardullo (Penn State University (US)). It has been successfully applied to more than 50 galaxies over the past 30 years, but was limited by the filter measurements used so far. Galaxies with distances greater than that of the Virgo or Fornax clusters were beyond the range. The study, now published in The Astrophysical Journal, shows that MUSE can achieve more than twice the range, allowing an independent measurement of the Hubble constant.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Leibniz Institute for Astrophysics Potsdam (AIP)(DE) is a German research institute. It is the successor of the Berlin Observatory founded in 1700 and of the Astrophysical Observatory Potsdam (AOP) founded in 1874. The latter was the world’s first observatory to emphasize explicitly the research area of astrophysics. The AIP was founded in 1992, in a re-structuring following the German reunification.

    The AIP is privately funded and member of the Leibniz Association. It is located in Babelsberg in the state of Brandenburg, just west of Berlin, though the Einstein Tower solar observatory and the great refractor telescope on Telegrafenberg in Potsdam belong to the AIP.

    The key topics of the AIP are cosmic magnetic fields (magnetohydrodynamics) on various scales and extragalactic astrophysics. Astronomical and astrophysical fields studied at the AIP range from solar and stellar physics to stellar and galactic evolution to cosmology.

    The institute also develops research technology in the fields of spectroscopy and robotic telescopes. It is a partner of the Large Binocular Telescope in Arizona, has erected robotic telescopes in Tenerife and the Antarctic, develops astronomical instrumentation for large telescopes such as the VLT of the ESO. Furthermore, work on several e-Science projects are carried out at the AIP.

    Main research areas

    Magnetohydrodynamics (MHD): Magnetic fields and turbulence in stars, accretion disks and galaxies; computer simulations ao dynamos, magnetic instabilities and magnetic convection
    Solar physics: Observation of sunspots and of solar magnetic field with spectro-polarimetry; Helioseismology and hydrodynamic numerical models; Study of coronal plasma processes by means of radio astronomy; Operation of the Observatory for Solar Radio Astronomy[7] (OSRA) in Tremsdorf, with four radio antennas in different frequency bands from 40 MHz to 800 MHz
    Stellar physics: Numerical simulations of convection in stellar atmospheres, determination of stellar surface parameters and chemical abundances, winds and dust shells of red giants; Doppler tomography of stellar surface structures, development of robotic telescopes, as well as simulation of magnetic flux tubes
    Star formation and the interstellar medium: Brown dwarfs and low-mass stars, circumstellar disks, Origin of double and multiple-star systems
    Galaxies and quasars: Mother galaxies and surroundings of quasars, development of quasars and active galactic cores, structure and the story of the origin of the Milky Way, numerical computer simulations of the origin and development of galaxies
    Cosmology: Numerical simulation of the formation of large-scale structures. Semi-analytic models of galaxy formation and evolution. Predictions for future large observational surveys.

     
  • richardmitnick 3:34 pm on July 23, 2021 Permalink | Reply
    Tags: , , , , , "Physicists Show That a Quantum Particle Made of Light and Matter Can Be Dragged by a Current of Electrons", A quasiparticle made of waves of photons and electrons—a plasmon polariton—has a similar ability to change speeds when immersed in an electrical current flowing through a sheet of graphene., The polaritons appear to more easily shift gears in one direction—to a slightly slower speed—when traveling against the flow of electrons., The finding is a big deal for "plasmonics"., Polariton waves are minuscule; dozens can squeeze into the wavelength of one photon., Polaritons are compact but still quantum which means they can be manipulated on ultra-fast time scales., As soon as you can control the speed and direction of polaritons you can transmit information in nanoscale circuits on ultrafast timescales.   

    From Columbia University (US) : “Physicists Show That a Quantum Particle Made of Light and Matter Can Be Dragged by a Current of Electrons” 

    Columbia U bloc

    From Columbia University (US)

    July 21, 2021
    Kim Martineau

    A pair of studies in Nature show that a quasiparticle, known as a plasmon polariton, can be pulled with and against a flow of electrons, a finding that could lead to more efficient ways of manipulating light at the nanoscale.

    1
    Columbia University graduate students Lin Xiong (left) and Yinan Dong image polaritons using a cryogenic microscope. Credit: Yinan Dong.

    Light was thought to move at a fixed rate until 1851, when a French physicist—the first to accurately clock the speed of light—showed it could also be slowed or accelerated simply by shining a light beam with or against the flow of moving water. Decades later, Einstein seized on Hippolyte Fizeau’s landmark water-pipe experiments in developing his theory of relativity.

    Now, new research in Nature shows that a quasiparticle made of waves of photons and electrons—a plasmon polariton—has a similar ability to change speeds when immersed in an electrical current flowing through a sheet of graphene. But there’s a hitch: the polaritons appear to more easily shift gears in one direction—to a slightly slower speed—when traveling against the flow of electrons.

    The finding is a big deal for plasmonics, a field with a rock-star name dedicated to finding new and efficient ways of controlling light down at the nearly invisible scale of individual atoms—for optical computing, nanolasers, and other applications, including imprinting patterns into semiconductors. Polaritons have two perks. Their relatively slow speed compared to photons makes them a good proxy for manipulating light. Polariton waves are also minuscule; dozens can squeeze into the wavelength of one photon.

    Dmitri Basov, a physics professor at Columbia, has devoted most of his lab to studying their behavior. “Polaritons possess the best virtues of electrons and photons,” he said. “They’re compact but still quantum which means they can be manipulated on ultra-fast time scales.”

    2
    In this illustration, a set of polariton waves (at left), interact with drifting electrons in a sheet of graphene. The warped fabric of space-time (upper left) represents the related concept of relativity. Credit: Yinan Dong, Denis Bandurin, and Ella Maru Studio.

    In the recent Nature study, Basov and his colleagues recreated Fizeau’s experiments on a speck of graphene made up of a single layer of carbon atoms. Hooking up the graphene to a battery, they created an electrical current reminiscent of Fizeau’s water streaming through a pipe. But instead of shining light on the moving water and measuring its speed in both directions, as Fizeau did, they generated an electromagnetic wave with a compressed wavelength—a polariton—by focusing infrared light on a gold nub in the graphene. The activated stream of polaritons look like light but are physically more compact due to their short wavelengths.

    The researchers clocked the polaritons’ speed in both directions. When they traveled with the flow of the electrical current, they maintained their original speed. But when launched against the current, they slowed by a few percentage points.

    An Unexpected Result

    “We were surprised when we saw it,” said study co-author Denis Bandurin, a physics researcher at Massachusetts Institute of Technology (US). “First, the device was still alive, despite the heavy current we passed through it—it hadn’t blown up. Then we noticed the one-way effect, which was different from Fizeau’s original experiments.”

    The researchers repeated the experiments over and over, led by the study’s first-author, Yinan Dong, a Columbia graduate student. Finally, it dawned on them. “Graphene is a material that turns electrons into relativistic particles,” Dong said. “We needed to account for their spectrum.”

    A group at DOE’s Lawrence Berkeley National Laboratory (US) found a similar result, published in the same issue of Nature. Beyond reproducing the Fizeau effect in graphene, both studies have practical applications. Most natural systems are symmetric, but here, researchers found an intriguing exception. Basov said he hopes to slow down, and ultimately, cut off the flow of polaritons in one direction. It’s not an easy task, but it could hold big rewards.

    “Engineering a system with a one-way flow of light is very difficult to achieve,” said Milan Delor, a physical chemist working on light-matter interactions at Columbia who was not involved in the research. “As soon as you can control the speed and direction of polaritons you can transmit information in nanoscale circuits on ultrafast timescales. It’s one of the ingredients currently missing in photon-based circuits.”

    Optical isolators are currently used to limit the bounce-back of light in everything from lasers to the fiber optic cables in broadband. But they’re bulky and incompatible with modern nanocircuits, making polaritons, with their potential to be shut off in one direction, so appealing.

    Plasmonics researchers are also excited about the detailed images to come out of the experiments. They show that polaritons can serve as nanoscale probes, they said, triggering and recording electron-electron interactions in a system. This information provides clues about how graphene and other quantum materials will behave in the real world.

    “The images are effectively a read-out of the material properties of graphene,” Delor said.

    The Enablers of “Nanoptics”

    “I like to call polaritons the enablers of nanoptics,” says James Schuck, a mechanical engineer and plasmonics researcher at Columbia Engineering who was not involved in the work. “They’re useful for probing all sorts of materials at the nanoscale.”

    Most of the experiments were done during the pandemic; the researchers wore masks and gloves and disinfected the lab after each visit. “There was no slow-down for quantum physics,” says Basov, with a laugh, evoking Fizeau.

    The French physicist’s name was later inscribed on the Eiffel Tower; not for the effect that bears his name, but for precisely measuring the speed of light. Fizeau’s work was popularized in a lecture series at Columbia in 1906, as Basov likes to remind students. Fizeau was also an early photographic experimenter. Some of his ghostly daguerreotype views of the rooftops of Paris are held by The Metropolitan Museum of Art, not far from the Columbia campus.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Columbia U Campus
    Columbia University (US) was founded in 1754 as King’s College by royal charter of King George II of England. It is the oldest institution of higher learning in the state of New York and the fifth oldest in the United States.

    University Mission Statement

    Columbia University is one of the world’s most important centers of research and at the same time a distinctive and distinguished learning environment for undergraduates and graduate students in many scholarly and professional fields. The University recognizes the importance of its location in New York City and seeks to link its research and teaching to the vast resources of a great metropolis. It seeks to attract a diverse and international faculty and student body, to support research and teaching on global issues, and to create academic relationships with many countries and regions. It expects all areas of the University to advance knowledge and learning at the highest level and to convey the products of its efforts to the world.

    Columbia University is a private Ivy League research university in New York City. Established in 1754 on the grounds of Trinity Church in Manhattan Columbia is the oldest institution of higher education in New York and the fifth-oldest institution of higher learning in the United States. It is one of nine colonial colleges founded prior to the Declaration of Independence, seven of which belong to the Ivy League. Columbia is ranked among the top universities in the world by major education publications.

    Columbia was established as King’s College by royal charter from King George II of Great Britain in reaction to the founding of Princeton College. It was renamed Columbia College in 1784 following the American Revolution, and in 1787 was placed under a private board of trustees headed by former students Alexander Hamilton and John Jay. In 1896, the campus was moved to its current location in Morningside Heights and renamed Columbia University.

    Columbia scientists and scholars have played an important role in scientific breakthroughs including brain-computer interface; the laser and maser; nuclear magnetic resonance; the first nuclear pile; the first nuclear fission reaction in the Americas; the first evidence for plate tectonics and continental drift; and much of the initial research and planning for the Manhattan Project during World War II. Columbia is organized into twenty schools, including four undergraduate schools and 15 graduate schools. The university’s research efforts include the Lamont–Doherty Earth Observatory, the Goddard Institute for Space Studies, and accelerator laboratories with major technology firms such as IBM. Columbia is a founding member of the Association of American Universities and was the first school in the United States to grant the M.D. degree. With over 14 million volumes, Columbia University Library is the third largest private research library in the United States.

    The university’s endowment stands at $11.26 billion in 2020, among the largest of any academic institution. As of October 2020, Columbia’s alumni, faculty, and staff have included: five Founding Fathers of the United States—among them a co-author of the United States Constitution and a co-author of the Declaration of Independence; three U.S. presidents; 29 foreign heads of state; ten justices of the United States Supreme Court, one of whom currently serves; 96 Nobel laureates; five Fields Medalists; 122 National Academy of Sciences members; 53 living billionaires; eleven Olympic medalists; 33 Academy Award winners; and 125 Pulitzer Prize recipients.

     
  • richardmitnick 1:51 pm on July 23, 2021 Permalink | Reply
    Tags: "Tiny Kinks Record Ancient Quakes", , , , , , Heat and pressure can erase clues of past quakes., , Shear zones millions of years old that now reside at the surface can provide windows into the rocks around ancient ruptures., We need some other proxy when we’re looking for evidence of earthquakes in the rock record.   

    From Eos: “Tiny Kinks Record Ancient Quakes” 

    From AGU
    Eos news bloc

    From Eos

    19 July 2021
    Alka Tripathy-Lang
    alka.trip@gmail.com

    1
    A kinked muscovite grain embedded within a fine-grained, highly deformed matrix of other minerals displays asymmetric kink bands. Credit: Erik Anderson.

    Every so often, somewhere beneath our feet, rocks rupture, and an earthquake begins. With big enough ruptures, we might feel an earthquake as seismic waves radiate to or along the surface. However, a mere 15% to 20% of the energy needed to break rocks in the first place translates into seismicity, scientists suspect.

    The remaining energy can dissipate as frictional heat, leaving behind melted planes of glassy rock called pseudotachylyte. The leftover energy may also fracture, pulverize, or deform rocks that surround the rupture as it rushes through the crust, said Erik Anderson, a doctoral student at the University of Maine (US). Because these processes occur kilometers below Earth’s surface, scientists cannot directly observe them when modern earthquakes strike. Shear zones millions of years old that now reside at the surface can provide windows into the rocks around ancient ruptures. However, although seismogenically altered rocks remain at depth, heat and pressure can erase clues of past quakes, said Anderson. “We need some other proxy,” he said, “when we’re looking for evidence of earthquakes in the rock record.”

    Micas—sheetlike minerals that can stack together in individual crystals that often provide the sparkle in kitchen countertops—can preserve deformation features that look like microscopic chevrons. On geology’s macroscale, chevrons form in layered strata. In minuscule sheaves of mica, petrologists observe similar pointy folds because the structure of the mica leaves it prone to kinking, rather than buckling or folding, said Frans Aben, a rock physicist at University College London (UK).

    In a new article in Earth and Planetary Science Letters, Anderson and his colleagues argue that these microstructures—called kink bands—often mark bygone earthquake ruptures and might outlast other indicators of seismicity.

    Ancient Kink Bands, Explosive Explanation

    To observe kinked micas, scientists must carefully cut rocks into slivers thinner than the typical width of a human hair and affix each rock slice to a piece of glass. By using high-powered microscopes to examine this rock and glass combination (aptly called a thin section), Anderson and his colleagues compared kink bands from two locations in Maine, both more than 300 million years old. The first location is rife with telltale signs of a dynamically deformed former seismogenic zone, like shattered garnets and pseudotachylyte. The second location exposes rocks that changed slowly, under relatively static conditions.

    Comparing the geometry of the kink bands from these sites, the researchers observed differences in the thicknesses and symmetries of the microstructures. In particular, samples from the dynamically deformed location display thin-sided, asymmetric kinks. The more statically deformed samples showcase equally proportioned points with thicker limbs.

    Kink bands, said Aben, can be added to a growing list of indicators of seismic activity in otherwise cryptic shear zones. The data, he said, “speak for themselves.” Aben was not involved in this study.

    To further cement the link between earthquakes and kink band geometry, Anderson and colleagues analyzed 1960s era studies largely driven by the development of nuclear weapons. During that time, scientists strove to understand how shock waves emanated from sites of sudden, rapid, massive perturbations like those produced at nuclear test sites or meteor impact craters. Micas developed kink bands at such sites, as well as in complementary laboratory experiments, said Anderson, and they mimic the geometric patterns produced by dynamic strain rate events—like earthquakes. “[Kink band] geometry,” Anderson said, “is directly linked to the mode of deformation.”

    Stressing Rocks, Kinking Micas

    In addition to exploring whether kinked mica geometry could fingerprint relics of earthquake ruptures, Anderson and his colleagues estimated the magnitude of localized, transient stress their samples experienced as an earthquake’s rupture front propagated through the rocks, he said. In other words, he asked, might the geometry of kinked micas scale with the magnitude of momentary stress that kinked the micas in the first place?

    By extrapolating data from previously published laboratory experiments, Anderson estimated that pulverizing rocks at the deepest depths at which earthquakes can nucleate requires up to 2 gigapascals of stress. Although stress doesn’t directly correspond to pressure, 2 gigapascals are equivalent to more than 7,200 times the pressure inside a car tire inflated to 40 pounds per square inch. For reference, the unimaginably crushing pressure in the deepest part of the ocean—the Mariana Trench—is only about 400 times the pressure in that same tire.

    By the same conversion, kinking micas requires stresses 8–30 times the water pressure in the deepest ocean. Because Anderson found pulverized garnets proximal to kinked micas at the fault-filled field site, he and his colleagues inferred that the stresses momentarily experienced by these rocks as an earthquake’s rupture tore through the shear zone were about 1 gigapascal, or 9 times the pressure at the Mariana Trench.

    Aben described this transient stress estimate for earthquakes as speculative, but he said the new study’s focus on earthquake-induced deformation fills a gap in research between very slow rock deformation that builds mountains and extremely rapid deformation that occurs during nuclear weapons testing and meteor impacts. And with micas, he said, “once they’re kinked, they will remain kinked,” preserving records of ancient earthquakes in the hearts of mountains.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

     
  • richardmitnick 1:23 pm on July 23, 2021 Permalink | Reply
    Tags: "Stanford researchers develop tool to drastically speed up the study of enzymes", A chemical reaction that would take longer than the lifetime of the universe to happen on its own can occur in seconds with the aid of enzymes., A new tool that enables thousands of tiny experiments to run simultaneously on a single polymer chip will let scientists study enzymes faster and more comprehensively than ever before., , Because each tiny chamber contains only a thousandth of a millionth of a liter of material the scientists can engineer thousands of variants of an enzyme in a single device and study them in parallel., , , Enzyme experiments on a chip, , Google-funded AlphaFold project: designed to deduce an enzyme’s complicated 3D shape from its amino acid sequence alone., HT-MEK combines two existing technologies: microfluidics and cell-free protein synthesis [explained in the blog post.], HT-MEK could also accelerate an approach to drug development called allosteric targeting which aims to increase drug specificity by targeting beyond an enzyme’s active site., HT-MEK may even allow scientists to reverse-engineer enzymes and design bespoke varieties of their own., HT-MEK: High-Throughput Microfluidic Enzyme Kinetics, If widely adopted HT-MEK could not only improve our basic understanding of enzyme function but also catalyze advances in medicine and industry.,   

    From Stanford University (US) : “Stanford researchers develop tool to drastically speed up the study of enzymes” 

    Stanford University Name

    From Stanford University (US)

    July 22, 2021
    Ker Than

    A new tool that enables thousands of tiny experiments to run simultaneously on a single polymer chip will let scientists study enzymes faster and more comprehensively than ever before.

    1
    HT-MEK – short for High-Throughput Microfluidic Enzyme Kinetics – combines microfluidics and cell-free protein synthesis technologies to dramatically speed up the study of enzymes. Credit: Daniel Mokhtari.

    For much of human history, animals and plants were perceived to follow a different set of rules than rest of the universe. In the 18th and 19th centuries, this culminated in a belief that living organisms were infused by a non-physical energy or “life force” that allowed them to perform remarkable transformations that couldn’t be explained by conventional chemistry or physics alone.

    Scientists now understand that these transformations are powered by enzymes – protein molecules comprised of chains of amino acids that act to speed up, or catalyze, the conversion of one kind of molecule (substrates) into another (products). In so doing, they enable reactions such as digestion and fermentation – and all of the chemical events that happen in every one of our cells – that, left alone, would happen extraordinarily slowly.

    “A chemical reaction that would take longer than the lifetime of the universe to happen on its own can occur in seconds with the aid of enzymes,” said Polly Fordyce, an assistant professor of bioengineering and of genetics at Stanford University.

    While much is now known about enzymes, including their structures and the chemical groups they use to facilitate reactions, the details surrounding how their forms connect to their functions, and how they pull off their biochemical wizardry with such extraordinary speed and specificity are still not well understood.

    A new technique, developed by Fordyce and her colleagues at Stanford and detailed this week in the journal Science, could help change that. Dubbed HT-MEK — short for High-Throughput Microfluidic Enzyme Kinetics — the technique can compress years of work into just a few weeks by enabling thousands of enzyme experiments to be performed simultaneously. “Limits in our ability to do enough experiments have prevented us from truly dissecting and understanding enzymes,” said study co-leader Dan Herschlag, a professor of biochemistry at Stanford’s School of Medicine.

    2
    Closeup image of the HT-MEK device shows the individual nanoliter-sized chambers where enzyme experiments are performed. Credit: Daniel Mokhtari.

    By allowing scientists to deeply probe beyond the small “active site” of an enzyme where substrate binding occurs, HT-MEK could reveal clues about how even the most distant parts of enzymes work together to achieve their remarkable reactivity.

    “It’s like we’re now taking a flashlight and instead of just shining it on the active site we’re shining it over the entire enzyme,” Fordyce said. “When we did this, we saw a lot of things we didn’t expect.”

    Enzymatic tricks

    HT-MEK is designed to replace a laborious process for purifying enzymes that has traditionally involved engineering bacteria to produce a particular enzyme, growing them in large beakers, bursting open the microbes and then isolating the enzyme of interest from all the other unwanted cellular components. To piece together how an enzyme works, scientists introduce intentional mistakes into its DNA blueprint and then analyze how these mutations affect catalysis.

    This process is expensive and time consuming, however, so like an audience raptly focused on the hands of a magician during a conjuring trick, researchers have mostly limited their scientific investigations to the active sites of enzymes. “We know a lot about the part of the enzyme where the chemistry occurs because people have made mutations there to see what happens. But that’s taken decades,” Fordyce said.

    But as any connoisseur of magic tricks knows, the key to a successful illusion can lie not just in the actions of the magician’s fingers, but might also involve the deft positioning of an arm or the torso, a misdirecting patter or discrete actions happening offstage, invisible to the audience. HT-MEK allows scientists to easily shift their gaze to parts of the enzyme beyond the active site and to explore how, for example, changing the shape of an enzyme’s surface might affect the workings of its interior.

    “We ultimately would like to do enzymatic tricks ourselves,” Fordyce said. “But the first step is figuring out how it’s done before we can teach ourselves to do it.”

    Enzyme experiments on a chip

    The technology behind HT-MEK was developed and refined over six years through a partnership between the labs of Fordyce and Herschlag. “This is an amazing case of engineering and enzymology coming together to — we hope — revolutionize a field,” Herschlag said. “This project went beyond your typical collaboration — it was a group of people working jointly to solve a very difficult problem — and continues with the methodologies in place to try to answer difficult questions.”

    HT-MEK combines two existing technologies to rapidly speed up enzyme analysis. The first is microfluidics, which involves molding polymer chips to create microscopic channels for the precise manipulation of fluids. “Microfluidics shrinks the physical space to do these fluidic experiments in the same way that integrated circuits reduced the real estate needed for computing,” Fordyce said. “In enzymology, we are still doing things in these giant liter-sized flasks. Everything is a huge volume and we can’t do many things at once.”

    The second is cell-free protein synthesis, a technology that takes only those crucial pieces of biological machinery required for protein production and combines them into a soupy extract that can be used to create enzymes synthetically, without requiring living cells to serve as incubators.

    “We’ve automated it so that we can use printers to deposit microscopic spots of synthetic DNA coding for the enzyme that we want onto a slide and then align nanoliter-sized chambers filled with the protein starter mix over the spots,” Fordyce explained.

    3
    The scientists used HT-MEK to study how mutations to different parts of a well-studied enzyme called PafA affected its catalytic ability. Credit: Daniel Mokhtari.

    Because each tiny chamber contains only a thousandth of a millionth of a liter of material the scientists can engineer thousands of variants of an enzyme in a single device and study them in parallel. By tweaking the DNA instructions in each chamber, they can modify the chains of amino acid molecules that comprise the enzyme. In this way, it’s possible to systematically study how different modifications to an enzyme affects its folding, catalytic ability and ability to bind small molecules and other proteins.

    When the team applied their technique to a well-studied enzyme called PafA, they found that mutations well beyond the active site affected its ability to catalyze chemical reactions — indeed, most of the amino acids, or “residues,” making up the enzyme had effects.

    The scientists also discovered that a surprising number of mutations caused PafA to misfold into an alternate state that was unable to perform catalysis. “Biochemists have known for decades that misfolding can occur but it’s been extremely difficult to identify these cases and even more difficult to quantitatively estimate the amount of this misfolded stuff,” said study co-first author Craig Markin, a research scientist with joint appointments in the Fordyce and Herschlag labs.

    “This is one enzyme out of thousands and thousands,” Herschlag emphasized. “We expect there to be more discoveries and more surprises.”

    Accelerating advances

    If widely adopted HT-MEK could not only improve our basic understanding of enzyme function but also catalyze advances in medicine and industry, the researchers say. “A lot of the industrial chemicals we use now are bad for the environment and are not sustainable. But enzymes work most effectively in the most environmentally benign substance we have — water,” said study co-first author Daniel Mokhtari, a Stanford graduate student in the Herschlag and Fordyce labs.


    Movie shows fluorescence buildup denoting catalytic reactions in a portion of the HT-MEK device over time. Credit: Craig Markin and Daniel Mokhtari.

    HT-MEK could also accelerate an approach to drug development called allosteric targeting which aims to increase drug specificity by targeting beyond an enzyme’s active site. Enzymes are popular pharmaceutical targets because of the key role they play in biological processes. But some are considered “undruggable” because they belong to families of related enzymes that share the same or very similar active sites, and targeting them can lead to side effects. The idea behind allosteric targeting is to create drugs that can bind to parts of enzymes that tend to be more differentiated, like their surfaces, but still control particular aspects of catalysis. “With PafA, we saw functional connectivity between the surface and the active site, so that gives us hope that other enzymes will have similar targets,” Markin said. “If we can identify where allosteric targets are, then we’ll be able to start on the harder job of actually designing drugs for them.”

    The sheer amount of data that HT-MEK is expected to generate will also be a boon to computational approaches and machine learning algorithms, like the Google-funded AlphaFold project designed to deduce an enzyme’s complicated 3D shape from its amino acid sequence alone. “If machine learning is to have any chance of accurately predicting enzyme function, it will need the kind of data HT-MEK can provide to train on,” Mokhtari said.

    Much further down the road, HT-MEK may even allow scientists to reverse-engineer enzymes and design bespoke varieties of their own. “Plastics are a great example,” Fordyce said. “We would love to create enzymes that can degrade plastics into nontoxic and harmless pieces. If it were really true that the only part of an enzyme that matters is its active site, then we’d be able to do that and more already. Many people have tried and failed, and it’s thought that one reason why we can’t is because the rest of the enzyme is important for getting the active site in just the right shape and to wiggle in just the right way.”

    Herschlag hopes that adoption of HT-MEK among scientists will be swift. “If you’re an enzymologist trying to learn about a new enzyme and you have the opportunity to look at 5 or 10 mutations over six months or 100 or 1,000 mutants of your enzyme over the same period, which would you choose?” he said. “This is a tool that has the potential to supplant traditional methods for an entire community.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus. No image credit

    Stanford University (US)

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members.

    Stanford University, officially Leland Stanford Junior University, is a private research university located in Stanford, California. Stanford was founded in 1885 by Leland and Jane Stanford in memory of their only child, Leland Stanford Jr., who had died of typhoid fever at age 15 the previous year. Stanford is consistently ranked as among the most prestigious and top universities in the world by major education publications. It is also one of the top fundraising institutions in the country, becoming the first school to raise more than a billion dollars in a year.

    Leland Stanford was a U.S. senator and former governor of California who made his fortune as a railroad tycoon. The school admitted its first students on October 1, 1891, as a coeducational and non-denominational institution. Stanford University struggled financially after the death of Leland Stanford in 1893 and again after much of the campus was damaged by the 1906 San Francisco earthquake. Following World War II, provost Frederick Terman supported faculty and graduates’ entrepreneurialism to build self-sufficient local industry in what would later be known as Silicon Valley.

    The university is organized around seven schools: three schools consisting of 40 academic departments at the undergraduate level as well as four professional schools that focus on graduate programs in law, medicine, education, and business. All schools are on the same campus. Students compete in 36 varsity sports, and the university is one of two private institutions in the Division I FBS Pac-12 Conference. It has gained 126 NCAA team championships, and Stanford has won the NACDA Directors’ Cup for 24 consecutive years, beginning in 1994–1995. In addition, Stanford students and alumni have won 270 Olympic medals including 139 gold medals.

    As of October 2020, 84 Nobel laureates, 28 Turing Award laureates, and eight Fields Medalists have been affiliated with Stanford as students, alumni, faculty, or staff. In addition, Stanford is particularly noted for its entrepreneurship and is one of the most successful universities in attracting funding for start-ups. Stanford alumni have founded numerous companies, which combined produce more than $2.7 trillion in annual revenue, roughly equivalent to the 7th largest economy in the world (as of 2020). Stanford is the alma mater of one president of the United States (Herbert Hoover), 74 living billionaires, and 17 astronauts. It is also one of the leading producers of Fulbright Scholars, Marshall Scholars, Rhodes Scholars, and members of the United States Congress.

    Stanford University was founded in 1885 by Leland and Jane Stanford, dedicated to Leland Stanford Jr, their only child. The institution opened in 1891 on Stanford’s previous Palo Alto farm.

    Jane and Leland Stanford modeled their university after the great eastern universities, most specifically Cornell University. Stanford opened being called the “Cornell of the West” in 1891 due to faculty being former Cornell affiliates (either professors, alumni, or both) including its first president, David Starr Jordan, and second president, John Casper Branner. Both Cornell and Stanford were among the first to have higher education be accessible, nonsectarian, and open to women as well as to men. Cornell is credited as one of the first American universities to adopt this radical departure from traditional education, and Stanford became an early adopter as well.

    Despite being impacted by earthquakes in both 1906 and 1989, the campus was rebuilt each time. In 1919, The Hoover Institution on War, Revolution and Peace was started by Herbert Hoover to preserve artifacts related to World War I. The Stanford Medical Center, completed in 1959, is a teaching hospital with over 800 beds. The DOE’s SLAC National Accelerator Laboratory(US)(originally named the Stanford Linear Accelerator Center), established in 1962, performs research in particle physics.

    Land

    Most of Stanford is on an 8,180-acre (12.8 sq mi; 33.1 km^2) campus, one of the largest in the United States. It is located on the San Francisco Peninsula, in the northwest part of the Santa Clara Valley (Silicon Valley) approximately 37 miles (60 km) southeast of San Francisco and approximately 20 miles (30 km) northwest of San Jose. In 2008, 60% of this land remained undeveloped.

    Stanford’s main campus includes a census-designated place within unincorporated Santa Clara County, although some of the university land (such as the Stanford Shopping Center and the Stanford Research Park) is within the city limits of Palo Alto. The campus also includes much land in unincorporated San Mateo County (including the SLAC National Accelerator Laboratory and the Jasper Ridge Biological Preserve), as well as in the city limits of Menlo Park (Stanford Hills neighborhood), Woodside, and Portola Valley.

    Non-central campus

    Stanford currently operates in various locations outside of its central campus.

    On the founding grant:

    Jasper Ridge Biological Preserve is a 1,200-acre (490 ha) natural reserve south of the central campus owned by the university and used by wildlife biologists for research.
    SLAC National Accelerator Laboratory is a facility west of the central campus operated by the university for the Department of Energy. It contains the longest linear particle accelerator in the world, 2 miles (3.2 km) on 426 acres (172 ha) of land.
    Golf course and a seasonal lake: The university also has its own golf course and a seasonal lake (Lake Lagunita, actually an irrigation reservoir), both home to the vulnerable California tiger salamander. As of 2012 Lake Lagunita was often dry and the university had no plans to artificially fill it.

    Off the founding grant:

    Hopkins Marine Station, in Pacific Grove, California, is a marine biology research center owned by the university since 1892.
    Study abroad locations: unlike typical study abroad programs, Stanford itself operates in several locations around the world; thus, each location has Stanford faculty-in-residence and staff in addition to students, creating a “mini-Stanford”.

    Redwood City campus for many of the university’s administrative offices located in Redwood City, California, a few miles north of the main campus. In 2005, the university purchased a small, 35-acre (14 ha) campus in Midpoint Technology Park intended for staff offices; development was delayed by The Great Recession. In 2015 the university announced a development plan and the Redwood City campus opened in March 2019.

    The Bass Center in Washington, DC provides a base, including housing, for the Stanford in Washington program for undergraduates. It includes a small art gallery open to the public.

    China: Stanford Center at Peking University, housed in the Lee Jung Sen Building, is a small center for researchers and students in collaboration with Beijing University [北京大学](CN) (Kavli Institute for Astronomy and Astrophysics at Peking University(CN) (KIAA-PKU).

    Administration and organization

    Stanford is a private, non-profit university that is administered as a corporate trust governed by a privately appointed board of trustees with a maximum membership of 38. Trustees serve five-year terms (not more than two consecutive terms) and meet five times annually.[83] A new trustee is chosen by the current trustees by ballot. The Stanford trustees also oversee the Stanford Research Park, the Stanford Shopping Center, the Cantor Center for Visual Arts, Stanford University Medical Center, and many associated medical facilities (including the Lucile Packard Children’s Hospital).

    The board appoints a president to serve as the chief executive officer of the university, to prescribe the duties of professors and course of study, to manage financial and business affairs, and to appoint nine vice presidents. The provost is the chief academic and budget officer, to whom the deans of each of the seven schools report. Persis Drell became the 13th provost in February 2017.

    As of 2018, the university was organized into seven academic schools. The schools of Humanities and Sciences (27 departments), Engineering (nine departments), and Earth, Energy & Environmental Sciences (four departments) have both graduate and undergraduate programs while the Schools of Law, Medicine, Education and Business have graduate programs only. The powers and authority of the faculty are vested in the Academic Council, which is made up of tenure and non-tenure line faculty, research faculty, senior fellows in some policy centers and institutes, the president of the university, and some other academic administrators, but most matters are handled by the Faculty Senate, made up of 55 elected representatives of the faculty.

    The Associated Students of Stanford University (ASSU) is the student government for Stanford and all registered students are members. Its elected leadership consists of the Undergraduate Senate elected by the undergraduate students, the Graduate Student Council elected by the graduate students, and the President and Vice President elected as a ticket by the entire student body.

    Stanford is the beneficiary of a special clause in the California Constitution, which explicitly exempts Stanford property from taxation so long as the property is used for educational purposes.

    Endowment and donations

    The university’s endowment, managed by the Stanford Management Company, was valued at $27.7 billion as of August 31, 2019. Payouts from the Stanford endowment covered approximately 21.8% of university expenses in the 2019 fiscal year. In the 2018 NACUBO-TIAA survey of colleges and universities in the United States and Canada, only Harvard University(US), the University of Texas System(US), and Yale University(US) had larger endowments than Stanford.

    In 2006, President John L. Hennessy launched a five-year campaign called the Stanford Challenge, which reached its $4.3 billion fundraising goal in 2009, two years ahead of time, but continued fundraising for the duration of the campaign. It concluded on December 31, 2011, having raised a total of $6.23 billion and breaking the previous campaign fundraising record of $3.88 billion held by Yale. Specifically, the campaign raised $253.7 million for undergraduate financial aid, as well as $2.33 billion for its initiative in “Seeking Solutions” to global problems, $1.61 billion for “Educating Leaders” by improving K-12 education, and $2.11 billion for “Foundation of Excellence” aimed at providing academic support for Stanford students and faculty. Funds supported 366 new fellowships for graduate students, 139 new endowed chairs for faculty, and 38 new or renovated buildings. The new funding also enabled the construction of a facility for stem cell research; a new campus for the business school; an expansion of the law school; a new Engineering Quad; a new art and art history building; an on-campus concert hall; a new art museum; and a planned expansion of the medical school, among other things. In 2012, the university raised $1.035 billion, becoming the first school to raise more than a billion dollars in a year.

    Research centers and institutes

    DOE’s SLAC National Accelerator Laboratory(US)
    Stanford Research Institute, a center of innovation to support economic development in the region.
    Hoover Institution, a conservative American public policy institution and research institution that promotes personal and economic liberty, free enterprise, and limited government.
    Hasso Plattner Institute of Design, a multidisciplinary design school in cooperation with the Hasso Plattner Institute of University of Potsdam [Universität Potsdam](DE) that integrates product design, engineering, and business management education).
    Martin Luther King Jr. Research and Education Institute, which grew out of and still contains the Martin Luther King Jr. Papers Project.
    John S. Knight Fellowship for Professional Journalists
    Center for Ocean Solutions
    Together with UC Berkeley(US) and UC San Francisco(US), Stanford is part of the Biohub, a new medical science research center founded in 2016 by a $600 million commitment from Facebook CEO and founder Mark Zuckerberg and pediatrician Priscilla Chan.

    Discoveries and innovation

    Natural sciences

    Biological synthesis of deoxyribonucleic acid (DNA) – Arthur Kornberg synthesized DNA material and won the Nobel Prize in Physiology or Medicine 1959 for his work at Stanford.
    First Transgenic organism – Stanley Cohen and Herbert Boyer were the first scientists to transplant genes from one living organism to another, a fundamental discovery for genetic engineering. Thousands of products have been developed on the basis of their work, including human growth hormone and hepatitis B vaccine.
    Laser – Arthur Leonard Schawlow shared the 1981 Nobel Prize in Physics with Nicolaas Bloembergen and Kai Siegbahn for his work on lasers.
    Nuclear magnetic resonance – Felix Bloch developed new methods for nuclear magnetic precision measurements, which are the underlying principles of the MRI.

    Computer and applied sciences

    ARPANETStanford Research Institute, formerly part of Stanford but on a separate campus, was the site of one of the four original ARPANET nodes.

    Internet—Stanford was the site where the original design of the Internet was undertaken. Vint Cerf led a research group to elaborate the design of the Transmission Control Protocol (TCP/IP) that he originally co-created with Robert E. Kahn (Bob Kahn) in 1973 and which formed the basis for the architecture of the Internet.

    Frequency modulation synthesis – John Chowning of the Music department invented the FM music synthesis algorithm in 1967, and Stanford later licensed it to Yamaha Corporation.

    Google – Google began in January 1996 as a research project by Larry Page and Sergey Brin when they were both PhD students at Stanford. They were working on the Stanford Digital Library Project (SDLP). The SDLP’s goal was “to develop the enabling technologies for a single, integrated and universal digital library” and it was funded through the National Science Foundation, among other federal agencies.

    Klystron tube – invented by the brothers Russell and Sigurd Varian at Stanford. Their prototype was completed and demonstrated successfully on August 30, 1937. Upon publication in 1939, news of the klystron immediately influenced the work of U.S. and UK researchers working on radar equipment.

    RISCARPA funded VLSI project of microprocessor design. Stanford and UC Berkeley are most associated with the popularization of this concept. The Stanford MIPS would go on to be commercialized as the successful MIPS architecture, while Berkeley RISC gave its name to the entire concept, commercialized as the SPARC. Another success from this era were IBM’s efforts that eventually led to the IBM POWER instruction set architecture, PowerPC, and Power ISA. As these projects matured, a wide variety of similar designs flourished in the late 1980s and especially the early 1990s, representing a major force in the Unix workstation market as well as embedded processors in laser printers, routers and similar products.
    SUN workstation – Andy Bechtolsheim designed the SUN workstation for the Stanford University Network communications project as a personal CAD workstation, which led to Sun Microsystems.

    Businesses and entrepreneurship

    Stanford is one of the most successful universities in creating companies and licensing its inventions to existing companies; it is often held up as a model for technology transfer. Stanford’s Office of Technology Licensing is responsible for commercializing university research, intellectual property, and university-developed projects.

    The university is described as having a strong venture culture in which students are encouraged, and often funded, to launch their own companies.

    Companies founded by Stanford alumni generate more than $2.7 trillion in annual revenue, equivalent to the 10th-largest economy in the world.

    Some companies closely associated with Stanford and their connections include:

    Hewlett-Packard, 1939, co-founders William R. Hewlett (B.S, PhD) and David Packard (M.S).
    Silicon Graphics, 1981, co-founders James H. Clark (Associate Professor) and several of his grad students.
    Sun Microsystems, 1982, co-founders Vinod Khosla (M.B.A), Andy Bechtolsheim (PhD) and Scott McNealy (M.B.A).
    Cisco, 1984, founders Leonard Bosack (M.S) and Sandy Lerner (M.S) who were in charge of Stanford Computer Science and Graduate School of Business computer operations groups respectively when the hardware was developed.[163]
    Yahoo!, 1994, co-founders Jerry Yang (B.S, M.S) and David Filo (M.S).
    Google, 1998, co-founders Larry Page (M.S) and Sergey Brin (M.S).
    LinkedIn, 2002, co-founders Reid Hoffman (B.S), Konstantin Guericke (B.S, M.S), Eric Lee (B.S), and Alan Liu (B.S).
    Instagram, 2010, co-founders Kevin Systrom (B.S) and Mike Krieger (B.S).
    Snapchat, 2011, co-founders Evan Spiegel and Bobby Murphy (B.S).
    Coursera, 2012, co-founders Andrew Ng (Associate Professor) and Daphne Koller (Professor, PhD).

    Student body

    Stanford enrolled 6,996 undergraduate and 10,253 graduate students as of the 2019–2020 school year. Women comprised 50.4% of undergraduates and 41.5% of graduate students. In the same academic year, the freshman retention rate was 99%.

    Stanford awarded 1,819 undergraduate degrees, 2,393 master’s degrees, 770 doctoral degrees, and 3270 professional degrees in the 2018–2019 school year. The four-year graduation rate for the class of 2017 cohort was 72.9%, and the six-year rate was 94.4%. The relatively low four-year graduation rate is a function of the university’s coterminal degree (or “coterm”) program, which allows students to earn a master’s degree as a 1-to-2-year extension of their undergraduate program.

    As of 2010, fifteen percent of undergraduates were first-generation students.

    Athletics

    As of 2016 Stanford had 16 male varsity sports and 20 female varsity sports, 19 club sports and about 27 intramural sports. In 1930, following a unanimous vote by the Executive Committee for the Associated Students, the athletic department adopted the mascot “Indian.” The Indian symbol and name were dropped by President Richard Lyman in 1972, after objections from Native American students and a vote by the student senate. The sports teams are now officially referred to as the “Stanford Cardinal,” referring to the deep red color, not the cardinal bird. Stanford is a member of the Pac-12 Conference in most sports, the Mountain Pacific Sports Federation in several other sports, and the America East Conference in field hockey with the participation in the inter-collegiate NCAA’s Division I FBS.

    Its traditional sports rival is the University of California, Berkeley, the neighbor to the north in the East Bay. The winner of the annual “Big Game” between the Cal and Cardinal football teams gains custody of the Stanford Axe.

    Stanford has had at least one NCAA team champion every year since the 1976–77 school year and has earned 126 NCAA national team titles since its establishment, the most among universities, and Stanford has won 522 individual national championships, the most by any university. Stanford has won the award for the top-ranked Division 1 athletic program—the NACDA Directors’ Cup, formerly known as the Sears Cup—annually for the past twenty-four straight years. Stanford athletes have won medals in every Olympic Games since 1912, winning 270 Olympic medals total, 139 of them gold. In the 2008 Summer Olympics, and 2016 Summer Olympics, Stanford won more Olympic medals than any other university in the United States. Stanford athletes won 16 medals at the 2012 Summer Olympics (12 gold, two silver and two bronze), and 27 medals at the 2016 Summer Olympics.

    Traditions

    The unofficial motto of Stanford, selected by President Jordan, is Die Luft der Freiheit weht. Translated from the German language, this quotation from Ulrich von Hutten means, “The wind of freedom blows.” The motto was controversial during World War I, when anything in German was suspect; at that time the university disavowed that this motto was official.
    Hail, Stanford, Hail! is the Stanford Hymn sometimes sung at ceremonies or adapted by the various University singing groups. It was written in 1892 by mechanical engineering professor Albert W. Smith and his wife, Mary Roberts Smith (in 1896 she earned the first Stanford doctorate in Economics and later became associate professor of Sociology), but was not officially adopted until after a performance on campus in March 1902 by the Mormon Tabernacle Choir.
    “Uncommon Man/Uncommon Woman”: Stanford does not award honorary degrees, but in 1953 the degree of “Uncommon Man/Uncommon Woman” was created to recognize individuals who give rare and extraordinary service to the University. Technically, this degree is awarded by the Stanford Associates, a voluntary group that is part of the university’s alumni association. As Stanford’s highest honor, it is not conferred at prescribed intervals, but only when appropriate to recognize extraordinary service. Recipients include Herbert Hoover, Bill Hewlett, Dave Packard, Lucile Packard, and John Gardner.
    Big Game events: The events in the week leading up to the Big Game vs. UC Berkeley, including Gaieties (a musical written, composed, produced, and performed by the students of Ram’s Head Theatrical Society).
    “Viennese Ball”: a formal ball with waltzes that was initially started in the 1970s by students returning from the now-closed Stanford in Vienna overseas program. It is now open to all students.
    “Full Moon on the Quad”: An annual event at Main Quad, where students gather to kiss one another starting at midnight. Typically organized by the Junior class cabinet, the festivities include live entertainment, such as music and dance performances.
    “Band Run”: An annual festivity at the beginning of the school year, where the band picks up freshmen from dorms across campus while stopping to perform at each location, culminating in a finale performance at Main Quad.
    “Mausoleum Party”: An annual Halloween Party at the Stanford Mausoleum, the final resting place of Leland Stanford Jr. and his parents. A 20-year tradition, the “Mausoleum Party” was on hiatus from 2002 to 2005 due to a lack of funding, but was revived in 2006. In 2008, it was hosted in Old Union rather than at the actual Mausoleum, because rain prohibited generators from being rented. In 2009, after fundraising efforts by the Junior Class Presidents and the ASSU Executive, the event was able to return to the Mausoleum despite facing budget cuts earlier in the year.
    Former campus traditions include the “Big Game bonfire” on Lake Lagunita (a seasonal lake usually dry in the fall), which was formally ended in 1997 because of the presence of endangered salamanders in the lake bed.

    Award laureates and scholars

    Stanford’s current community of scholars includes:

    19 Nobel Prize laureates (as of October 2020, 85 affiliates in total)
    171 members of the National Academy of Sciences
    109 members of National Academy of Engineering
    76 members of National Academy of Medicine
    288 members of the American Academy of Arts and Sciences
    19 recipients of the National Medal of Science
    1 recipient of the National Medal of Technology
    4 recipients of the National Humanities Medal
    49 members of American Philosophical Society
    56 fellows of the American Physics Society (since 1995)
    4 Pulitzer Prize winners
    31 MacArthur Fellows
    4 Wolf Foundation Prize winners
    2 ACL Lifetime Achievement Award winners
    14 AAAI fellows
    2 Presidential Medal of Freedom winners

    Stanford University Seal

     
  • richardmitnick 12:18 pm on July 23, 2021 Permalink | Reply
    Tags: "U.S. Department of Energy Awards $127 Million to Bring Innovative Clean Energy Technologies to Market", , , , , DOE Bioenergy Technologies Office, DOE Office of Energy Efficiency & Renewable Energy (US), , Phase II funding is based on the initial success of their phase I awards., The U.S. Department of Energy’s (DOE's) Office of Energy and Efficiency and Renewable Energy (EERE) will award $57 million to 53 projects by 51 American small businesses and entrepreneurs.   

    From Department of Energy (US)-DOE Office of Energy Efficiency & Renewable Energy (US) : “U.S. Department of Energy Awards $127 Million to Bring Innovative Clean Energy Technologies to Market” 

    From Department of Energy (US)

    July 23, 2021

    1
    More than $57 million will be awarded to American small businesses and entrepreneurs. Photo courtesy of National Renewable Energy Laboratory (US).

    The U.S. Department of Energy’s (DOE’s) Office of Energy and Efficiency and Renewable Energy (EERE) will award $57 million to 53 projects by 51 American small businesses and entrepreneurs with phase II funding based on the initial success of their phase I awards. This includes follow-on awards to support projects closer to market.

    Through DOE’s Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, the phase II awards support the research and development of innovative clean energy technologies toward commercialization. EERE phase II awards are awarded for a two-year project duration, with initial funding up to $1.1 million, and two potential follow-on awards of up to $1.1 million each.

    The six projects funded through the DOE Bioenergy Technologies Office are:

    Near Infrared Biomass Probe and Deployment Methods for Real-time, Field-based, Biomass Quality Measurement by ANTARES Group Inc. in Edgewater, MD: This project will help further develop a novel way to identify and measure the quality of biomass. This new probe will provide more rapid assessment of biomass quality than traditional testing, thereby guiding real-time decisions on the need for additional quality improvements to produce conversion-ready feedstocks.

    Conversion of Biogas to Liquid Fuels on Superior Catalysts by NexTech Materials, Ltd. Dba Nexceris, LLC in Lewis Center, OH: New CO2 reduction processes are required to efficiently convert biogas, biomass and stored CO2 to usable fuels. The Nexceris/WSU/Tonkomo team is developing a system to convert bio-methane and carbon dioxide into diesel fuel, jet fuel, and Fischer-Tropsch wax a valuable feedstock for chemicals, lubricants, and fuels production.

    Removing Ammonia Contamination from Biogas Feedstock by Pancopia, Inc. in Hampton, VA: Ammonia emissions from swine farms decrease swine productivity, harm the health of surrounding communities, significantly increase pollution, and threaten the production of biogas. This project will develop low-cost, reliable treatment technology to eliminate 90% of ammonia emissions from farms thus resolving these pressing issues which are preventing the implementation of biogas projects.

    Biorecovery of Nutrients from Municipal Wastewaters with Co-production of Biofuels and other Bioproducts by MicroBio Engineering in San Luis Obispo, CA: Development of technology is needed to remove phosphorus from wastewater at low-cost to very low levels to fight environmental pollution triggering harmful algal blooms. This project will reduce phosphorus contents to essentially zero level by applying conditioned filamentous algae in controlled systems allowing removal in secondary or tertiary wastewater within hours.

    Advancing Optical Imaging and Classification to Enhance Biodiversity Monitoring by OceanSpace, LLC in St. Petersburg, FL: Biofuel production requires cost reduction coupled with enhanced benefits, and an important potential benefit is reduction in impacts to biodiversity. Evaluating biodiversity impacts requires a modern sampling technology that is practical and cost-effective, an excellent solution being a sensor system that is easy to use, cost-efficient, and enhances decision-making capabilities.

    Upcycling Ocean-based Plastics for Sustainable Feedstock Supply Chain by RiKarbon, Inc. in Newark, DE: RiKarbon, Inc. is commercializing an enabling technology to produce low-cost waste plastic feedstock and waste plastic’s selective depolymerization to plastic’s building block chemicals for manufacturing renewable plastics. This project will mitigate health risks to ocean life and humans, improve the environment eco-system, promote future energy security and develop a circular economy.

    Read more about the SBIR and SBTT programs, and read the full list of selected projects here.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Department of Energy (US) is a cabinet-level department of the United States Government concerned with the United States’ policies regarding energy and safety in handling nuclear material. Its responsibilities include the nation’s nuclear weapons program; nuclear reactor production for the United States Navy; energy conservation; energy-related research; radioactive waste disposal; and domestic energy production. It also directs research in genomics. the Human Genome Project originated in a DOE initiative. DOE sponsors more research in the physical sciences than any other U.S. federal agency, the majority of which is conducted through its system of National Laboratories. The agency is led by the United States Secretary of Energy, and its headquarters are located in Southwest Washington, D.C., on Independence Avenue in the James V. Forrestal Building, named for James Forrestal, as well as in Germantown, Maryland.

    Formation and consolidation

    In 1942, during World War II, the United States started the Manhattan Project, a project to develop the atomic bomb, under the eye of the U.S. Army Corps of Engineers. After the war in 1946, the Atomic Energy Commission (AEC) was created to control the future of the project. The Atomic Energy Act of 1946 also created the framework for the first National Laboratories. Among other nuclear projects, the AEC produced fabricated uranium fuel cores at locations such as Fernald Feed Materials Production Center in Cincinnati, Ohio. In 1974, the AEC gave way to the Nuclear Regulatory Commission, which was tasked with regulating the nuclear power industry and the Energy Research and Development Administration, which was tasked to manage the nuclear weapon; naval reactor; and energy development programs.

    The 1973 oil crisis called attention to the need to consolidate energy policy. On August 4, 1977, President Jimmy Carter signed into law The Department of Energy Organization Act of 1977 (Pub.L. 95–91, 91 Stat. 565, enacted August 4, 1977), which created the Department of Energy(US). The new agency, which began operations on October 1, 1977, consolidated the Federal Energy Administration; the Energy Research and Development Administration; the Federal Power Commission; and programs of various other agencies. Former Secretary of Defense James Schlesinger, who served under Presidents Nixon and Ford during the Vietnam War, was appointed as the first secretary.

    President Carter created the Department of Energy with the goal of promoting energy conservation and developing alternative sources of energy. He wanted to not be dependent on foreign oil and reduce the use of fossil fuels. With international energy’s future uncertain for America, Carter acted quickly to have the department come into action the first year of his presidency. This was an extremely important issue of the time as the oil crisis was causing shortages and inflation. With the Three-Mile Island disaster, Carter was able to intervene with the help of the department. Carter made switches within the Nuclear Regulatory Commission in this case to fix the management and procedures. This was possible as nuclear energy and weapons are responsibility of the Department of Energy.

    Recent

    On March 28, 2017, a supervisor in the Office of International Climate and Clean Energy asked staff to avoid the phrases “climate change,” “emissions reduction,” or “Paris Agreement” in written memos, briefings or other written communication. A DOE spokesperson denied that phrases had been banned.

    In a May 2019 press release concerning natural gas exports from a Texas facility, the DOE used the term ‘freedom gas’ to refer to natural gas. The phrase originated from a speech made by Secretary Rick Perry in Brussels earlier that month. Washington Governor Jay Inslee decried the term “a joke”.

    Facilities

    The Department of Energy operates a system of national laboratories and technical facilities for research and development, as follows:

    Ames Laboratory
    Argonne National Laboratory
    Brookhaven National Laboratory
    Fermi National Accelerator Laboratory
    Idaho National Laboratory
    Lawrence Berkeley National Laboratory
    Lawrence Livermore National Laboratory
    Los Alamos National Laboratory
    National Energy Technology Laboratory
    National Renewable Energy Laboratory
    Oak Ridge National Laboratory
    Pacific Northwest National Laboratory
    Princeton Plasma Physics Laboratory
    Sandia National Laboratories
    Savannah River National Laboratory
    SLAC National Accelerator Laboratory
    Thomas Jefferson National Accelerator Facility

    Other major DOE facilities include:
    Albany Research Center
    Bannister Federal Complex
    Bettis Atomic Power Laboratory – focuses on the design and development of nuclear power for the U.S. Navy
    Kansas City Plant
    Knolls Atomic Power Laboratory – operates for Naval Reactors Program Research under the DOE (not a National Laboratory)
    National Petroleum Technology Office
    Nevada Test Site
    New Brunswick Laboratory
    Office of Fossil Energy
    Office of River Protection
    Pantex
    Radiological and Environmental Sciences Laboratory
    Y-12 National Security Complex
    Yucca Mountain nuclear waste repository
    Other:

    Pahute Mesa Airstrip – Nye County, Nevada, in supporting Nevada National Security Site

     
  • richardmitnick 11:45 am on July 23, 2021 Permalink | Reply
    Tags: "New Shape Opens ‘Wormhole’ Between Numbers and Geometry", A revitalized geometric object called the Fargues-Fontaine curve., , Beginning in the early 1980s Vladimir Drinfeld and later Alexander Beilinson proposed that there should be a way to interpret Langlands’ conjectures in geometric terms., By the 1500s mathematicians had discovered tidy formulas for calculating the roots of polynomials whose highest powers are 2 3 or 4., For decades the geometric Langlands program remained at a distance from the original one., Galois proposed studying the symmetries between roots which he encoded in a new mathematical object eventually called a Galois group., In 1832 the young mathematician Évariste Galois discovered the search was fruitless., Langlands proposed that there should be a way of matching every Galois group with an object called an automorphic form., Laurent Fargues and Peter Scholze have found a new more powerful way of connecting number theory and geometry as part of the sweeping Langlands program., , The final result doesn’t so much bridge numbers and geometry as collapse the ground between them., The Langlands program began in 1967 when its namesake Robert Langlands wrote a letter to a famed mathematician named André Weil., The Langlands program is a network of conjectures that touch upon almost every area of pure mathematics., The Langlands program is a sprawling research vision that begins with a simple concern: finding solutions to polynomial equations., The long-running “Langlands program” which seeks to link disparate branches of mathematics — like calculus and geometry — to answer some of the most fundamental questions about numbers., The new work from Scholze and Fargues finally fulfills the hopes pinned on the geometric Langlands program., The work fashions a new geometric object that fulfills a bold once fanciful dream about the relationship between geometry and numbers., They searched for ways to identify the roots of polynomials with variables raised to the power of 5 and beyond., Throughout the 20th century mathematicians devised new ways of studying Galois groups. One main strategy involved creating a dictionary translating between the groups and other objects., You can graph polynomials. You can’t graph a number.   

    From Quanta Magazine (US) : “New Shape Opens ‘Wormhole’ Between Numbers and Geometry” 

    From Quanta Magazine (US)

    July 19, 2021
    Kevin Hartnett

    Laurent Fargues and Peter Scholze have found a new more powerful way of connecting number theory and geometry as part of the sweeping Langlands program.

    1
    Matteo Bassini for Quanta Magazine; spots by Olena Shmahalo/Quanta Magazine.

    The grandest project in mathematics has received a rare gift, in the form of a mammoth 350-page paper posted in February that will change the way researchers around the world investigate some of the field’s deepest questions. The work fashions a new geometric object that fulfills a bold once fanciful dream about the relationship between geometry and numbers.

    “This truly opens up a tremendous amount of possibilities. Their methods and constructions are so new they’re just waiting to be explored,” said Tasho Kaletha of the University of Michigan (US).

    The work is a collaboration between Laurent Fargues of the Mathematics Institute of Jussieu–Paris Rive Gauche [Institut de Mathématiques de Jussieu-Paris Rive Gauche](FR) in Paris and Peter Scholze of the Rhenish Friedrich Wilhelm University of Bonn[Rheinische Friedrich-Wilhelms-Universität Bonn](DE). It opens a new front in the long-running “Langlands program” which seeks to link disparate branches of mathematics — like calculus and geometry — to answer some of the most fundamental questions about numbers.

    Their paper realizes that vision, giving mathematicians an entirely new way of thinking about questions that have inspired and confounded them for centuries.

    At the center of Fargues and Scholze’s work is a revitalized geometric object called the Fargues-Fontaine curve. It was first developed around 2010 by Fargues and Jean-Marc Fontaine, who was a professor at Paris-Sud University until he died of cancer in 2019. After a decade, the curve is only now achieving its highest form.

    “Back then they knew the Fargues-Fontaine curve was something interesting and important, but they didn’t understand in which ways,” said Eva Viehmann of the Technical University of Munich [Technische Universität München] (DE).

    The curve might have remained confined to the technical corner of mathematics where it was invented, but in 2014 events involving Fargues and Scholze propelled it to the center of the field. Over the next seven years they worked out the foundational details needed to adapt Fargues’ curve to Scholze’s theory. The final result doesn’t so much bridge numbers and geometry as collapse the ground between them.

    “It’s some kind of wormhole between two different worlds,” said Scholze. “They really just become the same thing somehow through a different lens.”

    3

    Root Harvest

    The Langlands program is a sprawling research vision that begins with a simple concern: finding solutions to polynomial equations like x^2 − 2 = 0 and x^4 − 10x^2 + 22 = 0.
    Solving them means finding the “roots” of the polynomial — the values of x that make the polynomial equal zero (x = √±2 for the first example, and x = √±5√±3for the second)

    By the 1500s mathematicians had discovered tidy formulas for calculating the roots of polynomials whose highest powers are 2 3 or 4. They then searched for ways to identify the roots of polynomials with variables raised to the power of 5 and beyond. But in 1832 the young mathematician Évariste Galois discovered the search was fruitless, proving that there are no general methods for calculating the roots of higher-power polynomials.

    Galois didn’t stop there, though. In the months before his death in a duel in 1832 at age 20, Galois laid out a new theory of polynomial solutions. Rather than calculating roots exactly — which can’t be done in most cases — he proposed studying the symmetries between roots which he encoded in a new mathematical object eventually called a Galois group.

    In the example x^2 − 2, instead of making the roots explicit, the Galois group emphasizes that the two roots (whatever they are) are mirror images of each other as far as the laws of algebra are concerned.

    “Mathematicians had to step away from formulas because usually there were no formulas,” said Brian Conrad of Stanford University (US). “Computing a Galois group is some measure of computing the relations among the roots.”

    Throughout the 20th century mathematicians devised new ways of studying Galois groups. One main strategy involved creating a dictionary translating between the groups and other objects — often functions coming from calculus — and investigating those as a proxy for working with Galois groups directly. This is the basic premise of the Langlands program, which is a broad vision for investigating Galois groups — and really polynomials — through these types of translations.

    The Langlands program began in 1967 when its namesake, Robert Langlands wrote a letter to a famed mathematician named André Weil. Langlands proposed that there should be a way of matching every Galois group with an object called an automorphic form. While Galois groups arise in algebra (reflecting the way you use algebra to solve equations), automorphic forms come from a very different branch of mathematics called analysis, which is an enhanced form of calculus. Mathematical advances from the first half of the 20th century had identified enough similarities between the two to make Langlands suspect a more thorough link.

    “It’s remarkable that these objects of a very different nature somehow communicate with each other,” said Ana Caraiani of Imperial College London (UK).

    If mathematicians could prove what came to be called the Langlands correspondence, they could confidently investigate all polynomials using the powerful tools of calculus. The conjectured relationship is so fundamental that its solution may also touch on many of the biggest open problems in number theory, including three of the million-dollar Millennium Prize problems: the Riemann hypothesis, the BSD conjecture and the Hodge conjecture.

    Given the stakes, generations of mathematicians have been motivated to join the effort, developing Langlands’ initial conjectures into what is almost certainly the largest, most expansive project in the field today.

    “The Langlands program is a network of conjectures that touch upon almost every area of pure mathematics,” said Caraiani.

    Numbers From Shapes

    Beginning in the early 1980s Vladimir Drinfeld and later Alexander Beilinson proposed that there should be a way to interpret Langlands’ conjectures in geometric terms. The translation between numbers and geometry is often difficult, but when it works it can crack problems wide open.

    To take just one example, a basic question about a number is whether it has a repeated prime factor. The number 12 does: It factors into 2 × 2 × 3, with the 2 occurring twice. The number 15 does not (it factors into 3 × 5).

    In general, there’s no quick way of knowing whether a number has a repeated factor. But there is an analogous geometric problem which is much easier.

    Polynomials have many of the same properties as numbers: You can add, subtract, multiply and divide them. There’s even a notion of what it means for a polynomial to be “prime.” But unlike numbers, polynomials have a clear geometric guise. You can graph their solutions and study the graphs to gain insights about them.

    For instance, if the graph is tangent to the x-axis at any point, you can deduce that the polynomial has a repeated factor (indicated at exactly the point of tangency). It’s just one example of how a murky arithmetic question acquires a visual meaning once converted into its analogue for polynomials.

    “You can graph polynomials. You can’t graph a number. And when you graph a [polynomial] it gives you ideas,” said Conrad. “With a number you just have the number.”

    The “geometric” Langlands program, as it came to be called, aimed to find geometric objects with properties that could stand in for the Galois groups and automorphic forms in Langlands’ conjectures. Proving an analogous correspondence in this new setting by using geometric tools could give mathematicians more confidence in the original Langlands conjectures and perhaps suggest useful ways of thinking about them. It was a nice vision, but also a somewhat airy one — a bit like saying you could cross the universe if you only had a time machine.

    “Making geometric objects that serve a similar role in the setting of numbers is a much more difficult thing to do,” said Conrad.

    So for decades the geometric Langlands program remained at a distance from the original one. The two were animated by the same goal, but they involved such fundamentally different objects that there was no real way to make them talk to each other.

    “The arithmetic people sort of looked bemused by [the geometric Langlands program]. They said it’s fine and good, but completely unrelated to our concern,” said Kaletha.

    The new work from Scholze and Fargues finally fulfills the hopes pinned on the geometric Langlands program — by finding the first shape whose properties communicate directly with Langlands’ original concerns.

    Scholze’s Tour de Force

    In September 2014, Scholze was teaching a special course at the University of California-Berkeley (US). Despite being only 26, he was already a legend in the mathematics world. Two years earlier he had completed his dissertation, in which he articulated a new geometric theory based on objects he’d invented called perfectoid spaces. He then used this framework to solve part of a problem in number theory called the weight-monodromy conjecture.

    But more important than the particular result was the sense of possibility surrounding it — there was no telling how many other questions in mathematics might yield to this incisive new perspective.

    The topic of Scholze’s course was an even more expansive version of his theory of perfectoid spaces. Mathematicians filled the seats in the small seminar room, lined up along the walls and spilled out into the hallway to hear him talk.

    “Everyone wanted to be there because we knew this was revolutionary stuff,” said David Ben-Zvi of the University of Texas-Austin (US).

    Scholze’s theory was based on special number systems called the p-adics. The “p” in p-adic stands for “prime,” as in prime numbers. For each prime, there is a unique p-adic number system: the 2-adics, the 3-adics, the 5-adics and so on. P-adic numbers have been a central tool in mathematics for over a century. They’re useful as more manageable number systems in which to investigate questions that occur back in the rational numbers (numbers that can be written as a ratio of positive or negative whole numbers), which are unwieldy by comparison.

    The virtue of p-adic numbers is that they’re each based on just one single prime. This makes them more straightforward, with more obvious structure, than the rationals, which have an infinitude of primes with no obvious pattern among them. Mathematicians often try to understand basic questions about numbers in the p-adics first, and then take those lessons back to their investigation of the rationals.

    “The p-adic numbers are a small window into the rational numbers,” said Kaletha.

    All number systems have a geometric form — the real numbers, for instance, take the form of a line. Scholze’s perfectoid spaces gave a new and more useful geometric form to the p-adic numbers. This enhanced geometry made the p-adics, as seen through his perfectoid spaces, an even more effective way to probe basic number-theoretic phenomena, like questions about the solutions of polynomial equations.

    “He reimagined the p-adic world and made it into geometry,” said Ben-Zvi. “Because they’re so fundamental, this leads to lots and lots of successes.”

    In his Berkeley course, Scholze presented a more general version of his theory of perfectoid spaces, built on even newer objects he’d devised called diamonds. The theory promised to further enlarge the uses of the p-adic numbers. Yet at the time Scholze began teaching, he had not even finished working it out.

    “He was giving the course as he was developing the theory. He was coming up with ideas in the evening and presenting them fresh out of his mind in the morning,” said Kaletha.

    It was a virtuosic display, and one of the people in the room to hear it was Laurent Fargues.

    Have Curve, Will Travel

    At the same time Scholze was giving his lectures, Fargues was attending a special semester at the Mathematical Sciences Research Institute just up the hill from the Berkeley campus. He had thought a lot about the p-adic numbers, too. For the past decade he’d worked with Jean-Marc Fontaine in an area of math called p-adic Hodge theory, which focuses on basic arithmetic questions about these numbers. During that time, he and Fontaine had come up with a new geometric object of their own. It was a curve — the Fargues-Fontaine curve — whose points each represented a version of an important object called a p-adic ring.

    As originally conceived, it was a narrowly useful tool in a technical part of mathematics, not something likely to shake up the entire field.

    “It’s an organizing principle in p-adic Hodge theory, that’s how I think of it. It was impossible for me to keep track of all these rings before this curve came up,” said Caraiani.

    But as Fargues sat listening to Scholze, he envisioned an even greater role for the curve in mathematics. The never-realized goal of the geometric Langlands program was to find a geometric object that encoded answers to questions in number theory. Fargues perceived how his curve, merged with Scholze’s p-adic geometry, could serve exactly that role. Around mid-semester he pulled Scholze aside and shared his nascent plan. Scholze was skeptical.

    “He mentioned this idea to me over a coffee break at MSRI,” said Scholze. “It was not a very long conversation. At first I thought it couldn’t be good.”

    But they had more conversations, and Scholze soon realized the approach might work after all. On December 5, as the semester wound down, Fargues gave a lecture at MSRI in which he introduced a new vision for the geometric Langlands program. He proposed that it should be possible to redefine the Fargues-Fontaine curve in terms of Scholze’s p-adic geometry, and then use that redefined object to prove a version of the Langlands correspondence. Fargues’ proposal was a final, unexpected turn in what had already been a thrilling season of mathematics.

    “It was like this grand finale of this semester. I remember just being in shock,” said Ben-Zvi.

    A Local Correspondence

    The original Langlands conjectures are about matching representations of the Galois groups of the rational numbers with automorphic forms. The p-adics are a different number system, and there is a version of the Langlands conjectures there, too. (Both are still separate from the geometric Langlands program.) It also involves a kind of matching, though in this case it’s between representations of the Galois group of the p-adic numbers and representations of p-adic groups.

    While their objects are different, the spirit of the two conjectures is the same: to study solutions to polynomials — in terms of rational numbers in one case and p-adic numbers in the other — by relating two seemingly unrelated kinds of objects. Mathematicians refer to the Langlands conjecture for rational numbers as the “global” Langlands correspondence, because the rationals contain all the primes, and the version for p-adics as the “local” Langlands correspondence, since p-adic number systems deal with one prime at a time.

    In his December lecture at MSRI, Fargues proposed proving the local Langlands conjecture using the geometry of the Fargues-Fontaine curve. But because he and Fontaine had developed the curve for a completely different and more limited task, their definition required more powerful geometry that could provide the structure and complexity the curve would ultimately need to support these enlarged plans.

    The situation was similar to how you could arrive at a three-sided shape that’s independent of any particular geometric theory, but if you combine that shape with the theory of Euclidean geometry, suddenly it takes on a richer life: You get trigonometry, the Pythagorean theorem and well-defined notions of symmetry. It becomes a fully fledged triangle.

    “[Fargues] was taking the idea of the curve and using the powerful geometry that Scholze developed to flesh out that idea,” said Kaletha. “That allows you to formally state the beautiful properties of the curve.”

    Fargues’ strategy came to be known as the “geometrization of the local Langlands correspondence.” But at the time he made it, existing mathematics didn’t have the tools he needed to carry it out, and new geometric theories don’t come along every day. Luckily, history was on his side.

    “[Fargues’ conjecture] was a bold idea because Fargues needed geometry that didn’t exist. But as it turned out Scholze at that very moment was developing it,” said Kaletha.

    Foundation Building

    Following their time together in Berkeley, Fargues and Scholze spent the next seven years establishing a geometric theory that would allow them to reconstruct the Fargues-Fontaine curve in a form suitable for their plans.

    “In 2014 it was basically already clear what the picture should be and how everything should fit together. It was just that everything was completely ill-defined. There were no foundations in place to talk about any of this,” said Scholze.

    The work took place in several stages. In 2017 Scholze completed a paper called Étale Cohomology of Diamonds, which formalized many of the most important ideas he had introduced during his Berkeley lectures. He combined that paper with another massive work that he and co-author Dustin Clausen of the University of University of Copenhagen [Københavns Universitet](DK) released as a series of lectures in 2020. That material — all 352 pages of it — was needed to establish a foundation for a few particular points that had come up in Scholze’s work on diamonds.

    “Scholze had to come up with a whole other theory which was just there to take care of certain technical issues that came up on the last three pages of his [2017] paper,” said Kaletha.

    Altogether, these and other papers allowed Fargues and Scholze to devise an entirely new way of defining a geometric object. Imagine that you start with an unorganized collection of points — a “cloud of dust,” in Scholze’s words — that you want to glue together in just the right way to assemble the object you’re looking for. The theory Fargues and Scholze developed provides exact mathematical directions for performing that gluing and certifies that, in the end, you will get the Fargues-Fontaine curve. And this time, it’s defined in just the right way for the task at hand — addressing the local Langlands correspondence.

    “That’s technically the only way we can get our hands on it,” said Scholze. “You have to rebuild a lot of foundations of geometry in this kind of framework, and it was very surprising to me that it is possible.”

    After they’d defined the Fargues-Fontaine curve, Fargues and Scholze embarked on the next stage of their journey: equipping it with the features necessary to prove a correspondence between representations of Galois groups and representations of p-adic groups.

    To understand these features, let’s first consider a simpler geometric object, like a circle. At every point on the circle it’s possible to position a line that’s tangent to the shape at exactly that point. Every point has a unique tangent line. You can collect all those many lines together into an auxiliary geometric object, called the tangent bundle, that’s associated to the underlying geometric object, the circle.

    In their new work, Fargues and Scholze do something similar for the Fargues-Fontaine curve. But instead of tangent planes and bundles, they define ways of constructing many more complicated geometric objects. One example, called sheaves, can be associated naturally to points on the Fargues-Fontaine curve the way tangent lines can be associated to points on a circle.

    Sheaves were first defined in the 1950s by Alexander Grothendieck, and they keep track of how algebraic and geometric features of the underlying geometric object interact with each other. For decades, mathematicians have suspected they might be the best objects to focus on in the geometric Langlands program.

    “You reinterpret the theory of representations of Galois groups in terms of sheaves,” said Conrad.

    There are local and global versions of the geometric Langlands program, just as there are for the original one. Questions about sheaves relate to the global geometric program, which Fargues suspected could connect to the local Langlands correspondence. The issue was that mathematicians didn’t have the right kinds of sheaves defined on the right kind of geometric object to carry the day. Now Fargues and Scholze have provided them, via the Fargues-Fontaine curve.

    The End of the Beginning

    Specifically, they came up with two different kinds: Coherent sheaves correspond to representations of p-adic groups, and étale sheaves to representations of Galois groups. In their new paper, Fargues and Scholze prove that there’s always a way to match a coherent sheaf with an étale sheaf, and as a result there’s always a way to match a representation of a p-adic group with a representation of a Galois group.

    In this way, they finally proved one direction of the local Langlands correspondence. But the other direction remains an open question.

    “It gives you one direction, how to go from a representation of a p-adic group to a representation of a Galois group, but doesn’t tell you how to go back,” said Scholze.

    The work is one of the biggest advances so far on the Langlands program — often mentioned in the same breath as work by Vincent Lafforgue of the Fourier Institute [Bienvenue à l’Institut Fourier – Laboratoire de mathématiques](FR) on a different aspect of the Langlands correspondence in 2018. It’s also the most tangible evidence yet that earlier mathematicians weren’t foolish to attempt the Langlands program by geometric means.

    “These things are a great vindication for the work people were doing in geometric Langlands for decades,” said Ben-Zvi.

    For mathematics as a whole, there’s a sense of awe and possibility in the reception of the new work: awe at the way the theory of p-adic geometry Scholze has been building since graduate school manifests in the Fargues-Fontaine curve, and possibility because that curve opens entirely new and unexplored dimensions of the Langlands program.

    “It’s really changed everything. These last five or eight years, they have really changed the whole field,” said Viehmann.

    The clear next step is to nail down both sides of the local Langlands correspondence — to prove that it’s a two-way street, rather than the one-way road Fargues and Scholze have paved so far.

    Beyond that, there’s the global Langlands correspondence itself. There’s no obvious way to translate Fargues and Scholze’s geometry of the p-adic numbers into corresponding constructions for the rational numbers. But it’s also impossible to look at this new work and not wonder if there might be a way.

    “It’s a direction I’m really hoping to head into,” Scholze said.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Formerly known as Simons Science News, Quanta Magazine (US) is an editorially independent online publication launched by the Simons Foundation to enhance public understanding of science. Why Quanta? Albert Einstein called photons “quanta of light.” Our goal is to “illuminate science.” At Quanta Magazine, scientific accuracy is every bit as important as telling a good story. All of our articles are meticulously researched, reported, edited, copy-edited and fact-checked.

     
  • richardmitnick 9:58 am on July 23, 2021 Permalink | Reply
    Tags: "Understanding the Physics in New Metals", , , Correlated metals, , , , , Strongly correlated materials are candidates for novel high-temperature superconductors., These materials could prove useful for practical applications in areas such as superconductivity; data processing; and quantum computers., Using inelastic resonant x-ray scattering to study quantum materials such as correlated metals.,   

    From DOE’s Brookhaven National Laboratory (US) and Paul Scherrer Institute [Paul Scherrer Institut] (CH) : “Understanding the Physics in New Metals” 

    From DOE’s Brookhaven National Laboratory (US)

    and

    Paul Scherrer Institute [Paul Scherrer Institut] (CH)

    July 19, 2021

    Barbara Vonarburg, Paul Scherrer Institute

    1
    Brookhaven Lab Scientist Jonathan Pelliciari now works as a beamline scientist at the National Synchrotron Light Source II (NSLS-II)[below], where he continues to use inelastic resonant x-ray scattering to study quantum materials such as correlated metals.

    Researchers from the Paul Scherrer Institute PSI and the Brookhaven National Laboratory (BNL), working in an international team, have developed a new method for complex X-ray studies that will aid in better understanding so-called correlated metals. These materials could prove useful for practical applications in areas such as superconductivity; data processing; and quantum computers. Today the researchers present their work in the journal Physical Review X.

    In substances such as silicon or aluminium, the mutual repulsion of electrons hardly affects the material properties. Not so with so-called correlated materials, in which the electrons interact strongly with one another. The movement of one electron in a correlated material leads to a complex and coordinated reaction of the other electrons. It is precisely such coupled processes that make these correlated materials so promising for practical applications, and at the same time so complicated to understand.

    Strongly correlated materials are candidates for novel high-temperature superconductors, which can conduct electricity without loss and which are used in medicine, for example, in magnetic resonance imaging. They also could be used to build electronic components, or even quantum computers, with which data can be more efficiently processed and stored.

    “Strongly correlated materials exhibit a wealth of fascinating phenomena,” says Thorsten Schmitt, head of the Spectroscopy of Novel Materials Group at PSI: “However, it remains a major challenge to understand and exploit the complex behaviour that lies behind these phenomena.” Schmitt and his research group tackle this task with the help of a method for which they use the intense and extremely precise X-ray radiation from the Swiss Light Source SLS at PSI.

    4
    Swiss Light Source SLS Paul Scherrer Institut (PSI)

    This modern technique, which has been further developed at PSI in recent years, is called resonant inelastic X-ray scattering, or RIXS for short.

    2
    Thorsten Schmitt at the experiment station of the Swiss Light Source SLS, which provided the X-ray light used for the experiments. Credit: Mahir Dzambegovic/Paul Scherrer Institute.

    X-rays excite electrons

    With RIXS, soft X-rays are scattered off a sample. The incident X-ray beam is tuned in such a way that it elevates electrons from a lower electron orbital to a higher orbital, which means that special resonances are excited. This throws the system out of balance. Various electrodynamic processes lead it back to the ground state. Some of the excess energy is emitted again as X-ray light. The spectrum of this inelastically scattered radiation provides information about the underlying processes and thus on the electronic structure of the material.

    “In recent years, RIXS has developed into a powerful experimental tool for deciphering the complexity of correlated materials,” Schmitt explains. When used to investigate correlated insulators in particular, it works very well. Up to now, however, the method has been unsuccessful in probing correlated metals. Its failure was due to the difficulty of interpreting the extremely complicated spectra caused by many different electrodynamic processes during the scattering. “In this connection collaboration with theorists is essential,” explains Schmitt, “because they can simulate the processes observed in the experiment.”

    Calculations of correlated metals

    This is a specialty of theoretical physicist Keith Gilmore, formerly of the Brookhaven National Laboratory (BNL) in the USA and now at the Humboldt University of Berlin [Humboldt-Universität zu Berlin] (DE). “Calculating the RIXS results for correlated metals is difficult because you have to handle several electron orbitals, large bandwidths, and a large number of electronic interactions at the same time,” says Gilmore. Correlated insulators are easier to handle because fewer orbitals are involved; this allows model calculations that explicitly include all electrons. To be precise, Gilmore explains: “In our new method of describing the RIXS processes, we are now combining the contributions that come from the excitation of one electron with the coordinated reaction of all other electrons.”

    To test the calculation, the PSI researchers experimented with a substance that BNL scientist Jonathan Pelliciari had investigated in detail as part of his doctoral thesis at PSI: barium-iron-arsenide. If you add a specific amount of potassium atoms to the material, it becomes superconducting. It belongs to a class of unconventional high-temperature iron-based superconductors that are expected to provide a better understanding of the phenomenon. “Until now, the interpretation of RIXS measurements on such complex materials has been guided mainly by intuition. Now these RIXS calculations give us experimenters a framework that enables a more practical interpretation of the results. Our RIXS measurements at PSI on barium-iron-arsenide are in excellent agreement with the calculated profiles,” Pelliciari says.

    Combination of experiment and theory

    In their experiments, the researchers investigated the physics around the iron atom. “One advantage of RIXS is that you can concentrate on a specific component and examine it in detail for materials that consist of several elements,” Schmitt says. The well-tuned X-ray beam causes an inner electron in the iron atom to be elevated from the ground state in the core level to the higher energy valence band, which is only partially occupied. This initial excitation of the core electron can cause further secondary excitations and trigger many complicated decay processes that ultimately manifest themselves in spectral satellite structures. (See graphic.)

    3
    The graphic shows how an electron (blue dot) can be elevated to different energy levels (dotted arrows) or falls back to lower energy levels. Between the highest energy level and somewhat lower level, secondary processes take place. The curve in the background represents the iron electronic levels.
    Credit: Keith Gilmore/Paul Scherrer Institute.

    Since the contributions of the many reactions are sometimes small and close to one another, it is difficult to find out which processes actually took place in the experiment. Here the combination of experiment and theory helps. “If you have no theoretical support for difficult experiments, you cannot understand the processes, that is, the physics, in detail,” Schmitt says. The same also applies to theory: “You often don’t know which theories are realistic until you can compare them with an experiment. Progress in understanding comes when experiment and theory are brought together. This descriptive method thus has the potential to become a reference for the interpretation of spectroscopic experiments on correlated metals.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Paul Scherrer Institute [Paul Scherrer Institut] (CH) is the largest research institute for natural and engineering sciences within Switzerland. We perform world-class research in three main subject areas: Matter and Material; Energy and the Environment; and Human Health. By conducting fundamental and applied research, we work on long-term solutions for major challenges facing society, industry and science.

    The Paul Scherrer Institute (PSI) is a multi-disciplinary research institute for natural and engineering sciences in Switzerland. It is located in the Canton of Aargau in the municipalities Villigen and Würenlingen on either side of the River Aare, and covers an area over 35 hectares in size. Like Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH) and EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), PSI belongs to the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales](CH). The PSI employs around 2100 people. It conducts basic and applied research in the fields of matter and materials, human health, and energy and the environment. About 37% of PSI’s research activities focus on material sciences, 24% on life sciences, 19% on general energy, 11% on nuclear energy and safety, and 9% on particle physics.

    PSI develops, builds and operates large and complex research facilities and makes them available to the national and international scientific communities. In 2017, for example, more than 2500 researchers from 60 different countries came to PSI to take advantage of the concentration of large-scale research facilities in the same location, which is unique worldwide. About 1900 experiments are conducted each year at the approximately 40 measuring stations in these facilities.

    In recent years, the institute has been one of the largest recipients of money from the Swiss lottery fund.

    Research and specialist areas

    PSI develops, builds and operates several accelerator facilities, e. g. a 590 MeV high-current cyclotron, which in normal operation supplies a beam current of about 2.2 mA. PSI also operates four large-scale research facilities: a synchrotron light source (SLS), which is particularly brilliant and stable, a spallation neutron source (SINQ), a muon source (SμS) and an X-ray free-electron laser (SwissFEL). This makes PSI currently (2020) the only institute in the world to provide the four most important probes for researching the structure and dynamics of condensed matter (neutrons, muons and synchrotron radiation) on a campus for the international user community. In addition, HIPA’s target facilities also produce pions that feed the muon source and the Ultracold Neutron source UCN produces very slow, ultracold neutrons. All these particle types are used for research in particle physics.

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.


    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 (mission need) from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.
    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.
    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years.[19] NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.
    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.
    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University.
    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).


    It is currently operating at CERN near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.


     
  • richardmitnick 9:04 am on July 23, 2021 Permalink | Reply
    Tags: "Team wins competitive DOE award to advance isotope production critical for U.S. science medicine and industry", , , , , Clemson University (US), DOE's Savannah River National Laboratory (US), Electrochemical engineering, Isotope production and processing techniques, Project: "Electrochemical hydrogen isotope fractionation—fundamental insights leading to process scale up", Separation technologies,   

    From Vanderbilt University (US) : “Team wins competitive DOE award to advance isotope production critical for U.S. science medicine and industry” 

    Vanderbilt U Bloc

    From Vanderbilt University (US)

    7.23.21
    Brenda Ellis
    615 343-6314
    brenda.ellis@vanderbilt.edu

    1
    Piran Kidambi.

    A Department of Energy (US) $4 million initiative to advance research in isotope production includes a Vanderbilt engineering professor’s work on separation technologies and to scale up processes. The funding is part of a key federal program that produces critical isotopes otherwise unavailable or in short supply for U.S. science, medicine and industry.

    Piran Kidambi, assistant professor of chemical and biomolecular engineering, is part of a team led by DOE’s Savannah River National Laboratory (US) and Clemson University (US) that has received a two-year, $800,000 grant—“Electrochemical hydrogen isotope fractionation—fundamental insights leading to process scale up”—as part of the DOE’s funding for 10 awards across five isotope research efforts. The awards were selected on a competitive basis by peer review.

    Isotopes, or variations of the same elements with the same number of protons but different numbers of neutrons, have unique properties that can make them useful in medical diagnostic and treatment applications. They also are important for applications in quantum information science, nuclear power, national security and more.

    “Given the very minor differences in mass, or physical properties, as well as very similar chemical properties between isotopes, separation of one isotope from the other is inherently challenging,” said Kidambi. “Traditionally, this has been accomplished in energy intensive processes with potential for adverse environmental impact.” Kidambi’s proposed project aims to use fundamental understanding of a separation processes using novel membranes to enable process design and scale up for isotope separation. The team includes the lead organization Savannah River National Laboratory and Clemson University.

    The award recipients include six universities and three DOE national laboratories.

    University of Missouri (US)

    DOE’s Brookhaven National Laboratory (US)

    University of Washington (US)

    Columbia University (US)

    University of Wisconsin‐Madison (US)

    DOE’s Savannah River National Laboratory (US)

    Clemson University (US)

    Vanderbilt University (US)

    DOE’s Oak Ridge National Laboratory (US)

    Most of the awards go to collaborative teams where universities and national laboratories work together.

    Topics funded by the DOE include efforts to increase the availability of new cancer diagnostic and therapeutic agents to the medical community and broad improvements to isotope production and processing techniques with the goal of enhancing isotope availability and purity.

    “Isotopes play an absolutely vital role in countless areas of science, medicine, industry, and even national and homeland security today,” said Jehanne Gillo, director of the DOE Isotope Program, in the DOE’s announcement. “These R&D activities will continue our efforts to ensure the availability of isotopes critical to Americans’ health, prosperity, and security that would be otherwise impossible to obtain.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Commodore Cornelius Vanderbilt was in his 79th year when he decided to make the gift that founded Vanderbilt University (US) in the spring of 1873.
    The $1 million that he gave to endow and build the university was the commodore’s only major philanthropy. Methodist Bishop Holland N. McTyeire of Nashville, husband of Amelia Townsend who was a cousin of the commodore’s young second wife Frank Crawford, went to New York for medical treatment early in 1873 and spent time recovering in the Vanderbilt mansion. He won the commodore’s admiration and support for the project of building a university in the South that would “contribute to strengthening the ties which should exist between all sections of our common country.”

    McTyeire chose the site for the campus, supervised the construction of buildings and personally planted many of the trees that today make Vanderbilt a national arboretum. At the outset, the university consisted of one Main Building (now Kirkland Hall), an astronomical observatory and houses for professors. Landon C. Garland was Vanderbilt’s first chancellor, serving from 1875 to 1893. He advised McTyeire in selecting the faculty, arranged the curriculum and set the policies of the university.

    For the first 40 years of its existence, Vanderbilt was under the auspices of the Methodist Episcopal Church, South. The Vanderbilt Board of Trust severed its ties with the church in June 1914 as a result of a dispute with the bishops over who would appoint university trustees.

    From the outset, Vanderbilt met two definitions of a university: It offered work in the liberal arts and sciences beyond the baccalaureate degree and it embraced several professional schools in addition to its college. James H. Kirkland, the longest serving chancellor in university history (1893-1937), followed Chancellor Garland. He guided Vanderbilt to rebuild after a fire in 1905 that consumed the main building, which was renamed in Kirkland’s honor, and all its contents. He also navigated the university through the separation from the Methodist Church. Notable advances in graduate studies were made under the third chancellor, Oliver Cromwell Carmichael (1937-46). He also created the Joint University Library, brought about by a coalition of Vanderbilt, Peabody College and Scarritt College.

    Remarkable continuity has characterized the government of Vanderbilt. The original charter, issued in 1872, was amended in 1873 to make the legal name of the corporation “The Vanderbilt University.” The charter has not been altered since.

    The university is self-governing under a Board of Trust that, since the beginning, has elected its own members and officers. The university’s general government is vested in the Board of Trust. The immediate government of the university is committed to the chancellor, who is elected by the Board of Trust.

    The original Vanderbilt campus consisted of 75 acres. By 1960, the campus had spread to about 260 acres of land. When George Peabody College for Teachers merged with Vanderbilt in 1979, about 53 acres were added.

    Vanderbilt’s student enrollment tended to double itself each 25 years during the first century of the university’s history: 307 in the fall of 1875; 754 in 1900; 1,377 in 1925; 3,529 in 1950; 7,034 in 1975. In the fall of 1999 the enrollment was 10,127.

    In the planning of Vanderbilt, the assumption seemed to be that it would be an all-male institution. Yet the board never enacted rules prohibiting women. At least one woman attended Vanderbilt classes every year from 1875 on. Most came to classes by courtesy of professors or as special or irregular (non-degree) students. From 1892 to 1901 women at Vanderbilt gained full legal equality except in one respect — access to dorms. In 1894 the faculty and board allowed women to compete for academic prizes. By 1897, four or five women entered with each freshman class. By 1913 the student body contained 78 women, or just more than 20 percent of the academic enrollment.

    National recognition of the university’s status came in 1949 with election of Vanderbilt to membership in the select Association of American Universities (US). In the 1950s Vanderbilt began to outgrow its provincial roots and to measure its achievements by national standards under the leadership of Chancellor Harvie Branscomb. By its 90th anniversary in 1963, Vanderbilt for the first time ranked in the top 20 private universities in the United States.

    Vanderbilt continued to excel in research, and the number of university buildings more than doubled under the leadership of Chancellors Alexander Heard (1963-1982) and Joe B. Wyatt (1982-2000), only the fifth and sixth chancellors in Vanderbilt’s long and distinguished history. Heard added three schools (Blair, the Owen Graduate School of Management and Peabody College) to the seven already existing and constructed three dozen buildings. During Wyatt’s tenure, Vanderbilt acquired or built one-third of the campus buildings and made great strides in diversity, volunteerism and technology.

    The university grew and changed significantly under its seventh chancellor, Gordon Gee, who served from 2000 to 2007. Vanderbilt led the country in the rate of growth for academic research funding, which increased to more than $450 million and became one of the most selective undergraduate institutions in the country.

    On March 1, 2008, Nicholas S. Zeppos was named Vanderbilt’s eighth chancellor after serving as interim chancellor beginning Aug. 1, 2007. Prior to that, he spent 2002-2008 as Vanderbilt’s provost, overseeing undergraduate, graduate and professional education programs as well as development, alumni relations and research efforts in liberal arts and sciences, engineering, music, education, business, law and divinity. He first came to Vanderbilt in 1987 as an assistant professor in the law school. In his first five years, Zeppos led the university through the most challenging economic times since the Great Depression, while continuing to attract the best students and faculty from across the country and around the world. Vanderbilt got through the economic crisis notably less scathed than many of its peers and began and remained committed to its much-praised enhanced financial aid policy for all undergraduates during the same timespan. The Martha Rivers Ingram Commons for first-year students opened in 2008 and College Halls, the next phase in the residential education system at Vanderbilt, is on track to open in the fall of 2014. During Zeppos’ first five years, Vanderbilt has drawn robust support from federal funding agencies, and the Medical Center entered into agreements with regional hospitals and health care systems in middle and east Tennessee that will bring Vanderbilt care to patients across the state.

    Today, Vanderbilt University is a private research university of about 6,500 undergraduates and 5,300 graduate and professional students. The university comprises 10 schools, a public policy center and The Freedom Forum First Amendment Center. Vanderbilt offers undergraduate programs in the liberal arts and sciences, engineering, music, education and human development as well as a full range of graduate and professional degrees. The university is consistently ranked as one of the nation’s top 20 universities by publications such as U.S. News & World Report, with several programs and disciplines ranking in the top 10.

    Cutting-edge research and liberal arts, combined with strong ties to a distinguished medical center, creates an invigorating atmosphere where students tailor their education to meet their goals and researchers collaborate to solve complex questions affecting our health, culture and society.

    Vanderbilt, an independent, privately supported university, and the separate, non-profit Vanderbilt University Medical Center share a respected name and enjoy close collaboration through education and research. Together, the number of people employed by these two organizations exceeds that of the largest private employer in the Middle Tennessee region.

     
  • richardmitnick 10:45 pm on July 22, 2021 Permalink | Reply
    Tags: "New Study Reveals Previously Unseen Star Formation in Milky Way", , , , GLOSTAR (Global view of the Star formation in the Milky Way), , ,   

    From National Radio Astronomy Observatory (US) and MPG Institute for Radio Astronomy[MPG Institut für Radioastronomie](DE): “New Study Reveals Previously Unseen Star Formation in Milky Way” 

    NRAO Banner

    From National Radio Astronomy Observatory (US)

    and

    MPG Institute for Radio Astronomy[MPG Institut für Radioastronomie](DE)

    July 22, 2021

    Dave Finley, Public Information Officer
    (505) 241-9210
    dfinley@nrao.edu

    1
    Credit: Brunthaler et al., Sophia Dagnello, NRAO/Associated Universities Inc (US)/National Science Foundation (US).

    Astronomers using two of the world’s most powerful radio telescopes have made a detailed and sensitive survey of a large segment of our home galaxy — the Milky Way — detecting previously unseen tracers of massive star formation, a process that dominates galactic ecosystems. The scientists combined the capabilities of the National Science Foundation’s Karl G. Jansky Very Large Array (VLA) and the 100-meter Effelsberg Telescope in Germany to produce high-quality data that will serve researchers for years to come.

    Stars with more than about ten times the mass of our Sun are important components of the Galaxy and strongly affect their surroundings. However, understanding how these massive stars are formed has proved challenging for astronomers. In recent years, this problem has been tackled by studying the Milky Way at a variety of wavelengths, including radio and infrared. This new survey, called GLOSTAR (Global view of the Star formation in the Milky Way), was designed to take advantage of the vastly improved capabilities that an upgrade project completed in 2012 gave the VLA to produce previously unobtainable data.

    GLOSTAR has excited astronomers with new data on the birth and death processes of massive stars, as well on the tenuous material between the stars. The GLOSTAR team of researchers has published a series of papers in the journal Astronomy & Astrophysics reporting initial results of their work, including detailed studies of several individual objects.

    “A Global View on Star Formation: The GLOSTAR Galactic Plane Survey. I. Overview and first results for the Galactic longitude range 28°< l < 36°”
    https://www.aanda.org/articles/aa/full_html/2021/07/aa39856-20/aa39856-20.html

    “A Global View on Star Formation: The GLOSTAR Galactic Plane Survey. II. Supernova remnants in the first quadrant of the Milky Way?”
    https://www.aanda.org/articles/aa/full_html/2021/07/aa39873-20/aa39873-20.html

    “A Global View on Star Formation: The GLOSTAR Galactic Plane Survey. III. 6.7 GHz Methanol maser survey in Cygnus X”
    https://www.aanda.org/articles/aa/full_html/2021/07/aa40817-21/aa40817-21.html

    “A Global View on Star Formation: The GLOSTAR Galactic Plane Survey. IV. Radio continuum detections of young stellar objects in the Galactic Centre Region”
    https://www.aanda.org/articles/aa/full_html/2021/07/aa40802-21/aa40802-21.html

    Observations continue and more results will be published later.

    The survey detected telltale tracers of the early stages of massive star formation, including compact regions of hydrogen gas ionized by the powerful radiation from young stars, and radio emission from methanol (wood alcohol) molecules that can pinpoint the location of very young stars still deeply shrouded by the clouds of gas and dust in which they are forming.

    The survey also found many new remnants of supernova explosions — the dramatic deaths of massive stars. Previous studies had found fewer than a third of the expected number of supernova remnants in the Milky Way. In the region it studied, GLOSTAR more than doubled the number found using the VLA data alone, with more expected to appear in the Effelsberg data.

    “This is an important step to solve this longstanding mystery of the missing supernova remnants,” said Rohit Dokara, a Ph.D student at the MPG Institute for Radio Astronomy[MPG Institut für Radioastronomie](DE) and lead author on a paper about the remnants.

    The GLOSTAR team combined data from the VLA and the Effelsberg telescope to obtain a complete view of the region they studied. The multi-antenna VLA — an interferometer — combines the signals from widely-separated antennas to make images with very high resolution that show small details. However, such a system often cannot also detect large-scale structures. The 100-meter-diameter Effelsberg telescope provided the data on structures larger than those the VLA could detect, making the image complete.

    “This clearly demonstrates that the Effelberg telescope is still very crucial, even after 50 years of operation,” said Andreas Brunthaler of MPIfR, project leader and first author of the survey’s overview paper.

    Visible light is strongly absorbed by dust, which radio waves can readily penetrate. Radio telescopes are essential to revealing the dust-shrouded regions in which young stars form.

    The results from GLOSTAR, combined with other radio and infrared surveys, “offers astronomers a nearly complete census of massive star-forming clusters at various stages of formation, and this will have lasting value for future studies,” said team member William Cotton, of the National Radio Astronomy Observatory (NRAO), who is an expert in combining interferometer and single-telescope data.

    “GLOSTAR is the first map of the Galactic Plane at radio wavelengths that detects many of the important star formation tracers at high spatial resolution. The detection of atomic and molecular spectral lines is critical to determine the location of star formation and to better understand the structure of the Galaxy,” said Dana Balser, also of NRAO.

    The initiator of GLOSTAR, the MPIfR’s Karl Menten, added, “It’s great to see the beautiful science resulting from two of our favorite radio telescopes joining forces.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The MPG Institute for Radio Astronomy [MPG Institut für Radioastronomie] (DE) is located in Bonn, Germany. It is one of 80 institutes in the MPG Society.

    By combining the already existing radio astronomy faculty of the University of Bonn led by Otto Hachenberg with the new MPG institute the MPG Institute for Radio Astronomy was formed. In 1972 the 100-m radio telescope in Effelsberg was opened. The institute building was enlarged in 1983 and 2002.

    The institute was founded in 1966 by the MPG Society as the “MPG Institut für Radioastronomie (MPIfR) (DE)”.

    The foundation of the institute was closely linked to plans in the German astronomical community to construct a competitive large radio telescope in (then) West Germany. In 1964, Professors Friedrich Becker, Wolfgang Priester and Otto Hachenberg of the Astronomische Institute der Universität Bonn submitted a proposal to the Stiftung Volkswagenwerk for the construction of a large fully steerable radio telescope.

    In the same year the Stiftung Volkswagenwerk approved the funding of the telescope project but with the condition that an organization should be found, which would guarantee the operations. It was clear that the operation of such a large instrument was well beyond the possibilities of a single university institute.

    Already in 1965 the MPG Society decided in principle to found the MPG Institut für Radioastronomie. Eventually, after a series of discussions, the institute was officially founded in 1966.

    a href=”https://sciencesprings.wordpress.com/2016/08/26/from-mpg-visualization-of-newly-formed-synapses-with-unprecedented-resolution/mpg-bloc/&#8221; rel=”attachment wp-att-47599″>

    MPG Institute for the Advancement of Science [MPG zur Förderung der Wissenschaften e. V](DE) is Germany’s most successful research organization. Since its establishment in 1948, no fewer than 18 Nobel laureates have emerged from the ranks of its scientists, putting it on a par with the best and most prestigious research institutions worldwide. The more than 15,000 publications each year in internationally renowned scientific journals are proof of the outstanding research work conducted at MPG Institutes – and many of those articles are among the most-cited publications in the relevant field.

    What is the basis of this success? The scientific attractiveness of the MPG Society is based on its understanding of research: MPG institutes are built up solely around the world’s leading researchers. They themselves define their research subjects and are given the best working conditions, as well as free reign in selecting their staff. This is the core of the Harnack principle, which dates back to Adolph von Harnack, the first president of the Kaiser Wilhelm Society, which was established in 1911. This principle has been successfully applied for nearly one hundred years. The MPG Society continues the tradition of its predecessor institution with this structural principle of the person-centered research organization.

    The currently 83 MPG Institutes and facilities conduct basic research in the service of the general public in the natural sciences, life sciences, social sciences, and the humanities. MPG Institutes focus on research fields that are particularly innovative, or that are especially demanding in terms of funding or time requirements. And their research spectrum is continually evolving: new institutes are established to find answers to seminal, forward-looking scientific questions, while others are closed when, for example, their research field has been widely established at universities. This continuous renewal preserves the scope the Max Planck Society needs to react quickly to pioneering scientific developments.

    MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the MPG Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.

    According to its primary goal, the MPG Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014) MPG institutes. The society has a total staff of approximately 17,000 permanent employees, including 5,470 scientists, plus around 4,600 non-tenured scientists and guests. Society budget for 2015 was about €1.7 billion.

    The MPG Institutes focus on excellence in research. The MPG Society has a world-leading reputation as a science and technology research organization, with 33 Nobel Prizes awarded to their scientists, and is generally regarded as the foremost basic research organization in Europe and the world. In 2013, the Nature Publishing Index placed the MPG institutes fifth worldwide in terms of research published in Nature journals (after Harvard University (US), Massachusetts Institute of Technology (US), Stanford University (US) and the National Institutes of Health (US)). In terms of total research volume (unweighted by citations or impact), the MPG Society is only outranked by the Chinese Academy of Sciences [中国科学院] (CN), the Russian Academy of Sciences [Росси́йская акаде́мия нау́к](RU) and Harvard University. The Thomson Reuters-Science Watch website placed the Max Planck Society as the second leading research organization worldwide following Harvard University, in terms of the impact of the produced research over science fields.

    [The blog owner wishes to editorialize: I do not think all of this boasting is warranted when the combined forces of the MPG Society are being weighed against individual universities and institutions. It is not the combined forces of the cited schools and institutions, that could make some sense. No, it is each separate institution standing on its own.]

    The MPG Society and its predecessor Kaiser Wilhelm Society hosted several renowned scientists in their fields, including Otto Hahn, Werner Heisenberg, and Albert Einstein.

    History

    The organization was established in 1911 as the Kaiser Wilhelm Society, or Kaiser-Wilhelm-Gesellschaft (KWG), a non-governmental research organization named for the then German emperor. The KWG was one of the world’s leading research organizations; its board of directors included scientists like Walther Bothe, Peter Debye, Albert Einstein, and Fritz Haber. In 1946, Otto Hahn assumed the position of President of KWG, and in 1948, the society was renamed the MPG Society after its former President (1930–37) Max Planck, who died in 1947.

    The MPG Society has a world-leading reputation as a science and technology research organization. In 2006, the Times Higher Education Supplement rankings of non-university research institutions (based on international peer review by academics) placed the MPG Society as No.1 in the world for science research, and No.3 in technology research (behind AT&T Corporation and the DOE’s Argonne National Laboratory (US).

    The domain mpg.de attracted at least 1.7 million visitors annually by 2008 according to a Compete.com study.

    MPG Institutes and research groups

    The MPG Society consists of over 80 research institutes. In addition, the society funds a number of MPG Research Groups (MPRG) and International MPG Research Schools (IMPRS). The purpose of establishing independent research groups at various universities is to strengthen the required networking between universities and institutes of the MPG Society.

    The research units are primarily located across Europe with a few in South Korea and the U.S. In 2007, the Society established its first non-European centre, with an institute on the Jupiter campus of Florida Atlantic University (US) focusing on neuroscience.

    The MPG Institutes operate independently from, though in close cooperation with, the universities, and focus on innovative research which does not fit into the university structure due to their interdisciplinary or transdisciplinary nature or which require resources that cannot be met by the state universities.

    Internally, MPG Institutes are organized into research departments headed by directors such that each MPG institute has several directors, a position roughly comparable to anything from full professor to department head at a university. Other core members include Junior and Senior Research Fellows.

    In addition, there are several associated institutes:

    International Max Planck Research Schools
    Together with the Association of Universities and other Education Institutions in Germany, the MPG Society established numerous International Max Planck Research Schools (IMPRS) to promote junior scientists:

    Cologne Graduate School of Ageing Research, Cologne
    International Max Planck Research School for Intelligent Systems, at the MPG Institute for Intelligent Systems (DE) located in Tübingen and Stuttgart
    International Max Planck Research School on Adapting Behavior in a Fundamentally Uncertain World (Uncertainty School), at the Max Planck Institutes for Economics, for Human Development, and/or Research on Collective Goods
    International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering, Magdeburg
    International Max Planck Research School for Astronomy and Cosmic Physics, Heidelberg at the MPG for Astronomy
    International Max Planck Research School for Astrophysics, Garching at the MPG Institute for Astrophysics
    International Max Planck Research School for Complex Surfaces in Material Sciences, Berlin
    International Max Planck Research School for Computer Science, Saarbrücken
    International Max Planck Research School for Earth System Modeling, Hamburg
    International Max Planck Research School for Elementary Particle Physics, Munich, at the MPG Institute for Physics
    International Max Planck Research School for Environmental, Cellular and Molecular Microbiology, Marburg at the MPG Institute for Terrestrial Microbiology
    International Max Planck Research School for Evolutionary Biology, Plön at the Max Planck Institute for Evolutionary Biology
    International Max Planck Research School “From Molecules to Organisms”, Tübingen at the MPG Institute for Developmental Biology
    International Max Planck Research School for Global Biogeochemical Cycles, Jena at the Max Planck Institute for Biogeochemistry
    International Max Planck Research School on Gravitational Wave Astronomy, Hannover and Potsdam MPG Institute for Gravitational Physics
    International Max Planck Research School for Heart and Lung Research, Bad Nauheim at the MPG Institute for Heart and Lung Research
    International Max Planck Research School for Infectious Diseases and Immunity, Berlin at the Max Planck Institute for Infection Biology
    International Max Planck Research School for Language Sciences, Nijmegen
    International Max Planck Research School for Neurosciences, Göttingen
    International Max Planck Research School for Cognitive and Systems Neuroscience, Tübingen
    International Max Planck Research School for Marine Microbiology (MarMic), joint program of the MPG Institute for Marine Microbiology in Bremen, the University of Bremen [Universität Bremen](DE), the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, and the Jacobs University Bremen [Jacobs Universität Bremen] (DE)
    International Max Planck Research School for Maritime Affairs, Hamburg
    International Max Planck Research School for Molecular and Cellular Biology, Freiburg
    International Max Planck Research School for Molecular and Cellular Life Sciences, Munich
    International Max Planck Research School for Molecular Biology, Göttingen
    International Max Planck Research School for Molecular Cell Biology and Bioengineering, Dresden
    International Max Planck Research School Molecular Biomedicine, program combined with the ‘Graduate Programm Cell Dynamics And Disease’ at the University of Münster (DE) and the MPG Institute for Molecular Biomedicine (DE)
    International Max Planck Research School on Multiscale Bio-Systems, Potsdam
    International Max Planck Research School for Organismal Biology, at the University of Konstanz [Universität Konstanz] (DE) and the MPG Institute for Ornithology (DE)
    International Max Planck Research School on Reactive Structure Analysis for Chemical Reactions (IMPRS RECHARGE), Mülheim an der Ruhr, at the Max Planck Institute for Chemical Energy Conversion (DE)
    International Max Planck Research School for Science and Technology of Nano-Systems, Halle at MPG Institute of Microstructure Physics (DE)
    International Max Planck Research School for Solar System Science at the University of Göttingen – Georg-August-Universität Göttingen (DE) hosted by MPG Institute for Solar System Research [Max-Planck-Institut für Sonnensystemforschung] (DE)
    International Max Planck Research School for Astronomy and Astrophysics, Bonn, at the MPG Institute for Radio Astronomy [MPG Institut für Radioastronomie] (DE) (formerly the International Max Planck Research School for Radio and Infrared Astronomy)
    International Max Planck Research School for the Social and Political Constitution of the Economy, Cologne
    International Max Planck Research School for Surface and Interface Engineering in Advanced Materials, Düsseldorf at MPG Institute for Iron Research [MPG Institut für Eisenforschung] (DE)
    International Max Planck Research School for Ultrafast Imaging and Structural Dynamics, Hamburg

    The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

    Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).

    *The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It’s the world’s largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

     
  • richardmitnick 8:43 pm on July 22, 2021 Permalink | Reply
    Tags: "Laser improves the time resolution of CryoEM", , , , , In cryoEM samples are embedded in vitreous ice-a glass-like form of ice that is obtained when water is frozen so rapidly that crystallization cannot occur., , , Scientists at EPFL’s School of Basic Sciences has developed a cryoEM method that can capture images of protein movements at the microsecond (a millionth of a second) timescale., , The instrument forms images using a beam of electrons instead of light.   

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “Laser improves the time resolution of CryoEM” 

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    20.07.21
    Nik Papageorgiou

    EPFL scientists have devised a new method that can speed up the real-time observation capabilities of cryo-electron microscopy.

    Cryo-Electron Microscope

    1

    In 2017, Jacques Dubochet, Joachim Frank, and Richard Henderson won the Nobel Prize in Chemistry for their contributions to cryo-electron microscopy (cryoEM), an imaging technique that can capture pictures of biomolecules such as proteins with atomic precision.

    In cryoEM samples are embedded in vitreous ice-a glass-like form of ice that is obtained when water is frozen so rapidly that crystallization cannot occur. With the sample vitrified, high-resolution pictures of their molecular structure can be taken with an electron microscope, an instrument that forms images using a beam of electrons instead of light.

    CryoEM has opened up new dimensions in life sciences, chemistry, and medicine. For example, it was recently used to map the structure of the SARS-CoV-2 spike protein, which is the target of many of the COVID-19 vaccines.

    Proteins constantly change their 3D structure in the cell. These conformational rearrangements are integral for proteins to perform their specialized functions, and take place within millionths to thousandths of a second. Such fast movements are too fast to be observed in real time by current cryoEM protocols, rendering our understanding of proteins incomplete.

    But a team of scientists led by Ulrich Lorenz at EPFL’s School of Basic Sciences has developed a cryoEM method that can capture images of protein movements at the microsecond (a millionth of a second) timescale. The work is published in Chemical Physics Letters.

    The method involves rapidly melting the vitrified sample with a laser pulse. When the ice melts into a liquid, there is a tunable time window in which the protein can be induced to move in the way they do in their natural liquid state in the cell.

    3

    “Generally speaking, warming up a cryo sample causes it to de-vitrify,” says Ulrich Lorenz. “But we can overcome this obstacle by how quickly we melt the sample.”

    After the laser pulse, the sample is re-vitrified in just a few microseconds, trapping the particles in their transient configurations. In this “paused” state, they can now be observed with conventional cryoEM methods.

    “Matching the time resolution of cryoEM to the natural timescale of proteins will allow us to directly study processes that were previously inaccessible,” says Lorenz.

    The team of scientists tested their new method by disassembling proteins after structurally damaging them, and trapping them in partially unraveled configurations.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École polytechnique fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is the Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH) . Associated with several specialized research institutes, the two universities form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices was located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganised and acquired the status of a university in 1890, the technical faculty changed its name to École d’ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich(CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organised into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences (SB, Jan S. Hesthaven)

    Institute of Mathematics (MATH, Victor Panaretos)
    Institute of Chemical Sciences and Engineering (ISIC, Emsley Lyndon)
    Institute of Physics (IPHYS, Harald Brune)
    European Centre of Atomic and Molecular Computations (CECAM, Ignacio Pagonabarraga Mora)
    Bernoulli Center (CIB, Nicolas Monod)
    Biomedical Imaging Research Center (CIBM, Rolf Gruetter)
    Interdisciplinary Center for Electron Microscopy (CIME, Cécile Hébert)
    Max Planck-EPFL Centre for Molecular Nanosciences and Technology (CMNT, Thomas Rizzo)
    Swiss Plasma Center (SPC, Ambrogio Fasoli)
    Laboratory of Astrophysics (LASTRO, Jean-Paul Kneib)

    School of Engineering (STI, Ali Sayed)

    Institute of Electrical Engineering (IEL, Giovanni De Micheli)
    Institute of Mechanical Engineering (IGM, Thomas Gmür)
    Institute of Materials (IMX, Michaud Véronique)
    Institute of Microengineering (IMT, Olivier Martin)
    Institute of Bioengineering (IBI, Matthias Lütolf)

    School of Architecture, Civil and Environmental Engineering (ENAC, Claudia R. Binder)

    Institute of Architecture (IA, Luca Ortelli)
    Civil Engineering Institute (IIC, Eugen Brühwiler)
    Institute of Urban and Regional Sciences (INTER, Philippe Thalmann)
    Environmental Engineering Institute (IIE, David Andrew Barry)

    School of Computer and Communication Sciences (IC, James Larus)

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences (SV, Gisou van der Goot)

    Bachelor-Master Teaching Section in Life Sciences and Technologies (SSV)
    Brain Mind Institute (BMI, Carmen Sandi)
    Institute of Bioengineering (IBI, Melody Swartz)
    Swiss Institute for Experimental Cancer Research (ISREC, Douglas Hanahan)
    Global Health Institute (GHI, Bruno Lemaitre)
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics (CPG)
    NCCR Synaptic Bases of Mental Diseases (NCCR-SYNAPSY)

    College of Management of Technology (CDM)

    Swiss Finance Institute at EPFL (CDM-SFI, Damir Filipovic)
    Section of Management of Technology and Entrepreneurship (CDM-PMTE, Daniel Kuhn)
    Institute of Technology and Public Policy (CDM-ITPP, Matthias Finger)
    Institute of Management of Technology and Entrepreneurship (CDM-MTEI, Ralf Seifert)
    Section of Financial Engineering (CDM-IF, Julien Hugonnier)

    College of Humanities (CDH, Thomas David)

    Human and social sciences teaching program (CDH-SHS, Thomas David)

    EPFL Middle East (EME, Dr. Franco Vigliotti)[62]

    Section of Energy Management and Sustainability (MES, Prof. Maher Kayal)

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: