Recent Updates Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 5:25 pm on August 25, 2016 Permalink | Reply
    Tags: , ,   

    From Salk: “Salk scientists map brain’s action center” 

    Salk Institute bloc

    Salk Institute for Biological Studies

    August 25, 2016
    No writer credit found

    New work dispels long-held notions about area involved in Parkinson’s and addiction

    1
    Salk Institute researchers employed novel genetic tools to map the connectivity of neurons within a part of the brain, called the striatum, that controls movement toward a goal or reward. The matrix neurons, highlighted in green, appear to avoid the patch neurons (in red), which are smaller clusters of neurons in the striatum. Credit: Salk Institute

    When you reach for that pan of brownies, a ball-shaped brain structure called the striatum is critical for controlling your movement toward the reward. A healthy striatum also helps you stop yourself when you’ve had enough.

    But when the striatum doesn’t function properly, it can lead to disorders such as Parkinson’s disease, obsessive-compulsive disorder or addiction.

    In fact, the exact functions of the striatum are by no means resolved, and it’s also a mystery how the structure can coordinate many diverse functions. Now, a new study published August 25, 2016 by Salk Institute researchers and their colleagues in the journal Neuron, delves into the anatomy and function of the striatum by employing cutting-edge strategies to comprehensively map one of the brain’s lesser-known forms of organization.

    “The most exciting result from this research is that we now have a new avenue to study long-standing questions about how the striatum controls movement in both healthy and diseased brains,” says the study’s senior investigator Xin Jin, an assistant professor in the Molecular Neurobiology Laboratory at Salk.

    Forty years ago, researchers discovered a unique way that the striatum is organized. It is dotted with patch neurons, which under the microscope look like tiny islands of cells. The ocean surrounding them is made up of neurons scientists collectively refer to as “matrix” cells.

    Over the course of four decades, scientists hypothesized about the role of patch and matrix neurons in neurodegenerative diseases. One idea was that patch cells were fed by the brain’s higher thought centers, suggesting they could play a role in cognition, whereas the matrix cells seemed to play a role in sensing and movement.

    2
    Using genetic engineering, cutting-edge neuronal tracing and electrophysiology, researchers decipher a lesser known form of organization in a deep, ball-shaped brain area that helps control movement toward a goal. In this artistic interpretation, patch neurons (red) sit as separate, small islands amid matrix neurons (green), but each cell type is well connected with the rest of the brain. Credit: Salk Institute

    In contrast, the new study dispels that idea, showing that both types of information are sent to the patch and matrix neurons, though patch cells tend to receive slightly more information from the brain’s emotion centers (these are included in the higher thought centers). But those results could help explain why, in the brains of patients with neurological disorders like Huntington’s disease (a progressive neurodegenerative disease affecting movement and other functions), patch cells and matrix cells are both affected, Jin says.

    “This is an elegant example demonstrating that we are in a new era of studying brain circuits in ever more refined detail,” said Daofen Chen, Ph.D., program director at the NIH’s National Institute of Neurological Disorders and Stroke. “As a result of emerging technologies and novel tools, we are gaining new insights into mechanisms of brain disorders.”

    Jin, together with the paper’s first authors Jared Smith, Jason Klug and Danica Ross, drew upon several technologies to uncover these new findings. The first was genetic engineering to selectively and precisely target the patch versus matrix neurons; traditionally, researchers used staining methods that were not as exact. Secondly, new neural tracing methods, including one generated by collaborator Edward Callaway and his group at Salk, allowed Jin’s team to chart the entire brain’s input to the patch and matrix cells and the output of each of the cell types as well. A third major approach, from the field of electrophysiology, enabled the scientists to confirm the connections they had mapped and to understand their strength.

    “Much of the previous work on patch and matrix cells inferred their functions based on connectivity with the rest of the brain, but most of those hypotheses were incorrect,” Smith says. “With a more precise map of the input and output of patch and matrix cells, we can now make more informed hypotheses.”

    Patch and matrix neurons are not the only way that neuroscientists understand the striatum. The striatum also contains cells that take two opposing routes—the direct and indirect pathways—that are thought to provide the gas and brakes on movement, so to speak. Those indirect and direct pathways are also crucial for certain behaviors, such as the formation of new habits.

    Interestingly, both patch and matrix groups contain both indirect and direct pathway cells. That makes the story of the striatum more complicated, Jin says, but in future studies his team can study the intersection of these two types of organization in the context of how the striatum controls actions in health and disease.

    Other authors on the study are Jason Klug, Danica Ross, Christopher Howard, Nick Hollon, Vivian Ko, Hilary Hoffman and Edward Callaway of the Salk Institute; and Charles Gerfen of the National Institute of Mental Health in Bethesda, Maryland.

    The research was supported by grants from the National Institutes of Health, the Dana Foundation, the Ellison Medical Foundation, and the Whitehall Foundation.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Salk Institute Campus

    Every cure has a starting point. Like Dr. Jonas Salk when he conquered polio, Salk scientists are dedicated to innovative biological research. Exploring the molecular basis of diseases makes curing them more likely. In an outstanding and unique environment we gather the foremost scientific minds in the world and give them the freedom to work collaboratively and think creatively. For over 50 years this wide-ranging scientific inquiry has yielded life-changing discoveries impacting human health. We are home to Nobel Laureates and members of the National Academy of Sciences who train and mentor the next generation of international scientists. We lead biological research. We prize discovery. Salk is where cures begin.

     
  • richardmitnick 3:29 pm on August 25, 2016 Permalink | Reply
    Tags: , ,   

    From NOVA: “The ‘Quantum Theory’ of Cancer Treatment” 

    PBS NOVA

    NOVA

    20 Jul 2016 [This just appeared in social media.]
    Amanda B. Keener

    In April 2011, Christopher Barker, a radiation oncologist at Memorial Sloan Kettering Cancer Center in New York, received some unusual news about a participant in a clinical trial. The patient was battling a second recurrence of melanoma that had spread to several areas of her body. After more than a year on the experimental drug, her tumors had only gotten bigger, and after one near her spine started causing back pain, her doctors arranged for local radiation therapy to shrink the tumor and give her some relief.

    But the tumor near her spine was not the only one that shrank. “From one set of images to another, the radiologist noticed that there was a dramatic change in the extent of the melanoma,” Barker says. Although only one tumor was exposed to radiation, two others had started shrinking, too.

    The striking regression was a very rare effect of radiation therapy, Barker and his colleagues concluded, called an abscopal response. “It’s not common,” says Barker. “But we see it, and it’s pretty remarkable when it happens.”

    1
    A woman prepares to receive radiation treatment for cancer. Photo credit: Mark Kostich/iStockphoto.

    Although the abscopal response was first recognized back in 1953, and a smattering of case reports similar to Barker’s appeared in the literature throughout the 1960s, ’70s, and ’80s, the mystery behind the abscopal response largely went unsolved until a medical student named Silvia Formenti dusted it off.

    While studying radiation therapy in Milan during the 1980s, Formenti couldn’t shake the idea that local radiotherapy must have some effect on the rest of the body. “When you burn yourself, the burn is very localized, yet you can get really systemic effects,” says Formenti, now chair of the department of radiation oncology at Weill Cornell Medical College in New York. “It seemed that applying radiotherapy to one part of the body should be sensed by the rest of the body as well.”

    The primary goal of therapy with ionizing radiation—the type used to shrink tumors—is to damage the DNA of fast-growing cancer cells so they self-destruct. But like burns, radiation also causes inflammation, a sign of the immune system preparing for action. For a long time, it was unclear what effect inflammation might have on the success of radiation therapy, though there were some hints buried in the scientific literature. For example, a 1979 study showed that mice lacking immune cells called T cells had poorer responses to radiation therapy than normal mice. But exactly what those T cells had to do with radiation therapy was anyone’s guess.

    Better Together

    In 2001, shortly after arriving in New York, Formenti attended a talk by Sandra Demaria, a pathologist also at Weill Cornell. Demaria was studying slivers of breast tumors removed from patients who had received chemotherapy and had found that in some patients, chemotherapy caused immune cells to flood the tumors. This made Formenti wonder if the same thing could happen after radiation therapy.

    In addition to fighting off illness-causing pathogens, part of the immune system’s job is to keep tabs on cells that could become cancerous. For example, cytotoxic T cells kill off any cells that display signs of cancer-related mutations. Cancer cells become troublesome when they find ways to hide these signs or release proteins that dull T cells’ senses. “Cancer is really a failure of the immune system to reject [cancer-forming] cells,” Formenti says.

    Formenti and Demaria, a fellow Italian native, quickly joined forces to determine whether the immune system was driving the abscopal response. To test their idea, their team injected breast cancer cells into mice at two separate locations, causing individual tumors to grow on either side of the animals’ bodies. Then they irradiated just one of the tumors on each mouse. Radiation alone prevented the primary tumor from growing, but didn’t do much else. Yet when the researchers also injected a protein called GM-CSF into the mice, the size of the second tumor was also controlled.

    GM-CSF expands the numbers of dendritic cells, which act as T cells’ commanding officers, providing instructions about where to attack. But the attack couldn’t happen unless one of the tumors was irradiated. “Somehow radiation inflames the tumor and makes it interesting to the immune system,” Formenti says.

    Formenti and Demaria knew that if their findings held up in human studies, then it could be possible to harness the abscopal effect to treat cancer that has metastasized throughout the body.

    Although radiation therapy is great at shrinking primary tumors, once a cancer has spread, the treatment is typically reserved for tumors that are causing patients pain. “Radiation is considered local therapy,” says Michael Lim, a neurosurgeon at Johns Hopkins University in Baltimore who is studying ways to combine radiotherapy with immunotherapy to treat brain tumors. But, he adds, “if you could use radiation to kindle a systemic response, it becomes a whole different paradigm.”

    When Demaria and Formenti first published their results in 2004, the concept of using radiation to activate immunity was a hard sell. At the time, research into how radiation affected the immune system focused on using high doses of whole-body irradiation to knock out the immune systems of animal models. It was counterintuitive to think the same treatment used locally could activate immunity throughout the body.

    That perspective, however, would soon change. In 2003 and 2004, James Hodge, an immunologist at the National Cancer Institute and his colleagues published two mouse studies showing that after radiation, tumor cells displayed higher levels of proteins that attract and activate cancer-killing T cells. It was clear radiation doesn’t just kill cancer cells, it can also make those that don’t die more attractive to immune attack, Hodge says.

    This idea received another boost in 2007 when a research team from Gustave Roussy Institute of Oncology near Paris reported that damage from radiation caused mouse and human cancer cells to release a protein that activates dendritic cells called HMGB1. They additionally found that women with breast cancer who also carried a mutation preventing their dendritic cells from sensing HMGB1 were more likely to have metastases in the two years following radiotherapy. In addition to making tumors more attractive to the immune system, Hodge says, the damage caused by radiation also releases bits of cancer cells called antigens, which then prime immune cells against the cancer, much like a vaccine.

    In some ways, Barker says, oncologists have always sensed that radiation works hand-in-hand with the immune system. For example, when his patients ask him where their tumors go after they’ve been irradiated, he tells them that immune cells mop up the dead cell debris. “The immune system acts like the garbage man,” he says.

    Now, immunologists had evidence that the garbage men do more than clean up debris: they are also part of the demolition team, and if they could coordinate at different worksites, they could generate abscopal responses. With radiation alone, this only happened very rarely. “Radiation does some of this trick,” Formenti says. “But you really need to help radiation a bit.”

    Formenti and Demaria had already shown in mice that such assistance could come in the form of immunotherapy with GM-CSF, and in 2003 they set out to test their theory in patients. They treated 26 metastatic cancer patients who were undergoing radiation treatment with GM-CSF. The researchers then used CT scans to track the sizes of non-irradiated tumors over time. Last June, they reported that the treatment generated abscopal responses in 20% of the patients. Patients with abscopal responses tended to survive longer, though none of the patients were completely cured.

    As the Weill Cornell team was conducting their GM-CSF study, a new generation of immunotherapeutic drugs arrived on the scene. Some, like imiquimod, activate dendritic cells in a more targeted way than GM-CSF does. Another group, the checkpoint inhibitors, release the brakes on the immune system and T cells in particular, freeing the T cells to attack tumors.

    In 2005, Formenti and her team found that a particular checkpoint inhibitor worked better with radiotherapy than alone and later reported that the same combination produces abscopal responses in a mouse model of breast cancer.

    Off-target, Spot-on

    In 2012, Formenti had an unexpected chance to test this treatment in the clinic when one of her patients who had read about her research requested that she try the combination on him. The patient had run out of options, so Formenti’s team obtained an exception to use the immunotherapy ipilimumab, which she had used in her 2005 study and had only been approved for melanoma, and proceeded to irradiate tumors in the patient’s liver. After five months, all but one of his tumors had disappeared. “We were ecstatic,” Formenti says. “He’s still alive and well.”

    The availability of checkpoint inhibitors seems to have opened the floodgates. Since the US Food and Drug Administration approved ipilimumab in 2011, there have been at least seven reports of suspected or confirmed abscopal responses in patients on checkpoint inhibitors, including the one Barker witnessed. Contrast that with the previous three decades, where less than one per year was reported, according to one review. Almost all of the recent cases involving checkpoint inhibitors have been in patients with melanoma, since that’s where the drugs have mainly been tested. But, abscopal responses with or without immunotherapy have been reported in patients with cancers of the liver, kidney, blood, and lung.

    There are now dozens of clinical trials combining radiation with a range of immunotherapies, including cancer vaccines and oncolytic viruses. “There’s quite a nice critical mass of people working on this,” Formenti says. She and Demaria are now finishing up a clinical trial in lung cancer patients using a protocol similar to the one that worked so well in their original patient.

    “I think we know that people who respond to checkpoint inhibitors already have more immune-activating tumors,” Demaria says. The question now, she says, is whether radiation can expand the 20% of people who respond to the combination therapy.

    One solution might be to match combinations to particular patients or tumor types. Demaria’s team is collecting blood and tissue samples from patients in a Weill Cornell lung cancer trial to look for differences in the immune responses of those who do and don’t generate abscopal responses. Such changes in the number or status of a cell type associated with particular outcomes are known as biomarkers.

    So far, there is little data about how the two types of responses differ. Barker and his team did publish measurements of a broad range of immune markers from their patient who experienced an abscopal response. “We didn’t really have a lot of clues in terms of what we should look at,” he says. They observed a bump in activated T cells and antibodies specific to tumor proteins following radiation, followed by steady declines of both as the tumors regressed. But, he says, there was no “smoking gun” that could explain why this particular patient responded the way she did.

    Understanding how the immune system responds to immunotherapy and radiation will be key to optimizing the combination of the two. “One needs to do these combinations to try and improve the outcome on both sides of the equation,” says William McBride, a radiation oncologist at the University of California, Los Angeles. There’s still controversy, for example, over whether the immune system responds better to high doses of radiation over short periods or low doses over longer periods. “We think we know the best sequence of therapy based on the pre-clinical studies, but that hasn’t been confirmed in clinical studies yet,” Barker says. “If we had a biomarker that would tell us in what way you should give the radiation, that would be enormously valuable.”

    Demaria says her research suggests that more tumor damage is not always better and that high radiation doses may be counterproductive, activating feedback responses that suppress immunity. She’s currently comparing immune signatures of different radiation regimens in mice. So far she says regimens that make the cancer look and act like virally-infected cells tend to elicit the best immune responses, but there is a long way to go in translating that work into humans.

    “Things are moving faster than they have for a long time, but at this point there are still a lot of unanswered questions,” she says.

    Fortunately, she and Formenti have plenty of motivation to work on those questions. Demaria says she still remembers examining a bit of tumor that was left behind after that first lung cancer patient received treatment. It was full of T cells which had presumably destroyed the cancer. “It’s the picture you never forget,” she says. “It is probably the biggest satisfaction to see somebody’s fate turned around by what you can do.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NOVA is the highest rated science series on television and the most watched documentary series on public television. It is also one of television’s most acclaimed series, having won every major television award, most of them many times over.

     
  • richardmitnick 3:08 pm on August 25, 2016 Permalink | Reply
    Tags: , ,   

    From EPFL: “An effective and low-cost solution for storing solar energy” 

    EPFL bloc

    École Polytechnique Fédérale de Lausanne EPFL

    25.08.16
    Laure-Anne Pessina

    1
    An effective and low-cost solution for storing solar energy © Infini Lab / 2016 EPFL

    Solar energy can be stored by converting it into hydrogen. But current methods are too expensive and don’t last long. Using commercially available solar cells and none of the usual rare metals, researchers at EPFL and CSEM have now designed a device that outperforms in stability, efficiency and cost.

    How can we store solar energy for period when the sun doesn’t shine? One solution is to convert it into hydrogen through water electrolysis. The idea is to use the electrical current produced by a solar panel to ‘split’ water molecules into hydrogen and oxygen. Clean hydrogen can then be stored away for future use to produce electricity on demand, or even as a fuel.

    But this is where things get complicated. Even though different hydrogen-production technologies have given us promising results in the lab, they are still too unstable or expensive and need to be further developed to use on a commercial and large scale.

    The approach taken by EPFL and CSEM researchers is to combine components that have already proven effective in industry in order to develop a robust and effective system. Their prototype is made up of three interconnected, new-generation, crystalline silicon solar cells attached to an electrolysis system that does not rely on rare metals. The device is able to convert solar energy into hydrogen at a rate of 14.2%, and has already been run for more than 100 hours straight under test conditions. The method, which surpasses previous efforts in terms of stability, performance, lifespan and cost efficiency, is published in the Journal of The Electrochemical Society.

    Enough to power a fuel cell car over 10,000km every year

    “A 12-14 m2 system installed in Switzerland would allow the generation and storage of enough hydrogen to power a fuel cell car over 10,000 km every year”, says Christophe Ballif, who co-authored the paper. In terms of performance, this is a world record for silicon solar cells and for hydrogen production without using rare metals. It also offers a high level of stability.

    High voltage cells have an edge

    The key here is making the most of existing components, and using a ‘hybrid’ type of crystalline-silicon solar cell based on heterojunction technology. The researchers’ sandwich structure – using layers of crystalline silicon and amorphous silicon – allows for higher voltages. And this means that just three of these cells, interconnected, can already generate an almost ideal voltage for electrolysis to occur. The electrochemical part of the process requires a catalyst made from nickel, which is widely available.

    “With conventional crystalline silicon cells, we would have to link up four cells to get the same voltage,” says co-author Miguel Modestino at EPFL.“So that’s the strength of this method.”

    A stable and economically viable method

    The new system is unique when it comes to cost, performance and lifespan. “We wanted to develop a high performance system that can work under current conditions,” says Jan-Willem Schüttauf, a researcher at CSEM and co-author of the paper. “The heterojunction cells that we use belong to the family of crystalline silicon cells, which alone account for about 90% of the solar panel market. It is a well-known and robust technology whose lifespan exceeds 25 years. And it also happens to cover the south side of the CSEM building in Neuchâtel.”

    The researchers used standard heterojunction cells to prove the concept; by using the best cells of that type, they would expect to achieve a performance above 16%.

    The research is part of the nano-tera SHINE project.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    EPFL campus

    EPFL is Europe’s most cosmopolitan technical university with students, professors and staff from over 120 nations. A dynamic environment, open to Switzerland and the world, EPFL is centered on its three missions: teaching, research and technology transfer. EPFL works together with an extensive network of partners including other universities and institutes of technology, developing and emerging countries, secondary schools and colleges, industry and economy, political circles and the general public, to bring about real impact for society.

     
  • richardmitnick 2:50 pm on August 25, 2016 Permalink | Reply
    Tags: , , , , ,   

    From JHU: “Can one cosmic enigma help solve another? Johns Hopkins researchers think so” 

    Johns Hopkins
    Johns Hopkins University

    8.24.16
    Arthur Hirsch

    1
    Image credit: VectaRay

    2
    A massive cluster of yellowish galaxies, seemingly caught in a red and blue spider web of eerily distorted background galaxies, makes for a spellbinding picture from the new Advanced Camera for Surveys aboard NASA’s Hubble Space Telescope. To make this unprecedented image of the cosmos, Hubble peered straight through the center of one of the most massive galaxy clusters known, called Abell 1689. The gravity of the cluster’s trillion stars — plus dark matter — acts as a 2-million-light-year-wide lens in space. This gravitational lens bends and magnifies the light of the galaxies located far behind it. Some of the faintest objects in the picture are probably over 13 billion light-years away (redshift value 6). Strong gravitational lensing as observed by the Hubble Space Telescope in Abell 1689 indicates the presence of dark matter. Credit: NASA, N. Benitez (JHU), T. Broadhurst (Racah Institute of Physics/The Hebrew University), H. Ford (JHU), M. Clampin (STScI),G. Hartig (STScI), G. Illingworth (UCO/Lick Observatory), the ACS Science Team and ESA. phys.org.

    Astrophysicists from Johns Hopkins University have proposed a clever new way of shedding light on the mysterious dark matter believed to make up most of the universe. The irony is they want to try to pin down the nature of this unexplained phenomenon by using another obscure cosmic emanation known as “fast radio bursts.”

    In a paper published today in Physical Review Letters, the team of astrophysicists argues that these extremely bright and brief flashes of radio-frequency radiation can provide clues about whether certain black holes are dark matter.

    Julian Muñoz, a Johns Hopkins graduate student and the paper’s lead author, said fast radio bursts, or FRBs, provide a direct and specific way of detecting black holes of a specific mass, which are the suspect dark matter.

    FRB Fast Radio Bursts from NAOJ Subaru
    FRB Fast Radio Bursts from NAOJ Subaru, Mauna Key, Hawaii, USA

    Muñoz wrote the paper along with Ely D. Kovetz, a post-doctoral fellow; Marc Kamionkowski, a professor in the Department of Physics and Astronomy; and Liang Dai, who completed his doctorate in astrophysics at Johns Hopkins last year. Dai is now a NASA Einstein Postdoctoral Fellow at the Institute for Advanced Study in Princeton, New Jersey.

    The paper builds on a hypothesis offered in a paper published this spring by Muñoz, Kovetz, and Kamionkowski, along with five Johns Hopkins colleagues. Also published in Physical Review Letters, that research made a speculative case that the collision of black holes detected early in the year by the Laser Interferometer Gravitational-Wave Observatory, or LIGO, was actually dark matter, a substance that makes up 85 percent of the mass of the universe.

    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib
    Credit: MPI for Gravitational Physics/W.Benger-Zib
    LSC LIGO Scientific Collaboration
    Caltech/MIT Advanced aLigo Hanford, WA, USA installation
    Caltech/MIT Advanced aLigo Hanford, WA, USA installation
    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA
    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    The earlier paper made what Kamionkowski called a “plausibility argument” that LIGO found dark matter. The study took as a point of departure the fact that the objects detected by LIGO fit within the predicted range of mass of so-called “primordial” black holes. Unlike black holes that formed from imploded stars, primordial black holes are believed to have formed from the collapse of large expanses of gas during the birth of the universe.

    The existence of primordial black holes has not been established with certainty, but they have been suggested before as a possible solution to the riddle of dark matter. With so little evidence of them to examine, the hypothesis had not gained a large following among scientists.

    The earlier paper made what Kamionkowski called a “plausibility argument” that LIGO found dark matter. The study took as a point of departure the fact that the objects detected by LIGO fit within the predicted range of mass of so-called “primordial” black holes. Unlike black holes that formed from imploded stars, primordial black holes are believed to have formed from the collapse of large expanses of gas during the birth of the universe.

    The LIGO findings, however, raised the prospect anew, especially as the objects detected in that experiment conform to the mass predicted for dark matter.

    The Johns Hopkins team calculated how often these primordial black holes would form binary pairs, and eventually collide. Taking into account the size and elongated shape believed to characterize primordial black hole binary orbits, the team came up with a collision rate that conforms to the LIGO findings.

    Key to the argument is that the black holes that LIGO detected fall within a range of 29 to 36 solar masses, meaning they are that many times greater than the mass of the sun. The new paper considers the question of how to test the hypothesis that dark matter consists of black holes of roughly 30 solar masses.

    That’s where the fast radio bursts come in. First observed only a few years ago, these flashes of radio frequency radiation emit intense energy, but last only fractions of a second. Their origins are unknown but are believed to lie in galaxies outside the Milky Way.

    If the speculation about their origins is true, Kamionkowski said, the radio waves would travel great distances before they’re observed on Earth, perhaps passing a black hole. According to Einstein’s theory of general relativity, the ray would be deflected when it passes a black hole. If it passes close enough, it could be split into two rays shooting off in the same direction—creating two images from one source.

    The new study shows that if the black hole has 30 times the mass of the Sun, the two images will arrive a few milliseconds apart. If 30-solar-mass black holes make up the dark matter, there is a chance that any given fast radio burst will be deflected in this way and followed in a few milliseconds by an echo.

    “The echoing of FRBs is a very direct probe of dark matter,” Muñoz said. “While gravitational waves might ‘indicate’ that dark matter is made of black holes, there are other ways to produce very-massive black holes with regular astrophysics, so it would be hard to convince oneself that we are detecting dark matter. However, gravitational lensing of fast radio bursts has a very unique signature, with no other astrophysical phenomenon that could reproduce it.”

    Kaimonkowski said that while the probability for any such FRB echo is small, “it is expected that several of the thousands of FRBs to be detected in the next few years will have such echoes … if black holes make up the dark matter.”

    So far, only about 20 fast radio bursts have been detected and recorded since 2001. The very sensitive instruments needed to detect them can look at only very small slices of the sky at a time, limiting the rate at which the bursts can be found. A new telescope expected to go into operation this year that seems particularly promising for spotting radio bursts is the Canadian Hydrogen Intensity Mapping Experiment. The joint project of the University of British Columbia, McGill University, the University of Toronto, and the Dominion Radio Astrophysical Observatory stands in British Columbia.

    “Once the thing is working up to their planned specifications, they should collect enough FRBs to begin the tests we propose,” said Kamionkowski, estimating results could be available in three to five years.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 2:27 pm on August 25, 2016 Permalink | Reply
    Tags: , , , , ,   

    From Don Lincoln via CNN: “A new planet in our neighborhood — how likely is life?” 

    1
    CNN

    August 24, 2016

    1
    Dr. Don Lincoln is a senior physicist at Fermilab and does research using the Large Hadron Collider. He has written numerous books and produces a series of science education videos. He is the author of Alien Universe: Extraterrestrial Life in Our Minds and in the Cosmos. Follow him on Facebook. The opinions expressed in this commentary are solely those of the author.

    Space. The final frontier.

    These words inspired many young people to enter science (including me), but I’ll bet that’s especially true for the team who announced Wednesday that they had found evidence of an Earth-like planet orbiting Proxima Centauri, our closest star. This planet is tentatively called Proxima b.

    Pale Red Dot
    Pale Red Dot project at ESO

    Scientists working at the European Southern Observatory (ESO), using the La Silla telescope, claim to have discovered the closest exoplanet to Earth.

    ESO 3.6m telescope & HARPS at LaSilla
    ESO 3.6m telescope & HARPS at LaSilla, Chile

    Exoplanet, of course, means planets orbiting stars other than the Sun. Over 3,000 exoplanets have been discovered by facilities like the ESO and the Kepler orbiting observatory. Most of them are huge planets orbiting very near their star — Jupiter-like planets heated to temperatures guaranteed to sterilize them of life as we know it.

    In recent years, instrumentation has improved to the point that not only can individual planets be found, but even complete solar systems, consisting of many planets. This has been a heady time for planet hunters.

    The goal of those inspired by Star Trek’s opening words has not been to find planets, but to find planets that are like Earth — meaning at a temperature on which liquid water could be present and which could theoretically support some form of life. This is what astronomers call “the habitable zone.” In addition, we’d like to find a planet that is nearby.

    After all, space is huge and human spacecraft using current technology would take tens of thousands of years to get to even this, our closest celestial neighbor. To give a sense of scale, that’s longer than human civilization has existed. There are plans under discussion that might reduce travel time to a more manageable duration, even less than a single human lifespan.

    3
    Related article: Proxima b: Closest rocky planet to our solar system found

    Centauris Alpha Beta Proxima 27, February 2012. Skatebiker
    Centauris Alpha Beta Proxima 27, February 2012. Skatebiker

    So what might this newly discovered planet look like? Well, even though its temperature is thought to be such that liquid water could exist, you shouldn’t imagine a lush and verdant world, with lovely blue waters, sandy beaches, lush and green plants, with an excited alien fish occasionally breaching the waters. There are lots of reasons why these are unreasonable expectations.

    Setting aside the possibility of life for a moment, Proxima Centauri is a red dwarf, which is the most common type of star in the galaxy. Red dwarfs are much smaller than our Sun. For instance, Proxima Centauri is only about 1.5 times larger than Jupiter. Red dwarfs are very dim. For instance, in the visible spectrum that we use to see, Proxima Centauri gives off 0.0056% as much as light as the Sun.

    Most of the light given off by Proxima Centauri is in the infrared region, but even if you compare all of the light emitted by Proxima Centauri in all wavelengths to the amount emitted by the Sun, Proxima Centauri still emits only 0.17% as much light as our own life-giving stellar companion. The star also emits as much x-rays as our own Sun, but Proxima b is much closer to its stellar parent, so the surface receives far more x-rays than Earth.

    In addition to being a very dim star, Proxima Centauri is known to be a “flare star,” which means the star periodically gives off far more light than usual. During these flares, the x-ray emission can go up tenfold.

    Because of the star’s small size, a planet in the habitable zone will have to be in a very small orbit, taking under two weeks to complete a single orbit. Any planet that close to a star will be “tidally locked,” which means that one face of the planet will constantly face the star. This is just like the Earth and Moon, where we see only one side of the Moon throughout the course of the Month. Proxima Centauri’s planetary companion will likely have one side in perpetual daylight, while the other is in perpetual night.

    So what about life? Are there any chances that an alien lizard might bask in Proxima Centauri’s light or try to find shade under an alien tree? Well, given the instability of the light emitted by the parent star, the answer is likely no, although the real answer to that question is obviously something for observations to answer.

    Given the very dim light output of the star, it is likely that any hypothetical plants would have to be black, as black is the most light-absorbent color. “Sunlight” would be precious and evolution would drive alien plants to find ways to collect every bit of energy that falls on them.

    Realistically, the prospect of life is improbable. This planet is unlikely to be a haven for people trying to escape the ecological issues of Earth, so we should not view this discovery as a way to ignore our own ecosystem.

    Still, the question of extraterrestrial life is a fascinating one, so astronomers are devising techniques to look at the planet’s atmosphere. Certain chemicals, like oxygen or methane, cannot exist long in a planet’s atmosphere without being constantly replenished by living organisms. Observing them would be strong evidence for life.

    So, what’s the bottom line? First, the discovery, if confirmed is extremely exciting. The existence of a nearby planet in the habitable zone will perhaps increase the interest in efforts like Project Starshot, which aims to send microprobes to Proxima Centauri with a transit time of about twenty years. It may well be that this discovery will excite an entirely new generation of the prospect “to boldly go where no one has gone before.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 2:08 pm on August 25, 2016 Permalink | Reply
    Tags: , , ,   

    From PPPL: “How to keep the superhot plasma inside tokamaks from chirping” 


    PPPL

    August 19, 2016
    Raphael Rosen

    1
    Graduate student Vinícius Duarte. (Photo by Elle Starkman)

    Chirp, chirp, chirp.” The familiar sound of birds is also what researchers call a wave in plasma that breaks from a single note into rapidly changing notes. This behavior can cause heat in the form of high energy particles — or fast ions — to leak from the core of plasma inside tokamaks — doughnut-shaped facilities that house fusion reactions.

    PPPL NSTXII
    NSTX tokamak at PPPL

    Physicists want to prevent these waves from chirping because they may cause too many fast ions to escape, cooling the plasma. As the plasma cools, the atomic nuclei in the tokamak are less likely to come together and release energy and the fusion reactions will sputter to a halt.

    “Chirping modes can be very harmful because they can steal energy from the fast ions in an extended region of the plasma,” said Vinícius Duarte, a graduate student from the University of São Paulo. Duarte is at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) conducting research for his dissertation. Support for this work comes from the DOE Office of Science.

    Chirping modes often have frequencies far above what the human ear can hear. The name — “chirping” — stems from the change in the waves’ frequency over time. Typically, the modes start with a high frequency and drop down in frequency very rapidly. The chirping of modes has been studied for decades as physicists seek to understand and eliminate them.

    In a recent theoretical study, Duarte discovered some conditions within plasma that can make the chirping of modes more likely. A paper he is preparing on this topic explains the phenomenon and may help to optimize the design of fusion energy plants in the future. Collaborating on the research were physicists at PPPL, General Atomics, the University of California-Irvine, and the University of Texas at Austin. Physicist Nikolai Gorelenkov, Duarte’s PPPL advisor, introduced him to the software code that enabled this work, Prof. Herbert Berk of the University of Texas co-advised on the project and researchers from the DIII-D National Fusion Facility that General Atomics operates for the DOE provided the data for comparison with the theory.

    The researchers began by noting that the chirping of modes seems to occur in some tokamaks more often than in others. They are rare in the DIII-D tokamak, for example, but were common in the National Spherical Torus Experiment (NSTX), PPPL’s former flagship fusion device, which has recently been upgraded.

    By running simulations on PPPL computers, Duarte and the team found that plasma turbulence — or random fluctuation — was a factor that helped explain the chirping of modes. Chirping can occur when there is a strong concentration of fast ions bunched together, while other particles are widely spaced.

    The surprise is that substantial turbulence can break up concentrations of fast ions, and therefore help to extinguish the chirping of modes.

    The simulations matched the data from experiments. In NSTX, the turbulence has little effect on fast ions and chirping modes are common, whereas DIII-D has relatively high interaction between turbulence and fast ions and chirping modes are rare. In DIII-D, chirping starts only when the interaction between the turbulence and fast-ions markedly decreases.

    These findings could lead to fusion facilities that leak less heat than current machines and could improve the efficiency of ITER, the international tokamak under construction in France to demonstrate the feasibility of fusion power.

    ITER Tokamak
    ITER Tokamak, France

    “In ITER, where fast ions from fusion reactions are expected to sustain a burning plasma, the good confinement of these particles is a crucial issue,” said Duarte.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University. PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

     
  • richardmitnick 1:57 pm on August 25, 2016 Permalink | Reply
    Tags: , , Dark galaxy Dragonfly 44, , , ,   

    From Keck: “Scientists Discover Massive Galaxy Made of 99.99 Percent Dark Matter” 

    Keck Observatory

    August 25, 2016

    SCIENCE CONTACT
    Pieter van Dokkum
    Yale University
    New Haven, Connecticut, USA
    Tel: +1-203-432-3000
    E-mail: pieter.vandokkum@yale.edu

    MEDIA CONTACT

    Steve Jefferson
    W. M. Keck Observatory
    (808) 881-3827
    sjefferson@keck.hawaii.edu

    Keck Observatory.
    Keck, with Subaru and IRTF (NASA Infrared Telescope Facility). Vadim Kurland

    Keck Observatory

    1
    The dark galaxy Dragonfly 44. The image on the left is a wide view of the galaxy taken with the Gemini North telescope using the Gemini Multi-Object Spectrograph (GMOS). The close-up on the right is from the same very deep image, revealing the large, elongated galaxy, and halo of spherical clusters of stars around the galaxy’s core, similar to the halo that surrounds our Milky Way Galaxy. Dragonfly 44 is very faint for its mass, and consists almost entirely of Dark Matter. Credit: Pieter van Dokkum, Roberto Abraham, Gemini; Sloan Digital Sky Survey.

    Using the world’s most powerful telescopes, an international team of astronomers has discovered a massive galaxy that consists almost entirely of Dark Matter. Using the W. M. Keck Observatory and the Gemini North telescope – both on Maunakea, Hawaii – the team found a galaxy whose mass is almost entirely Dark Matter. The findings are being published in The Astrophysical Journal Letters today.

    Gemini/North telescope at Manua Kea, Hawaii, USA
    GEMINI/North GMOS
    Gemini/North telescope at Manua Kea, Hawaii, USA; GEMINI/North GMOS

    Even though it is relatively nearby, the galaxy, named Dragonfly 44, had been missed by astronomers for decades because it is very dim. It was discovered just last year when the Dragonfly Telephoto Array observed a region of the sky in the constellation Coma.

    U Toronto Dunlap Dragonfly telescope Array
    U Toronto Dunlap Dragonfly telescope Array

    Upon further scrutiny, the team realized the galaxy had to have more than meets the eye: it has so few stars that it quickly would be ripped apart unless something was holding it together.

    To determine the amount of Dark Matter in Dragonfly 44, astronomers used the DEIMOS instrument installed on Keck II to measure the velocities of stars for 33.5 hours over a period of six nights so they could determine the galaxy’s mass.

    Keck/DEIMOS
    Keck/DEIMOS

    The team then used the Gemini Multi-Object Spectrograph (GMOS) on the 8-meter Gemini North telescope on Maunakea in Hawaii to reveal a halo of spherical clusters of stars around the galaxy’s core, similar to the halo that surrounds our Milky Way Galaxy.

    “Motions of the stars tell you how much matter there is, van Dokkum said. “They don’t care what form the matter is, they just tell you that it’s there. In the Dragonfly galaxy stars move very fast. So there was a huge discrepancy: using Keck Observatory, we found many times more mass indicated by the motions of the stars, then there is mass in the stars themselves.”

    The mass of the galaxy is estimated to be a trillion times the mass of the Sun – very similar to the mass of our own Milky Way galaxy. However, only one hundredth of one percent of that is in the form of stars and “normal” matter; the other 99.99 percent is in the form of dark matter. The Milky Way has more than a hundred times more stars than Dragonfly 44.

    Finding a galaxy with the mass of the Milky Way that is almost entirely dark was unexpected. “We have no idea how galaxies like Dragonfly 44 could have formed,” Roberto Abraham, a co-author of the study, said. “The Gemini data show that a relatively large fraction of the stars is in the form of very compact clusters, and that is probably an important clue. But at the moment we’re just guessing.”

    “This has big implications for the study of Dark Matter,” van Dokkum said. “It helps to have objects that are almost entirely made of Dark Matter so we don’t get confused by stars and all the other things that galaxies have. The only such galaxies we had to study before were tiny. This finding opens up a whole new class of massive objects that we can study.

    “Ultimately what we really want to learn is what Dark Matter is,” van Dokkum said. “The race is on to find massive dark galaxies that are even closer to us than Dragonfly 44, so we can look for feeble signals that may reveal a Dark Matter particle.”

    Additional co-authors are Shany Danieli, Allison Merritt, and Lamiya Mowla of Yale, Jean Brodie of the University of California Observatories, Charlie Conroy of Harvard, Aaron Romanowsky of San Jose State University, and Jielai Zhang of the University of Toronto.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes near the summit of Maunakea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrographs and world-leading laser guide star adaptive optics systems.

    DEIMOS (DEep Imaging Multi-Object Spetrograph) boasts the largest field of view (16.7 arcmin by 5 arcmin) of any of the Keck Observatory instruments, and the largest number of pixels (64 Mpix). It is used primarily in its multi-object mode, obtaining simultaneous spectra of up to 130 galaxies or stars. Astronomers study fields of distant galaxies with DEIMOS, efficiently probing the most distant corners of the universe with high sensitivity.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.
    Keck UCal

    Keck NASA

    Keck Caltech

     
  • richardmitnick 1:38 pm on August 25, 2016 Permalink | Reply
    Tags: , , Neuregulin-1,   

    From Salk: “Elevating brain protein allays symptoms of Alzheimer’s and improves memory” 

    Salk Institute bloc

    Salk Institute for Biological Studies

    August 25, 2016
    No writer credit found

    Salk Institute tests drug that could boost levels of critical protective protein in brain

    1
    In a mouse model of Alzheimer’s disease, Salk Institute researchers show that raising levels of neuregulin-1 (right) lowers a marker of disease pathology in a part of the brain that controls memory compared with controls (left). Credit: Salk Institute

    LA JOLLA—Boosting levels of a specific protein in the brain alleviates hallmark features of Alzheimer’s disease in a mouse model of the disorder, according to new research published online August 25, 2016 in Scientific Reports.

    The protein, called neuregulin-1, has many forms and functions across the brain and is already a potential target for brain disorders such as Parkinson’s disease, amyotrophic lateral sclerosis and schizophrenia.

    “Neuregulin-1 has broad therapeutic potential, but mechanistically, we are still learning about how it works,” says the study’s senior investigator Kuo-Fen Lee, a professor in the Salk Institute’s Clayton Foundation Laboratories for Peptide Biology and holder of the Helen McLoraine Chair in Molecular Neurobiology. “We’ve shown that it promotes metabolism of the brain plaques that are characteristic of Alzheimer’s disease.”

    Previously, researchers have shown that treating cells with neuregulin-1, for example, dampens levels of amyloid precursor protein, a molecule that generates amyloid beta, which aggregate and form plaques in the brains of Alzheimer’s patients. Other studies suggest that neuregulin-1 could protect neurons from damage caused by blockage of blood flow.

    In the new study, Lee’s team tested this idea in a mouse model of Alzheimer’s disease by raising the levels of one of two forms of neuregulin-1 in the hippocampus, an area of the brain responsible for learning and memory. Both forms of the protein seemed to improve performance on a test of spatial memory in the models.

    What’s more, the levels of cellular markers of disease—including the levels of amyloid beta and plaques—were noticeably lower in mice with more neuregulin-1 compared to controls.

    The group’s experiments suggest that neuregulin-1 breaks up plaques by raising levels of an enzyme called neprilysin, shown to degrade amyloid-beta. But that is probably not the only route through which neuregulin-1 confers its benefits, and the group is exploring other possible mechanisms—such as whether the protein improves signaling between neurons, which is impaired in Alzheimer’s—says the study’s first author Jiqing Xu, a research associate in Lee’s group

    A neuregulin-1 treatment is not available on the market, though it is being explored in clinical trials as a potential treatment for chronic heart failure and Parkinson’s disease. One advantage of neuregulin-1 as a potential drug is that it can cross the blood brain barrier, which means that it could be administered relatively noninvasively even though the efficiency is not clear. On the other hand, other research suggests too much of the protein impairs brain function. Working with chemists at Salk, Lee’s team has come up with a small molecule that can raise levels of existing neuregulin-1 (rather than administering it directly) and are testing it in cells. This alternative therapy could be a better way to prevent plaques from forming because small molecules more readily cross the blood brain barrier.

    The group is also interested in neuregulin-1 for its ties to schizophrenia. An alteration in the neuregulin-1 gene—a single change in one letter of the DNA code for the protein—has been found in families with schizophrenia and linked to late-onset Alzheimer’s disease with psychosis. The protein may be a way to understand the overlap between Alzheimer’s and other brain disorders, Lee says.

    An important caveat is that the new research was conducted in a single type of mouse model of Alzheimer’s. Lee’s group is testing neuregulin-1’s affects across other models. “There’s much more work ahead before neuregulin-1 could become a treatment, but we are excited about its potential, possibly in combination with other therapeutics for Alzheimer’s disease,” Lee says.

    Other authors on the study are Fred DeWinter, Catherine Farrokhi, Jonathan Cook and Xin Jin of Salk’s Clayton Foundation for Peptide Biology Laboratories; and Edward Rockenstein, Michael Mante, Anthony Adame and Eliezer Masliah of the University of California, San Diego.

    The research was supported by the National Institutes of Health, the Clayton Foundation, The Albert G. and Olive H. Schlink Foundation, the Gemcon Family Foundation and the Brown Foundation.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Salk Institute Campus

    Every cure has a starting point. Like Dr. Jonas Salk when he conquered polio, Salk scientists are dedicated to innovative biological research. Exploring the molecular basis of diseases makes curing them more likely. In an outstanding and unique environment we gather the foremost scientific minds in the world and give them the freedom to work collaboratively and think creatively. For over 50 years this wide-ranging scientific inquiry has yielded life-changing discoveries impacting human health. We are home to Nobel Laureates and members of the National Academy of Sciences who train and mentor the next generation of international scientists. We lead biological research. We prize discovery. Salk is where cures begin.

     
  • richardmitnick 1:19 pm on August 25, 2016 Permalink | Reply
    Tags: , ALMA Finds Unexpected Trove of Gas Around Larger Stars, , , ,   

    From ALMA: “ALMA Finds Unexpected Trove of Gas Around Larger Stars” 

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres
    ALMA

    25 August 2016
    Contacts

    Nicolás Lira T.
    Education and Public Outreach Coordinator
    Joint ALMA Observatory
    Santiago, Chile
    Tel: +56 2 24 67 65 19
    Cell: +56 9 94 45 77 26
    Email: nicolas.lira@alma.cl

    Charles E. Blue
    Public Information Officer
    National Radio Astronomy Observatory
    Charlottesville, Virginia, USA
    Tel: +1 434 296 0314
    Cell: +1 202 236 6324
    E-mail: cblue@nrao.edu

    Masaaki Hiramatsu

    Education and Public Outreach Officer, NAOJ Chile
    Observatory
Tokyo, Japan

    Tel: +81 422 34 3630

    E-mail: hiramatsu.masaaki@nao.ac.jp

    Richard Hook
    Public Information Officer, ESO

    Garching bei München, Germany

    Tel: +49 89 3200 6655

    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    1
    Artist impression of a debris disk surrounding a star in the Scorpius-Centaurus Association. ALMA discovered that — contrary to expectations — the more massive stars in this region retain considerable stores of carbon monoxide gas. This finding could offer new insights into the timeline for giant planet formation around young stars. Credit: NRAO/AUI/NSF; D. Berry / SkyWorks

    Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) surveyed dozens of young stars – some Sun-like and others nearly double that size – and discovered that the larger variety have surprisingly rich reservoirs of carbon monoxide gas in their debris disks. In contrast, the lower-mass, Sun-like stars have debris disks that are virtually gas-free.

    This finding runs counter to astronomer’s expectations, which hold that stronger radiation from larger stars should strip away gas from their debris disks faster than the comparatively mild radiation from smaller stars. It may also offer new insights into the timeline for giant planet formation around young stars.

    Debris disks are found around stars that have shed their dusty, gas-filled protoplanetary disks and gone on to form planets, asteroids, comets, and other planetesimals. Around younger stars, however, many of these newly formed objects have yet to settle into stately orbits and routinely collide, producing enough rubble to spawn a “second-generation” disk of debris.

    “Previous spectroscopic measurements of debris disks revealed that certain ones had an unexpected chemical signature suggesting they had an overabundance of carbon monoxide gas,” said Jesse Lieman-Sifry, lead author on a paper published in Astrophysical Journal. At the time of the observations, Lieman-Sifry was an undergraduate astronomy major at Wesleyan University in Middletown, Connecticut. “This discovery was puzzling since astronomers believe that this gas should be long gone by the time we see evidence of a debris disk,” he said.

    In search of clues as to why certain stars harbor gas-rich disks, Lieman-Sifry and his team surveyed 24 star systems in the Scorpius-Centaurus Association. This loose stellar agglomeration, which lies a few hundred light-years from Earth, contains hundreds of low- and intermediate-mass stars. For reference, astronomers consider our Sun to be a low-mass star.

    The astronomers narrowed their search to stars between five and ten million years old — old enough to host full-fledged planetary systems and debris disks — and used ALMA to examine the millimeter-wavelength “glow” from the carbon monoxide in the star’s debris disks.

    The team carried out their survey over a total of six nights between December 2013 and December 2014, observing for a mere ten minutes each night. At the time it was conducted, this study constituted the most extensive millimeter-wavelength interferometric survey of stellar debris disks ever achieved.

    2
    ALMA image of the debris disk surrounding a star in the Scorpius-Centaurus Association known as HIP 73145. The green region maps the carbon monoxide gas that suffuses the debris disk. The red is the millimeter-wavelength light emitted by the dust surrounding the central star. The star HIP 73145 is estimated to be approximately twice the mass of the Sun. The disk in this system extends well past what would be the orbit of Neptune in our solar system, drawn in for scale. The location of the central star is also highlighted for reference. Credit: J. Lieman-Sifry, et al., ALMA (ESO/NAOJ/NRAO); B. Saxton (NRAO/AIU/NSF)

    Armed with an incredibly rich set of observations, the astronomers found the most gas-rich disks ever recorded in a single study. Among their sample of two dozen disks, the researchers spotted three that exhibited strong carbon monoxide emission. Much to their surprise, all three gas-rich disks surrounded stars about twice as massive as the Sun. None of the 16 smaller, Sun-like stars in the sample appeared to have disks with large stores of carbon monoxide. These observations suggest that larger stars are more likely to sport disks with significant gas reservoirs than Sun-like stars.

    This finding is counterintuitive, because higher-mass stars flood their planetary systems with energetic ultraviolet radiation that should destroy the carbon monoxide gas lingering in their debris disks. This new research reveals, however, that the larger stars are somehow able to either preserve or replenish their carbon monoxide stockpiles.

    “We’re not sure whether these stars are holding onto reservoirs of gas much longer than expected, or whether there’s a sort of ‘last gasp’ of second-generation gas produced by collisions of comets or evaporation from the icy mantles of dust grains,” said Meredith Hughes, an astronomer at Wesleyan University and coauthor of the study.

    The existence of this gas may have important implications for planet formation, says Hughes. Carbon monoxide is a major constituent of the atmospheres of giant planets. Its presence in debris disks could mean that other gases, including hydrogen, are present, but perhaps in much lower concentrations. If certain debris disks are able to hold onto appreciable amounts of gas, it might push back the expected deadline for giant planet formation around young stars, the astronomers speculate.

    3
    ALMA image of the debris disk surrounding a star in the Scorpius-Centaurus Association known as HIP 73145. The green region maps the carbon monoxide gas that suffuses the debris disk. The red is the millimeter-wavelength light emitted by the dust surrounding the central star. The star HIP 73145 is estimated to be approximately twice the mass of the Sun. The disk in this system extends well past what would be the orbit of Neptune in our solar system. Credit: J. Lieman-Sifry, et al., ALMA (ESO/NAOJ/NRAO); B. Saxton (NRAO/AIU/NSF)

    “Future high-resolution observations of these gas-rich systems may allow astronomers to infer the location of the gas within the disk, which may shed light on the origin of the gas,” says Antonio Hales, an astronomer with the Joint ALMA Observatory in Santiago, Chile, and the National Radio Astronomy Observatory in Charlottesville, Virginia, and coauthor on the study. “For instance, if the gas was produced by planetesimal collisions, it should be more highly concentrated in regions of the disk where those impacts occurred. ALMA is the only instrument capable of making these kind of high-resolution images.”

    According to Lieman-Sifry, these dusty disks are just as diverse as the planetary systems they accompany. The discovery that the debris disks around some larger stars retain carbon monoxide longer than their Sun-like counterparts may provide insights into the role this gas plays in the development of planetary systems.

    4
    Four out of 24 debris disks observed by ALMA in the Scorpius-Centaurus Association. Researchers were surprised to discover that the larger, more energetic stars retained much more gas in their debris disks than smaller, Sun-like stars. Credit: Lieman-Sifry et al. ALMA (ESO/NAOJ/NRAO); B. Saxton, NRAO/AUI/NSF

    Additional information

    This research is presented in the paper titled “Debris disks in the Scorpius-Centaurus OB association resolved by ALMA,” by J. Lieman-Sifry et al., published in Astrophysical Journal on 23 August 2016. [Preprint: http://arxiv.org/abs/1606.07068.

    The team is composed of Jesse Lieman-Sifry (Wesleyan Univ., Middletown, Connecticut), A. Meredith Hughes (Wesleyan Univ., Middletown, Connecticut), John M. Carpenter (California Institute of Technology, Pasadena), Uma Gorti (SETI Institute, Mountain View, California), Antonio Hales (Joint ALMA Observatory, Santiago, Chile, and National Radio Astronomy Observatory, Charlottesville, Virginia), and Kevin M. Flaherty (Wesleyan Univ., Middletown, Connecticut).

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small

    ESO 50

    NAOJ

     
  • richardmitnick 9:38 am on August 25, 2016 Permalink | Reply
    Tags: , , Fight Aids at Home - Phase 2,   

    From FightAIDS@Home – Phase 2 at WCG: “AIDS is constantly evolving. So are the tools to fight it.” 

    New WCG Logo

    WCGLarge

    World Community Grid (WCG)

    Since 2005, the volunteers behind FightAIDS@Home have helped scientists advance HIV research. The next phase of that effort is just beginning, and you can play a key role in helping the millions of people afflicted by this deadly virus.

    FightAIDS@Home – Phase 2

    Even with the advances in treating people infected with HIV, there are still about two million new infections and one million HIV-related deaths each year. HIV continues to be a challenge because it quickly mutates in ways that make existing drug treatments ineffective. FightAIDS@Home joined World Community Grid 10 years ago with the simple – but challenging – goal of finding new treatments for HIV. Since then, the project has made some incredible advances in understanding the virus, developing better drug search tools, and identifying chemical compounds that might be able to bind to the virus and disrupt its lifecycle.

    The computing power donated by World Community Grid volunteers has allowed the FightAIDS@Home research team to significantly expand their research beyond what they originally planned. Phase 1 of this project is considered to be the biggest docking experiment ever conducted with more than 20 billion drug-target comparisons performed. The research team was able to computationally evaluate millions of chemical compounds against many different regions of the entire viral machinery, rather than restricting the search to only certain compounds or certain binding sites.

    Although the researchers expect to run additional Phase 1 screenings in the future, they will now focus on identifying the most valuable results from Phase 1. While the team has already identified thousands of potentially promising candidates to be confirmed experimentally in the lab, it would be cost and time prohibitive to lab test all of the potential candidates. The virtual docking techniques used in Phase 1 are only an approximation of the potential effectiveness of these promising compounds. They can be evaluated in the lab, but this is expensive and slow, because each chemical must be either synthesized or purchased, and then thoroughly tested. Therefore, results from Phase 1 will be filtered to prioritize computationally-selected candidate compounds, evaluating them using more accurate methods in Phase 2.

    This is necessary for two related reasons. First, Phase 1 generated a significant number of “false positives,” compounds that looked promising in Phase 1 screening but would not actually be effective as HIV drugs. Second, the large number of results is likely to contain other candidates, “false negatives,” which scored lower but merit further investigation.

    Phase 2 of FightAIDS@Home uses a different simulation method to double-check and further refine the virtual screening results that were generated in Phase 1. The technique is called BEDAM (Binding Energy Distribution Analysis Method), which has proven effective in computational contests, but has been limited to evaluating just a few dozen molecules. It has not yet been used on such a large scale because of the much larger amount of processing time required. With World Community Grid, it will be possible to more thoroughly evaluate the top candidates from the vast number of results generated in Phase 1.

    So Phase 2 has two main goals: increase the success rate by reducing false positives and false negatives from the Phase 1 docking data, and prove the BEDAM analysis techniques on a large scale. This should save enormous amounts of time and money in the lab testing stage of drug development.

    This new phase is another chapter in a long and well-established collaboration between World Community Grid and The Scripps Research Institute, a world-renowned research organization. Our teams have already collaborated on other research efforts including the search for treatments against Ebola and malaria. The relationship has been beneficial for all involved. For the researchers, the enormous amount of computing power available through World Community Grid has enabled them to run larger experiments and explore greater numbers of chemicals than they ever thought possible. Furthermore, the virtual screening tools they have developed and refined (AutoDock and AutoDock Vina) are the world’s most widely used and cited molecular docking programs and have benefited other World Community Grid research projects searching for drug candidates for other diseases. Once BEDAM is validated on a large scale, it could prove equally useful to these other research efforts as well.

    Please continue to support the FightAIDS@Home project as it establishes a new front in the fight against the world’s deadliest virus.

    Learn more

    Follow this project:
    Project forum
    Project website

    See the full article here.

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    World Community Grid (WCG) brings people together from across the globe to create the largest non-profit computing grid benefiting humanity. It does this by pooling surplus computer processing power. We believe that innovation combined with visionary scientific research and large-scale volunteerism can help make the planet smarter. Our success depends on like-minded individuals – like you.”

    WCG projects run on BOINC software from UC Berkeley.
    BOINCLarge

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing.

    BOINC WallPaper

    CAN ONE PERSON MAKE A DIFFERENCE? YOU BET!!

    MyBOINC

    “Download and install secure, free software that captures your computer’s spare power when it is on, but idle. You will then be a World Community Grid volunteer. It’s that simple!” You can download the software at either WCG or BOINC.

    Please visit the project pages-

    FightAIDS@home Phase II

    FAAH Phase II
    OpenZika

    Rutgers Open Zika

    Help Stop TB
    WCG Help Stop TB
    Outsmart Ebola together

    Outsmart Ebola Together

    Mapping Cancer Markers
    mappingcancermarkers2

    Uncovering Genome Mysteries
    Uncovering Genome Mysteries

    Say No to Schistosoma

    GO Fight Against Malaria

    Drug Search for Leishmaniasis

    Computing for Clean Water

    The Clean Energy Project

    Discovering Dengue Drugs – Together

    Help Cure Muscular Dystrophy

    Help Fight Childhood Cancer

    Help Conquer Cancer

    Human Proteome Folding

    FightAIDS@Home

    World Community Grid is a social initiative of IBM Corporation
    IBM Corporation
    ibm

    IBM – Smarter Planet
    sp

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 597 other followers

%d bloggers like this: