Updates from March, 2017 Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 5:21 pm on March 22, 2017 Permalink | Reply
    Tags: , , , , , , , Dark Energy Spectroscopic Instrument (DESI), , , New Study Maps Space Dust in 3-D, Pan-STARRS,   

    From LBNL: “New Study Maps Space Dust in 3-D” 

    Berkeley Logo

    Berkeley Lab

    March 22, 2017
    Glenn Roberts Jr
    geroberts@lbl.gov
    510-486-5582


    Access mp4 video here .
    This animation shows a 3-D rendering of space dust, as viewed in a several-kiloparsec (thousands of light years) loop through and out of the Milky Way’s galactic plane. The animation uses data for hundreds of millions of stars from Pan-STARRS1 and 2MASS surveys, and is made available through a Creative Commons License. (Credit: Gregory M. Green/SLAC, KIPAC)

    Consider that the Earth is just a giant cosmic dust bunny—a big bundle of debris amassed from exploded stars. We Earthlings are essentially just little clumps of stardust, too, albeit with very complex chemistry.

    And because outer space is a very dusty place, that makes things very difficult for astronomers and astrophysicists who are trying to peer farther across the universe or deep into the center of our own galaxy to learn more about their structure, formation and evolution.

    Building a better dust map

    Now, a new study led by Edward F. Schlafly, a Hubble Fellow in the Physics Division at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), is providing a detailed, 3-D look at dust on a scale spanning thousands of light-years in our Milky Way galaxy. The study was published today in The Astrophysical Journal.

    This dust map is of critical importance for the Dark Energy Spectroscopic Instrument (DESI), a Berkeley Lab-led project that will measure the universe’s accelerating expansion rate when it starts up in 2019. DESI will build a map of more than 30 million distant galaxies, but that map will be distorted if this dust is ignored.

    “The light from those distant galaxies travels for billions of years before we see it,” according to Schlafly, “but in the last thousand years of its journey toward us a few percent of that light is absorbed and scattered by dust in our own galaxy. We need to correct for that.”

    Just as airborne dust in Earth’s sky contributes to the atmospheric haze that gives us brilliant oranges and reds in sunrises and sunsets, dust can also make distant galaxies and other space objects appear redder in the sky, distorting their distance and in some cases concealing them from view.

    Scientists are constantly developing better ways to map out this interstellar dust and understand its concentration, composition, and common particle sizes and shapes.

    1
    The dark regions show very dense dust clouds. The red stars tend to be reddened by dust, while the blue stars are in front of the dust clouds. These images are part of a survey of the southern galactic plane. (Credit: Legacy Survey/NOAO, AURA, NSF)

    Once we can solve the dust problem by creating better dust maps and learning new details about the properties of this space dust, this can give us a much more precise gauge of distances to faraway stars in the Milky Way, like a galactic GPS. Dust maps can also help to better gauge the distance to supernovae events by taking into account the effects of dust in reddening their light.

    “The overarching aim of this project is to map dust in three dimensions—to find out how much dust is in any 3-D region in the sky and in the Milky Way galaxy,” Schlafly said.

    Combined data from sky surveys shed new light on dust

    Taking data from separate sky surveys conducted with telescopes on Maui and in New Mexico, Schlafly’s research team composed maps that compare dust within one kiloparsec, or 3,262 light-years, in the outer Milky Way—including collections of gas and dust known as molecular clouds that can contain dense star- and planet-forming regions known as nebulae—with more distant dust in the galaxy.

    2
    Pan-STARRS2 and PanSTARS1 telescopes atop Haleakalā on the island of Maui, Hawaii. (Credit: Pan-STARRS)

    The resolution of these 3-D dust maps is many times better than anything that previously existed,” said Schlafly.

    This undertaking was made possible by the combination of a very detailed multiyear survey known as Pan-STARRS that is powered by a 1.4-gigapixel digital camera and covers three-fourths of the visible sky, and a separate survey called APOGEE that used a technique known as infrared spectroscopy.

    3
    A compressed view of the entire sky visible from Hawaii by the Pan-STARRS1 Observatory. The image is a compilation of half a million exposures, each about 45 seconds in length, taken over a period of four years. The disk of the Milky Way looks like a yellow arc, and the dust lanes show up as reddish-brown filaments. The background is made up of billions of faint stars and galaxies. (Credit: D. Farrow/Pan-STARRS1 Science Consortium, and Max Planck Institute for Extraterrestrial Physics)

    Infrared measurements can effectively cut through the dust that obscures many other types of observations and provides a more precise measurement of stars’ natural color. The APOGEE experiment focused on the light from about 100,000 red giant stars across the Milky Way, including those in its central halo.


    SDSS Telescope at Apache Point Observatory, NM, USA

    What they found is a more complex picture of dust than earlier research and models had suggested. The dust properties within 1 kiloparsec of the sun, which scientists measure with a light-obscuring property known as its “extinction curve,” is different than that of the dust properties in the more remote galactic plane and outer galaxy.

    New questions emerge on the makeup of space dust

    The results, researchers found, appear to be in conflict with models that expect dust to be more predictably distributed, and to simply exhibit larger grain sizes in areas where more dust resides. But the observations find that the dust properties vary little with the amount of dust, so the models may need to be adjusted to account for a different chemical makeup, for example.

    “In denser regions, it was thought that dust grains will conglomerate, so you have more big grains and fewer small grains,” Schlafly said. But the observations show that dense dust clouds look much the same as less concentrated dust clouds, so that variations in dust properties are not just a product of dust density: “whatever is driving this is not just conglomeration in these regions.”

    He added, “The message to me that we don’t yet know what’s going on. I don’t think the existing (models) are correct, or they are only right at the very highest densities.”

    Accurate measures of the chemical makeup of space dust are important, Schlafly said. “A large amount of chemistry takes place on dust grains, and you can only form molecular hydrogen on the surface of dust grains,” he said—this molecular hydrogen is essential in the formation of stars and planets.


    Access mp4 video here .
    This animation shows a 3-D rendering of dust, as viewed from a 50-parsec (163-light-year) loop around the sun. The animation uses data for hundreds of millions of stars from Pan-STARRS1 and 2MASS surveys, and is made available through a Creative Commons License: https://creativecommons.org/licenses/by-sa/4.0/. (Credit: Gregory M. Green/SLAC, KIPAC)

    Even with a growing collection of dust data, we still have an incomplete dust map of our galaxy. “There is about one-third of the galaxy that’s missing,” Schlafly said, “and we’re working right now on imaging this ‘missing third’ of the galaxy.” A sky survey that will complete the imaging of the southern galactic plane and provide this missing data should wrap up in May, he said.

    APOGEE-2, a follow-up survey to APOGEE, for example, will provide more complete maps of the dust in the local galaxy, and other instruments are expected to provide better dust maps for nearby galaxies, too.

    While the density of dust shrouds our view of the center of the Milky Way, Schlafly said there will be progress, too, in seeing deeper and collecting better dust measurements there as well.

    Researchers at the Harvard-Smithsonian Center for Astrophysics and Harvard University also participated in this work.

    4
    The planned APOGEE-2 survey area overlain on an image of the Milky Way. Each dot shows a position where APOGEE-2 will obtain stellar spectra. (Credit: APOGEE-2)

    APOGEE is a part of the Sloan Digital Sky Survey III (SDSS-III), with participating institutions including Berkeley Lab, the Alfred P. Sloan Foundation, and the National Science Foundation. PanSTARRS1 surveys are supported by the University of Hawaii Institute for Astronomy; the Pan-STARRS Project Office; the Max-Planck Society and its participating institutes in Germany; the Johns Hopkins University; the University of Durham, the University of Edinburgh, and the Queen’s University Belfast in the U.K.; the Harvard-Smithsonian Center for Astrophysics; the Las Cumbres Observatory Global Telescope Network Inc.; and the National Central University of Taiwan. Pan-STARRS is supported by the U.S. Air Force.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    A U.S. Department of Energy National Laboratory Operated by the University of California

    University of California Seal

    DOE Seal

     
  • richardmitnick 12:50 pm on March 22, 2017 Permalink | Reply
    Tags: , Astronomy Rewind, , , , , ,   

    From CfA: “With Astronomy Rewind, Citizen Scientists Will Bring Zombie Astrophotos Back to Life” 

    Harvard Smithsonian Center for Astrophysics


    Center For Astrophysics

    March 22, 2017
    Rick Fienberg / Julie Steffen
    AAS Press Officer / AAS Director of Publishing
    +1 202-328-2010 x116 / +1 202-328-2010 x125
    rick.fienberg@aas.org / julie.steffen@aas.org

    Rob Bernstein
    Publisher, IOP Publishing
    +1 202-747-1807
    rob.bernstein@iop.org

    Megan Watzke / Peter Edmonds
    Harvard-Smithsonian Center for Astrophysics
    +1 617-496-7998 / +1 617-571-7279
    mwatzke@cfa.harvard.edu / pedmonds@cfa.harvard.edu

    Alyssa Goodman
    Professor of Astronomy, Harvard University
    Harvard-Smithsonian Center for Science
    agoodman@cfa.harvard.edu

    Laura Trouille
    Director of Citizen Science, Adler Planetarium
    Co-Investigator, Zooniverse
    +1 312-322-0820
    trouille@zooniverse.org

    1

    A new citizen-science project will rescue tens of thousands of potentially valuable cosmic images that are mostly dead to science and bring them fully back to life. Called Astronomy Rewind, the effort, which launches today (22 March 2017), will take photographs, radio maps, and other telescopic images that have been scanned from the pages of dusty old journals and place them in context in digital sky atlases and catalogs. Anyone will then be able to find them online and compare them with modern electronic data from ground- and space-based telescopes, making possible new studies of short- and long-term changes in the heavens.

    “There’s no telling what discoveries await,” says Alyssa Goodman (Harvard-Smithsonian Center for Astrophysics, CfA), one of the project’s founders. “Turning historical scientific literature into searchable, retrievable data is like turning the key to a treasure chest.”

    Astronomy Rewind is the latest citizen-science program on the Zooniverse platform, which debuted at Oxford University a decade ago with Galaxy Zoo and now hosts more than 50 active “people-powered” projects across a variety of scientific disciplines. After going through a short exercise to learn what they’re looking for, users will view scanned pages from the journals of the American Astronomical Society (AAS) dating from the 19th century to the mid-1990s, when the Society began publishing electronically. Volunteers’ first task will be to determine what types of images the pages contain: photos of celestial objects with (or without) sky coordinates? maps of planetary surfaces with (or without) grids of latitude and longitude? graphs or other types of diagrams?

    The images of most interest are ones whose scale, orientation, and sky position can be nailed down by some combination of labels on or around the images plus details provided in the text or captions. Pictures that lack such information but clearly show recognizable stars, galaxies, or other celestial objects will be sent to Astrometry.net, an automated online service that compares astrophotos to star catalogs to determine what areas of sky they show.

    Modern electronic astronomical images often include information about where they fit on the sky, along with which telescope and camera were used and many other details. But such “metadata” are useful to researchers only if the original image files are published along with the journal articles in which they’re analyzed and interpreted. This isn’t always the case — though it’s becoming more common with encouragement by the AAS — so some electronic journal pages will eventually be run through Astronomy Rewind and Astrometry.net too.

    Thanks to these human-assisted and automated efforts, many thousands of “new old” images will ultimately end up in NASA’s and others’ data repositories alongside pictures from the Hubble Space Telescope. They will also be incorporated into the Astronomy Image Explorer, a service of the AAS and its journal-publishing partner, the UK Institute of Physics (IOP) Publishing, and viewable in WorldWide Telescope, a powerful data-visualization tool and digital sky atlas originally developed by Microsoft Research and now managed by the AAS.

    The scans of pages from the AAS journals — the Astronomical Journal (AJ), Astrophysical Journal (ApJ), ApJ Letters, and the ApJ Supplement Series — are being provided by the Astrophysics Data System (ADS), a NASA-funded bibliographic service and archive at the Smithsonian Astrophysical Observatory (SAO), part of the CfA.

    Astronomy Rewind is built on a foundation laid by the ADS All-Sky Survey, an earlier effort to extract scientifically valuable images from old astronomy papers using computers. “It turns out that machines aren’t very good at recognizing celestial images on digitized pages that contain a mixture of text and graphics,” says Alberto Accomazzi (SAO/ADS). “And they really get confused with multiple images of the sky on the same page. Humans do much better.”

    Accomazzi’s CfA colleague Goodman, who runs a collaboration called Seamless Astronomy to develop, refine, and share tools that accelerate the pace of astronomical research, helped bring ADS and Zooniverse together. According to Zooniverse co-investigator Laura Trouille (Adler Planetarium), 1.6 million volunteers have made about 4 billion image classifications or other contributions using the platform over the last 10 years. “This isn’t just busywork,” says Trouille. “Zooniverse projects have led to many surprising discoveries and to more than 100 peer-reviewed scientific publications.”

    If Astronomy Rewind attracts volunteers in numbers comparable to other astronomy projects on Zooniverse, Trouille estimates that at least 1,000 journal pages will be processed daily. Each page will be examined by five different citizen scientists; the more of them agree on what a given page shows, the higher the confidence that they’re right. It shouldn’t take more than a few months to get through the initial batch of pages from the AAS journals and move most of them on to the next stage, where the celestial scenes they contain will be annotated with essential information, extracted into digital images, mapped onto the sky, and made available to anyone who wants access to them.

    “You simply couldn’t do a project like this in any reasonable amount of time without ‘crowdsourcing,'” says Julie Steffen, AAS Director of Publishing. “Astronomy Rewind will breathe new life into old journal articles and put long-lost images of the night sky back into circulation, and that’s exciting. But what’s more exciting is what happens when a volunteer on Zooniverse looks at one of our journal pages and goes, ‘Hmm, that’s odd!’ That’ll be the first step toward learning something new about the universe.”

    This video provides a quick demonstration of the value of placing “antique” astronomy images back on the sky in WorldWide Telescope through the project called Astronomy Rewind.

    Astronomy Rewind and its partners and precursors have received funding from NASA’s Astrophysics Data Analysis Program, Microsoft Research, Astrometry.net, Centre de Données astronomiques de Strasbourg (CDS), IOP Publishing, and the American Astronomical Society (AAS).

    The American Astronomical Society (AAS), established in 1899, is the major organization of professional astronomers in North America. The membership (approx. 8,000) also includes physicists, mathematicians, geologists, engineers, and others whose research interests lie within the broad spectrum of subjects now comprising contemporary astronomy. The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the universe, which it achieves through publishing, meeting organization, education and outreach, and training and professional development.

    IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. Beyond IOP’s core journals program of more than 70 publications, high-value scientific information is made easily accessible through an ever-evolving portfolio of community websites, magazines, open-access conference proceedings, and a multitude of electronic services. The company is focused on making the most of new technologies and continually improving electronic interfaces to make it easier for researchers to find exactly what they need, when they need it, in the format that suits them best. IOP Publishing is part of the Institute of Physics (IOP), a leading scientific society with more than 50,000 international members. The Institute aims to advance physics for the benefit of all by working to advance physics research, application, and education; and engaging with policymakers and the public to develop awareness and understanding of physics. Any financial surplus earned by IOP Publishing goes to support science through the activities of the Institute.

    Zooniverse is the world’s largest and most popular platform for people-powered research. This research is made possible by volunteers — hundreds of thousands of people around the world who come together to assist professional researchers. Its goal is to enable research that would not otherwise be possible or practical. Zooniverse research results in new discoveries, datasets useful to the wider research community, and many refereed publications.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Center for Astrophysics combines the resources and research facilities of the Harvard College Observatory and the Smithsonian Astrophysical Observatory under a single director to pursue studies of those basic physical processes that determine the nature and evolution of the universe. The Smithsonian Astrophysical Observatory (SAO) is a bureau of the Smithsonian Institution, founded in 1890. The Harvard College Observatory (HCO), founded in 1839, is a research institution of the Faculty of Arts and Sciences, Harvard University, and provides facilities and substantial other support for teaching activities of the Department of Astronomy.

     
  • richardmitnick 12:38 pm on March 22, 2017 Permalink | Reply
    Tags: , , NOvA sees first antineutrino,   

    From FNAL: “NOvA sees first antineutrino” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    March 21, 2017


    NOvA

    On Feb. 20, the NOvA neutrino experiment observed its first antineutrino, only two hours after the Fermilab accelerator complex switched to antineutrino delivery mode. The NOvA collaboration saw the antineutrino in the experiment’s far detector, which is located in northern Minnesota.

    NOvA scientists hope to learn more about how and why neutrinos change between one type and another. The three types, called flavors, are the muon, electron and tau neutrino. Over longer distances, neutrinos can flip between these flavors. NOvA is specifically designed to study muon neutrinos changing into electron neutrinos. Unraveling this mystery may help scientists understand why the universe is composed of matter and why that matter was not annihilated by antimatter after the Big Bang.

    1
    This plot shows the tracks of particles resulting from an antineutrino interaction inside the NOvA far detector. Image: NOvA collaboration

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 12:21 pm on March 22, 2017 Permalink | Reply
    Tags: , , , , Universe’s ultraviolet background could provide clues about missing galaxies   

    From Durham: “Universe’s ultraviolet background could provide clues about missing galaxies” 

    Durham U bloc

    Durham University

    22 March 2017

    Astronomers have developed a way to detect the ultraviolet (UV) background of the Universe, which could help explain why there are so few small galaxies in the cosmos.

    UV radiation is invisible but shows up as visible red light when it interacts with gas.

    An international team of researchers led by Durham University, UK, has now found a way to measure it using instruments on Earth.

    The researchers said their method can be used to measure the evolution of the UV background through cosmic time, mapping how and when it suppresses the formation of small galaxies.

    The study could also help produce more accurate computer simulations of the evolution of the Universe.

    The findings are published today in the journal Monthly Notices of the Royal Astronomical Society.

    Companion galaxies

    UV radiation – a type of radiation also given out by the Sun – is found throughout the Universe and strips smaller galaxies of the gas that forms stars, effectively stunting their growth.

    It is believed to be the reason why some larger galaxies like our Milky Way don’t have many smaller companion galaxies.

    Simulations show that there should be more small galaxies in the Universe, but UV radiation essentially stopped them from developing by depriving them of the gas they need to form stars.

    Ultraviolet radiation

    Larger galaxies like the Milky Way were able to withstand this cosmic blast because of the thick gas clouds surrounding them.

    Lead author Dr Michele Fumagalli, in the Institute for Computational Cosmology and Centre for Extragalactic Astronomy, at Durham University, said: “Massive stars and supermassive black holes produce huge amounts of ultraviolet radiation, and their combined radiation builds-up this ultraviolet background.

    “This UV radiation excites the gas in the Universe, causing it to emit red light in a similar way that the gas inside a fluorescent bulb is excited to produce visible light.

    “Our research means we now have the ability to measure and map this UV radiation which will help us to further refine models of galaxy formation.”

    Co-author Professor Simon Morris, in the Centre for Extragalactic Astronomy, Durham University, added: “Ultimately this could help us learn more about the evolution of the Universe and why there are so few small galaxies.”

    Very-Large Telescope


    ESO/VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level


    ESO/MUSE

    Researchers pointed the Multi Unit Spectroscopic Explorer (MUSE), an instrument of the European Southern Observatory’s Very-Large Telescope, in Chile, at the galaxy UGC 7321, which lies at a distance of 30 million light years from Earth.

    1
    Galaxy UGC 7321 is surrounded by hydrogen gas, and as this gas is irradiated with UV radiation, it emits a diffuse red glow through a process known as fluorescence. This image shows the light emitted by stars inside the galaxy, surrounded by a red ring that represents the fluorescent emission induced by the UV radiation. Credit: M. Fumagalli/T. Theuns/S. Berry

    MUSE provides a spectrum, or band of colours, for each pixel in the image allowing the researchers to map the red light produced by the UV radiation illuminating the gas in that galaxy.

    The research, funded in the UK by the Science and Technology Facilities Council, could also help scientists predict the temperature of the cosmic gas with more accuracy.

    Co-author Professor Tom Theuns, in Durham University’s Institute for Computational Cosmology, said: “Ultraviolet radiation heats the cosmic gas to temperatures higher than that of the surface of the Sun.

    “Such hot gas will not cool to make stars in small galaxies. This explains why there are so few small galaxies in the Universe, and also why our Milky Way has so few small satellite galaxies.”


    This movie follows the formation of galaxies with cosmic time, illustrating how ultraviolet (UV) radiation from other galaxies and from quasars suppresses the formation of stars inside small galaxies near to large galaxies similar to the Milky Way and Andromeda.

    The left panel shows a simulation that includes such diffuse UV radiation as in the real Universe, where fewer smaller galaxies form.

    For comparison, the right panel shows what would happen in the absence of such radiation, with more small galaxies forming.

    Credit: S. McAlpine/S. Berry

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Durham U campus

    Durham University is distinctive – a residential collegiate university with long traditions and modern values. We seek the highest distinction in research and scholarship and are committed to excellence in all aspects of education and transmission of knowledge. Our research and scholarship affect every continent. We are proud to be an international scholarly community which reflects the ambitions of cultures from around the world. We promote individual participation, providing a rounded education in which students, staff and alumni gain both the academic and the personal skills required to flourish.

     
  • richardmitnick 11:59 am on March 22, 2017 Permalink | Reply
    Tags: , , , , , Quest for the lost arc   

    From ATLAS: “Quest for the lost arc” 

    CERN ATLAS Higgs Event

    CERN/ATLAS
    ATLAS

    21st March 2017
    ATLAS Collaboration

    1
    Figure 1: ATLAS simulation showing a hypothetical new charged particle (χ1+) traversing the four layers of the pixel system and decaying to an invisible neutral particle (χ10) and an un-detected pion (π+). The red squares represent the particle interactions with the detector. (Image: ATLAS Collaboration/CERN)

    Nature has surprised physicists many times in history and certainly will do so again. Therefore, physicists have to keep an open mind when searching for phenomena beyond the Standard Model.

    ..
    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    Some theories predict the existence of new particles that live for a very short time. These particles would decay to known particles that interact with the sophisticated “eyes” of the ATLAS detector. However, this may not be the case. An increasingly popular alternative is that some of these new particles may have masses very close to each other, and would thus travel some distance before decaying. This allows for the intriguing possibility of directly observing a new type of particle with the ATLAS experiment, rather than reconstructing it via its decay products as physicists do for example for the Higgs boson.

    2
    Figure 2: The number of reconstructed short tracks (tracklets) as a function of their transverse momentum (pT). ATLAS data (black points) are compared with the expected contribution from background sources (gray solid line shows the total) . A new particle would appear as an additional contribution at large pT, as shown for example by the dashed red line. The bottom panel shows the ratio of the data and the background predictions. The error band shows the uncertainty of the background expectation including both statistical and systematic uncertainties. (Image: ATLAS Collaboration/CERN)

    An attractive scenario predicts the existence of a new electrically charged particle, a chargino (χ1±), that may live long enough to travel a few tens of centimetres before decaying to an invisible neutral weakly interacting particle, a neutralino (χ10). A charged pion would also be produced in the decay but, due to the very similar mass of the chargino and the neutralino, its energy would not be enough for it to be detected. As shown in Figure 1, simulations predict a quite spectacular signature of a charged particle “disappearing” due to the undetected decay products.

    ATLAS physicists have developed dedicated algorithms to directly observe charged particles travelling as little as 12 centimetres from their origin. Thanks to the new Insertable B-Layer, these algorithms show improved performance reconstructing such charged particles that do not live long enough to interact with other ATLAS detector systems. So far, the abundance and properties of the observed particles are in agreement with what is expected from known background processes.

    New results presented at the Moriond Electroweak conference set very stringent limits on what mass such particles may have, if they exist. These limits severely constrain one important type of Supersymmetry dark matter. Although no new particle has been observed, ATLAS physicists continue the search for this “lost arc”. Stay tuned!

    See the full article here .

    CERN LHC Map
    CERN LHC Grand Tunnel
    CERN LHC particles
    LHC at CERN

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 11:44 am on March 22, 2017 Permalink | Reply
    Tags: , , , Remnants of Earth’s Original Crust Found in Canada   

    From NOVA: “Remnants of Earth’s Original Crust Found in Canada” 

    PBS NOVA

    NOVA

    16 Mar 2017
    Annette Choi

    Two geologists studying North America’s oldest rocks have uncovered ancient minerals that are remnants of the Earth’s original crust which first formed more than 4.2 billion years ago.

    These rocks appear to preserve the signature of an early Earth that presumably took shape within the first few hundred million years of Earth’s history.

    Jonathan O’Neil and Richard Carlson uncovered the samples on a trek to the northeastern part of Canada to study the Canadian Shield formation, a large area of exposed continental crust underlying, centered on Hudson Bay, which was already known to contain some of the oldest parts of North America. O’Neil calls it the core or nucleus of the North American continent. “That spot on the shore of Hudson Bay has this older flavor to it, this older chemical signature.”

    1
    A view of 2.7 billion-year-old continental crust produced by the recycling of more than 4.2 billion-year-old rocks. Image credit: Alexandre Jean

    To O’Neil, an assistant professor of geology at the University of Ottawa, rocks are like books that allow geologists to study their compositions and to learn about the conditions in which they form. But as far as rock records go, the first billion years of the Earth’s history is almost completely unrepresented.

    “We’re missing basically all the crust that was present about 4.4 billion years ago. The question we’re after with our study is: what happened to it?” said Carlson, director of the Carnegie Institution for Science. “Part of the goal of this was simply to see how much crust was present before and see what that material was.”

    While most of the samples are made up of a 2.7 billion-year-old granite, O’Neil said these rocks were likely formed by the recycling of a much older crust. “The Earth is very, very good at recycling itself. It constantly recycles and remelts and reworks its own crust,” O’Neil said. He and Carlson arrived at their conclusion by determining the age of the samples using isotopic dating and then adding on the estimate of how long it would have taken for the recycled bits to have originally formed.

    O’Neil and Carlson’s estimate relies on the theory that granite forms through the reprocessing of older rocks. “That is a possibility that they form that way, but that is not the only way you can form these rocks,” said Oliver Jagoutz, an associate professor of geology at the Massachusetts Institute of Technology. “Their interpretation really strongly depends on their assumption that that is the way these granites form.

    The nature of Earth’s first crust has largely remained a mystery because there simply aren’t very many rocks that have survived the processes that can erase their signature from the geologic record. Crust is often forced back into the Earth’s interior, which then melts it down, the geologic equivalent of sending silver jewelry back into the forge. That makes it challenging for geologists to reconstruct how the original looked.

    These new findings give geologists an insight into the evolution of the oldest elements of Earth’s outer layer and how it has come to form North America. “We’re recycling extremely, extremely old crust to form our stable continent,” O’Neil said.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NOVA is the highest rated science series on television and the most watched documentary series on public television. It is also one of television’s most acclaimed series, having won every major television award, most of them many times over.

     
  • richardmitnick 11:28 am on March 22, 2017 Permalink | Reply
    Tags: , , , , Giant Magnetic Fields in the Universe, MPIFR, MPIFR/Effelsberg Radio Telescope in Germany,   

    From MPIFR: “Giant Magnetic Fields in the Universe” 


    Max Planck Institute for Radio Astronomy

    March 22, 2017

    The 100-m radio telescope Effelsberg observes magnetic structures with several million light years extent.

    Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

    The results will be published on March 22 in the journal Astronomy & Astrophysics.

    2
    The relic at the outskirts of the galaxy cluster CIZA J2242+53, named „Sausage“ because of its shape, is located at a distance of about two billion light years from us. The contour lines show the intensity of the radio emission at a wavelength of 3 cm, observed with the 100-m Effelsberg radio telescope. The colors represent the distribution of linearly polarized radio intensity at the chosen wavelength, in units of Milli-Jansky per telescope beam. The short dashes indicate the orientation of the magnetic field. The bright source at the bottom is a radio galaxy that belongs to the same galaxy cluster. Credit: © M. Kierdorf et al., A&A 600, A18

    Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the diameter of the Milky Way, they host a large number of such stellar systems, along with hot gas, magnetic fields, charged particles, embedded in large haloes of dark matter, the composition of which is unknown. Collision of galaxy clusters leads to a shock compression of the hot cluster gas and of the magnetic fields. The resulting arc-like features are called “relics” and stand out by their radio and X-ray emission. Since their discovery in 1970 with a radio telescope near Cambridge/UK, relics were found in about 70 galaxy clusters so far, but many more are likely to exist. They are messengers of huge gas flows that continuously shape the structure of the universe.

    Radio waves are excellent tracers of relics. The compression of magnetic fields orders the field lines, which also affects the emitted radio waves. More precisely, the emission becomes linearly polarized. This effect was detected in four galaxy clusters by a team of researchers at the Max Planck Institute for Radio Astronomy in Bonn (MPIfR), the Argelander Institute for Radio Astronomy at the University of Bonn (AIfA), the Thuringia State Observatory at Tautenburg (TLS), and colleagues in Cambridge/USA. They used the MPIfR’s 100-m radio telescope near Bad Münstereifel-Effelsberg in the Eifel hills at wavelengths of 3 cm and 6 cm. Such short wavelengths are advantageous because the polarized emission is not diminished when passing through the galaxy cluster and our Milky Way. Fig.1 shows the most spectacular case.

    Linearly polarized relics were found in the four galaxy clusters observed, in one case for the first time. The magnetic fields are of similar strength as in our Milky Way, while the measured degrees of polarization of up to 50% are exceptionally high, indicating that the emission originates in an extremely ordered magnetic field. “We discovered the so far largest ordered magnetic fields in the universe, extending over 5-6 million light years”, says Maja Kierdorf from MPIfR Bonn, the project leader and first author of the publication. She also wrote her Master Thesis at Bonn University on this subject. For this project, co-author Matthias Hoeft from TLS Tautenburg developed a method that permits to determine the “Mach number”, i.e. the ratio of the relative velocity between the colliding gas clouds and the local sound speed, using the observed degree of polarization. The resulting Mach numbers of about two tell us that the galaxy clusters collide with velocities of about 2000 km/s, which is faster than previously derived from measurements of the X-ray emission.

    The new Effelsberg telescope observations show that the polarization plane of the radio emission from the relics turns with wavelength. This “Faraday rotation effect”, named after the English physicist Michael Faraday, indicates that ordered magnetic fields also exist between the clusters and, together with hot gas, cause the rotation of the polarization plane. Such magnetic fields may be even larger than the clusters themselves.

    „The Effelsberg radio telescope proved again to be an ideal instrument to detect magnetic fields in the universe“, emphasizes co-author Rainer Beck from MPIfR who works on this topic for more than 40 years. “Now we can systematically search for ordered magnetic fields in galaxy clusters using polarized radio waves.”

    ——————————-

    The research team comprises of Maja Kierdorf, Rainer Beck, Matthias Hoeft, Uli Klein, Reinout van Weeren, William Forman, and Christine Jones. First author Maja Kierdorf and Rainer Beck are MPIfR employees.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition


    MPIFR/Effelsberg Radio Telescope, Germany

    The Max Planck Institute for Radio Astronomy (German: Max-Planck-Institut für Radioastronomie) is located in Bonn, Germany. It is one of 80 institutes in the Max Planck Society (German: Max-Planck-Gesellschaft).

    By combining the already existing radio astronomy faculty of the University of Bonn led by Otto Hachenberg with the new Max Planck institute the Max Planck Institute for Radio Astronomy was formed. In 1972 the 100-m radio telescope in Effelsberg was opened. The institute building was enlarged in 1983 and 2002.

    The institute was founded in 1966 by the Max-Planck-Gesellschaft as the “Max-Planck-Institut für Radioastronomie” (MPIfR).

    The foundation of the institute was closely linked to plans in the German astronomical community to construct a competitive large radio telescope in (then) West Germany. In 1964, Professors Friedrich Becker, Wolfgang Priester and Otto Hachenberg of the Astronomische Institute der Universität Bonn submitted a proposal to the Stiftung Volkswagenwerk for the construction of a large fully steerable radio telescope.

    In the same year the Stiftung Volkswagenwerk approved the funding of the telescope project but with the condition that an organization should be found, which would guarantee the operations. It was clear that the operation of such a large instrument was well beyond the possibilities of a single university institute.

    Already in 1965 the Max-Planck-Gesellschaft (MPG) decided in principle to found the Max-Planck-Institut für Radioastronomie. Eventually, after a series of discussions, the institute was officially founded in 1966.

    The Max Planck Society for the Advancement of Science (German: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V.; abbreviated MPG) is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the Max Planck Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.

    According to its primary goal, the Max Planck Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014)[2] Max Planck Institutes. The society has a total staff of approximately 17,000 permanent employees, including 5,470 scientists, plus around 4,600 non-tenured scientists and guests. Society budget for 2015 was about €1.7 billion.

    The Max Planck Institutes focus on excellence in research. The Max Planck Society has a world-leading reputation as a science and technology research organization, with 33 Nobel Prizes awarded to their scientists, and is generally regarded as the foremost basic research organization in Europe and the world. In 2013, the Nature Publishing Index placed the Max Planck institutes fifth worldwide in terms of research published in Nature journals (after Harvard, MIT, Stanford and the US NIH). In terms of total research volume (unweighted by citations or impact), the Max Planck Society is only outranked by the Chinese Academy of Sciences, the Russian Academy of Sciences and Harvard University. The Thomson Reuters-Science Watch website placed the Max Planck Society as the second leading research organization worldwide following Harvard University, in terms of the impact of the produced research over science fields.

     
  • richardmitnick 10:54 am on March 22, 2017 Permalink | Reply
    Tags: , , , , , ,   

    From Ethan Siegel: “What Will Happen When Betelgeuse Explodes?” 

    Ethan Siegel
    Mar 22, 2017

    1
    The constellation of Orion, along with the great molecular cloud complex and including its brightest stars. Betelgeuse, the nearby, bright red supergiant (and supernova candidate), is at the lower left. Rogelio Bernal Andreo

    Every star will someday run out of fuel in its core, bringing an end to its run as natural source of nuclear fusion in the Universe. While stars like our Sun will fuse hydrogen into helium and then — swelling into a red giant — helium into carbon, there are other, more massive stars which can achieve hot enough temperatures to further fuse carbon into even heavier elements. Under those intense conditions, the star will swell into a red supergiant, destined for an eventual supernova after around 100,000 years or so. And the brightest red supergiant in our entire night sky? That’s Betelgeuse, which could go supernova at any time.

    2
    The color-magnitude diagram of notable stars. The brightest red supergiant, Betelgeuse, is shown at the upper right. European Southern Observatory.

    Honestly, at its distance of 640 light years from us, it could have gone supernova at any time from the 14th century onwards, and we still wouldn’t know. Betelgeuse is one of the ten brightest stars in the sky in visible light, but only 13% of its energy output is detectable to human eyes. If we could see the entire electromagnetic spectrum — including into the infrared — Betelgeuse would, from our perspective, outshine every other star in the Universe except our Sun.

    3
    Three of the major stars in Orion — Betelgeuse, Meissa and Bellatrix — as revealed in the infrared. In IR light, Betelgeuse (lower left) is the brightest star in the night sky. NASA / WISE.

    It was the first star ever to be resolved as more than a point source. At 900 times the size of our Sun, it would engulf Mercury, Venus, Earth, Mars and even the asteroid belt if it were to replace our parent star. It’s a pulsating star, so its diameter changes with time.

    In addition, it’s constantly losing mass, as the intense fusion reactions begin to expel the outermost, tenuously-held layers. Direct radio observations can actually detect this blown-off matter, and have found that it extends to beyond the equivalent of Neptune’s orbit.

    4
    The nebula of expelled matter created around Betelgeuse, which, for scale, is shown in the interior red circle. This structure, resembling flames emanating from the star, forms because the behemoth is shedding its material into space. ESO/P. Kervella

    But when we study the night sky, we’re studying the past. We know that Betelgeuse, with an uncertain mass between about 12 and 20 times that of our Sun, was never destined to live very long: maybe around 10 million years only. The more massive a star is, the faster it burns through its fuel, and Betelgeuse is burning so very, very brightly: at around 100,000 times the luminosity of our Sun. It’s currently in the final stages of its life — as a red supergiant — meaning that when the innermost core begins fusing silicon and sulphur into iron, nickel and cobalt, the star itself will only have minutes left.

    5
    The anatomy of a very massive star throughout its life, culminating in a Type II Supernova. Nicole Rager Fuller for the NSF.

    At those final moments, the core will be incredibly hot, yet iron, nickel and cobalt will be unable to fuse into anything heavier. It’s energetically unfavorable to do so, and so no new radiation will be produced in the innermost regions. Yet gravitation is still at play, trying to pull the star’s core in on itself. Without nuclear fusion to hold it up, the core has no other options, and begins to implode. The contraction causes it to heat up, become denser, and achieve pressures like it’s never seen before. And once a critical junction has passed, it happens: the atomic nuclei in the star’s core begin a runaway fusion reaction all at once.

    This is what creates a Type II supernova: the core-collapse of an ultra-massive star. After a brief, initial flash, Betelgeuse will brighten tremendously over a period of weeks, rising to a maximum brightness that, intrinsically, will be billions of times as bright as the Sun. It will remain at maximum brightness for months, as radioactive cobalt and expanding gases cause a continuous bright emission of light.

    6
    At peak brightness, a supernova can shine nearly as brightly as the rest of the stars in a galaxy combined. This 1994 image shows a typical example of a core-collapse supernova relative to its host galaxy. NASA/ESA, The Hubble Key Project Team and The High-Z Supernova Search Team

    Supernovae have occurred in our Milky Way in the past: in 1604, 1572, 1054 and 1006, among others, with a number of them being so bright that they were visible during the day. But none of them were as close at Betelgeuse.

    At only 600-or-so light years distant, Betelgeuse will be far closer than any supernova ever recorded by humanity. It’s fortunately still far away enough that it poses no danger to us. Our planet’s magnetic field will easily deflect any energetic particles that happen to come our way, and it’s distant enough that the high-energy radiation reaching us will be so low-density that it will have less of an impact on you than the banana you had at breakfast. But oh, will it ever appear bright.

    Not only will Betelgeuse be visible during the day, but it will rival the Moon for the second-brightest object in the sky. Some models “only” have Betelgeuse getting as bright as a thick crescent moon, while others will see it rival the entire full moon. It will conceivably be the brightest object in the night sky for more than a year, until it finally fades away to a dimmer state.

    7
    The ultra-massive star Wolf-Rayet 124, shown with its surrounding nebula, is one of thousands of Milky Way stars that could be our galaxy’s next supernova. Betelgeuse is merely the closest known potential candidate. Hubble Legacy Archive / A. Moffat / Judy Schmidy

    Unfortunately, the key question of “when” is not one we have an answer to; thousands of other stars in the Milky Way may go supernova before Betelgeuse does. Until we develop an ultra-powerful neutrino telescope to measure the energy spectrum of neutrinos being generated by (and hence, which elements are being fused inside) a star like Betelgeuse, hundreds of light years away, we won’t know how close it is to going supernova. It could have exploded already, with the light from the cataclysm already on its way towards us… or it could remain no different than it appears today for another hundred thousand years.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    “Starts With A Bang! is a blog/video blog about cosmology, physics, astronomy, and anything else I find interesting enough to write about. I am a firm believer that the highest good in life is learning, and the greatest evil is willful ignorance. The goal of everything on this site is to help inform you about our world, how we came to be here, and to understand how it all works. As I write these pages for you, I hope to not only explain to you what we know, think, and believe, but how we know it, and why we draw the conclusions we do. It is my hope that you find this interesting, informative, and accessible,” says Ethan

     
  • richardmitnick 10:28 am on March 22, 2017 Permalink | Reply
    Tags: , , , , , One mechanism to rule all magnetic bodies   

    From astrobites: “One mechanism to rule all magnetic bodies” 

    Astrobites bloc

    Astrobites

    Mar 21, 2017
    Ingrid Pelisoli

    Title: A common origin of magnetism from planets to white dwarfs
    Authors: Jordi Isern, Enrique García-Berro, Baybars Külebi, Pablo Lorén-Aguilar
    First Author’s Institution: Institut de Ciències de l’Espai (CSIC), Spain
    1
    Status: Published in ApJ [open access]

    If you have ever used a compass, you know the Earth has a magnetic field.

    1
    Earth’s magnetic field. LBNL

    That’s lucky for us, because this field protects us from highly energetic particles that could make life on Earth quite difficult, like it is on Mars (although NASA might have a solution). The Sun has a magnetic field too.

    3
    Sun’s magnetic field. NASA

    The explanation for these fields is a dynamo effect: in short, ionised matter circling inside the Sun and the Earth generates the field. This explanation holds for most stars in which we detect a magnetic field. White dwarf stars, the most common end-point of stellar evolution (which makes them extremely useful in understanding the history of the Galaxy and even of the Universe), seemed to be an exception. They can present unusually high magnetic fields, up to a 100 million times the field of the Sun! The explanation for such colossal fields is still an open question. The authors of today’s paper present a possible solution by cleverly making use of already well-known astrophysical mechanisms.

    Magnetism in white dwarfs: how common is it?

    The fraction of magnetic white dwarfs is also open to discussion. It may be as high as 20%, but as low fields can be difficult to spot, we cannot be sure. Observations also indicate that this fraction is larger for cool white dwarfs, suggesting that the field is somehow amplified during the white dwarf’s evolution, which is basically a cooling process. Another observational fact is that the average mass of magnetic white dwarfs is higher than that estimated for non-magnetic white dwarfs. A good explanation for the origin of white dwarf magnetism should be able to explain these facts as well. As you will see, today’s paper fits the bill!

    One, two, three possible scenarios

    There are three proposed explanations in the literature for the observed magnetism in white dwarfs. The first hypothesis is that the observed fields are simply the remnants of those of their progenitors. Specifically, white dwarf magnetic fields could be the left-over “fossil fields” of main sequence Ap/Bp stars (which have stronger magnetic fields than classical A/B type stars). As the magnetic flux must be conserved throughout the star’s evolution (assuming mass loss doesn’t carry away a significant portion of the flux), the amplification of the magnetic field can be accounted for by the contraction of the star into a white dwarf. However, the fraction of observed Ap/Bp stars is not enough to explain the number of observed white dwarfs with high magnetic fields.

    In the second scenario, magnetic white dwarfs occur as the result of the evolution of binary systems. In this case, the magnetic field is amplified by a dynamo either in the common envelope phase or in the hot corona produced by the merger of two white dwarfs. Again, population synthesis models suggest that the number of white dwarfs produced by this channel cannot explain what we find observationally.

    Last but not least, in the third scenario, the magnetic field is generated inside the convective envelope formed as a white dwarf cools down. The problem with this explanation is that it cannot account for the strength of the observed fields. Therefore, we need a more efficient mechanism!

    The missing ingredient

    Another characteristic of most white dwarfs is that, as they cool, their nucleus will eventually undergo a phase transition and crystallise, releasing energy without changing the star’s temperature significantly. This process provides extra energy that can boost the dynamo effect and lead to higher fields. A similar effect occurs for the Earth and Jupiter (where the convective dynamos are powered by cooling and chemical segregation in their interiors) as well as for T Tauri stars and rapidly rotating M dwarfs. The authors estimated the dynamo energy density for a number of white dwarfs with known fields taking that into account, as shown on Figure 1. They noted that this boost in energy is sufficient to explain the observed fields in most white dwarfs with hydrogen-dominated atmospheres. This implies that the magnetic fields observed in planets, non-evolved stars and white dwarfs all share a common origin!

    4
    Figure 1: Magnetic field intensity as a function of the dynamo energy density. Black symbols represent Earth and Jupiter, T Tauri are shown in cyan, M dwarfs in magenta, white dwarfs with hydrogen dominated atmospheres in red and hydrogen deficient in blue. The top panel shows the magnetic field as a function of the present energy density of the dynamo, while the bottom panel shows it as a function of the maximum energy density. The solid line is a known relation between the magnetic fields of the Earth, Jupiter, T Tauri and M dwarf stars; the dotted lines add an additional deviation of a factor of 3 from it. The dashed lines represent where non-DA stars cluster. [Figure 3 from the paper.]

    As the crystallisation happens when the white dwarfs are relatively cool, this could also explain why magnetic white dwarfs usually show low temperature. Moreover, the amount of energy released during crystallisation is larger for more massive white dwarfs, so this mechanism naturally explains why magnetic white dwarfs are more massive than average.

    Another cool thing about this mechanism is that it doesn’t exclude other possibilities. On the contrary, it alleviates one of the major drawbacks of the other two hypotheses, which didn’t predict a sufficient number of magnetic white dwarfs. As a bonus, the authors offer an explanation for the fact that most white dwarfs that do not fit into their mechanism are hydrogen-deficient: they are indeed formed by the merger of two white dwarfs, as suggested by scenario two. During their coalescence, the temperatures reached are so high that the hydrogen in the outer layers is burned. So, using already known mechanisms, the authors may have finally solved the mystery of the highly magnetic white dwarfs: no need to reinvent the wheel!

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    What do we do?

    Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
    Why read Astrobites?

    Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.
    Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.

     
  • richardmitnick 9:47 am on March 22, 2017 Permalink | Reply
    Tags: "Scientists push for Australian space agency, , , , , Space Industry Association of Australia (SIAA)   

    From COSMOS: “Scientists push for Australian space agency” 

    Cosmos Magazine bloc

    COSMOS

    22 March 2017
    Anthea Batsakis

    1
    Australia needs its own space agency, researchers say. Tim Bird/Getty Images

    Australian space researchers are urgently calling on the federal government to establish a domestic space agency.

    They make their arguments clear in a white paper prepared by the Space Industry Association of Australia (SIAA) and released this week.

    In the document, titled Advancing Australia in Space, the SIAA says a space agency would not only boost economic and employment growth, but also strengthen Australia’s national security and inspire young STEM scientists.

    Australia is one of only two OECD nations that doesn’t have a space agency. It relies heavily on international partnerships, particularly with the US, Europe and Japan, to buy the satellite data used by individuals and businesses every day, including for weather forecasting, mining, and managing natural disasters, among others.

    White paper co-author Mark Ramsey from American Institute of Aeronautics and Astronautics says Australia needs to move away from being a passive consumer of satellite data.

    “We believe Australia is missing out and punching under its weight in the sector,” he says. Australia’s current space industry amounts to less than 1% of the global space economy, providing annual revenues of three to four billion dollars.

    But the SIAA believes this can double in the next five years, provided the government supports a new agency. And setting out a longer-term goal, the researchers write that in 20 years Australia can contribute 4% of the global space economy.

    Co-author Alice Gorman from Flinders University says in the current geopolitical climate, “access to space is going to be divided in the haves and have nots, and Australia needs to be on the side of the haves.”

    In the past five years, there has been an enormous shift in the balance between government and commercial space programs, such as SpaceX and Virgin Galactic, as well as growth in smaller satellites.

    Gorman says this new era of industry and research means the space treaties the world currently abides by are no longer sufficient.

    “There’s a lot of discussion on what’s needed in international regulation,” she says. “We’re in a period of uncertainty: if Australia isn’t participating, we might see decisions being made about who gets to access space that doesn’t serve our best interest.”

    But will the white paper be successful? The authors note that politically the time is right to promote a local space agency, and say Australian MPs are starting to understand the critical importance of space services.

    The paper will be presented to the Minister for Industry, Innovation and Science Arthur Sinodinos,

    The researchers believe that the International Astronautical Congress in Adelaide in September this year, hosting major international players of the space industry, will be the catalyst for the development of the new agency.

    “What we want to see are South Australia’s license plates changed from the festival state to the space state,” Gorman says.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: