Tagged: Chemistry Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:20 pm on July 2, 2022 Permalink | Reply
    Tags: "Chemists Crack Complete Quantum Nature of Water", , , Chemistry, , , q-AQUA software provides a universal tool for studying water.,   

    From Emory University: “Chemists Crack Complete Quantum Nature of Water” 

    From Emory University

    6.30.22
    Carol Clark

    1

    Chemists have produced the first full quantum mechanical model of water — one of the key ingredients of life. The Journal of Physical Chemistry Letters published the breakthrough, which used machine learning to develop a model that gives a detailed, accurate description for how large groups of water molecules interact with one another.

    “We believe we have found the missing piece to a complete, microscopic understanding of water,” says Joel Bowman, professor of theoretical chemistry at Emory University and senior author of the study. “It appears that we now have all that we need to know to describe water molecules under any conditions, including ice, liquid or vapor over a range of temperature and pressure.”

    The researchers developed free, open-source software for the model, which they dubbed “q-AQUA.”

    The q-AQUA software provides a universal tool for studying water. “We anticipate researchers using it for everything from predicting whether an exoplanet may have water to deepening our understanding of the role of water in cellular function,” Bowman says.

    Bowman is one of the founders of the specialty of theoretical reaction dynamics and a leader in exploring mysteries underlying questions such as why we need water to live.

    First author of the study is Qi Yu, a former Emory PhD candidate in the Bowman Lab who has since graduated and is now a postdoctoral fellow at Yale. Co-authors include Emory graduate student Apurba Nandi, a PhD candidate in the Bowman Lab; Riccardo Cone, a former Emory postdoctoral fellow in the Bowman Lab, who is now at the University of Milan; and Paul Houston, former dean of science at Georgia Institute of Technology and now an emeritus professor at Cornell University.

    2
    The discovery made the cover of The Journal of Physical Chemistry Letters.

    Water covers most of the Earth’s surface and is vital to all living organisms. It consists of simple molecules, each made up of two hydrogen atoms and one oxygen atom, bound by hydrogen.

    Despite water’s simplicity and ubiquity, describing the interactions of clusters of H2O molecules under any conditions presents major challenges.

    Newton’s law governs the behavior of heavy objects in the so-called classical world, including the motion of planets. Extremely light objects, however, at the level of atoms and electrons, are part of the quantum world which is governed by the Schrodinger equation of quantum-mechanical systems.

    “The hydrogen atom is the lightest atom of all, which makes it the most quantum mechanical,” Bowman explains. “It has the quantum weirdness of being both a particle and a wave at the same time.”

    Although large, complex problems in the classical world can be divided into pieces to be solved, objects in the quantum world are too “fuzzy” to be broken down into discrete pieces.

    Researchers have tried to produce a quantum model of water by breaking it into the interactions of clusters of water molecules. Bowman compares it to people at a party clustered into conversational groups of two, three or four people.

    “Imagine you’re trying to come up with a model to describe the conversations in each of these clusters of people that can be extended to the entire party,” he says. “First you gather the data for two people talking and determine what they are saying, who is saying what and what the conversation means. It gets harder when you try to model the conversations among three people. And when you get up to four people, it gets nearly impossible because so much data is coming at you.”

    For the current paper, the researchers used powerful machine-learning techniques that enabled computers to capture the interactions of groups of two, three and four molecules. “Taking it to the four-body level was very hard and something that no one had done and published before,” Bowman says. “We knew that if we could achieve that we would be far along to having a nearly complete solution. In a sense, it was the capstone of the whole process.”

    Instead of words coming out of the mouths of people, the analyses involved thousands of numbers coming out of computers. Unlike people, however, individual water molecules are all identical. This symmetry allowed the researchers to build on the model for interactions among sets of two, three and four water molecules so that it applies to even larger groups of molecules.

    “The four-body interaction of water molecules appears to be the final one that governs all interactions of water molecules,” Bowman says.

    To test their model, the researchers ran computer simulations over a range of temperatures for as many as 256 water molecules interacting in groups of two, three and four molecules simultaneously. The results showed that the model was highly accurate even at that scale.

    “We think we can take our model up to as many as 3,000 or 4,000 water molecules interacting,” Bowman says. “The computer effort will go up a lot, but those are simulations we plan to run next now that we’ve established proof of concept for our model.”

    The model may also serve as a springboard to develop similar, more simplified, models that require less computer power but are still accurate enough to make useful predictions regarding the quantum mechanics of water, Bowman says.

    Meanwhile, the authors hope that other researchers will download the free q-AQUA software and use it to delve deeper into unanswered questions about water.

    “We’re about 70% water by weight,” Bowman says, “and yet, from a chemical standpoint, we don’t really understand how water molecules interact with biological systems. Now that we have a good template for understanding how water molecules interact among themselves, we have a basis to deepen our understanding of the role of water in biochemical processes essential to life.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Emory University is a private research university in metropolitan Atlanta, located in the Druid Hills section of DeKalb County, Georgia, United States. The university was founded as Emory College in 1836 in Oxford, Georgia by the Methodist Episcopal Church and was named in honor of Methodist bishop John Emory. In 1915, the college relocated to metropolitan Atlanta and was rechartered as Emory University. The university is the second-oldest private institution of higher education in Georgia and among the fifty oldest private universities in the United States.

    Emory University has nine academic divisions: Emory College of Arts and Sciences, Oxford College, Goizueta Business School, Laney Graduate School, School of Law, School of Medicine, Nell Hodgson Woodruff School of Nursing, Rollins School of Public Health, and the Candler School of Theology. Emory University, the Georgia Institute of Technology, and Peking University in Beijing, China jointly administer the Wallace H. Coulter Department of Biomedical Engineering. The university operates the Confucius Institute in Atlanta in partnership with Nanjing University. Emory has a growing faculty research partnership with the Korea Advanced Institute of Science and Technology (KAIST). Emory University students come from all 50 states, 6 territories of the United States, and over 100 foreign countries.

     
  • richardmitnick 10:57 am on July 2, 2022 Permalink | Reply
    Tags: "Found:: The ‘holy grail of catalysis’ — turning methane into methanol under ambient conditions using light", , , Chemistry, ,   

    From The DOE’s Oak Ridge National Laboratory: “Found:: The ‘holy grail of catalysis’ — turning methane into methanol under ambient conditions using light” 

    From The DOE’s Oak Ridge National Laboratory

    June 28, 2022

    1
    University of Manchester scientists have developed the “holy grail of catalysis,” a fast and economical method of converting methane, or natural gas, into liquid methanol at ambient temperature and pressure. Credit: ORNL/Jill Hemman.

    An international team of researchers, led by scientists at the University of Manchester, has developed a fast and economical method of converting methane, or natural gas, into liquid methanol at ambient temperature and pressure. The method takes place under continuous flow over a photo-catalytic material using visible light to drive the conversion.

    To help observe how the process works and how selective it is, the researchers used neutron scattering at the VISION instrument at Oak Ridge National Laboratory’s Spallation Neutron Source [below].

    The method involves a continuous flow of methane/oxygen-saturated water over a novel metal-organic framework (MOF) catalyst. The MOF is porous and contains different components that each have a role in absorbing light, transferring electrons and activating and bringing together methane and oxygen. The liquid methanol is easily extracted from the water. Such a process has commonly been considered “a holy grail of catalysis” and is an area of focus for research supported by the U.S. Department of Energy. Details of the team’s findings are published in Nature Materials.


    Naturally occurring methane is an abundant and valuable fuel, used for ovens, furnaces, water heaters, kilns, automobiles and turbines. However, methane can also be dangerous due to the difficulty of extracting, transporting and storing it.

    Methane gas is also harmful to the environment when it is released or leaks into the atmosphere, where it is a potent greenhouse gas. Leading sources of atmospheric methane include fossil fuel production and use, rotting or burning biomass such as forest fires, agricultural waste products, landfills and melting permafrost.

    Excess methane is commonly burned off, or flared, to reduce its environmental impact. However, this combustion process produces carbon dioxide, which itself is a greenhouse gas.

    Industry has long sought an economical and efficient way to convert methane into methanol, a highly marketable and versatile feedstock used to make a variety of consumer and industrial products. This would not only help reduce methane emissions, but it would also provide an economic incentive to do so.

    Methanol is a more versatile carbon source than methane and is a readily transportable liquid. It can be used to make thousands of products such as solvents, antifreeze and acrylic plastics; synthetic fabrics and fibers; adhesives, paint and plywood; and chemical agents used in pharmaceuticals and agrichemicals. The conversion of methane into a high-value fuel such as methanol is also becoming more attractive as petroleum reserves dwindle.

    Breaking the bond

    A primary challenge of converting methane (CH4) to methanol (CH3OH) has been the difficulty of weakening or breaking the carbon-hydrogen (C-H) chemical bond in order to insert an oxygen (O) atom to form a C-OH bond. Conventional methane conversion methods typically involve two stages, steam reforming followed by syngas oxidation, which are energy intensive, costly and inefficient as they require high temperatures and pressures.

    The fast and economical methane-to-methanol process developed by the research team uses a multicomponent MOF material and visible light to drive the conversion. A flow of CH4 and O2 saturated water is passed through a layer of the MOF granules while exposed to the light. The MOF contains different designed components that are located and held in fixed positions within the porous superstructure. They work together to absorb light to generate electrons which are passed to oxygen and methane within the pores to form methanol.

    “To greatly simplify the process, when methane gas is exposed to the functional MOF material containing mono-iron-hydroxyl sites, the activated oxygen molecules and energy from the light promote the activation of the C-H bond in methane to form methanol,” said Sihai Yang, a professor of chemistry at Manchester and corresponding author. “The process is 100% selective – meaning there is no undesirable by-product – comparable with methane monooxygenase, which is the enzyme in nature for this process.”

    The experiments demonstrated that the solid catalyst can be isolated, washed, dried and reused for at least 10 cycles, or approximately 200 hours of reaction time, without any loss of performance.

    The new photocatalytic process is analogous to how plants convert light energy to chemical energy during photosynthesis. Plants absorb sunlight and carbon dioxide through their leaves. A photocatalytic process then converts these elements into sugars, oxygen and water vapor.

    “This process has been termed the ‘holy grail of catalysis.’ Instead of burning methane, it may now be possible to convert the gas directly to methanol, a high-value chemical that can be used to produce biofuels, solvents, pesticides and fuel additives for vehicles,” said Martin Schröder, vice president and dean of faculty of science and engineering at Manchester and corresponding author. “This new MOF material may also be capable of facilitating other types of chemical reactions by serving as a sort of test tube in which we can combine different substances to see how they react.”

    Using neutrons to picture the process

    “Using neutron scattering to take ‘pictures’ at the VISION instrument initially confirmed the strong interactions between CH4 and the mono-iron-hydroxyl sites in the MOF that weaken the C-H bonds,” said Yongqiang Cheng, instrument scientist at the ORNL Neutron Sciences Directorate.

    “VISION is a high-throughput neutron vibrational spectrometer optimized to provide information about molecular structure, chemical bonding and intermolecular interactions,” said Anibal “Timmy” Ramirez Cuesta, who leads the Chemical Spectroscopy Group at SNS. “Methane molecules produce strong and characteristic neutron scattering signals from their rotation and vibration, which are also sensitive to the local environment. This enables us to reveal unambiguously the bond-weakening interactions between CH4 and the MOF with advanced neutron spectroscopy techniques.”

    Fast, economical and reusable

    By eliminating the need for high temperatures or pressures, and using the energy from sunlight to drive the photo-oxidation process, the new conversion method could substantially lower equipment and operating costs. The higher speed of the process and its ability to convert methane to methanol with no undesirable byproducts will facilitate the development of in-line processing that minimizes costs.

    Funding and resources were provided by the Royal Society; the University of Manchester; the EPSRC National Service for EPR Spectroscopy at Manchester; the European Research Council under the European Union’s Horizon 2020 research and innovation program; the Diamond Light Source at the Harwell Science and Innovation Campus in Oxfordshire; the U.S. Department of Energy’s Spallation Neutron Source at Oak Ridge National Laboratory [below] and the Advanced Photon Source at Argonne National Laboratory; and the Aichi Synchrotron Radiation Centre in Seto City. Computing resources at ORNL were made available through the VirtuES and ICE-MAN projects funded by ORNL’s Laboratory Directed Research and Development program and Compute and Data Environment for Science.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition


    Established in 1942, The DOE’s Oak Ridge National Laboratory is the largest science and energy national laboratory in the Department of Energy system (by size) and third largest by annual budget. It is located in the Roane County section of Oak Ridge, Tennessee. Its scientific programs focus on materials, neutron science, energy, high-performance computing, systems biology and national security, sometimes in partnership with the state of Tennessee, universities and other industries.

    ORNL has several of the world’s top supercomputers, including Summit, ranked by the TOP500 as Earth’s second-most powerful, and the exascale Frontier.

    ORNL OLCF IBM Q AC922 SUMMIT supercomputer, was No.1 on the TOP500..

    The lab is a leading neutron and nuclear power research facility that includes the Spallation Neutron Source and High Flux Isotope Reactor.

    ORNL Spallation Neutron Source annotated.

    It hosts the Center for Nanophase Materials Sciences, the BioEnergy Science Center, and the Consortium for Advanced Simulation of Light Water Nuclear Reactors.

    ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.

    Areas of research

    ORNL conducts research and development activities that span a wide range of scientific disciplines. Many research areas have a significant overlap with each other; researchers often work in two or more of the fields listed here. The laboratory’s major research areas are described briefly below.

    Chemical sciences – ORNL conducts both fundamental and applied research in a number of areas, including catalysis, surface science and interfacial chemistry; molecular transformations and fuel chemistry; heavy element chemistry and radioactive materials characterization; aqueous solution chemistry and geochemistry; mass spectrometry and laser spectroscopy; separations chemistry; materials chemistry including synthesis and characterization of polymers and other soft materials; chemical biosciences; and neutron science.
    Electron microscopy – ORNL’s electron microscopy program investigates key issues in condensed matter, materials, chemical and nanosciences.
    Nuclear medicine – The laboratory’s nuclear medicine research is focused on the development of improved reactor production and processing methods to provide medical radioisotopes, the development of new radionuclide generator systems, the design and evaluation of new radiopharmaceuticals for applications in nuclear medicine and oncology.
    Physics – Physics research at ORNL is focused primarily on studies of the fundamental properties of matter at the atomic, nuclear, and subnuclear levels and the development of experimental devices in support of these studies.
    Population – ORNL provides federal, state and international organizations with a gridded population database, called Landscan, for estimating ambient population. LandScan is a raster image, or grid, of population counts, which provides human population estimates every 30 x 30 arc seconds, which translates roughly to population estimates for 1 kilometer square windows or grid cells at the equator, with cell width decreasing at higher latitudes. Though many population datasets exist, LandScan is the best spatial population dataset, which also covers the globe. Updated annually (although data releases are generally one year behind the current year) offers continuous, updated values of population, based on the most recent information. Landscan data are accessible through GIS applications and a USAID public domain application called Population Explorer.

     
  • richardmitnick 10:09 am on July 2, 2022 Permalink | Reply
    Tags: , , Chemistry, , , , , , , , "Advocating a new paradigm for electron simulations", Quantum Monte Carlo simulations, The Helmholtz International Beamline for Extreme Fields   

    From The Helmholtz Association of German Research Centres (DE) via “phys.org” : “Advocating a new paradigm for electron simulations” 

    From The Helmholtz Association of German Research Centres (DE)

    via

    “phys.org”

    July 1, 2022

    1
    The expanded theoretical foundations meet new experimental tools such as those found at the Helmholtz International Beamline for Extreme Fields (HIBEF). Together, effects that were previously out of reach can now be investigated. Credit: HZDR / Science Communication Lab.

    Although most fundamental mathematical equations that describe electronic structures are long known, they are too complex to be solved in practice. This has hampered progress in physics, chemistry and the material sciences. Thanks to modern high-performance computing clusters and the establishment of the simulation method density functional theory (DFT), researchers were able to change this situation. However, even with these tools the modeled processes are in many cases still drastically simplified. Now, physicists at the Center for Advanced Systems Understanding (CASUS) and the Institute of Radiation Physics at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) succeeded in significantly improving the DFT method. This opens up new possibilities for experiments with ultra-high intensity lasers, as the group explains in the Journal of Chemical Theory and Computation.

    In the new publication, Young Investigator Group Leader Dr. Tobias Dornheim, lead author Dr. Zhandos Moldabekov (both CASUS, HZDR) and Dr. Jan Vorberger (Institute of Radiation Physics, HZDR) take on one of the most fundamental challenges of our time: accurately describing how billions of quantum particles such as electrons interact. These so-called quantum many-body systems are at the heart of many research fields within physics, chemistry, material science, and related disciplines. Indeed, most material properties are determined by the complex quantum mechanical behavior of interacting electrons. While the fundamental mathematical equations that describe electronic structures are, in principle, long known, they are too complex to be solved in practice. Therefore, the actual understanding of elaborately designed materials has remained very limited.

    This unsatisfactory situation has changed with the advent of modern high-performance computing clusters, which has given rise to the new field of computational quantum many-body theory. Here, a particularly successful tool is density functional theory (DFT), which has given unprecedented insights into the properties of materials. DFT is currently considered one of the most important simulation methods in physics, chemistry, and the material sciences. It is especially adept in describing many-electron systems. Indeed, the number of scientific publications based on DFT calculations has been exponentially increasing over the last decade and companies have used the method to successfully calculate properties of materials as accurate as never before.

    Overcoming a drastic simplification

    Many such properties that can be calculated using DFT are obtained in the framework of linear response theory. This concept is also used in many experiments in which the (linear) response of the system of interest to an external perturbation such as a laser is measured. In this way, the system can be diagnosed and essential parameters like density or temperature can be obtained. Linear response theory often renders experiment and theory feasible in the first place and is nearly ubiquitous throughout physics and related disciplines. However, it is still a drastic simplification of the processes and a strong limitation.

    In their latest publication, the researchers are breaking new ground by extending the DFT method beyond the simplified linear regime. Thus, non-linear effects in quantities like density waves, stopping power, and structure factors can be calculated and compared to experimental results from real materials for the first time.

    Prior to this publication these non-linear effects were only reproduced by a set of elaborate calculation methods, namely, quantum Monte Carlo simulations. Although delivering exact results, this method is limited to constrained system parameters, as it requires a lot of computational power. Hence, there has been a big need for faster simulation methods.

    “The DFT approach we present in our paper is 1,000 to 10,000 times faster than quantum Monte Carlo calculations,” says Zhandos Moldabekov. “Moreover, we were able to demonstrate across temperature regimes ranging from ambient to extreme conditions, that this comes not to the detriment of accuracy. The DFT-based methodology of the non-linear response characteristics of quantum-correlated electrons opens up the enticing possibility to study new non-linear phenomena in complex materials.”

    More opportunities for modern free electron lasers

    “We see that our new methodology fits very well to the capabilities of modern experimental facilities like the Helmholtz International Beamline for Extreme Fields, which is co-operated by HZDR and went into operation only recently,” explains Jan Vorberger. “With high power lasers and free electron lasers we can create exactly these non-linear excitations we can now study theoretically and examine them with unprecedented temporal and spatial resolution. Theoretical and experimental tools are ready to study new effects in matter under extreme conditions that have not been accessible before.”

    “This paper is a great example to illustrate the direction my recently established group is heading to,” says Tobias Dornheim, leading the Young Investigator Group “Frontiers of Computational Quantum Many-Body Theory” installed in early 2022. “We have been mainly active in the high energy density physics community in the past years. Now, we are devoted to push the frontiers of science by providing computational solutions to quantum many-body problems in many different contexts. We believe that the present advance in electronic structure theory will be useful for researchers in a number of research fields.”

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Helmholtz Association (DE)

    The Helmholtz Association of German Research Centers (DE) is the largest scientific organisation in Germany. It is a union of 18 scientific-technical and biological-medical research centers. The official mission of the Association is “solving the grand challenges of science, society and industry”. Scientists at Helmholtz therefore focus research on complex systems which affect human life and the environment. The namesake of the association is the German physiologist and physicist Hermann von Helmholtz.

    The annual budget of the Helmholtz Association amounts to €4.56 billion, of which about 72% is raised from public funds. The remaining 28% of the budget is acquired by the 19 individual Helmholtz Centres in the form of contract funding. The public funds are provided by the federal government (90%) and the rest by the States of Germany (10%).

    The Helmholtz Association was ranked #6 in 2020 by the Nature Index, which measures the largest contributors to papers published in 82 leading journals. was created in 1995 to formalise existing relationships between several globally-renowned independent research centres. The Helmholtz Association distributes core funding from the German Federal Ministry of Education and Research (BMBF) to its, now, 19 autonomous research centers and evaluates their effectiveness against the highest international standards.

    Members of the Helmholtz Association are:

    Alfred Wegener Institute for Polar and Marine Research (Alfred-Wegener-Institut für Polar- und Meeresforschung, AWI), Bremerhaven
    Helmholtz Center for Information Security, CISPA, Saarbrücken
    German Electron Synchrotron (Deutsches Elektronen-Synchrotron, DESY), Hamburg
    German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg
    German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR), Cologne
    German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen; DZNE), Bonn
    Forschungszentrum Jülich (FZJ) Jülich Research Center, Jülich
    Karlsruhe Institute of Technology (Karlsruher Institut für Technologie, KIT), (formerly Forschungszentrum Karlsruhe), Karlsruhe
    Helmholtz Center for Infection Research, (Helmholtz-Zentrum für Infektionsforschung, HZI), Braunschweig
    GFZ German Research Center for Geosciences (Helmholtz-Zentrum Potsdam – Deutsches GeoForschungsZentrum GFZ, Potsdam
    Helmholtz-Zentrum Hereon Geesthacht, formerly known as Gesellschaft für Kernenergieverwertung in Schiffbau und Schiffahrt mbH (GKSS)
    Helmholtz München German Research Centre for Environmental Health (HMGU), Neuherberg
    GSI Helmholtz Center for Heavy Ion Research (GSI Helmholtzzentrum für Schwerionenforschung), Darmstadt
    Helmholtz-Zentrum Berlin for Materials and Energy (Helmholtz-Zentrum Berlin für Materialien und Energie, HZB), Berlin
    Helmholtz Center for Environmental Research (Helmholtz-Zentrum für Umweltforschung, UFZ), Leipzig
    MPG Institute of Plasma Physics (Max-Planck-Institut für Plasmaphysik, IPP), Garching
    Max Delbrück Center for Molecular Medicine in the Helmholtz Association (Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, MDC), Berlin-Buch
    Helmholtz-Zentrum Dresden-Rossendorf (HZDR) formerly known as Forschungszentrum Dresden-Rossendorf (FZD) changed 2011 from the Leibniz Association to the Helmholtz Association of German Research Centers, Dresden
    Helmholtz Center for Ocean Research Kiel (GEOMAR) formerly known as Leibniz Institute of Marine Sciences (IFM-GEOMAR)

    Helmholtz Institutes are partnerships between a Helmholtz Center and a university (the institutes are not members of the Helmholtz Association themselves). Examples of Helmholtz Institutes include:

    Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, established in 2017

     
  • richardmitnick 11:56 am on July 1, 2022 Permalink | Reply
    Tags: "The beauty and benefits of biodiversity", Adaptability lies at the very heart of speciation., , As well as working with living organisms the researchers also study the genetic material of specimens held in collections., , , , Chemistry, , , , , , One of the most beautiful aspects of biodiversity is how species co-​evolve and exist together., , Species diversity is only one aspect of biodiversity-the others being habitat diversity and genetic diversity., Species diversity makes ecosystems resilient., The beauty of the world’s coral reefs never fails to amaze., , Time is of the essence because biodiversity is under threat and declining rapidly., Unfertilized minimally cultivated meadows and dry grasslands are incredibly diverse which makes them not just beautiful but essential., Using the eDNA method it took the researchers less than two years to confirm the presence of more fish species and families than experts had managed to identify during 13 years of reef dives.   

    From The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “The beauty and benefits of biodiversity” 

    From The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    01.07.2022
    Peter Rüegg

    1

    Biodiversity is beautiful, but it’s also vitally important. ETH researchers are getting to the heart of how species diversity and genetic diversity evolve – and why we must fight to preserve them.

    Spring is synonymous with bright yellow dandelions, lush green fields and cloudless blue skies, a captivating combination of colours that sends many people into raptures of delight. Yet biodiversity researchers such as Alex Widmer, Professor of Plant Ecological Genetics in the Department of Environmental Systems Science, take a rather different view: “I know too much about ecosystems to take any pleasure in something so monotonous,” he says. His notion of beauty tends more towards dry grasslands and natural meadows rich in different species. “A far cry,” he says, “from the picture-​postcard idyll.” He argues that such areas are beautiful in much less obvious ways. Unfertilized, minimally cultivated meadows and dry grasslands are incredibly diverse, he says, which makes them not just beautiful, but essential.

    “Species diversity makes ecosystems resilient,” says Widmer, “and at the core of that resilience is genetic diversity.” Without genetic diversity, he explains, species and organisms cannot adapt to existing and evolving environmental conditions. And it’s this adaptability that lies at the very heart of speciation.

    2
    Natural meadows exhibit high levels of diversity. (Photograph: Peter Rüegg)

    Loïc Pellissier, Professor of Ecosystems and Landscape Evolution in the Department of Environmental Systems Science, agrees that much of the beauty of biodiversity is hidden from view. One of the most beautiful aspects of biodiversity, he says, is how species co-​evolve and exist together. “All organisms have evolved to interact with each other, as anyone who works in species diversity will tell you. To me, ecosystems are like huge jigsaw puzzles, in which all the pieces fit together more or less perfectly.” His research focuses on how species diversity arises and evolves. Because this occurs over the course of millions of years, Pellissier relies on computer models to simulate geological processes and the evolutionary forces that lead to the formation of new species.

    Genetic diversity

    Pellissier also conducts numerous field projects to unlock the secrets of species diversity. He favours a new and increasingly popular method that enables ecologists to detect species and organisms from the DNA they leave behind in the environment – known for short as environmental DNA, or eDNA. Researchers simply collect water and soil samples and analyse them to see what genetic material they contain. They then match whatever DNA they find to the corresponding organisms, provided a reference is available for this. This method provides a relatively quick way to determine whether a species is present in an ecosystem or not – and it works for a wide variety of organisms. “eDNA gives us a new insight into an ecosystem’s diversity,” he says.

    Recently, Pellissier co-​authored a study on the diversity of reef fish worldwide. Researchers collected over 200 seawater samples from various tropical coral reefs and then “fished out” whatever fish DNA they could find. Using the eDNA method it took the researchers less than two years to confirm the presence of more fish species and families than experts had managed to identify during 13 years of reef dives.

    Yet species diversity is only one aspect of biodiversity, the others being habitat diversity and genetic diversity. “Of the three, genetic diversity is the one that has been most neglected,” says Widmer. “Studying and monitoring genetic diversity is much more difficult and time-​consuming than monitoring habitats or species numbers.” Hence the numerous inventories of Swiss plants, animals and habitats – from forests and wetlands to dry grasslands. “Yet there isn’t a single monitoring project in Switzerland that focuses on the genetic diversity of living things,” says Widmer, “This is despite the fact that genetic diversity is fundamental for species diversity and adaptability.”

    To fill this gap, Widmer has joined forces with the Swiss Federal Institute for Forest, Snow and Landscape Research WSL on a project that aims to add this crucial element to Switzerland’s existing biodiversity monitoring systems. With the support of the Swiss Federal Office for the Environment (FOEN), Widmer and his colleagues have already launched a pilot study of five different species, including two plant species, a butterfly and a toad. The fifth species in their study is the yellowhammer, a songbird commonly found in cultivated areas of Switzerland. The researchers have already sequenced the genomes of one hundred individual yellowhammers from right across the country.

    4
    The beauty of the world’s coral reefs never fails to amaze. Yet behind such splendour, there lies much more – namely, a diverse habitat for a host of marine life. (Photograph: Stocksy)

    As well as working with living organisms, the researchers also study the genetic material of specimens held in collections. “This tells us whether populations from over 100 years ago were as diverse as today’s, or whether some of that genetic diversity has been lost,” says Widmer. Research into biodiversity in Switzerland has already revealed a sharp decline in species diversity, he notes: “We’d like to find out whether the same applies to genetic diversity.” Once the pilot study is complete, Widmer’s goal is to set up a large-​scale monitoring project encompassing up to 50 species. These would be examined at regular intervals to detect changes in their genetic diversity. However, it is still unclear whether this complex and ambitious project will receive the necessary funding.

    Fragile and endangered beauty

    Time is of the essence because biodiversity is under threat and declining rapidly. It is only by firmly fitting together the many different pieces of the biodiversity puzzle that we can slow the extinction of individual species. Reduce this network by half, and species will die out a thousand times faster – and when external pressures such as climate change are factored in, species extinction will occur a thousand times faster again.

    “Biodiversity is essential to our lives,” says Widmer. “It impacts everything from our mental well-​being to whether we have food on the table.” Diverse ecosystems are much more stable and better geared for the future than monotonous, species-​poor habitats. Pellissier nods in agreement: “Biodiversity is like classical art in the sense that it can’t be replaced. If the earth loses its biological riches, it will lose its magic.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus

    The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of The Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the The Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas The University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology, Stanford University and University of Cambridge (UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology, Stanford University, California Institute of Technology, Princeton University, University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE Excellence Ranking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London (UK) and the University of Cambridge (UK), respectively.

     
  • richardmitnick 4:03 pm on June 30, 2022 Permalink | Reply
    Tags: "Bacteria for Blastoff:: Using Microbes to Make Supercharged New Rocket Fuel", "POP-FAMEs": Polycylcopropanated fatty acid methyl esters, "Streptomyces" bacteria, A group of biofuel experts led by Lawrence Berkeley National Laboratory developed a totally new type of fuel with energy density greater than fuels used today by NASA., A quest for the ring(s), , Bacteria have been producing carbon-based energy molecules for billions of years., , , Chemistry, , Cyclopropane molecules, Energy density is everything when it comes to aviation and rocketry and this is where biology can really shine., Higher energy densities allow for lower fuel volumes which in a rocket can allow for increased payloads and decreased overall emissions., , Polycylcopropanated molecules contain multiple triangle-shaped three-carbon rings that force each carbon-carbon bond into a sharp 60-degree angle., Scientists turned to an oddball bacterial molecule that looks like a jaw full of sharp teeth to create a new type of fuel that could be used for all types of vehicles including rockets., , , The potential energy in this strained bond translates into more energy for combustion than can be achieved with the larger ring structures or carbon-carbon chains typically found in fuels., The simulation data suggest that POP fuel candidates are safe and stable at room temperature and will have energy density values of more than 50 megajoules per liter after chemical processing., The team discovered that their POP-FAMEs are very close in structure to an experimental petroleum-based rocket fuel called Syntin developed in the 1960s by the Soviet Union space agency., The team hoped to remix existing bacterial machinery to create a new molecule with ready-to-burn fuel properties., These fuels would be produced from bacteria fed with plant matter – which is made from carbon dioxide pulled from the atmosphere., These structures enable fuel molecules to pack tightly together in a small volume increasing the mass – and therefore the total energy – of fuel that fits in any given tank., This biosynthetic pathway provides a clean route to highly energy-dense fuels., This process reduces the amount of added greenhouse gas relative to any fuel generated from petroleum., What kinds of interesting structures can biology make that petrochemistry can’t make?   

    From The DOE’s Lawrence Berkeley National Laboratory: “Bacteria for Blastoff:: Using Microbes to Make Supercharged New Rocket Fuel” 

    From The DOE’s Lawrence Berkeley National Laboratory

    June 30, 2022
    Aliyah Kovner
    akovner@lbl.gov

    1
    Scientists turned to an oddball bacterial molecule that looks like a jaw full of sharp teeth to create a new type of fuel that could be used for all types of vehicles including rockets. (Credit: Jenny Nuss/Berkeley Lab)

    Converting petroleum into fuels involves crude chemistry first invented by humans in the 1800s. Meanwhile, bacteria have been producing carbon-based energy molecules for billions of years. Which do you think is better at the job?

    Well aware of the advantages biology has to offer, a group of biofuel experts led by Lawrence Berkeley National Laboratory took inspiration from an extraordinary antifungal molecule made by Streptomyces bacteria to develop a totally new type of fuel that has projected energy density greater than the most advanced heavy-duty fuels used today, including the rocket fuels used by NASA.

    “This biosynthetic pathway provides a clean route to highly energy-dense fuels that, prior to this work, could only be produced from petroleum using a highly toxic synthesis process,” said project leader Jay Keasling, a synthetic biology pioneer and CEO of the Department of Energy’s Joint BioEnergy Institute (JBEI). “As these fuels would be produced from bacteria fed with plant matter – which is made from carbon dioxide pulled from the atmosphere – burning them in engines will significantly reduce the amount of added greenhouse gas relative to any fuel generated from petroleum.”

    The incredible energy potential of these fuel candidate molecules, called POP-FAMEs (for polycylcopropanated fatty acid methyl esters), comes from the fundamental chemistry of their structures. Polycylcopropanated molecules contain multiple triangle-shaped three-carbon rings that force each carbon-carbon bond into a sharp 60-degree angle. The potential energy in this strained bond translates into more energy for combustion than can be achieved with the larger ring structures or carbon-carbon chains typically found in fuels. In addition, these structures enable fuel molecules to pack tightly together in a small volume increasing the mass – and therefore the total energy – of fuel that fits in any given tank.

    With petrochemical fuels, you get kind of a soup of different molecules and you don’t have a lot of fine control over those chemical structures. But that’s what we used for a long time and we designed all of our engines to run on petroleum derivatives,” said Eric Sundstrom, an author on the paper describing POP fuel candidates published in the journal Joule and a research scientist at Berkeley Lab’s Advanced Biofuels and Bioproducts Process Development Unit (ABPDU).

    “The larger consortium behind this work, Co-Optima, was funded to think about not just recreating the same fuels from biobased feedstocks, but how we can make new fuels with better properties,” said Sundstrom. “The question that led to this is: ‘What kinds of interesting structures can biology make that petrochemistry can’t make?’”

    A quest for the ring(s)

    Keasling, who is also a professor at UC Berkeley, had his eye on cyclopropane molecules for a long time. He had scoured the scientific literature for organic compounds with three-carbon rings and found just two known examples, both made by Streptomyces bacteria that are nearly impossible to grow in a lab environment. Fortunately, one of the molecules had been studied and genetically analyzed due to interest in its antifungal properties. Discovered in 1990, the natural product is named jawsamycin, because its unprecedented five cyclopropane rings make it look like a jaw filled with pointy teeth.

    4
    A culture of the Streptomyces bacteria that makes the jawsamycin. (Credit: Pablo Morales-Cruz)

    Keasling’s team, comprised of JBEI and ABPDU scientists, studied the genes from the original strain (S. roseoverticillatus) that encode the jawsamycin-building enzymes and took a deep dive into the genomes of related Streptomyces, looking for a combination of enzymes that could make a molecule with jawsamycin’s toothy rings while skipping the other parts of the structure. Like a baker rewriting recipes to invent the perfect dessert, the team hoped to remix existing bacterial machinery to create a new molecule with ready-to-burn fuel properties.

    First author Pablo Cruz-Morales was able to assemble all the necessary ingredients to make POP-FAMEs after discovering new cyclopropane-making enzymes in a strain called S. albireticuli. “We searched in thousands of genomes for pathways that naturally make what we needed. That way we avoided the engineering that may or may not work and used nature’s best solution,” said Cruz-Morales, a senior researcher at the Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark and the co-principal investigator of the yeast natural products lab with Keasling.

    Unfortunately, the bacteria weren’t as cooperative when it came to productivity. Ubiquitous in soils on every continent, Streptomyces are famous for their ability to make unusual chemicals. “A lot of the drugs used today, such as immunosuppressants, antibiotics, and anti-cancer drugs, are made by engineered Streptomyces,” said Cruz-Morales. “But they are very capricious and they’re not nice to work with in the lab. They’re talented, but they’re divas.” When two different engineered Streptomyces failed to make POP-FAMEs in sufficient quantities, he and his colleagues had to copy their newly arranged gene cluster into a more “tame” relative.

    The resulting fatty acids contain up to seven cyclopropane rings chained on a carbon backbone, earning them the name fuelimycins. In a process similar to biodiesel production, these molecules require only one additional chemical processing step before they can serve as a fuel.

    Now we’re cooking with cyclopropane

    Though they still haven’t produced enough fuel candidate molecules for field tests – “you need 10 kilograms of fuel to do a test in a real rocket engine, and we’re not there yet,” Cruz-Morales explained with a laugh – they were able to evaluate Keasling’s predictions about energy density.

    Colleagues at The DOE’s Pacific Northwest National Laboratory analyzed the POP-FAMEs with nuclear magnetic resonance spectroscopy to prove the presence of the elusive cyclopropane rings. And collaborators at The DOE’s Sandia National Laboratories used computer simulations to estimate how the compounds would perform compared to conventional fuels.

    The simulation data suggest that POP fuel candidates are safe and stable at room temperature and will have energy density values of more than 50 megajoules per liter after chemical processing. Regular gasoline has a value of 32 megajoules per liter, JetA, the most common jet fuel, and RP-1, a popular kerosene-based rocket fuel, have around 35.

    During the course of their research, the team discovered that their POP-FAMEs are very close in structure to an experimental petroleum-based rocket fuel called Syntin developed in the 1960s by the Soviet Union space agency and used for several successful Soyuz rocket launches in the 70s and 80s. Despite its powerful performance, Syntin manufacturing was halted due to high costs and the unpleasant process involved: a series of synthetic reactions with toxic byproducts and an unstable, explosive intermediate.

    “Although POP-FAMEs share similar structures to Syntin, many have superior energy densities. Higher energy densities allow for lower fuel volumes which in a rocket can allow for increased payloads and decreased overall emissions,” said author Alexander Landera, a staff scientist at Sandia. One of the team’s next goals to create a process to remove the two oxygen atoms on each molecule, which add weight but no combustion benefit. “When blended into a jet fuel, properly deoxygenated versions of POP-FAMEs may provide a similar benefit,” Landera added.

    Since publishing their proof-of-concept paper, the scientists have begun work to increase the bacteria’s production efficiency even further to generate enough for combustion testing. They are also investigating how the multi-enzyme production pathway could be modified to create polycyclopropanated molecules of different lengths. “We’re working on tuning the chain length to target specific applications,” said Sundstrom. “Longer chain fuels would be solids, well-suited to certain rocket fuel applications, shorter chains might be better for jet fuel, and in the middle might be a diesel-alternative molecule.”

    Author Corinne Scown, JBEI’s Director of Technoeconomic Analysis, added: “Energy density is everything when it comes to aviation and rocketry and this is where biology can really shine. The team can make fuel molecules tailored to the applications we need in those rapidly evolving sectors.”

    Eventually, the scientists hope to engineer the process into a workhorse bacteria strain that could produce large quantities of POP molecules from plant waste food sources (like inedible agricultural residue and brush cleared for wildfire prevention), potentially making the ultimate carbon-neutral fuel.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LBNL campus

    LBNL Molecular Foundry

    Bringing Science Solutions to the World

    In the world of science, The Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the The National Academy of Sciences, one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the The National Academy of Engineering, and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the University of California- Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California-Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    History

    1931–1941

    The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California, Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

    LBNL 88 inch cyclotron.

    LBNL 88 inch cyclotron.

    Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded DOE’s Los Alamos Laboratory, and Robert Wilson founded Fermi National Accelerator Laborator.

    1942–1950

    Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.

    1951–2018

    After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now Department of Energy . The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now the Lawrence Livermore National Laboratory) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

    Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

    The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

    The lab remains owned by the Department of Energy , with management from the University of California. Companies such as Intel were funding the lab’s research into computing chips.

    Science mission

    From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

    The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

    Berkeley Lab operates five major National User Facilities for the DOE Office of Science:

    The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.

    LBNL/ALS

    DOE’s Lawrence Berkeley National Laboratory Advanced Light Source .
    The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

    The DOE Joint Genome Institute supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, DOE’s Lawrence Livermore National Laboratory, DOE’s Oak Ridge National Laboratory (ORNL), DOE’s Pacific Northwest National Laboratory (PNNL), and the HudsonAlpha Institute for Biotechnology . The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

    The LBNL Molecular Foundry [above] is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

    The DOE’s NERSC National Energy Research Scientific Computing Center is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

    DOE’s NERSC National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory.

    Cray Cori II supercomputer at National Energy Research Scientific Computing Center at DOE’s Lawrence Berkeley National Laboratory, named after Gerty Cori, the first American woman to win a Nobel Prize in science.

    NERSC Hopper Cray XE6 supercomputer.

    NERSC Cray XC30 Edison supercomputer.

    NERSC GPFS for Life Sciences.

    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    NERSC PDSF computer cluster in 2003.

    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    Cray Shasta Perlmutter SC18 AMD Epyc Nvidia pre-exascale supercomputer.

    NERSC is a DOE Office of Science User Facility.

    The DOE’s Energy Science Network is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

    Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory, the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science , and DOE’s Lawrence Livermore National Laboratory (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

    Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory leads JCESR and Berkeley Lab is a major partner.

     
  • richardmitnick 9:33 pm on June 29, 2022 Permalink | Reply
    Tags: "Hydrogen: Steps towards Australia’s powerhouse plan", , Chemistry, ,   

    From CSIRO (AU) ECOS : “Hydrogen: Steps towards Australia’s powerhouse plan” 

    From CSIRO (AU) ECOS

    June 21st, 2022
    By Westpac IQ with Dr Patrick Hartley

    CSIRO Hydrogen Industry Mission Leader Patrick Hartley outlines some of the key moves required for Australia to realise its plans to become a major hydrogen exporter.

    1
    CSIRO Hydrogen Industry Mission Lead, Dr Partrick Hartley (left) and Dr Alan Finkel.

    Hydrogen is a gas that is colourless, odourless, non-toxic and highly combustible but, most importantly, it stores energy that can be recovered without giving off carbon dioxide gas and contributing to global warming. As such, it is expected to be a key energy commodity as the world transitions from fossil to renewable energy.

    With abundant sunlight and wind to turn renewable electricity into hydrogen, and a well-established energy export sector, Australia is well-placed to become a global hydrogen powerhouse.

    But first we need to produce enough hydrogen at a competitive price and improve the technology needed to ship it around the world.

    Dr Patrick Hartley, Leader of the CSIRO Hydrogen Industry Mission, outlines the opportunities – and challenges – this new fuel source presents.

    What are the major applications for hydrogen and how will that drive demand in future?

    There are diverse applications for hydrogen across the energy and industrial sectors. They span mobility – using hydrogen as a fuel for powering vehicles – and the use of hydrogen to replace natural gas in gas networks, because it’s a clean gas that burns without emitting greenhouse gases.

    You can also use hydrogen to replace fossil fuels in industrial heat production. It is already used as an industrial feedstock for things like chemicals production, ammonia and petrochemicals production.

    Hydrogen technologies can also play an important role in electricity systems. Electricity is used to make hydrogen by splitting water in a process called electrolysis, and hydrogen fuel cells effectively reverse this process to turn hydrogen back into electricity. And so you can start thinking about how hydrogen can play a role in the transition of the electricity system to clean energy.

    We’re just getting started in many ways with the broader uses of hydrogen now. But as we diversify the uses of hydrogen through those applications just mentioned, the demand will grow. That’s a good thing, because if the demand for hydrogen grows then it will actually drive down the costs of production and make it more competitive with fossil fuels in more and more applications.

    What is – and what will – the market be worth?

    The federal government expects the future Australian hydrogen industry to directly support more than 16,000 jobs by 2050, plus an additional 13,000 jobs from the construction of related renewable energy infrastructure. Australian hydrogen production for export and domestic use could also generate more than AUD 50 billion in additional GDP by 2050.
    What are the major export opportunities?

    Moving hydrogen as an export commodity is certainly an attractive way of monetising the huge clean energy resource that we can produce in Australia. There are many countries with quite a number of approaches being adopted to designing markets and developing technologies that enable international hydrogen trade. Japan, in particular, has been doing a lot of work on what the hydrogen import-export trade could look like.

    One option is to actually put hydrogen on ships. Now, if you’re shipping things around the world, you want to cram as much of that energy into the smallest possible volume you can. That’s why you need to do something to make hydrogen economic to ship.

    One approach being looked at to densify that hydrogen is liquefaction, where you cool down the hydrogen to minus 253 degrees. It’s currently expensive, but the technology is still just getting going, so this should change.

    The other way of moving hydrogen is actually to convert it into something else that can be a carrier for it. Ammonia is one of those carriers and the nice thing about ammonia is that it’s a liquid in fairly ambient conditions. There’s always a trade-off, though. That conversion is not cheap either. And the reconversion to recover the hydrogen at the destination requires additional infrastructure.

    What are Australia’s advantages as a supplier of hydrogen?

    The reason why we’re a global powerhouse in exports of energy is because we’ve got a lot of energy resources, and that includes both fossil fuel resources like natural gas, but we’re also very lucky that we have tremendous potential to produce renewable energy, using things like solar energy and wind energy in different parts of the country.

    We also don’t have such a huge domestic population that will use all of that energy. Plus, because of the existing energy export and trade experience that we have, in many ways we have all the ingredients for being able to export that clean energy.

    What are some of the major projects underway?

    The transport of liquid hydrogen to Japan is being demonstrated in the ‘Hydrogen Energy Supply Chain’ project in Victoria.

    This is a pilot project that is producing hydrogen using the brown coal resources there, via a process called gasification, and building this infrastructure to liquefy and transport hydrogen by ship.

    In January, the Suiso Frontier sailed out of Hastings in Victoria to take the world’s first liquid hydrogen shipment from Australia to Japan.

    However, the process that’s being used to make this hydrogen produces CO2. So, if it goes to commercial scale, then the intent is for those emissions to be mitigated through the use of CO2 capture and storage resources in Victoria.

    Renewable hydrogen – also known as green hydrogen – is produced using renewable energy and has no emissions in the production and no emissions at the point of use, and so the ultimate goal is to ramp up production using this technology.

    The problem really is that the amount of renewable energy we need to produce – and the scale of hydrogen that we’re talking about for an import-export industry – is really huge. It’s so huge that a build of that scale is going to take time. So the potential to use clean, but not completely green technologies to build supply chains probably makes sense in the near term, particularly from a cost perspective.

    What are the impediments to progress?

    The key challenge at the moment is getting hydrogen produced at scale cheaply, because right now it’s still a bit more expensive than existing fossil fuel feedstocks in most applications.

    If you can increase demand through new applications for hydrogen and scale up those applications, you can drive down the costs of the technology and production down through economies of scale.

    Making improvements to things like manufacturing processes for hydrogen technologies much more efficient will also contribute to us achieving the goal that’s been stated by our government of ‘H2 Under 2’, which is hydrogen at AUD 2 a kilo.

    The production costs – not including the supply chain costs – at the moment are probably around about AUD 5, depending on who you ask. So that AUD 2 goal is achievable, but it’s a goal we’re going to have to work towards and we are focusing CSIRO’s research and development partnerships through our CSIRO Hydrogen Industry Mission to do this.

    The cost of building renewable power projects has been estimated at AUD 500 billion. How will this impact the development of a hydrogen industry?

    To replace the current energy sources in all the possible places where hydrogen could do that is a huge ask. It’s the same for electricity, actually. The scale of the build to get renewable energy into a much greater portion of the energy system is massive. And it’s going to take time.

    Will we be able to repurpose other infrastructure, such as the existing pipelines which have been built to convey natural gas?

    There are challenges associated with moving to 100 per cent hydrogen in gas pipelines. And those relate to things like the material properties of the pipeline, because hydrogen has some unique properties when it comes into contact with steel.

    It also burns differently, so things like appliances need to change. At the moment, the gas pipeline industry in Australia in particular is focused very much on getting 10 per cent hydrogen into its gas pipelines. That’s seen as a level that they can tolerate with the existing infrastructure.

    What about the need for desalination plants?

    The amount of water needed to produce hydrogen is going to be significant – but we know it can be done from experience in the mining industry. In some places, desalination will be needed, but the cost of desalination of water is actually not that huge as a fraction of the hydrogen production cost.

    What’s the cost of switching from coal in steelmaking to hydrogen?

    That’s very a big question and the technology is still pretty immature, but it can be done. We think more generically around heavy industrial uses of hydrogen. And, of course, anything to do with heavy industry is a big capital investment.

    Ultimately, as a fuel source, is hydrogen as efficient as electricity?

    It’s all about how many transitions you go through when you’re converting energy into one form or another. There are losses in producing hydrogen from renewable sources, which typically convert electricity into hydrogen. And then, if you’re using it in things like cars, you convert it back into electricity to drive the vehicles. Each one of those steps has an amount of loss associated with it.

    The key question is not around efficiency. You don’t necessarily think about efficiency when you’re driving a car. You think about how much it’s costing you and that’s a very different question to an efficiency question. Existing internal combustion engines are only about 30 per cent efficient, believe it or not.

    So, what are the key government reports or roadmaps for this sector?

    The National Hydrogen Strategy is always a good place to start.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    CSIRO -Commonwealth Scientific and Industrial Research Organisation (AU) , is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

    CSIRO works with leading organisations around the world. From its headquarters in Canberra, CSIRO maintains more than 50 sites across Australia and in France, Chile and the United States, employing about 5,500 people.

    Federally funded scientific research began in Australia 104 years ago. The Advisory Council of Science and Industry was established in 1916 but was hampered by insufficient available finance. In 1926 the research effort was reinvigorated by establishment of the Council for Scientific and Industrial Research (CSIR), which strengthened national science leadership and increased research funding. CSIR grew rapidly and achieved significant early successes. In 1949 further legislated changes included renaming the organisation as CSIRO.

    Notable developments by CSIRO have included the invention of atomic absorption spectroscopy; essential components of Wi-Fi technology; development of the first commercially successful polymer banknote; the invention of the insect repellent in Aerogard and the introduction of a series of biological controls into Australia, such as the introduction of myxomatosis and rabbit calicivirus for the control of rabbit populations.

    Research and focus areas

    Research Business Units

    As at 2019, CSIRO’s research areas are identified as “Impact science” and organised into the following Business Units:

    Agriculture and Food
    Health and Biosecurity
    Data 61
    Energy
    Land and Water
    Manufacturing
    Mineral Resources
    Oceans and Atmosphere

    National Facilities

    CSIRO manages national research facilities and scientific infrastructure on behalf of the nation to assist with the delivery of research. The national facilities and specialized laboratories are available to both international and Australian users from industry and research. As at 2019, the following National Facilities are listed:

    Australian Animal Health Laboratory (AAHL)
    Australia Telescope National Facility – radio telescopes included in the Facility include the Australia Telescope Compact Array, the Parkes Observatory, Mopra Radio Telescope Observatory and the Australian Square Kilometre Array Pathfinder.

    STCA CSIRO Australia Compact Array (AU), six radio telescopes at the Paul Wild Observatory, is an array of six 22-m antennas located about twenty five kilometres (16 mi) west of the town of Narrabri in Australia.

    CSIRO-Commonwealth Scientific and Industrial Research Organization (AU) Parkes Observatory [Murriyang, the traditional Indigenous name], located 20 kilometres north of the town of Parkes, New South Wales, Australia, 414.80m above sea level.

    NASA Canberra Deep Space Communication Complex, AU, Deep Space Network. Credit: NASA.

    CSIRO Canberra campus.

    ESA DSA 1, hosts a 35-metre deep-space antenna with transmission and reception in both S- and X-band and is located 140 kilometres north of Perth, Western Australia, near the town of New Norcia.

    CSIRO-Commonwealth Scientific and Industrial Research Organisation (AU)CSIRO R/V Investigator.

    UK Space NovaSAR-1 satellite (UK) synthetic aperture radar satellite.

    CSIRO Pawsey Supercomputing Centre AU)

    Magnus Cray XC40 supercomputer at Pawsey Supercomputer Centre Perth Australia.

    Galaxy Cray XC30 Series Supercomputer at at Pawsey Supercomputer Centre Perth Australia.

    Pausey Supercomputer CSIRO Zeus SGI Linux cluster.

    Others not shown

    SKA

    SKA- Square Kilometer Array.

    SKA Square Kilometre Array low frequency at Murchison Widefield Array, Boolardy station in outback Western Australia on the traditional lands of the Wajarri peoples.

    EDGES telescope in a radio quiet zone at the Murchison Radio-astronomy Observatory in Western Australia, on the traditional lands of the Wajarri peoples.

     
  • richardmitnick 4:24 pm on June 28, 2022 Permalink | Reply
    Tags: "A sanitizer in the galactic centre region", A long-term study of the chemical composition of Sgr B2 was started that took advantage of the high angular resolution and sensitivity provided by ALMA., An outstanding star forming region in our Galaxy where many molecules were detected in the past is Sagittarius B2 (Sgr B2)., , , , Chemistry, , , Investigation of the chemical composition of Sgr B2 began more than 15 years ago with the IRAM 30-m telescope., Iso-propanol was observed in a “delivery room” of stars-the massive star-forming region Sagittarius B2 which is located near the centre of our Milky Way., One difficulty in the identification of organic molecules is the spectral confusion. Each molecule emits radiation at specific frequencies-its spectral "fingerprint"-known from laboratory measurements, , Thanks to ALMA's high angular resolution it was possible to isolate very narrow spectral lines-five times more narrow than the lines detected on larger scales with the IRAM 30-m radio telescope!, The "Cologne Database for Molecular Spectroscopy (CDMS)" provides spectroscopic data to detect these molecules contributed by many groups and has been instrumental in their detection in many cases., The ALMA observations have led to the identification of three new organic molecules., The bigger the molecule the more spectral lines at different frequencies it produces., The goal of the present work is to understand how organic molecules form in the interstellar medium., The latest result within this ALMA project is now the detection of propanol (C3H7OH)., The molecular cloud is the target of an extensive investigation of its chemical composition with the ALMA telescope., , The search for molecules in space has been going on for more than 50 years. To date astronomers have identified 276 molecules in the interstellar medium., To date astronomers have identified 276 molecules in the interstellar medium., With the advent of the Atacama Large Millimeter/submillimeter Array (ALMA) ten years ago it became possible to go beyond what could be achieved toward Sgr B2 with a single-dish telescope.   

    From The MPG Institute for Radio Astronomy [MPG Institut für Radioastronomie](DE): “A sanitizer in the galactic centre region” 

    From The MPG Institute for Radio Astronomy [MPG Institut für Radioastronomie](DE)

    June 28, 2022

    Dr. Norbert Junkes
    Press and public relations
    Max Planck Institute for Radio Astronomy, Bonn
    +49 2 28525-399
    njunkes@mpifr-bonn.mpg.de

    Dr. Arnaud Belloche
    Max Planck Institute for Radio Astronomy, Bonn
    +49 228 525-376
    belloche@mpifr-bonn.mpg.de

    Prof. Dr. Karl M. Menten
    Director at the Institute and Head of the “Millimeter and Submillimeter Astronomy” Research Dept.
    Max Planck Institute for Radio Astronomy, Bonn
    +49 228 525-471
    kmenten@mpifr-bonn.mpg.de

    Interstellar detection of iso-propanol in Sagittarius B2

    Many of us have probably already – literally – handled the chemical compound iso-propanol: it can used as an antiseptic, a solvent or a cleaning agent. But this substance is not only found on Earth: researchers led by Arnaud Belloche from the Max Planck Institute for Radio Astronomy in Bonn have now detected the molecule in interstellar space for the first time. It was observed in a “delivery room” of stars-the massive star-forming region Sagittarius B2 which is located near the centre of our Milky Way. The molecular cloud is the target of an extensive investigation of its chemical composition with the ALMA telescope in the Chilean Atacama Desert.

    1
    Alcohol in space: the position of star-forming molecular cloud Sagittarius B2 (Sgr B2) close to the central source of the Milky Way, Sgr A*. The image, taken from the GLOSTAR Galactic Plane Survey (Effelsberg & VLA) shows radio sources in the Galactic centre region. The isomers propanol and iso-propanol were both detected in Sgr B2 using the ALMA telescope.
    © GLOSTAR (Bruntaler et al. 2021, Astronomy & Astrophysics): Background image. Wikipedia (public domain): Propanol and isopropanol models.

    The search for molecules in space has been going on for more than 50 years. To date astronomers have identified 276 molecules in the interstellar medium. The “Cologne Database for Molecular Spectroscopy (CDMS)” provides spectroscopic data to detect these molecules contributed by many research groups and has been instrumental in their detection in many cases.

    The goal of the present work is to understand how organic molecules form in the interstellar medium, in particular in regions where new stars are born, and how complex these molecules can be. The underlying motivation is to establish connections to the chemical composition of bodies in the Solar system such as comets, as delivered for instance by the Rosetta mission to comet 67P/Churyumov–Gerasimenko a few years ago.

    An outstanding star forming region in our Galaxy where many molecules were detected in the past is Sagittarius B2 (Sgr B2), which is located close to the famous source Sgr A*, the supermassive black hole in the centre of our Galaxy.

    “Our group began to investigate the chemical composition of Sgr B2 more than 15 years ago with the IRAM 30-m telescope”, says Arnaud Belloche from the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn/Germany, the leading author of the detection paper.

    “These observations were successful and led in particular to the first interstellar detection of several organic molecules, among many other results.”

    With the advent of the Atacama Large Millimeter/submillimeter Array (ALMA) ten years ago it became possible to go beyond what could be achieved toward Sgr B2 with a single-dish telescope and a long-term study of the chemical composition of Sgr B2 was started that took advantage of the high angular resolution and sensitivity provided by ALMA.

    So far, the ALMA observations have led to the identification of three new organic molecules (iso-propyl cyanide, N-methylformamide, urea) since 2014. The latest result within this ALMA project is now the detection of propanol (C3H7OH).

    Propanol is an alcohol, and is now the largest in this class of molecules that has been detected in interstellar space. This molecule exists in two forms (“isomers”), depending on which carbon atom the hydroxyl (OH) functional group is attached to: 1) normal-propanol, with OH bound to a terminal carbon atom of the chain, and 2) iso-propanol, with OH bound to the central carbon atom in the chain. Iso-propanol is also well known as the key ingredient in hand sanitizers on Earth. Both isomers of propanol in Sgr B2 were identified in the ALMA data set. It is the first time that iso-propanol is detected in the interstellar medium, and the first time that normal-propanol is detected in a star forming region. The first interstellar detection of normal-propanol was obtained shortly before the ALMA detection by a Spanish research team with single-dish radio telescopes in a molecular cloud not far from Sgr B2. The detection of iso-propanol toward Sgr B2, however, was only possible with ALMA.

    “The detection of both isomers of propanol is uniquely powerful in determining the formation mechanism of each. Because they resemble each other so much, they behave physically in very similar ways, meaning that the two molecules should be present in the same places at the same times”, says Rob Garrod from the University of Virginia. “The only open question is the exact amounts that are present – this makes their interstellar ratio far more precise than would be the case for other pairs of molecules. It also means that the chemical network can be tuned much more carefully to determine the mechanisms by which they form.”

    The ALMA telescope network was essential for the detection of both isomers of propanol toward Sgr B2, thanks to its high sensitivity, its high angular resolution, and its broad frequency coverage. One difficulty in the identification of organic molecules in the spectra of star forming regions is the spectral confusion. Each molecule emits radiation at specific frequencies-its spectral “fingerprint”-which is known from laboratory measurements.

    “The bigger the molecule the more spectral lines at different frequencies it produces. In a source like Sgr B2, there are so many molecules contributing to the observed radiation that their spectra overlap and it is difficult to disentangle their fingerprints and identify them individually”, says Holger Müller from Cologne University where laboratory work especially on normal-propanol was performed.

    Thanks to ALMA’s high angular resolution it was possible to isolate parts of Sgr B2 that emit very narrow spectral lines-five times more narrow than the lines detected on larger scales with the IRAM 30-m radio telescope! The narrowness of these lines reduces the spectral confusion, and this was key for the identification of both isomers of propanol in Sgr B2. The sensitivity of ALMA also played a key role: it would not have been possible to identify propanol in the collected data if the sensitivity had been just twice worse.

    This research is a long-standing effort to probe the chemical composition of sites in Sgr B2 where new stars are being formed, and thereby understand the chemical processes at work in the course of star formation. The goal is to determine the chemical composition of the star forming sites, and possibly identify new interstellar molecules. “Propanol has long been on our list of molecules to search for, but it is only thanks to the recent work done in our laboratory to characterize its rotational spectrum that we could identify its two isomers in a robust way”, says Oliver Zingsheim, also from Cologne University.

    Detecting closely related molecules that slightly differ in their structure (such as normal- and iso-propanol or, as was done in the past: normal- and iso-propyl cyanide) and measuring their abundance ratio allows the researchers to probe specific parts of the chemical reaction network that leads to their production in the interstellar medium.

    “There are still many unidentified spectral lines in the ALMA spectrum of Sgr B2 which means that still a lot of work is left to decipher its chemical composition. In the near future, the expansion of the ALMA instrumentation down to lower frequencies will likely help us to reduce the spectral confusion even further and possibly allow the identification of additional organic molecules in this spectacular source”, concludes Karl Menten, Director at the MPIfR and Head of its Millimeter and Submillimeter Astronomy research department.

    Science paper:
    Astronomy & Astrophysics

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    MPIFR campus

    Effelsberg Radio Telescope- a radio telescope in the Ahr Hills (part of the Eifel) in Bad Münstereifel(DE)

    The MPG Institute for Radio Astronomy [MPG Institut für Radioastronomie] (DE) is located in Bonn, Germany. It is one of 80 institutes in the MPG Society.

    By combining the already existing radio astronomy faculty of the University of Bonn led by Otto Hachenberg with the new MPG institute the MPG Institute for Radio Astronomy was formed. In 1972 the 100-m radio telescope in Effelsberg was opened. The institute building was enlarged in 1983 and 2002.

    The institute was founded in 1966 by the MPG Society as the “MPG Institut für Radioastronomie (MPIfR) (DE)”.

    The foundation of the institute was closely linked to plans in the German astronomical community to construct a competitive large radio telescope in (then) West Germany. In 1964, Professors Friedrich Becker, Wolfgang Priester and Otto Hachenberg of the Astronomische Institute der Universität Bonn submitted a proposal to the Stiftung Volkswagenwerk for the construction of a large fully steerable radio telescope.

    In the same year the Stiftung Volkswagenwerk approved the funding of the telescope project but with the condition that an organization should be found, which would guarantee the operations. It was clear that the operation of such a large instrument was well beyond the possibilities of a single university institute.

    Already in 1965 the MPG Society decided in principle to found the MPG Institut für Radioastronomie. Eventually, after a series of discussions, the institute was officially founded in 1966.

    MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the Max Planck Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.

    According to its primary goal, the MPG Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014) MPG Institutes. The society has a total staff of approximately 17,000 permanent employees, including 5,470 scientists, plus around 4,600 non-tenured scientists and guests. Society budget for 2015 was about €1.7 billion.

    The MPG Institutes focus on excellence in research. The MPG Society has a world-leading reputation as a science and technology research organization, with 33 Nobel Prizes awarded to their scientists, and is generally regarded as the foremost basic research organization in Europe and the world. In 2013, the Nature Publishing Index placed the MPG institutes fifth worldwide in terms of research published in Nature journals (after Harvard University, The Massachusetts Institute of Technology, Stanford University and The National Institutes of Health). In terms of total research volume (unweighted by citations or impact), the Max Planck Society is only outranked by The Chinese Academy of Sciences [中国科学院](CN), The Russian Academy of Sciences [Росси́йская акаде́мия нау́к](RU) and Harvard University. The Thomson Reuters-Science Watch website placed the MPG Society as the second leading research organization worldwide following Harvard University, in terms of the impact of the produced research over science fields.

    The MPG Society and its predecessor Kaiser Wilhelm Society hosted several renowned scientists in their fields, including Otto Hahn, Werner Heisenberg, and Albert Einstein.

    History

    The organization was established in 1911 as the Kaiser Wilhelm Society, or Kaiser-Wilhelm-Gesellschaft (KWG), a non-governmental research organization named for the then German emperor. The KWG was one of the world’s leading research organizations; its board of directors included scientists like Walther Bothe, Peter Debye, Albert Einstein, and Fritz Haber. In 1946, Otto Hahn assumed the position of President of KWG, and in 1948, the society was renamed the Max Planck Society (MPG) after its former President (1930–37) Max Planck, who died in 1947.

    The MPG Society has a world-leading reputation as a science and technology research organization. In 2006, the Times Higher Education Supplement rankings of non-university research institutions (based on international peer review by academics) placed the MPG Society as No.1 in the world for science research, and No.3 in technology research (behind AT&T Corporation and The DOE’s Argonne National Laboratory.

    The domain mpg.de attracted at least 1.7 million visitors annually by 2008 according to a Compete.com study.

    MPG Institutes and research groups

    The MPG Society consists of over 80 research institutes. In addition, the society funds a number of Max Planck Research Groups (MPRG) and International Max Planck Research Schools (IMPRS). The purpose of establishing independent research groups at various universities is to strengthen the required networking between universities and institutes of the Max Planck Society.
    The research units are primarily located across Europe with a few in South Korea and the U.S. In 2007, the Society established its first non-European centre, with an institute on the Jupiter campus of Florida Atlantic University (US) focusing on neuroscience.
    The MPG Institutes operate independently from, though in close cooperation with, the universities, and focus on innovative research which does not fit into the university structure due to their interdisciplinary or transdisciplinary nature or which require resources that cannot be met by the state universities.

    Internally, MPG Institutes are organized into research departments headed by directors such that each MPI has several directors, a position roughly comparable to anything from full professor to department head at a university. Other core members include Junior and Senior Research Fellows.

    In addition, there are several associated institutes:
    International Max Planck Research Schools
    Together with the Association of Universities and other Education Institutions in Germany, the Max Planck Society established numerous International Max Planck Research Schools (IMPRS) to promote junior scientists:

    • Cologne Graduate School of Ageing Research, Cologne
    • International Max Planck Research School for Intelligent Systems, at the Max Planck Institute for Intelligent Systems located in Tübingen and Stuttgart
    • International Max Planck Research School on Adapting Behavior in a Fundamentally Uncertain World (Uncertainty School), at the Max Planck Institutes for Economics, for Human Development, and/or Research on Collective Goods
    • International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering, Magdeburg
    • International Max Planck Research School for Astronomy and Cosmic Physics, Heidelberg at the MPI for Astronomy
    • International Max Planck Research School for Astrophysics, Garching at the MPI for Astrophysics
    • International Max Planck Research School for Complex Surfaces in Material Sciences, Berlin
    • International Max Planck Research School for Computer Science, Saarbrücken
    • International Max Planck Research School for Earth System Modeling, Hamburg
    • International Max Planck Research School for Elementary Particle Physics, Munich, at the MPI for Physics
    • International Max Planck Research School for Environmental, Cellular and Molecular Microbiology, Marburg at the Max Planck Institute for Terrestrial Microbiology
    • International Max Planck Research School for Evolutionary Biology, Plön at the Max Planck Institute for Evolutionary Biology
    • International Max Planck Research School “From Molecules to Organisms”, Tübingen at the Max Planck Institute for Developmental Biology
    • International Max Planck Research School for Global Biogeochemical Cycles, Jena at the Max Planck Institute for Biogeochemistry
    • International Max Planck Research School on Gravitational Wave Astronomy, Hannover and Potsdam MPI for Gravitational Physics
    • International Max Planck Research School for Heart and Lung Research, Bad Nauheim at the Max Planck Institute for Heart and Lung Research
    • International Max Planck Research School for Infectious Diseases and Immunity, Berlin at the Max Planck Institute for Infection Biology
    • International Max Planck Research School for Language Sciences, Nijmegen
    • International Max Planck Research School for Neurosciences, Göttingen
    • International Max Planck Research School for Cognitive and Systems Neuroscience, Tübingen
    • International Max Planck Research School for Marine Microbiology (MarMic), joint program of the Max Planck Institute for Marine Microbiology in Bremen, the University of Bremen, the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, and the Jacobs University Bremen
    • International Max Planck Research School for Maritime Affairs, Hamburg
    • International Max Planck Research School for Molecular and Cellular Biology, Freiburg
    • International Max Planck Research School for Molecular and Cellular Life Sciences, Munich
    • International Max Planck Research School for Molecular Biology, Göttingen
    • International Max Planck Research School for Molecular Cell Biology and Bioengineering, Dresden
    • International Max Planck Research School Molecular Biomedicine, program combined with the ‘Graduate Programm Cell Dynamics And Disease’ at the University of Münster and the Max Planck Institute for Molecular Biomedicine
    • International Max Planck Research School on Multiscale Bio-Systems, Potsdam
    • International Max Planck Research School for Organismal Biology, at the University of Konstanz and the Max Planck Institute for Ornithology
    • International Max Planck Research School on Reactive Structure Analysis for Chemical Reactions (IMPRS RECHARGE), Mülheim an der Ruhr, at the Max Planck Institute for Chemical Energy Conversion
    • International Max Planck Research School for Science and Technology of Nano-Systems, Halle at Max Planck Institute of Microstructure Physics
    • International Max Planck Research School for Solar System Science at the University of Göttingen hosted by MPI for Solar System Research
    • International Max Planck Research School for Astronomy and Astrophysics, Bonn, at the MPI for Radio Astronomy (formerly the International Max Planck Research School for Radio and Infrared Astronomy)
    • International Max Planck Research School for the Social and Political Constitution of the Economy, Cologne
    • International Max Planck Research School for Surface and Interface Engineering in Advanced Materials, Düsseldorf at Max Planck Institute for Iron Research GmbH
    • International Max Planck Research School for Ultrafast Imaging and Structural Dynamics, Hamburg

    Max Planck Schools

    • Max Planck School of Cognition
    • Max Planck School Matter to Life
    • Max Planck School of Photonics

    Max Planck Center

    • The Max Planck Centre for Attosecond Science (MPC-AS), POSTECH Pohang
    • The Max Planck POSTECH Center for Complex Phase Materials, POSTECH Pohang

    Max Planck Institutes

    Among others:
    • Max Planck Institute for Neurobiology of Behavior – caesar, Bonn
    • Max Planck Institute for Aeronomics in Katlenburg-Lindau was renamed to Max Planck Institute for Solar System Research in 2004;
    • Max Planck Institute for Biology in Tübingen was closed in 2005;
    • Max Planck Institute for Cell Biology in Ladenburg b. Heidelberg was closed in 2003;
    • Max Planck Institute for Economics in Jena was renamed to the Max Planck Institute for the Science of Human History in 2014;
    • Max Planck Institute for Ionospheric Research in Katlenburg-Lindau was renamed to Max Planck Institute for Aeronomics in 1958;
    • Max Planck Institute for Metals Research, Stuttgart
    • Max Planck Institute of Oceanic Biology in Wilhelmshaven was renamed to Max Planck Institute of Cell Biology in 1968 and moved to Ladenburg 1977;
    • Max Planck Institute for Psychological Research in Munich merged into the Max Planck Institute for Human Cognitive and Brain Sciences in 2004;
    • Max Planck Institute for Protein and Leather Research in Regensburg moved to Munich 1957 and was united with the Max Planck Institute for Biochemistry in 1977;
    • Max Planck Institute for Virus Research in Tübingen was renamed as Max Planck Institute for Developmental Biology in 1985;
    • Max Planck Institute for the Study of the Scientific-Technical World in Starnberg (from 1970 until 1981 (closed)) directed by Carl Friedrich von Weizsäcker and Jürgen Habermas.
    • Max Planck Institute for Behavioral Physiology
    • Max Planck Institute of Experimental Endocrinology
    • Max Planck Institute for Foreign and International Social Law
    • Max Planck Institute for Physics and Astrophysics
    • Max Planck Research Unit for Enzymology of Protein Folding
    • Max Planck Institute for Biology of Ageing

     
  • richardmitnick 1:58 pm on June 24, 2022 Permalink | Reply
    Tags: "How the first biomolecules could have been formed", A letter of the genetic code may have been created in this way., An accidental rediscovery made it possible., , , Chemistry, Friedrich Schiller University Jena [Friedrich-Schiller-Universität Jena] (DE), Iron sulphide served as a catalyst in the “primordial soup” experiment., On the surface of iron sulphide biologically important reactions can take place., One of the nucleobases-which represent the code of our genetic material-could have originated from the surface of our planet., Scientists were even able to detect adenine-a nucleobase that is one of the five letters of the genetic code., The chemical precursors of present-day biomolecules could have formed not only in the deep sea at hydrothermal vents but also in warm ponds on the Earth's surface., The chemical reactions that may have occurred in this “primordial soup” have now been reproduced in experiments by an international team led by researchers of Friedrich Schiller University Jena.   

    From Friedrich Schiller University Jena [Friedrich-Schiller-Universität Jena] (DE): “How the first biomolecules could have been formed” 

    Friedrich-Schiller-Universität Jena DE.

    From Friedrich Schiller University Jena [Friedrich-Schiller-Universität Jena] (DE)

    10 June 2022
    Marco Körner

    The chemical precursors of present-day biomolecules could have formed not only in the deep sea at hydrothermal vents but also in warm ponds on the Earth’s surface.

    1
    Credit: Unsplash/CC0 Public Domain.

    The chemical reactions that may have occurred in this “primordial soup” have now been reproduced in experiments by an international team led by researchers of Friedrich Schiller University Jena. They even found that one of the nucleobases-which represent the code of our genetic material-could have originated from the surface of our planet.

    The Earth is around 4.6 billion years old and was not always a place that was hospitable to life. In the first hundred million years, our planet’s atmosphere consisted primarily of nitrogen, carbon dioxide, methane, hydrogen sulphide and hydrogen cyanide, also known as hydrocyanic acid. Free oxygen did not exist. Under these conditions, iron sulphide, which is transformed into iron oxide when exposed to oxygen, is stable. On the surface of iron sulphide, however, biologically important reactions can take place, similar to those that occur in certain iron and sulphur-based enzymes, such as nitrogenases and hydrogenases.

    An accidental rediscovery made it possible

    “We asked ourselves: what happens when iron sulphide in this primordial atmosphere comes into contact with hydrocyanic acid?” explains Prof. Wolfgang Weigand from the Institute of Inorganic and Analytical Chemistry at the University of Jena. “It was helpful to us that we had accidentally discovered a particularly reactive form of iron sulphide in a successful collaboration with my colleague Prof. Christian Robl. This form had already been discovered twice in history, and on each occasion it was forgotten again: once in 1700 and again in the 1920s. So to speak, the two doctoral students at the time, Robert Bolney and Mario Grosch, discovered it for the third time,” he adds. The two chemists observed in the laboratory that when iron powder is stirred with sulphur in water and slightly heated, after a certain time, iron sulphide is formed as mackinawite in an explosive reaction. This mineral served as a catalyst in the “primordial soup” experiment.

    A letter of the genetic code may have been created in this way

    “We added potassium cyanide, phosphoric acid and water to the iron sulphide in a nitrogen atmosphere and heated the mixture to 80 degrees Celsius. The phosphoric acid converts the potassium cyanide into hydrocyanic acid. We then took gas samples from the atmosphere of the respective vessels and analysed them,” explains Weigand. The researchers found substances that may have served as chemical precursors for today’s biomolecules.

    In the scientific journal ChemSystemsChem, the team confirms, among other things, the discovery of thiols, which occur as lipids in cell membranes, as well as acetaldehyde, which is needed as a precursor for DNA building blocks (called nucleosides). “It was particularly exciting that under these mild conditions we were even able to detect adenine-a nucleobase that is one of the five letters of the genetic code,” Weigand adds with enthusiasm.

    By means of isotope labelling, the team was able to prove that the cyanide indeed provided the carbon for the molecules they found. Weigand explains: “In this experiment, the potassium cyanide did not contain the isotope carbon-12, which is the isotope that accounts for 98.9 per cent of carbon naturally occurring in the environment. Instead, it was the heavier – and also stable – isotope carbon-13. It was this isotope that we found in the reaction products. In this way, we were able to prove unequivocally that the carbon atoms in the molecules we found really came from the isotope-labelled potassium cyanide.”

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Friedrich-Schiller-Universität Jena DE campus

    Friedrich Schiller University Jena [Friedrich-Schiller-Universität Jena] (DE), is a public research university located in Jena, Thuringia, Germany.

    The university was established in 1558 and is counted among the ten oldest universities in Germany. It is affiliated with six Nobel Prize winners, most recently in 2000 when Jena graduate Herbert Kroemer won the Nobel Prize for physics. It was renamed after the poet Friedrich Schiller who was teaching as professor of philosophy when Jena attracted some of the most influential minds at the turn of the 19th century. With Karl Leonhard Reinhold, Johann Gottlieb Fichte, G. W. F. Hegel, F. W. J. Schelling and Friedrich von Schlegel on its teaching staff, the university was at the centre of the emergence of German idealism and early Romanticism.

    As of 2014, the university has around 19,000 students enrolled and 375 professors. Its current president, Walter Rosenthal [de], was elected in 2014 for a six-year term.

     
  • richardmitnick 9:37 am on June 24, 2022 Permalink | Reply
    Tags: "Cracking green hydrogen energy", An electrocatalyst that has a long shelf life is a major step towards realizing terawatts from green hydrogen., , ‘Green hydrogen’ is made using renewable sunlight or wind energy to generate the electricity that splits water., , Chemistry, Electrocatalysts already in existence contain one of the scarcest elements on Earth: iridium., Hydrogen can be made using electricity that induces a chemical reaction to split water into its constituent elements: oxygen and hydrogen.,   

    From RIKEN[理](JP): “Cracking green hydrogen energy” 

    RIKEN bloc

    From RIKEN[理](JP)

    Jun. 24, 2022

    An electrocatalyst that has a long shelf life is a major step towards realizing terawatts from green hydrogen.

    A team of chemists at RIKEN has created a manganese and cobalt oxide electrocatalyst that represents an important step forward in the affordable production of cleaner hydrogen fuels.

    Hydrogen can be made using electricity that induces a chemical reaction to split water into its constituent elements: oxygen and hydrogen. “One of the biggest hurdles in generating industrial-scale hydrogen has been finding a suitable catalyst for the oxygen evolution reaction at one of the electrodes of this production system,” explains Ailong Li, who co-led the study at the RIKEN Center for Sustainable Resource Science.

    The difficultly, he explains, has been finding an electrocatalyst that has high activity, but can also withstand the acidic conditions under which the reaction occurs. This newest catalyst is made from affordable materials, and is stable in acid for months while remaining highly active1, says Li.

    ‘Green hydrogen’ is made using renewable sunlight or wind energy to generate the electricity that splits water. It could hugely reduce global carbon dioxide emissions if it replaced fossil fuels at industrial scales, says Shuang Kong, who co-led the study. And when hydrogen is then combusted to produce energy, it reverts to water again, making it a truly pollution-free fuel.

    The International Renewable Energy Agency, an intergovernmental organization supporting countries in their transition to a sustainable energy, predicts that generating green hydrogen on a large scale could become a cost-competitive option within the next decade. They’ve called it “a game-changer on the path to carbon neutrality”.

    1
    Figure 1: A stream of bubbles produced using a new electrocatalyst that is both stable and has a high activity. © Matoko Oikawa.

    Affordably active

    While some electrocatalysts already exist that meet both conditions of stability and activity, they all suffer from one drawback—they contain one of the scarcest elements on Earth: iridium.

    Since the global production of iridium is a mere seven tons per year (to put that into perspective, 170 tons of platinum, which is considered a rare metal, were mined in 2020), generating the terawatt levels of green hydrogen needed for industrial use would require four decades’ worth of the world’s iridium.

    Then in a 2019 study, Li and his co-workers discovered that manganese oxide showed excellent stability in acid for catalyzing the oxygen evolution reaction2. Now, they have shown that, by incorporating manganese into cobalt oxide—another electrocatalyst—to produce a mixed oxide, it is possible to increase the lifespan of the electrocatalyst in strong acid by a factor of about 100 without sacrificing activity. This takes the lifetimes of iridium-free electrocatalysts from just days or weeks to longer than two months.

    Li was thrilled when he first saw the electrocatalyst in action. “Our electrocatalyst was very active,” says Li. “Even before we made the measurements, it was a beautiful sight to see it generate a cascade of bubbles.”

    The manganese imparts stability to the electrocatalyst, while the cobalt gives the oxide its high activity. Kong describes manganese as “nature’s catalyst for water oxidation.” The team found that the optimal mixture was two atoms of cobalt to every one of manganese.

    Importantly, both manganese and cobalt are vastly more abundant than iridium: the global annual production of manganese is more than 60,000 times greater than that of iridium and it is the fifth most common metal in the Earth’s crust.

    Clean, green industrial dream

    There is still room for improvement in the catalyst’s lifespan. While the activation barrier of the mixed oxide rivals that of iridium oxides, iridium catalysts can last for decades before needing to be replaced. But Li is encouraged by the advance. “In the long run, we believe that this is a huge step toward creating a sustainable hydrogen economy,” he says.

    Hydrogen, he adds, is also an important industrial chemical that is used to produce ammonia, a key component of fertilizers. The current industrial process for manufacturing ammonia is highly energy intensive and uses fossil fuels: it accounts for nearly 2% of the global emissions of carbon dioxide. Green ammonia produced from green hydrogen could help to slash these emissions.

    An early inspiration, says Kong, was a 2004 speech by Nobel laureate Richard Smalley, in which Smalley describes a future in which trillions of watts (terawatts) of renewable energy is generated to drive industry instead of burning fossil fuels.

    Looking forward, Li sees lots of ways to enhance their electrocatalyst and produce green hydrogen more efficiently. “There are so many avenues we can pursue to advance this technique,” he says. “In addition to improving the electrocatalyst, we can also enhance the water-splitting membrane that is sometimes used.”

    Li points out that when you’re dealing that terawatt-scale hydrogen production, even a small rise in efficiency can yield great gains. “Just a 1% increase in efficiency across today’s large scale-industry could save 88 billion kilowatt hours per year and reduce carbon dioxide emissions by 34 million tons.”

    Science papers:

    Nature Catalysis

    Angewandte Chemie

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    RIKEN campus

    RIKEN [理研](JP) is Japan’s largest comprehensive research institution renowned for high-quality research in a diverse range of scientific disciplines. Founded in 1917 as a private research foundation in Tokyo, RIKEN has grown rapidly in size and scope, today encompassing a network of world-class research centers and institutes across Japan. Founded in 1917, it now has about 3,000 scientists on seven campuses across Japan, including the main site at Wakō, Saitama Prefecture, just outside Tokyo. Riken is a Designated National Research and Development Institute, and was formerly an Independent Administrative Institution.
    Riken conducts research in many areas of science including physics; chemistry; biology; genomics; medical science; engineering; high-performance computing and computational science and ranging from basic research to practical applications with 485 partners worldwide. It is almost entirely funded by the Japanese government, and its annual budget is about ¥88 billion (US$790 million).

    Organizational structure:

    The main divisions of Riken are listed here. Purely administrative divisions are omitted.

    Headquarters (mostly in Wako)
    Wako Branch
    Center for Emergent Matter Science (research on new materials for reduced power consumption)
    Center for Sustainable Resource Science (research toward a sustainable society)
    Nishina Center for Accelerator-Based Science (site of the Radioactive Isotope Beam Factory, a heavy-ion accelerator complex)
    Center for Brain Science
    Center for Advanced Photonics (research on photonics including terahertz radiation)
    Research Cluster for Innovation
    Cluster for Pioneering Research (chief scientists)
    Interdisciplinary Theoretical and Mathematical Sciences Program
    Tokyo Branch
    Center for Advanced Intelligence Project (research on artificial intelligence)
    Tsukuba Branch
    BioResource Research Center
    Harima Institute
    Riken SPring-8 Center (site of the SPring-8 synchrotron and the SACLA x-ray free electron laser)

    Riken SPring-8 synchrotron, located in Hyōgo Prefecture, Japan.

    RIKEN/HARIMA (JP) X-ray Free Electron Laser
    Yokohama Branch (site of the Yokohama Nuclear magnetic resonance facility)
    Center for Sustainable Resource Science
    Center for Integrative Medical Sciences (research toward personalized medicine)
    Center for Biosystems Dynamics Research (also based in Kobe and Osaka)
    Program for Drug Discovery and Medical Technology Platform
    Structural Biology Laboratory
    Sugiyama Laboratory
    Kobe Branch
    Center for Biosystems Dynamics Research (developmental biology and nuclear medicine medical imaging techniques)
    Center for Computational Science (R-CCS, home of the K computer and The post-K (Fugaku) computer development plan)

    Riken Fujitsu K supercomputer manufactured by Fujitsu, installed at the Riken Advanced Institute for Computational Science campus in Kobe, Hyōgo Prefecture, Japan.

    Fugaku is a claimed exascale supercomputer (while only at petascale for mainstream benchmark), at the RIKEN Center for Computational Science in Kobe, Japan. It started development in 2014 as the successor to the K computer, and is officially scheduled to start operating in 2021. Fugaku made its debut in 2020, and became the fastest supercomputer in the world in the June 2020 TOP500 list, the first ever supercomputer that achieved 1 exaFLOPS. As of April 2021, Fugaku is currently the fastest supercomputer in the world.

     
  • richardmitnick 4:03 pm on June 21, 2022 Permalink | Reply
    Tags: "A new technique to delete single atoms can speed up molecule design", , Chemistry,   

    From The University of Chicago: “A new technique to delete single atoms can speed up molecule design” 

    U Chicago bloc

    From The University of Chicago

    Apr 28, 2022 [Just now in social media.]
    Louise Lerner

    UChicago chemists hope breakthrough can help accelerate drug discovery.

    1
    Asst. Prof. Mark Levin (left) and Ph.D. student Jisoo Woo at work in the laboratory at the University of Chicago. Photo credit: Jason Thome.

    Every time a new cancer drug is announced, it represents hundreds of researchers spending years behind the scenes working to design and test a new molecule. The drug has to be not only effective, but also as safe as possible and easy to manufacture—and these researchers have to choose among thousands of possible options for its chemical structure.

    But building each possible molecular structure for testing is a laborious process, even if researchers simply want to change a single carbon atom.

    A new technique published by University of Chicago chemists and the pharmaceutical company Merck & Co. in the journal Science offers a way to leapfrog that process, allowing scientists to quickly and easily produce new molecules of interest.

    “This allows you to make a tweak to a complex molecule without having to start the design process entirely over,” said Mark Levin, assistant professor of chemistry at UChicago and co-author on the new study. “Our hope is to accelerate discovery by reducing the time and energy that goes into that process.”

    Bulldozing the house

    As researchers are considering a molecule, there are many tweaks they might want to test. Attaching a pair of hydrogen atoms instead of nitrogen atoms, for example, might make it easier for the body to take up the drug. Perhaps removing one carbon atom would reduce a particular side effect. But actually making that new molecule can be surprisingly difficult.

    “Even though it looks on the surface like a tiny switch, there are certain things that are not fixable without going all the way back to the beginning and starting from scratch,” said Levin. “It’d be as if you were talking to a contractor about redoing one bathroom in your house, and he says, ‘Sorry, we’d have to bulldoze the entire house and start over.’”

    Levin’s lab has made it a goal [Nature] to sidestep that laborious process and allow scientists to make one or two changes to an almost-finished molecule.

    In this instance, they wanted to be able to snip a single bond out of a popular and useful class of molecules called quinoline oxides and turn them into another type of molecule called indoles. “Essentially, we want to pull out a single carbon atom and leaving everything else still connected as if it was never there,” said Levin.

    They came across an old technique from the 1950s and 60s that uses light to catalyze certain reactions. It isn’t used widely today because the method was powerful but indiscriminate; the mercury lamps used in the 1960s shone out the full spectrum of light, which set off too many reactions in the molecule—not just the ones the scientists wanted.

    But Jisoo Woo, a UChicago Ph.D. student and first author of the new paper, thought the results might be different with newer LED lamps that have become available in the last decade. These lamps can be programmed to emit only certain wavelengths of light.

    It worked. By shining only a particular wavelength, the scientists could catalyze only one particular reaction, which cut the carbon bonds quickly and easily.

    Levin, Woo and their colleagues wanted to find out how widely useful this technique might be. They worked with Alec Christian, a scientist at the pharmaceutical company Merck, to test it on several different sets of molecules.

    The technique showed promise across several families of molecules.

    “For example, we showed we could take the cholesterol drug pitavastatin and turn it into another cholesterol drug calledfluvastatin. These are two completely different molecules only related by one carbon atom deletion,” said Woo. “Before this method, you would have to make it from two entirely different processes and starting materials. But we were able to just take one drug and turn it into another drug in one transformation.”

    The scientists hope this process can ease and speed the process of designing new molecules, especially ones that involve this particular transformation, which chemists call a “scaffold hop.”

    “There are all kinds of scaffold hops where it could result in a very useful molecule, but the time involved is just prohibitive and so chemists never look at it,” said Levin. “There might be phenomenal drug compounds are hiding out there because teams just couldn’t get the time to start over.”

    Christian agreed: “There are projects I’ve seen come to a crossroads because someone wants to try a change like this, but it would take a month to even work out the initial chemistry. Whereas with this process, you could have your answer in a day. I think a lot of people will want to use this method.”

    To conduct part of this research, the scientists used the ChemMatCARS beamline at the Advanced Photon Source, an enormous X-ray synchrotron facility at the U.S. Department of Energy’s Argonne National Laboratory.

    Funding: Packard Foundation, National Institutes of Health, National Science Foundation, U.S. Department of Energy.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with University of Chicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    University of Chicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: DOE’s Argonne National Laboratory, DOE’s Fermi National Accelerator Laboratory , and the Marine Biological Laboratory in Woods Hole, Massachusetts.
    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts. The University of Chicago is a private research university in Chicago, Illinois. Founded in 1890, its main campus is located in Chicago’s Hyde Park neighborhood. It enrolled 16,445 students in Fall 2019, including 6,286 undergraduates and 10,159 graduate students. The University of Chicago is ranked among the top universities in the world by major education publications, and it is among the most selective in the United States.

    The university is composed of one undergraduate college and five graduate research divisions, which contain all of the university’s graduate programs and interdisciplinary committees. Chicago has eight professional schools: the Law School, the Booth School of Business, the Pritzker School of Medicine, the School of Social Service Administration, the Harris School of Public Policy, the Divinity School, the Graham School of Continuing Liberal and Professional Studies, and the Pritzker School of Molecular Engineering. The university has additional campuses and centers in London, Paris, Beijing, Delhi, and Hong Kong, as well as in downtown Chicago.

    University of Chicago scholars have played a major role in the development of many academic disciplines, including economics, law, literary criticism, mathematics, religion, sociology, and the behavioralism school of political science, establishing the Chicago schools in various fields. Chicago’s Metallurgical Laboratory produced the world’s first man-made, self-sustaining nuclear reaction in Chicago Pile-1 beneath the viewing stands of the university’s Stagg Field. Advances in chemistry led to the “radiocarbon revolution” in the carbon-14 dating of ancient life and objects. The university research efforts include administration of DOE’s Fermi National Accelerator Laboratory and DOE’s Argonne National Laboratory, as well as the U Chicago Marine Biological Laboratory in Woods Hole, Massachusetts (MBL). The university is also home to the University of Chicago Press, the largest university press in the United States. The Barack Obama Presidential Center is expected to be housed at the university and will include both the Obama presidential library and offices of the Obama Foundation.

    The University of Chicago’s students, faculty, and staff have included 100 Nobel laureates as of 2020, giving it the fourth-most affiliated Nobel laureates of any university in the world. The university’s faculty members and alumni also include 10 Fields Medalists, 4 Turing Award winners, 52 MacArthur Fellows, 26 Marshall Scholars, 27 Pulitzer Prize winners, 20 National Humanities Medalists, 29 living billionaire graduates, and have won eight Olympic medals.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    Research

    According to the National Science Foundation, University of Chicago spent $423.9 million on research and development in 2018, ranking it 60th in the nation. It is classified among “R1: Doctoral Universities – Very high research activity” and is a founding member of the Association of American Universities and was a member of the Committee on Institutional Cooperation from 1946 through June 29, 2016, when the group’s name was changed to the Big Ten Academic Alliance. The University of Chicago is not a member of the rebranded consortium, but will continue to be a collaborator.

    The university operates more than 140 research centers and institutes on campus. Among these are the Oriental Institute—a museum and research center for Near Eastern studies owned and operated by the university—and a number of National Resource Centers, including the Center for Middle Eastern Studies. Chicago also operates or is affiliated with several research institutions apart from the university proper. The university manages DOE’s Argonne National Laboratory, part of the United States Department of Energy’s national laboratory system, and co-manages DOE’s Fermi National Accelerator Laboratory, a nearby particle physics laboratory, as well as a stake in the Apache Point Observatory in Sunspot, New Mexico.
    _____________________________________________________________________________________

    SDSS Telescope at Apache Point Observatory, near Sunspot NM, USA, Altitude 2,788 meters (9,147 ft).

    Apache Point Observatory, near Sunspot, New Mexico Altitude 2,788 meters (9,147 ft).
    _____________________________________________________________________________________

    Faculty and students at the adjacent Toyota Technological Institute at Chicago collaborate with the university. In 2013, the university formed an affiliation with the formerly independent Marine Biological Laboratory in Woods Hole, Mass. Although formally unrelated, the National Opinion Research Center is located on Chicago’s campus.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: