Tagged: Chemistry Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:23 pm on July 23, 2021 Permalink | Reply
    Tags: "Stanford researchers develop tool to drastically speed up the study of enzymes", A chemical reaction that would take longer than the lifetime of the universe to happen on its own can occur in seconds with the aid of enzymes., A new tool that enables thousands of tiny experiments to run simultaneously on a single polymer chip will let scientists study enzymes faster and more comprehensively than ever before., , Because each tiny chamber contains only a thousandth of a millionth of a liter of material the scientists can engineer thousands of variants of an enzyme in a single device and study them in parallel., , Chemistry, Enzyme experiments on a chip, , Google-funded AlphaFold project: designed to deduce an enzyme’s complicated 3D shape from its amino acid sequence alone., HT-MEK combines two existing technologies: microfluidics and cell-free protein synthesis [explained in the blog post.], HT-MEK could also accelerate an approach to drug development called allosteric targeting which aims to increase drug specificity by targeting beyond an enzyme’s active site., HT-MEK may even allow scientists to reverse-engineer enzymes and design bespoke varieties of their own., HT-MEK: High-Throughput Microfluidic Enzyme Kinetics, If widely adopted HT-MEK could not only improve our basic understanding of enzyme function but also catalyze advances in medicine and industry.,   

    From Stanford University (US) : “Stanford researchers develop tool to drastically speed up the study of enzymes” 

    Stanford University Name

    From Stanford University (US)

    July 22, 2021
    Ker Than

    A new tool that enables thousands of tiny experiments to run simultaneously on a single polymer chip will let scientists study enzymes faster and more comprehensively than ever before.

    1
    HT-MEK – short for High-Throughput Microfluidic Enzyme Kinetics – combines microfluidics and cell-free protein synthesis technologies to dramatically speed up the study of enzymes. Credit: Daniel Mokhtari.

    For much of human history, animals and plants were perceived to follow a different set of rules than rest of the universe. In the 18th and 19th centuries, this culminated in a belief that living organisms were infused by a non-physical energy or “life force” that allowed them to perform remarkable transformations that couldn’t be explained by conventional chemistry or physics alone.

    Scientists now understand that these transformations are powered by enzymes – protein molecules comprised of chains of amino acids that act to speed up, or catalyze, the conversion of one kind of molecule (substrates) into another (products). In so doing, they enable reactions such as digestion and fermentation – and all of the chemical events that happen in every one of our cells – that, left alone, would happen extraordinarily slowly.

    “A chemical reaction that would take longer than the lifetime of the universe to happen on its own can occur in seconds with the aid of enzymes,” said Polly Fordyce, an assistant professor of bioengineering and of genetics at Stanford University.

    While much is now known about enzymes, including their structures and the chemical groups they use to facilitate reactions, the details surrounding how their forms connect to their functions, and how they pull off their biochemical wizardry with such extraordinary speed and specificity are still not well understood.

    A new technique, developed by Fordyce and her colleagues at Stanford and detailed this week in the journal Science, could help change that. Dubbed HT-MEK — short for High-Throughput Microfluidic Enzyme Kinetics — the technique can compress years of work into just a few weeks by enabling thousands of enzyme experiments to be performed simultaneously. “Limits in our ability to do enough experiments have prevented us from truly dissecting and understanding enzymes,” said study co-leader Dan Herschlag, a professor of biochemistry at Stanford’s School of Medicine.

    2
    Closeup image of the HT-MEK device shows the individual nanoliter-sized chambers where enzyme experiments are performed. Credit: Daniel Mokhtari.

    By allowing scientists to deeply probe beyond the small “active site” of an enzyme where substrate binding occurs, HT-MEK could reveal clues about how even the most distant parts of enzymes work together to achieve their remarkable reactivity.

    “It’s like we’re now taking a flashlight and instead of just shining it on the active site we’re shining it over the entire enzyme,” Fordyce said. “When we did this, we saw a lot of things we didn’t expect.”

    Enzymatic tricks

    HT-MEK is designed to replace a laborious process for purifying enzymes that has traditionally involved engineering bacteria to produce a particular enzyme, growing them in large beakers, bursting open the microbes and then isolating the enzyme of interest from all the other unwanted cellular components. To piece together how an enzyme works, scientists introduce intentional mistakes into its DNA blueprint and then analyze how these mutations affect catalysis.

    This process is expensive and time consuming, however, so like an audience raptly focused on the hands of a magician during a conjuring trick, researchers have mostly limited their scientific investigations to the active sites of enzymes. “We know a lot about the part of the enzyme where the chemistry occurs because people have made mutations there to see what happens. But that’s taken decades,” Fordyce said.

    But as any connoisseur of magic tricks knows, the key to a successful illusion can lie not just in the actions of the magician’s fingers, but might also involve the deft positioning of an arm or the torso, a misdirecting patter or discrete actions happening offstage, invisible to the audience. HT-MEK allows scientists to easily shift their gaze to parts of the enzyme beyond the active site and to explore how, for example, changing the shape of an enzyme’s surface might affect the workings of its interior.

    “We ultimately would like to do enzymatic tricks ourselves,” Fordyce said. “But the first step is figuring out how it’s done before we can teach ourselves to do it.”

    Enzyme experiments on a chip

    The technology behind HT-MEK was developed and refined over six years through a partnership between the labs of Fordyce and Herschlag. “This is an amazing case of engineering and enzymology coming together to — we hope — revolutionize a field,” Herschlag said. “This project went beyond your typical collaboration — it was a group of people working jointly to solve a very difficult problem — and continues with the methodologies in place to try to answer difficult questions.”

    HT-MEK combines two existing technologies to rapidly speed up enzyme analysis. The first is microfluidics, which involves molding polymer chips to create microscopic channels for the precise manipulation of fluids. “Microfluidics shrinks the physical space to do these fluidic experiments in the same way that integrated circuits reduced the real estate needed for computing,” Fordyce said. “In enzymology, we are still doing things in these giant liter-sized flasks. Everything is a huge volume and we can’t do many things at once.”

    The second is cell-free protein synthesis, a technology that takes only those crucial pieces of biological machinery required for protein production and combines them into a soupy extract that can be used to create enzymes synthetically, without requiring living cells to serve as incubators.

    “We’ve automated it so that we can use printers to deposit microscopic spots of synthetic DNA coding for the enzyme that we want onto a slide and then align nanoliter-sized chambers filled with the protein starter mix over the spots,” Fordyce explained.

    3
    The scientists used HT-MEK to study how mutations to different parts of a well-studied enzyme called PafA affected its catalytic ability. Credit: Daniel Mokhtari.

    Because each tiny chamber contains only a thousandth of a millionth of a liter of material the scientists can engineer thousands of variants of an enzyme in a single device and study them in parallel. By tweaking the DNA instructions in each chamber, they can modify the chains of amino acid molecules that comprise the enzyme. In this way, it’s possible to systematically study how different modifications to an enzyme affects its folding, catalytic ability and ability to bind small molecules and other proteins.

    When the team applied their technique to a well-studied enzyme called PafA, they found that mutations well beyond the active site affected its ability to catalyze chemical reactions — indeed, most of the amino acids, or “residues,” making up the enzyme had effects.

    The scientists also discovered that a surprising number of mutations caused PafA to misfold into an alternate state that was unable to perform catalysis. “Biochemists have known for decades that misfolding can occur but it’s been extremely difficult to identify these cases and even more difficult to quantitatively estimate the amount of this misfolded stuff,” said study co-first author Craig Markin, a research scientist with joint appointments in the Fordyce and Herschlag labs.

    “This is one enzyme out of thousands and thousands,” Herschlag emphasized. “We expect there to be more discoveries and more surprises.”

    Accelerating advances

    If widely adopted HT-MEK could not only improve our basic understanding of enzyme function but also catalyze advances in medicine and industry, the researchers say. “A lot of the industrial chemicals we use now are bad for the environment and are not sustainable. But enzymes work most effectively in the most environmentally benign substance we have — water,” said study co-first author Daniel Mokhtari, a Stanford graduate student in the Herschlag and Fordyce labs.


    Movie shows fluorescence buildup denoting catalytic reactions in a portion of the HT-MEK device over time. Credit: Craig Markin and Daniel Mokhtari.

    HT-MEK could also accelerate an approach to drug development called allosteric targeting which aims to increase drug specificity by targeting beyond an enzyme’s active site. Enzymes are popular pharmaceutical targets because of the key role they play in biological processes. But some are considered “undruggable” because they belong to families of related enzymes that share the same or very similar active sites, and targeting them can lead to side effects. The idea behind allosteric targeting is to create drugs that can bind to parts of enzymes that tend to be more differentiated, like their surfaces, but still control particular aspects of catalysis. “With PafA, we saw functional connectivity between the surface and the active site, so that gives us hope that other enzymes will have similar targets,” Markin said. “If we can identify where allosteric targets are, then we’ll be able to start on the harder job of actually designing drugs for them.”

    The sheer amount of data that HT-MEK is expected to generate will also be a boon to computational approaches and machine learning algorithms, like the Google-funded AlphaFold project designed to deduce an enzyme’s complicated 3D shape from its amino acid sequence alone. “If machine learning is to have any chance of accurately predicting enzyme function, it will need the kind of data HT-MEK can provide to train on,” Mokhtari said.

    Much further down the road, HT-MEK may even allow scientists to reverse-engineer enzymes and design bespoke varieties of their own. “Plastics are a great example,” Fordyce said. “We would love to create enzymes that can degrade plastics into nontoxic and harmless pieces. If it were really true that the only part of an enzyme that matters is its active site, then we’d be able to do that and more already. Many people have tried and failed, and it’s thought that one reason why we can’t is because the rest of the enzyme is important for getting the active site in just the right shape and to wiggle in just the right way.”

    Herschlag hopes that adoption of HT-MEK among scientists will be swift. “If you’re an enzymologist trying to learn about a new enzyme and you have the opportunity to look at 5 or 10 mutations over six months or 100 or 1,000 mutants of your enzyme over the same period, which would you choose?” he said. “This is a tool that has the potential to supplant traditional methods for an entire community.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus. No image credit

    Stanford University (US)

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members.

    Stanford University, officially Leland Stanford Junior University, is a private research university located in Stanford, California. Stanford was founded in 1885 by Leland and Jane Stanford in memory of their only child, Leland Stanford Jr., who had died of typhoid fever at age 15 the previous year. Stanford is consistently ranked as among the most prestigious and top universities in the world by major education publications. It is also one of the top fundraising institutions in the country, becoming the first school to raise more than a billion dollars in a year.

    Leland Stanford was a U.S. senator and former governor of California who made his fortune as a railroad tycoon. The school admitted its first students on October 1, 1891, as a coeducational and non-denominational institution. Stanford University struggled financially after the death of Leland Stanford in 1893 and again after much of the campus was damaged by the 1906 San Francisco earthquake. Following World War II, provost Frederick Terman supported faculty and graduates’ entrepreneurialism to build self-sufficient local industry in what would later be known as Silicon Valley.

    The university is organized around seven schools: three schools consisting of 40 academic departments at the undergraduate level as well as four professional schools that focus on graduate programs in law, medicine, education, and business. All schools are on the same campus. Students compete in 36 varsity sports, and the university is one of two private institutions in the Division I FBS Pac-12 Conference. It has gained 126 NCAA team championships, and Stanford has won the NACDA Directors’ Cup for 24 consecutive years, beginning in 1994–1995. In addition, Stanford students and alumni have won 270 Olympic medals including 139 gold medals.

    As of October 2020, 84 Nobel laureates, 28 Turing Award laureates, and eight Fields Medalists have been affiliated with Stanford as students, alumni, faculty, or staff. In addition, Stanford is particularly noted for its entrepreneurship and is one of the most successful universities in attracting funding for start-ups. Stanford alumni have founded numerous companies, which combined produce more than $2.7 trillion in annual revenue, roughly equivalent to the 7th largest economy in the world (as of 2020). Stanford is the alma mater of one president of the United States (Herbert Hoover), 74 living billionaires, and 17 astronauts. It is also one of the leading producers of Fulbright Scholars, Marshall Scholars, Rhodes Scholars, and members of the United States Congress.

    Stanford University was founded in 1885 by Leland and Jane Stanford, dedicated to Leland Stanford Jr, their only child. The institution opened in 1891 on Stanford’s previous Palo Alto farm.

    Jane and Leland Stanford modeled their university after the great eastern universities, most specifically Cornell University. Stanford opened being called the “Cornell of the West” in 1891 due to faculty being former Cornell affiliates (either professors, alumni, or both) including its first president, David Starr Jordan, and second president, John Casper Branner. Both Cornell and Stanford were among the first to have higher education be accessible, nonsectarian, and open to women as well as to men. Cornell is credited as one of the first American universities to adopt this radical departure from traditional education, and Stanford became an early adopter as well.

    Despite being impacted by earthquakes in both 1906 and 1989, the campus was rebuilt each time. In 1919, The Hoover Institution on War, Revolution and Peace was started by Herbert Hoover to preserve artifacts related to World War I. The Stanford Medical Center, completed in 1959, is a teaching hospital with over 800 beds. The DOE’s SLAC National Accelerator Laboratory(US)(originally named the Stanford Linear Accelerator Center), established in 1962, performs research in particle physics.

    Land

    Most of Stanford is on an 8,180-acre (12.8 sq mi; 33.1 km^2) campus, one of the largest in the United States. It is located on the San Francisco Peninsula, in the northwest part of the Santa Clara Valley (Silicon Valley) approximately 37 miles (60 km) southeast of San Francisco and approximately 20 miles (30 km) northwest of San Jose. In 2008, 60% of this land remained undeveloped.

    Stanford’s main campus includes a census-designated place within unincorporated Santa Clara County, although some of the university land (such as the Stanford Shopping Center and the Stanford Research Park) is within the city limits of Palo Alto. The campus also includes much land in unincorporated San Mateo County (including the SLAC National Accelerator Laboratory and the Jasper Ridge Biological Preserve), as well as in the city limits of Menlo Park (Stanford Hills neighborhood), Woodside, and Portola Valley.

    Non-central campus

    Stanford currently operates in various locations outside of its central campus.

    On the founding grant:

    Jasper Ridge Biological Preserve is a 1,200-acre (490 ha) natural reserve south of the central campus owned by the university and used by wildlife biologists for research.
    SLAC National Accelerator Laboratory is a facility west of the central campus operated by the university for the Department of Energy. It contains the longest linear particle accelerator in the world, 2 miles (3.2 km) on 426 acres (172 ha) of land.
    Golf course and a seasonal lake: The university also has its own golf course and a seasonal lake (Lake Lagunita, actually an irrigation reservoir), both home to the vulnerable California tiger salamander. As of 2012 Lake Lagunita was often dry and the university had no plans to artificially fill it.

    Off the founding grant:

    Hopkins Marine Station, in Pacific Grove, California, is a marine biology research center owned by the university since 1892.
    Study abroad locations: unlike typical study abroad programs, Stanford itself operates in several locations around the world; thus, each location has Stanford faculty-in-residence and staff in addition to students, creating a “mini-Stanford”.

    Redwood City campus for many of the university’s administrative offices located in Redwood City, California, a few miles north of the main campus. In 2005, the university purchased a small, 35-acre (14 ha) campus in Midpoint Technology Park intended for staff offices; development was delayed by The Great Recession. In 2015 the university announced a development plan and the Redwood City campus opened in March 2019.

    The Bass Center in Washington, DC provides a base, including housing, for the Stanford in Washington program for undergraduates. It includes a small art gallery open to the public.

    China: Stanford Center at Peking University, housed in the Lee Jung Sen Building, is a small center for researchers and students in collaboration with Beijing University [北京大学](CN) (Kavli Institute for Astronomy and Astrophysics at Peking University(CN) (KIAA-PKU).

    Administration and organization

    Stanford is a private, non-profit university that is administered as a corporate trust governed by a privately appointed board of trustees with a maximum membership of 38. Trustees serve five-year terms (not more than two consecutive terms) and meet five times annually.[83] A new trustee is chosen by the current trustees by ballot. The Stanford trustees also oversee the Stanford Research Park, the Stanford Shopping Center, the Cantor Center for Visual Arts, Stanford University Medical Center, and many associated medical facilities (including the Lucile Packard Children’s Hospital).

    The board appoints a president to serve as the chief executive officer of the university, to prescribe the duties of professors and course of study, to manage financial and business affairs, and to appoint nine vice presidents. The provost is the chief academic and budget officer, to whom the deans of each of the seven schools report. Persis Drell became the 13th provost in February 2017.

    As of 2018, the university was organized into seven academic schools. The schools of Humanities and Sciences (27 departments), Engineering (nine departments), and Earth, Energy & Environmental Sciences (four departments) have both graduate and undergraduate programs while the Schools of Law, Medicine, Education and Business have graduate programs only. The powers and authority of the faculty are vested in the Academic Council, which is made up of tenure and non-tenure line faculty, research faculty, senior fellows in some policy centers and institutes, the president of the university, and some other academic administrators, but most matters are handled by the Faculty Senate, made up of 55 elected representatives of the faculty.

    The Associated Students of Stanford University (ASSU) is the student government for Stanford and all registered students are members. Its elected leadership consists of the Undergraduate Senate elected by the undergraduate students, the Graduate Student Council elected by the graduate students, and the President and Vice President elected as a ticket by the entire student body.

    Stanford is the beneficiary of a special clause in the California Constitution, which explicitly exempts Stanford property from taxation so long as the property is used for educational purposes.

    Endowment and donations

    The university’s endowment, managed by the Stanford Management Company, was valued at $27.7 billion as of August 31, 2019. Payouts from the Stanford endowment covered approximately 21.8% of university expenses in the 2019 fiscal year. In the 2018 NACUBO-TIAA survey of colleges and universities in the United States and Canada, only Harvard University(US), the University of Texas System(US), and Yale University(US) had larger endowments than Stanford.

    In 2006, President John L. Hennessy launched a five-year campaign called the Stanford Challenge, which reached its $4.3 billion fundraising goal in 2009, two years ahead of time, but continued fundraising for the duration of the campaign. It concluded on December 31, 2011, having raised a total of $6.23 billion and breaking the previous campaign fundraising record of $3.88 billion held by Yale. Specifically, the campaign raised $253.7 million for undergraduate financial aid, as well as $2.33 billion for its initiative in “Seeking Solutions” to global problems, $1.61 billion for “Educating Leaders” by improving K-12 education, and $2.11 billion for “Foundation of Excellence” aimed at providing academic support for Stanford students and faculty. Funds supported 366 new fellowships for graduate students, 139 new endowed chairs for faculty, and 38 new or renovated buildings. The new funding also enabled the construction of a facility for stem cell research; a new campus for the business school; an expansion of the law school; a new Engineering Quad; a new art and art history building; an on-campus concert hall; a new art museum; and a planned expansion of the medical school, among other things. In 2012, the university raised $1.035 billion, becoming the first school to raise more than a billion dollars in a year.

    Research centers and institutes

    DOE’s SLAC National Accelerator Laboratory(US)
    Stanford Research Institute, a center of innovation to support economic development in the region.
    Hoover Institution, a conservative American public policy institution and research institution that promotes personal and economic liberty, free enterprise, and limited government.
    Hasso Plattner Institute of Design, a multidisciplinary design school in cooperation with the Hasso Plattner Institute of University of Potsdam [Universität Potsdam](DE) that integrates product design, engineering, and business management education).
    Martin Luther King Jr. Research and Education Institute, which grew out of and still contains the Martin Luther King Jr. Papers Project.
    John S. Knight Fellowship for Professional Journalists
    Center for Ocean Solutions
    Together with UC Berkeley(US) and UC San Francisco(US), Stanford is part of the Biohub, a new medical science research center founded in 2016 by a $600 million commitment from Facebook CEO and founder Mark Zuckerberg and pediatrician Priscilla Chan.

    Discoveries and innovation

    Natural sciences

    Biological synthesis of deoxyribonucleic acid (DNA) – Arthur Kornberg synthesized DNA material and won the Nobel Prize in Physiology or Medicine 1959 for his work at Stanford.
    First Transgenic organism – Stanley Cohen and Herbert Boyer were the first scientists to transplant genes from one living organism to another, a fundamental discovery for genetic engineering. Thousands of products have been developed on the basis of their work, including human growth hormone and hepatitis B vaccine.
    Laser – Arthur Leonard Schawlow shared the 1981 Nobel Prize in Physics with Nicolaas Bloembergen and Kai Siegbahn for his work on lasers.
    Nuclear magnetic resonance – Felix Bloch developed new methods for nuclear magnetic precision measurements, which are the underlying principles of the MRI.

    Computer and applied sciences

    ARPANETStanford Research Institute, formerly part of Stanford but on a separate campus, was the site of one of the four original ARPANET nodes.

    Internet—Stanford was the site where the original design of the Internet was undertaken. Vint Cerf led a research group to elaborate the design of the Transmission Control Protocol (TCP/IP) that he originally co-created with Robert E. Kahn (Bob Kahn) in 1973 and which formed the basis for the architecture of the Internet.

    Frequency modulation synthesis – John Chowning of the Music department invented the FM music synthesis algorithm in 1967, and Stanford later licensed it to Yamaha Corporation.

    Google – Google began in January 1996 as a research project by Larry Page and Sergey Brin when they were both PhD students at Stanford. They were working on the Stanford Digital Library Project (SDLP). The SDLP’s goal was “to develop the enabling technologies for a single, integrated and universal digital library” and it was funded through the National Science Foundation, among other federal agencies.

    Klystron tube – invented by the brothers Russell and Sigurd Varian at Stanford. Their prototype was completed and demonstrated successfully on August 30, 1937. Upon publication in 1939, news of the klystron immediately influenced the work of U.S. and UK researchers working on radar equipment.

    RISCARPA funded VLSI project of microprocessor design. Stanford and UC Berkeley are most associated with the popularization of this concept. The Stanford MIPS would go on to be commercialized as the successful MIPS architecture, while Berkeley RISC gave its name to the entire concept, commercialized as the SPARC. Another success from this era were IBM’s efforts that eventually led to the IBM POWER instruction set architecture, PowerPC, and Power ISA. As these projects matured, a wide variety of similar designs flourished in the late 1980s and especially the early 1990s, representing a major force in the Unix workstation market as well as embedded processors in laser printers, routers and similar products.
    SUN workstation – Andy Bechtolsheim designed the SUN workstation for the Stanford University Network communications project as a personal CAD workstation, which led to Sun Microsystems.

    Businesses and entrepreneurship

    Stanford is one of the most successful universities in creating companies and licensing its inventions to existing companies; it is often held up as a model for technology transfer. Stanford’s Office of Technology Licensing is responsible for commercializing university research, intellectual property, and university-developed projects.

    The university is described as having a strong venture culture in which students are encouraged, and often funded, to launch their own companies.

    Companies founded by Stanford alumni generate more than $2.7 trillion in annual revenue, equivalent to the 10th-largest economy in the world.

    Some companies closely associated with Stanford and their connections include:

    Hewlett-Packard, 1939, co-founders William R. Hewlett (B.S, PhD) and David Packard (M.S).
    Silicon Graphics, 1981, co-founders James H. Clark (Associate Professor) and several of his grad students.
    Sun Microsystems, 1982, co-founders Vinod Khosla (M.B.A), Andy Bechtolsheim (PhD) and Scott McNealy (M.B.A).
    Cisco, 1984, founders Leonard Bosack (M.S) and Sandy Lerner (M.S) who were in charge of Stanford Computer Science and Graduate School of Business computer operations groups respectively when the hardware was developed.[163]
    Yahoo!, 1994, co-founders Jerry Yang (B.S, M.S) and David Filo (M.S).
    Google, 1998, co-founders Larry Page (M.S) and Sergey Brin (M.S).
    LinkedIn, 2002, co-founders Reid Hoffman (B.S), Konstantin Guericke (B.S, M.S), Eric Lee (B.S), and Alan Liu (B.S).
    Instagram, 2010, co-founders Kevin Systrom (B.S) and Mike Krieger (B.S).
    Snapchat, 2011, co-founders Evan Spiegel and Bobby Murphy (B.S).
    Coursera, 2012, co-founders Andrew Ng (Associate Professor) and Daphne Koller (Professor, PhD).

    Student body

    Stanford enrolled 6,996 undergraduate and 10,253 graduate students as of the 2019–2020 school year. Women comprised 50.4% of undergraduates and 41.5% of graduate students. In the same academic year, the freshman retention rate was 99%.

    Stanford awarded 1,819 undergraduate degrees, 2,393 master’s degrees, 770 doctoral degrees, and 3270 professional degrees in the 2018–2019 school year. The four-year graduation rate for the class of 2017 cohort was 72.9%, and the six-year rate was 94.4%. The relatively low four-year graduation rate is a function of the university’s coterminal degree (or “coterm”) program, which allows students to earn a master’s degree as a 1-to-2-year extension of their undergraduate program.

    As of 2010, fifteen percent of undergraduates were first-generation students.

    Athletics

    As of 2016 Stanford had 16 male varsity sports and 20 female varsity sports, 19 club sports and about 27 intramural sports. In 1930, following a unanimous vote by the Executive Committee for the Associated Students, the athletic department adopted the mascot “Indian.” The Indian symbol and name were dropped by President Richard Lyman in 1972, after objections from Native American students and a vote by the student senate. The sports teams are now officially referred to as the “Stanford Cardinal,” referring to the deep red color, not the cardinal bird. Stanford is a member of the Pac-12 Conference in most sports, the Mountain Pacific Sports Federation in several other sports, and the America East Conference in field hockey with the participation in the inter-collegiate NCAA’s Division I FBS.

    Its traditional sports rival is the University of California, Berkeley, the neighbor to the north in the East Bay. The winner of the annual “Big Game” between the Cal and Cardinal football teams gains custody of the Stanford Axe.

    Stanford has had at least one NCAA team champion every year since the 1976–77 school year and has earned 126 NCAA national team titles since its establishment, the most among universities, and Stanford has won 522 individual national championships, the most by any university. Stanford has won the award for the top-ranked Division 1 athletic program—the NACDA Directors’ Cup, formerly known as the Sears Cup—annually for the past twenty-four straight years. Stanford athletes have won medals in every Olympic Games since 1912, winning 270 Olympic medals total, 139 of them gold. In the 2008 Summer Olympics, and 2016 Summer Olympics, Stanford won more Olympic medals than any other university in the United States. Stanford athletes won 16 medals at the 2012 Summer Olympics (12 gold, two silver and two bronze), and 27 medals at the 2016 Summer Olympics.

    Traditions

    The unofficial motto of Stanford, selected by President Jordan, is Die Luft der Freiheit weht. Translated from the German language, this quotation from Ulrich von Hutten means, “The wind of freedom blows.” The motto was controversial during World War I, when anything in German was suspect; at that time the university disavowed that this motto was official.
    Hail, Stanford, Hail! is the Stanford Hymn sometimes sung at ceremonies or adapted by the various University singing groups. It was written in 1892 by mechanical engineering professor Albert W. Smith and his wife, Mary Roberts Smith (in 1896 she earned the first Stanford doctorate in Economics and later became associate professor of Sociology), but was not officially adopted until after a performance on campus in March 1902 by the Mormon Tabernacle Choir.
    “Uncommon Man/Uncommon Woman”: Stanford does not award honorary degrees, but in 1953 the degree of “Uncommon Man/Uncommon Woman” was created to recognize individuals who give rare and extraordinary service to the University. Technically, this degree is awarded by the Stanford Associates, a voluntary group that is part of the university’s alumni association. As Stanford’s highest honor, it is not conferred at prescribed intervals, but only when appropriate to recognize extraordinary service. Recipients include Herbert Hoover, Bill Hewlett, Dave Packard, Lucile Packard, and John Gardner.
    Big Game events: The events in the week leading up to the Big Game vs. UC Berkeley, including Gaieties (a musical written, composed, produced, and performed by the students of Ram’s Head Theatrical Society).
    “Viennese Ball”: a formal ball with waltzes that was initially started in the 1970s by students returning from the now-closed Stanford in Vienna overseas program. It is now open to all students.
    “Full Moon on the Quad”: An annual event at Main Quad, where students gather to kiss one another starting at midnight. Typically organized by the Junior class cabinet, the festivities include live entertainment, such as music and dance performances.
    “Band Run”: An annual festivity at the beginning of the school year, where the band picks up freshmen from dorms across campus while stopping to perform at each location, culminating in a finale performance at Main Quad.
    “Mausoleum Party”: An annual Halloween Party at the Stanford Mausoleum, the final resting place of Leland Stanford Jr. and his parents. A 20-year tradition, the “Mausoleum Party” was on hiatus from 2002 to 2005 due to a lack of funding, but was revived in 2006. In 2008, it was hosted in Old Union rather than at the actual Mausoleum, because rain prohibited generators from being rented. In 2009, after fundraising efforts by the Junior Class Presidents and the ASSU Executive, the event was able to return to the Mausoleum despite facing budget cuts earlier in the year.
    Former campus traditions include the “Big Game bonfire” on Lake Lagunita (a seasonal lake usually dry in the fall), which was formally ended in 1997 because of the presence of endangered salamanders in the lake bed.

    Award laureates and scholars

    Stanford’s current community of scholars includes:

    19 Nobel Prize laureates (as of October 2020, 85 affiliates in total)
    171 members of the National Academy of Sciences
    109 members of National Academy of Engineering
    76 members of National Academy of Medicine
    288 members of the American Academy of Arts and Sciences
    19 recipients of the National Medal of Science
    1 recipient of the National Medal of Technology
    4 recipients of the National Humanities Medal
    49 members of American Philosophical Society
    56 fellows of the American Physics Society (since 1995)
    4 Pulitzer Prize winners
    31 MacArthur Fellows
    4 Wolf Foundation Prize winners
    2 ACL Lifetime Achievement Award winners
    14 AAAI fellows
    2 Presidential Medal of Freedom winners

    Stanford University Seal

     
  • richardmitnick 12:18 pm on July 23, 2021 Permalink | Reply
    Tags: "U.S. Department of Energy Awards $127 Million to Bring Innovative Clean Energy Technologies to Market", , , Chemistry, , DOE Bioenergy Technologies Office, DOE Office of Energy Efficiency & Renewable Energy (US), , Phase II funding is based on the initial success of their phase I awards., The U.S. Department of Energy’s (DOE's) Office of Energy and Efficiency and Renewable Energy (EERE) will award $57 million to 53 projects by 51 American small businesses and entrepreneurs.   

    From Department of Energy (US)-DOE Office of Energy Efficiency & Renewable Energy (US) : “U.S. Department of Energy Awards $127 Million to Bring Innovative Clean Energy Technologies to Market” 

    From Department of Energy (US)

    July 23, 2021

    1
    More than $57 million will be awarded to American small businesses and entrepreneurs. Photo courtesy of National Renewable Energy Laboratory (US).

    The U.S. Department of Energy’s (DOE’s) Office of Energy and Efficiency and Renewable Energy (EERE) will award $57 million to 53 projects by 51 American small businesses and entrepreneurs with phase II funding based on the initial success of their phase I awards. This includes follow-on awards to support projects closer to market.

    Through DOE’s Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, the phase II awards support the research and development of innovative clean energy technologies toward commercialization. EERE phase II awards are awarded for a two-year project duration, with initial funding up to $1.1 million, and two potential follow-on awards of up to $1.1 million each.

    The six projects funded through the DOE Bioenergy Technologies Office are:

    Near Infrared Biomass Probe and Deployment Methods for Real-time, Field-based, Biomass Quality Measurement by ANTARES Group Inc. in Edgewater, MD: This project will help further develop a novel way to identify and measure the quality of biomass. This new probe will provide more rapid assessment of biomass quality than traditional testing, thereby guiding real-time decisions on the need for additional quality improvements to produce conversion-ready feedstocks.

    Conversion of Biogas to Liquid Fuels on Superior Catalysts by NexTech Materials, Ltd. Dba Nexceris, LLC in Lewis Center, OH: New CO2 reduction processes are required to efficiently convert biogas, biomass and stored CO2 to usable fuels. The Nexceris/WSU/Tonkomo team is developing a system to convert bio-methane and carbon dioxide into diesel fuel, jet fuel, and Fischer-Tropsch wax a valuable feedstock for chemicals, lubricants, and fuels production.

    Removing Ammonia Contamination from Biogas Feedstock by Pancopia, Inc. in Hampton, VA: Ammonia emissions from swine farms decrease swine productivity, harm the health of surrounding communities, significantly increase pollution, and threaten the production of biogas. This project will develop low-cost, reliable treatment technology to eliminate 90% of ammonia emissions from farms thus resolving these pressing issues which are preventing the implementation of biogas projects.

    Biorecovery of Nutrients from Municipal Wastewaters with Co-production of Biofuels and other Bioproducts by MicroBio Engineering in San Luis Obispo, CA: Development of technology is needed to remove phosphorus from wastewater at low-cost to very low levels to fight environmental pollution triggering harmful algal blooms. This project will reduce phosphorus contents to essentially zero level by applying conditioned filamentous algae in controlled systems allowing removal in secondary or tertiary wastewater within hours.

    Advancing Optical Imaging and Classification to Enhance Biodiversity Monitoring by OceanSpace, LLC in St. Petersburg, FL: Biofuel production requires cost reduction coupled with enhanced benefits, and an important potential benefit is reduction in impacts to biodiversity. Evaluating biodiversity impacts requires a modern sampling technology that is practical and cost-effective, an excellent solution being a sensor system that is easy to use, cost-efficient, and enhances decision-making capabilities.

    Upcycling Ocean-based Plastics for Sustainable Feedstock Supply Chain by RiKarbon, Inc. in Newark, DE: RiKarbon, Inc. is commercializing an enabling technology to produce low-cost waste plastic feedstock and waste plastic’s selective depolymerization to plastic’s building block chemicals for manufacturing renewable plastics. This project will mitigate health risks to ocean life and humans, improve the environment eco-system, promote future energy security and develop a circular economy.

    Read more about the SBIR and SBTT programs, and read the full list of selected projects here.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Department of Energy (US) is a cabinet-level department of the United States Government concerned with the United States’ policies regarding energy and safety in handling nuclear material. Its responsibilities include the nation’s nuclear weapons program; nuclear reactor production for the United States Navy; energy conservation; energy-related research; radioactive waste disposal; and domestic energy production. It also directs research in genomics. the Human Genome Project originated in a DOE initiative. DOE sponsors more research in the physical sciences than any other U.S. federal agency, the majority of which is conducted through its system of National Laboratories. The agency is led by the United States Secretary of Energy, and its headquarters are located in Southwest Washington, D.C., on Independence Avenue in the James V. Forrestal Building, named for James Forrestal, as well as in Germantown, Maryland.

    Formation and consolidation

    In 1942, during World War II, the United States started the Manhattan Project, a project to develop the atomic bomb, under the eye of the U.S. Army Corps of Engineers. After the war in 1946, the Atomic Energy Commission (AEC) was created to control the future of the project. The Atomic Energy Act of 1946 also created the framework for the first National Laboratories. Among other nuclear projects, the AEC produced fabricated uranium fuel cores at locations such as Fernald Feed Materials Production Center in Cincinnati, Ohio. In 1974, the AEC gave way to the Nuclear Regulatory Commission, which was tasked with regulating the nuclear power industry and the Energy Research and Development Administration, which was tasked to manage the nuclear weapon; naval reactor; and energy development programs.

    The 1973 oil crisis called attention to the need to consolidate energy policy. On August 4, 1977, President Jimmy Carter signed into law The Department of Energy Organization Act of 1977 (Pub.L. 95–91, 91 Stat. 565, enacted August 4, 1977), which created the Department of Energy(US). The new agency, which began operations on October 1, 1977, consolidated the Federal Energy Administration; the Energy Research and Development Administration; the Federal Power Commission; and programs of various other agencies. Former Secretary of Defense James Schlesinger, who served under Presidents Nixon and Ford during the Vietnam War, was appointed as the first secretary.

    President Carter created the Department of Energy with the goal of promoting energy conservation and developing alternative sources of energy. He wanted to not be dependent on foreign oil and reduce the use of fossil fuels. With international energy’s future uncertain for America, Carter acted quickly to have the department come into action the first year of his presidency. This was an extremely important issue of the time as the oil crisis was causing shortages and inflation. With the Three-Mile Island disaster, Carter was able to intervene with the help of the department. Carter made switches within the Nuclear Regulatory Commission in this case to fix the management and procedures. This was possible as nuclear energy and weapons are responsibility of the Department of Energy.

    Recent

    On March 28, 2017, a supervisor in the Office of International Climate and Clean Energy asked staff to avoid the phrases “climate change,” “emissions reduction,” or “Paris Agreement” in written memos, briefings or other written communication. A DOE spokesperson denied that phrases had been banned.

    In a May 2019 press release concerning natural gas exports from a Texas facility, the DOE used the term ‘freedom gas’ to refer to natural gas. The phrase originated from a speech made by Secretary Rick Perry in Brussels earlier that month. Washington Governor Jay Inslee decried the term “a joke”.

    Facilities

    The Department of Energy operates a system of national laboratories and technical facilities for research and development, as follows:

    Ames Laboratory
    Argonne National Laboratory
    Brookhaven National Laboratory
    Fermi National Accelerator Laboratory
    Idaho National Laboratory
    Lawrence Berkeley National Laboratory
    Lawrence Livermore National Laboratory
    Los Alamos National Laboratory
    National Energy Technology Laboratory
    National Renewable Energy Laboratory
    Oak Ridge National Laboratory
    Pacific Northwest National Laboratory
    Princeton Plasma Physics Laboratory
    Sandia National Laboratories
    Savannah River National Laboratory
    SLAC National Accelerator Laboratory
    Thomas Jefferson National Accelerator Facility

    Other major DOE facilities include:
    Albany Research Center
    Bannister Federal Complex
    Bettis Atomic Power Laboratory – focuses on the design and development of nuclear power for the U.S. Navy
    Kansas City Plant
    Knolls Atomic Power Laboratory – operates for Naval Reactors Program Research under the DOE (not a National Laboratory)
    National Petroleum Technology Office
    Nevada Test Site
    New Brunswick Laboratory
    Office of Fossil Energy
    Office of River Protection
    Pantex
    Radiological and Environmental Sciences Laboratory
    Y-12 National Security Complex
    Yucca Mountain nuclear waste repository
    Other:

    Pahute Mesa Airstrip – Nye County, Nevada, in supporting Nevada National Security Site

     
  • richardmitnick 9:58 am on July 23, 2021 Permalink | Reply
    Tags: "Understanding the Physics in New Metals", , Chemistry, Correlated metals, , , , , Strongly correlated materials are candidates for novel high-temperature superconductors., These materials could prove useful for practical applications in areas such as superconductivity; data processing; and quantum computers., Using inelastic resonant x-ray scattering to study quantum materials such as correlated metals.,   

    From DOE’s Brookhaven National Laboratory (US) and Paul Scherrer Institute [Paul Scherrer Institut] (CH) : “Understanding the Physics in New Metals” 

    From DOE’s Brookhaven National Laboratory (US)

    and

    Paul Scherrer Institute [Paul Scherrer Institut] (CH)

    July 19, 2021

    Barbara Vonarburg, Paul Scherrer Institute

    1
    Brookhaven Lab Scientist Jonathan Pelliciari now works as a beamline scientist at the National Synchrotron Light Source II (NSLS-II)[below], where he continues to use inelastic resonant x-ray scattering to study quantum materials such as correlated metals.

    Researchers from the Paul Scherrer Institute PSI and the Brookhaven National Laboratory (BNL), working in an international team, have developed a new method for complex X-ray studies that will aid in better understanding so-called correlated metals. These materials could prove useful for practical applications in areas such as superconductivity; data processing; and quantum computers. Today the researchers present their work in the journal Physical Review X.

    In substances such as silicon or aluminium, the mutual repulsion of electrons hardly affects the material properties. Not so with so-called correlated materials, in which the electrons interact strongly with one another. The movement of one electron in a correlated material leads to a complex and coordinated reaction of the other electrons. It is precisely such coupled processes that make these correlated materials so promising for practical applications, and at the same time so complicated to understand.

    Strongly correlated materials are candidates for novel high-temperature superconductors, which can conduct electricity without loss and which are used in medicine, for example, in magnetic resonance imaging. They also could be used to build electronic components, or even quantum computers, with which data can be more efficiently processed and stored.

    “Strongly correlated materials exhibit a wealth of fascinating phenomena,” says Thorsten Schmitt, head of the Spectroscopy of Novel Materials Group at PSI: “However, it remains a major challenge to understand and exploit the complex behaviour that lies behind these phenomena.” Schmitt and his research group tackle this task with the help of a method for which they use the intense and extremely precise X-ray radiation from the Swiss Light Source SLS at PSI.

    4
    Swiss Light Source SLS Paul Scherrer Institut (PSI)

    This modern technique, which has been further developed at PSI in recent years, is called resonant inelastic X-ray scattering, or RIXS for short.

    2
    Thorsten Schmitt at the experiment station of the Swiss Light Source SLS, which provided the X-ray light used for the experiments. Credit: Mahir Dzambegovic/Paul Scherrer Institute.

    X-rays excite electrons

    With RIXS, soft X-rays are scattered off a sample. The incident X-ray beam is tuned in such a way that it elevates electrons from a lower electron orbital to a higher orbital, which means that special resonances are excited. This throws the system out of balance. Various electrodynamic processes lead it back to the ground state. Some of the excess energy is emitted again as X-ray light. The spectrum of this inelastically scattered radiation provides information about the underlying processes and thus on the electronic structure of the material.

    “In recent years, RIXS has developed into a powerful experimental tool for deciphering the complexity of correlated materials,” Schmitt explains. When used to investigate correlated insulators in particular, it works very well. Up to now, however, the method has been unsuccessful in probing correlated metals. Its failure was due to the difficulty of interpreting the extremely complicated spectra caused by many different electrodynamic processes during the scattering. “In this connection collaboration with theorists is essential,” explains Schmitt, “because they can simulate the processes observed in the experiment.”

    Calculations of correlated metals

    This is a specialty of theoretical physicist Keith Gilmore, formerly of the Brookhaven National Laboratory (BNL) in the USA and now at the Humboldt University of Berlin [Humboldt-Universität zu Berlin] (DE). “Calculating the RIXS results for correlated metals is difficult because you have to handle several electron orbitals, large bandwidths, and a large number of electronic interactions at the same time,” says Gilmore. Correlated insulators are easier to handle because fewer orbitals are involved; this allows model calculations that explicitly include all electrons. To be precise, Gilmore explains: “In our new method of describing the RIXS processes, we are now combining the contributions that come from the excitation of one electron with the coordinated reaction of all other electrons.”

    To test the calculation, the PSI researchers experimented with a substance that BNL scientist Jonathan Pelliciari had investigated in detail as part of his doctoral thesis at PSI: barium-iron-arsenide. If you add a specific amount of potassium atoms to the material, it becomes superconducting. It belongs to a class of unconventional high-temperature iron-based superconductors that are expected to provide a better understanding of the phenomenon. “Until now, the interpretation of RIXS measurements on such complex materials has been guided mainly by intuition. Now these RIXS calculations give us experimenters a framework that enables a more practical interpretation of the results. Our RIXS measurements at PSI on barium-iron-arsenide are in excellent agreement with the calculated profiles,” Pelliciari says.

    Combination of experiment and theory

    In their experiments, the researchers investigated the physics around the iron atom. “One advantage of RIXS is that you can concentrate on a specific component and examine it in detail for materials that consist of several elements,” Schmitt says. The well-tuned X-ray beam causes an inner electron in the iron atom to be elevated from the ground state in the core level to the higher energy valence band, which is only partially occupied. This initial excitation of the core electron can cause further secondary excitations and trigger many complicated decay processes that ultimately manifest themselves in spectral satellite structures. (See graphic.)

    3
    The graphic shows how an electron (blue dot) can be elevated to different energy levels (dotted arrows) or falls back to lower energy levels. Between the highest energy level and somewhat lower level, secondary processes take place. The curve in the background represents the iron electronic levels.
    Credit: Keith Gilmore/Paul Scherrer Institute.

    Since the contributions of the many reactions are sometimes small and close to one another, it is difficult to find out which processes actually took place in the experiment. Here the combination of experiment and theory helps. “If you have no theoretical support for difficult experiments, you cannot understand the processes, that is, the physics, in detail,” Schmitt says. The same also applies to theory: “You often don’t know which theories are realistic until you can compare them with an experiment. Progress in understanding comes when experiment and theory are brought together. This descriptive method thus has the potential to become a reference for the interpretation of spectroscopic experiments on correlated metals.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Paul Scherrer Institute [Paul Scherrer Institut] (CH) is the largest research institute for natural and engineering sciences within Switzerland. We perform world-class research in three main subject areas: Matter and Material; Energy and the Environment; and Human Health. By conducting fundamental and applied research, we work on long-term solutions for major challenges facing society, industry and science.

    The Paul Scherrer Institute (PSI) is a multi-disciplinary research institute for natural and engineering sciences in Switzerland. It is located in the Canton of Aargau in the municipalities Villigen and Würenlingen on either side of the River Aare, and covers an area over 35 hectares in size. Like Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH) and EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), PSI belongs to the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales](CH). The PSI employs around 2100 people. It conducts basic and applied research in the fields of matter and materials, human health, and energy and the environment. About 37% of PSI’s research activities focus on material sciences, 24% on life sciences, 19% on general energy, 11% on nuclear energy and safety, and 9% on particle physics.

    PSI develops, builds and operates large and complex research facilities and makes them available to the national and international scientific communities. In 2017, for example, more than 2500 researchers from 60 different countries came to PSI to take advantage of the concentration of large-scale research facilities in the same location, which is unique worldwide. About 1900 experiments are conducted each year at the approximately 40 measuring stations in these facilities.

    In recent years, the institute has been one of the largest recipients of money from the Swiss lottery fund.

    Research and specialist areas

    PSI develops, builds and operates several accelerator facilities, e. g. a 590 MeV high-current cyclotron, which in normal operation supplies a beam current of about 2.2 mA. PSI also operates four large-scale research facilities: a synchrotron light source (SLS), which is particularly brilliant and stable, a spallation neutron source (SINQ), a muon source (SμS) and an X-ray free-electron laser (SwissFEL). This makes PSI currently (2020) the only institute in the world to provide the four most important probes for researching the structure and dynamics of condensed matter (neutrons, muons and synchrotron radiation) on a campus for the international user community. In addition, HIPA’s target facilities also produce pions that feed the muon source and the Ultracold Neutron source UCN produces very slow, ultracold neutrons. All these particle types are used for research in particle physics.

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.


    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 (mission need) from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.
    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.
    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years.[19] NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.
    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.
    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University.
    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).


    It is currently operating at CERN near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.


     
  • richardmitnick 9:04 am on July 23, 2021 Permalink | Reply
    Tags: "Team wins competitive DOE award to advance isotope production critical for U.S. science medicine and industry", , , , Chemistry, Clemson University (US), DOE's Savannah River National Laboratory (US), Electrochemical engineering, Isotope production and processing techniques, Project: "Electrochemical hydrogen isotope fractionation—fundamental insights leading to process scale up", Separation technologies,   

    From Vanderbilt University (US) : “Team wins competitive DOE award to advance isotope production critical for U.S. science medicine and industry” 

    Vanderbilt U Bloc

    From Vanderbilt University (US)

    7.23.21
    Brenda Ellis
    615 343-6314
    brenda.ellis@vanderbilt.edu

    1
    Piran Kidambi.

    A Department of Energy (US) $4 million initiative to advance research in isotope production includes a Vanderbilt engineering professor’s work on separation technologies and to scale up processes. The funding is part of a key federal program that produces critical isotopes otherwise unavailable or in short supply for U.S. science, medicine and industry.

    Piran Kidambi, assistant professor of chemical and biomolecular engineering, is part of a team led by DOE’s Savannah River National Laboratory (US) and Clemson University (US) that has received a two-year, $800,000 grant—“Electrochemical hydrogen isotope fractionation—fundamental insights leading to process scale up”—as part of the DOE’s funding for 10 awards across five isotope research efforts. The awards were selected on a competitive basis by peer review.

    Isotopes, or variations of the same elements with the same number of protons but different numbers of neutrons, have unique properties that can make them useful in medical diagnostic and treatment applications. They also are important for applications in quantum information science, nuclear power, national security and more.

    “Given the very minor differences in mass, or physical properties, as well as very similar chemical properties between isotopes, separation of one isotope from the other is inherently challenging,” said Kidambi. “Traditionally, this has been accomplished in energy intensive processes with potential for adverse environmental impact.” Kidambi’s proposed project aims to use fundamental understanding of a separation processes using novel membranes to enable process design and scale up for isotope separation. The team includes the lead organization Savannah River National Laboratory and Clemson University.

    The award recipients include six universities and three DOE national laboratories.

    University of Missouri (US)

    DOE’s Brookhaven National Laboratory (US)

    University of Washington (US)

    Columbia University (US)

    University of Wisconsin‐Madison (US)

    DOE’s Savannah River National Laboratory (US)

    Clemson University (US)

    Vanderbilt University (US)

    DOE’s Oak Ridge National Laboratory (US)

    Most of the awards go to collaborative teams where universities and national laboratories work together.

    Topics funded by the DOE include efforts to increase the availability of new cancer diagnostic and therapeutic agents to the medical community and broad improvements to isotope production and processing techniques with the goal of enhancing isotope availability and purity.

    “Isotopes play an absolutely vital role in countless areas of science, medicine, industry, and even national and homeland security today,” said Jehanne Gillo, director of the DOE Isotope Program, in the DOE’s announcement. “These R&D activities will continue our efforts to ensure the availability of isotopes critical to Americans’ health, prosperity, and security that would be otherwise impossible to obtain.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Commodore Cornelius Vanderbilt was in his 79th year when he decided to make the gift that founded Vanderbilt University (US) in the spring of 1873.
    The $1 million that he gave to endow and build the university was the commodore’s only major philanthropy. Methodist Bishop Holland N. McTyeire of Nashville, husband of Amelia Townsend who was a cousin of the commodore’s young second wife Frank Crawford, went to New York for medical treatment early in 1873 and spent time recovering in the Vanderbilt mansion. He won the commodore’s admiration and support for the project of building a university in the South that would “contribute to strengthening the ties which should exist between all sections of our common country.”

    McTyeire chose the site for the campus, supervised the construction of buildings and personally planted many of the trees that today make Vanderbilt a national arboretum. At the outset, the university consisted of one Main Building (now Kirkland Hall), an astronomical observatory and houses for professors. Landon C. Garland was Vanderbilt’s first chancellor, serving from 1875 to 1893. He advised McTyeire in selecting the faculty, arranged the curriculum and set the policies of the university.

    For the first 40 years of its existence, Vanderbilt was under the auspices of the Methodist Episcopal Church, South. The Vanderbilt Board of Trust severed its ties with the church in June 1914 as a result of a dispute with the bishops over who would appoint university trustees.

    From the outset, Vanderbilt met two definitions of a university: It offered work in the liberal arts and sciences beyond the baccalaureate degree and it embraced several professional schools in addition to its college. James H. Kirkland, the longest serving chancellor in university history (1893-1937), followed Chancellor Garland. He guided Vanderbilt to rebuild after a fire in 1905 that consumed the main building, which was renamed in Kirkland’s honor, and all its contents. He also navigated the university through the separation from the Methodist Church. Notable advances in graduate studies were made under the third chancellor, Oliver Cromwell Carmichael (1937-46). He also created the Joint University Library, brought about by a coalition of Vanderbilt, Peabody College and Scarritt College.

    Remarkable continuity has characterized the government of Vanderbilt. The original charter, issued in 1872, was amended in 1873 to make the legal name of the corporation “The Vanderbilt University.” The charter has not been altered since.

    The university is self-governing under a Board of Trust that, since the beginning, has elected its own members and officers. The university’s general government is vested in the Board of Trust. The immediate government of the university is committed to the chancellor, who is elected by the Board of Trust.

    The original Vanderbilt campus consisted of 75 acres. By 1960, the campus had spread to about 260 acres of land. When George Peabody College for Teachers merged with Vanderbilt in 1979, about 53 acres were added.

    Vanderbilt’s student enrollment tended to double itself each 25 years during the first century of the university’s history: 307 in the fall of 1875; 754 in 1900; 1,377 in 1925; 3,529 in 1950; 7,034 in 1975. In the fall of 1999 the enrollment was 10,127.

    In the planning of Vanderbilt, the assumption seemed to be that it would be an all-male institution. Yet the board never enacted rules prohibiting women. At least one woman attended Vanderbilt classes every year from 1875 on. Most came to classes by courtesy of professors or as special or irregular (non-degree) students. From 1892 to 1901 women at Vanderbilt gained full legal equality except in one respect — access to dorms. In 1894 the faculty and board allowed women to compete for academic prizes. By 1897, four or five women entered with each freshman class. By 1913 the student body contained 78 women, or just more than 20 percent of the academic enrollment.

    National recognition of the university’s status came in 1949 with election of Vanderbilt to membership in the select Association of American Universities (US). In the 1950s Vanderbilt began to outgrow its provincial roots and to measure its achievements by national standards under the leadership of Chancellor Harvie Branscomb. By its 90th anniversary in 1963, Vanderbilt for the first time ranked in the top 20 private universities in the United States.

    Vanderbilt continued to excel in research, and the number of university buildings more than doubled under the leadership of Chancellors Alexander Heard (1963-1982) and Joe B. Wyatt (1982-2000), only the fifth and sixth chancellors in Vanderbilt’s long and distinguished history. Heard added three schools (Blair, the Owen Graduate School of Management and Peabody College) to the seven already existing and constructed three dozen buildings. During Wyatt’s tenure, Vanderbilt acquired or built one-third of the campus buildings and made great strides in diversity, volunteerism and technology.

    The university grew and changed significantly under its seventh chancellor, Gordon Gee, who served from 2000 to 2007. Vanderbilt led the country in the rate of growth for academic research funding, which increased to more than $450 million and became one of the most selective undergraduate institutions in the country.

    On March 1, 2008, Nicholas S. Zeppos was named Vanderbilt’s eighth chancellor after serving as interim chancellor beginning Aug. 1, 2007. Prior to that, he spent 2002-2008 as Vanderbilt’s provost, overseeing undergraduate, graduate and professional education programs as well as development, alumni relations and research efforts in liberal arts and sciences, engineering, music, education, business, law and divinity. He first came to Vanderbilt in 1987 as an assistant professor in the law school. In his first five years, Zeppos led the university through the most challenging economic times since the Great Depression, while continuing to attract the best students and faculty from across the country and around the world. Vanderbilt got through the economic crisis notably less scathed than many of its peers and began and remained committed to its much-praised enhanced financial aid policy for all undergraduates during the same timespan. The Martha Rivers Ingram Commons for first-year students opened in 2008 and College Halls, the next phase in the residential education system at Vanderbilt, is on track to open in the fall of 2014. During Zeppos’ first five years, Vanderbilt has drawn robust support from federal funding agencies, and the Medical Center entered into agreements with regional hospitals and health care systems in middle and east Tennessee that will bring Vanderbilt care to patients across the state.

    Today, Vanderbilt University is a private research university of about 6,500 undergraduates and 5,300 graduate and professional students. The university comprises 10 schools, a public policy center and The Freedom Forum First Amendment Center. Vanderbilt offers undergraduate programs in the liberal arts and sciences, engineering, music, education and human development as well as a full range of graduate and professional degrees. The university is consistently ranked as one of the nation’s top 20 universities by publications such as U.S. News & World Report, with several programs and disciplines ranking in the top 10.

    Cutting-edge research and liberal arts, combined with strong ties to a distinguished medical center, creates an invigorating atmosphere where students tailor their education to meet their goals and researchers collaborate to solve complex questions affecting our health, culture and society.

    Vanderbilt, an independent, privately supported university, and the separate, non-profit Vanderbilt University Medical Center share a respected name and enjoy close collaboration through education and research. Together, the number of people employed by these two organizations exceeds that of the largest private employer in the Middle Tennessee region.

     
  • richardmitnick 8:43 pm on July 22, 2021 Permalink | Reply
    Tags: "Laser improves the time resolution of CryoEM", , , Chemistry, , In cryoEM samples are embedded in vitreous ice-a glass-like form of ice that is obtained when water is frozen so rapidly that crystallization cannot occur., , , Scientists at EPFL’s School of Basic Sciences has developed a cryoEM method that can capture images of protein movements at the microsecond (a millionth of a second) timescale., , The instrument forms images using a beam of electrons instead of light.   

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “Laser improves the time resolution of CryoEM” 

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    20.07.21
    Nik Papageorgiou

    EPFL scientists have devised a new method that can speed up the real-time observation capabilities of cryo-electron microscopy.

    Cryo-Electron Microscope

    1

    In 2017, Jacques Dubochet, Joachim Frank, and Richard Henderson won the Nobel Prize in Chemistry for their contributions to cryo-electron microscopy (cryoEM), an imaging technique that can capture pictures of biomolecules such as proteins with atomic precision.

    In cryoEM samples are embedded in vitreous ice-a glass-like form of ice that is obtained when water is frozen so rapidly that crystallization cannot occur. With the sample vitrified, high-resolution pictures of their molecular structure can be taken with an electron microscope, an instrument that forms images using a beam of electrons instead of light.

    CryoEM has opened up new dimensions in life sciences, chemistry, and medicine. For example, it was recently used to map the structure of the SARS-CoV-2 spike protein, which is the target of many of the COVID-19 vaccines.

    Proteins constantly change their 3D structure in the cell. These conformational rearrangements are integral for proteins to perform their specialized functions, and take place within millionths to thousandths of a second. Such fast movements are too fast to be observed in real time by current cryoEM protocols, rendering our understanding of proteins incomplete.

    But a team of scientists led by Ulrich Lorenz at EPFL’s School of Basic Sciences has developed a cryoEM method that can capture images of protein movements at the microsecond (a millionth of a second) timescale. The work is published in Chemical Physics Letters.

    The method involves rapidly melting the vitrified sample with a laser pulse. When the ice melts into a liquid, there is a tunable time window in which the protein can be induced to move in the way they do in their natural liquid state in the cell.

    3

    “Generally speaking, warming up a cryo sample causes it to de-vitrify,” says Ulrich Lorenz. “But we can overcome this obstacle by how quickly we melt the sample.”

    After the laser pulse, the sample is re-vitrified in just a few microseconds, trapping the particles in their transient configurations. In this “paused” state, they can now be observed with conventional cryoEM methods.

    “Matching the time resolution of cryoEM to the natural timescale of proteins will allow us to directly study processes that were previously inaccessible,” says Lorenz.

    The team of scientists tested their new method by disassembling proteins after structurally damaging them, and trapping them in partially unraveled configurations.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École polytechnique fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is the Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH) . Associated with several specialized research institutes, the two universities form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices was located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganised and acquired the status of a university in 1890, the technical faculty changed its name to École d’ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich(CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organised into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences (SB, Jan S. Hesthaven)

    Institute of Mathematics (MATH, Victor Panaretos)
    Institute of Chemical Sciences and Engineering (ISIC, Emsley Lyndon)
    Institute of Physics (IPHYS, Harald Brune)
    European Centre of Atomic and Molecular Computations (CECAM, Ignacio Pagonabarraga Mora)
    Bernoulli Center (CIB, Nicolas Monod)
    Biomedical Imaging Research Center (CIBM, Rolf Gruetter)
    Interdisciplinary Center for Electron Microscopy (CIME, Cécile Hébert)
    Max Planck-EPFL Centre for Molecular Nanosciences and Technology (CMNT, Thomas Rizzo)
    Swiss Plasma Center (SPC, Ambrogio Fasoli)
    Laboratory of Astrophysics (LASTRO, Jean-Paul Kneib)

    School of Engineering (STI, Ali Sayed)

    Institute of Electrical Engineering (IEL, Giovanni De Micheli)
    Institute of Mechanical Engineering (IGM, Thomas Gmür)
    Institute of Materials (IMX, Michaud Véronique)
    Institute of Microengineering (IMT, Olivier Martin)
    Institute of Bioengineering (IBI, Matthias Lütolf)

    School of Architecture, Civil and Environmental Engineering (ENAC, Claudia R. Binder)

    Institute of Architecture (IA, Luca Ortelli)
    Civil Engineering Institute (IIC, Eugen Brühwiler)
    Institute of Urban and Regional Sciences (INTER, Philippe Thalmann)
    Environmental Engineering Institute (IIE, David Andrew Barry)

    School of Computer and Communication Sciences (IC, James Larus)

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences (SV, Gisou van der Goot)

    Bachelor-Master Teaching Section in Life Sciences and Technologies (SSV)
    Brain Mind Institute (BMI, Carmen Sandi)
    Institute of Bioengineering (IBI, Melody Swartz)
    Swiss Institute for Experimental Cancer Research (ISREC, Douglas Hanahan)
    Global Health Institute (GHI, Bruno Lemaitre)
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics (CPG)
    NCCR Synaptic Bases of Mental Diseases (NCCR-SYNAPSY)

    College of Management of Technology (CDM)

    Swiss Finance Institute at EPFL (CDM-SFI, Damir Filipovic)
    Section of Management of Technology and Entrepreneurship (CDM-PMTE, Daniel Kuhn)
    Institute of Technology and Public Policy (CDM-ITPP, Matthias Finger)
    Institute of Management of Technology and Entrepreneurship (CDM-MTEI, Ralf Seifert)
    Section of Financial Engineering (CDM-IF, Julien Hugonnier)

    College of Humanities (CDH, Thomas David)

    Human and social sciences teaching program (CDH-SHS, Thomas David)

    EPFL Middle East (EME, Dr. Franco Vigliotti)[62]

    Section of Energy Management and Sustainability (MES, Prof. Maher Kayal)

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 10:13 pm on July 20, 2021 Permalink | Reply
    Tags: "Making Clean Hydrogen Is Hard But Researchers Just Solved a Major Hurdle", , , Chemistry, ,   

    From University of Texas at Austin (US) : “Making Clean Hydrogen Is Hard But Researchers Just Solved a Major Hurdle” 

    From University of Texas at Austin (US)

    1

    July 15, 2021

    For decades, researchers around the world have searched for ways to use solar power to generate the key reaction for producing hydrogen as a clean energy source — splitting water molecules to form hydrogen and oxygen. However, such efforts have mostly failed because doing it well was too costly, and trying to do it at a low cost led to poor performance.

    Now, researchers from The University of Texas at Austin have found a low-cost way to solve one half of the equation, using sunlight to efficiently split off oxygen molecules from water. The finding, published recently in Nature Communications, represents a step forward toward greater adoption of hydrogen as a key part of our energy infrastructure.

    As early as the 1970s, researchers were investigating the possibility of using solar energy to generate hydrogen. But the inability to find materials with the combination of properties needed for a device that can perform the key chemical reactions efficiently has kept it from becoming a mainstream method.

    1
    The team’s experimental water-splitting apparatus.

    “You need materials that are good at absorbing sunlight and, at the same time, don’t degrade while the water-splitting reactions take place,” said Edward Yu, a professor in the Cockrell School’s Department of Electrical and Computer Engineering. “It turns out materials that are good at absorbing sunlight tend to be unstable under the conditions required for the water-splitting reaction, while the materials that are stable tend to be poor absorbers of sunlight. These conflicting requirements drive you toward a seemingly inevitable tradeoff, but by combining multiple materials — one that efficiently absorbs sunlight, such as silicon, and another that provides good stability, such as silicon dioxide — into a single device, this conflict can be resolved.”

    However, this creates another challenge — the electrons and holes created by absorption of sunlight in silicon must be able to move easily across the silicon dioxide layer. This usually requires the silicon dioxide layer to be no more than a few nanometers, which reduces its effectiveness in protecting the silicon absorber from degradation.

    The key to this breakthrough came through a method of creating electrically conductive paths through a thick silicon dioxide layer that can be performed at low cost and scaled to high manufacturing volumes. To get there, Yu and his team used a technique first deployed in the manufacturing of semiconductor electronic chips. By coating the silicon dioxide layer with a thin film of aluminum and then heating the entire structure, arrays of nanoscale “spikes” of aluminum that completely bridge the silicon dioxide layer are formed. These can then easily be replaced by nickel or other materials that help catalyze the water-splitting reactions.

    When illuminated by sunlight, the devices can efficiently oxidize water to form oxygen molecules while also generating hydrogen at a separate electrode and exhibit outstanding stability under extended operation. Because the techniques employed to create these devices are commonly used in manufacturing of semiconductor electronics, they should be easy to scale for mass production.

    The team has filed a provisional patent application to commercialize the technology.

    Improving the way hydrogen is generated is key to its emergence as a viable fuel source. Most hydrogen production today occurs through heating steam and methane, but that relies heavily on fossil fuels and produces carbon emissions.

    There is a push toward “green hydrogen” which uses more environmentally friendly methods to generate hydrogen. And simplifying the water-splitting reaction is a key part of that effort.

    2

    Hydrogen has potential to become an important renewable resource with some unique qualities. It already has a major role in significant industrial processes, and it is starting to show up in the automotive industry. Fuel cell batteries look promising in long-haul trucking, and hydrogen technology could be a boon to energy storage, with the ability to store excess wind and solar energy produced when conditions are ripe for them.

    Going forward, the team will work to improve the efficiency of the oxygen portion of water-splitting by increasing the reaction rate. The researchers’ next major challenge is then to move on to the other half of the equation.

    “We were able to address the oxygen side of the reaction first, which is the more challenging part, ” Yu said, “but you need to perform both the hydrogen and oxygen evolution reactions to completely split the water molecules, so that’s why our next step is to look at applying these ideas to make devices for the hydrogen portion of the reaction.”

    This research was funded by the National Science Foundation (US) through the Directorate for Engineering and the Materials Research Science and Engineering Centers (MRSEC) program. Yu worked on the project with UT Austin students Soonil Lee and Alex De Palma, along with Li Ji, a professor at Fudan University [復旦大學](CN).

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    University Texas at Austin

    U Texas Austin campus

    The University of Texas at Austin is a public research university in Austin, Texas and the flagship institution of the University of Texas System. Founded in 1883, the University of Texas was inducted into the Association of American Universities (US) in 1929, becoming only the third university in the American South to be elected. The institution has the nation’s seventh-largest single-campus enrollment, with over 50,000 undergraduate and graduate students and over 24,000 faculty and staff.

    A Public Ivy, it is a major center for academic research. The university houses seven museums and seventeen libraries, including the LBJ Presidential Library and the Blanton Museum of Art, and operates various auxiliary research facilities, such as the J. J. Pickle Research Campus and the McDonald Observatory. As of November 2020, 13 Nobel Prize winners, four Pulitzer Prize winners, two Turing Award winners, two Fields medalists, two Wolf Prize winners, and two Abel prize winners have been affiliated with the school as alumni, faculty members or researchers. The university has also been affiliated with three Primetime Emmy Award winners, and has produced a total of 143 Olympic medalists.

    Student-athletes compete as the Texas Longhorns and are members of the Big 12 Conference. Its Longhorn Network is the only sports network featuring the college sports of a single university. The Longhorns have won four NCAA Division I National Football Championships, six NCAA Division I National Baseball Championships, thirteen NCAA Division I National Men’s Swimming and Diving Championships, and has claimed more titles in men’s and women’s sports than any other school in the Big 12 since the league was founded in 1996.

    Establishment

    The first mention of a public university in Texas can be traced to the 1827 constitution for the Mexican state of Coahuila y Tejas. Although Title 6, Article 217 of the Constitution promised to establish public education in the arts and sciences, no action was taken by the Mexican government. After Texas obtained its independence from Mexico in 1836, the Texas Congress adopted the Constitution of the Republic, which, under Section 5 of its General Provisions, stated “It shall be the duty of Congress, as soon as circumstances will permit, to provide, by law, a general system of education.”

    On April 18, 1838, “An Act to Establish the University of Texas” was referred to a special committee of the Texas Congress, but was not reported back for further action. On January 26, 1839, the Texas Congress agreed to set aside fifty leagues of land—approximately 288,000 acres (117,000 ha)—towards the establishment of a publicly funded university. In addition, 40 acres (16 ha) in the new capital of Austin were reserved and designated “College Hill”. (The term “Forty Acres” is colloquially used to refer to the University as a whole. The original 40 acres is the area from Guadalupe to Speedway and 21st Street to 24th Street.)

    In 1845, Texas was annexed into the United States. The state’s Constitution of 1845 failed to mention higher education. On February 11, 1858, the Seventh Texas Legislature approved O.B. 102, an act to establish the University of Texas, which set aside $100,000 in United States bonds toward construction of the state’s first publicly funded university (the $100,000 was an allocation from the $10 million the state received pursuant to the Compromise of 1850 and Texas’s relinquishing claims to lands outside its present boundaries). The legislature also designated land reserved for the encouragement of railroad construction toward the university’s endowment. On January 31, 1860, the state legislature, wanting to avoid raising taxes, passed an act authorizing the money set aside for the University of Texas to be used for frontier defense in west Texas to protect settlers from Indian attacks.

    Texas’s secession from the Union and the American Civil War delayed repayment of the borrowed monies. At the end of the Civil War in 1865, The University of Texas’s endowment was just over $16,000 in warrants and nothing substantive had been done to organize the university’s operations. This effort to establish a University was again mandated by Article 7, Section 10 of the Texas Constitution of 1876 which directed the legislature to “establish, organize and provide for the maintenance, support and direction of a university of the first class, to be located by a vote of the people of this State, and styled “The University of Texas”.

    Additionally, Article 7, Section 11 of the 1876 Constitution established the Permanent University Fund, a sovereign wealth fund managed by the Board of Regents of the University of Texas and dedicated to the maintenance of the university. Because some state legislators perceived an extravagance in the construction of academic buildings of other universities, Article 7, Section 14 of the Constitution expressly prohibited the legislature from using the state’s general revenue to fund construction of university buildings. Funds for constructing university buildings had to come from the university’s endowment or from private gifts to the university, but the university’s operating expenses could come from the state’s general revenues.

    The 1876 Constitution also revoked the endowment of the railroad lands of the Act of 1858, but dedicated 1,000,000 acres (400,000 ha) of land, along with other property appropriated for the university, to the Permanent University Fund. This was greatly to the detriment of the university as the lands the Constitution of 1876 granted the university represented less than 5% of the value of the lands granted to the university under the Act of 1858 (the lands close to the railroads were quite valuable, while the lands granted the university were in far west Texas, distant from sources of transportation and water). The more valuable lands reverted to the fund to support general education in the state (the Special School Fund).

    On April 10, 1883, the legislature supplemented the Permanent University Fund with another 1,000,000 acres (400,000 ha) of land in west Texas granted to the Texas and Pacific Railroad but returned to the state as seemingly too worthless to even survey. The legislature additionally appropriated $256,272.57 to repay the funds taken from the university in 1860 to pay for frontier defense and for transfers to the state’s General Fund in 1861 and 1862. The 1883 grant of land increased the land in the Permanent University Fund to almost 2.2 million acres. Under the Act of 1858, the university was entitled to just over 1,000 acres (400 ha) of land for every mile of railroad built in the state. Had the 1876 Constitution not revoked the original 1858 grant of land, by 1883, the university lands would have totaled 3.2 million acres, so the 1883 grant was to restore lands taken from the university by the 1876 Constitution, not an act of munificence.

    On March 30, 1881, the legislature set forth the university’s structure and organization and called for an election to establish its location. By popular election on September 6, 1881, Austin (with 30,913 votes) was chosen as the site. Galveston, having come in second in the election (with 20,741 votes), was designated the location of the medical department (Houston was third with 12,586 votes). On November 17, 1882, on the original “College Hill,” an official ceremony commemorated the laying of the cornerstone of the Old Main building. University President Ashbel Smith, presiding over the ceremony, prophetically proclaimed “Texas holds embedded in its earth rocks and minerals which now lie idle because unknown, resources of incalculable industrial utility, of wealth and power. Smite the earth, smite the rocks with the rod of knowledge and fountains of unstinted wealth will gush forth.” The University of Texas officially opened its doors on September 15, 1883.

    Expansion and growth

    In 1890, George Washington Brackenridge donated $18,000 for the construction of a three-story brick mess hall known as Brackenridge Hall (affectionately known as “B.Hall”), one of the university’s most storied buildings and one that played an important place in university life until its demolition in 1952.

    The old Victorian-Gothic Main Building served as the central point of the campus’s 40-acre (16 ha) site, and was used for nearly all purposes. But by the 1930s, discussions arose about the need for new library space, and the Main Building was razed in 1934 over the objections of many students and faculty. The modern-day tower and Main Building were constructed in its place.

    In 1910, George Washington Brackenridge again displayed his philanthropy, this time donating 500 acres (200 ha) on the Colorado River to the university. A vote by the regents to move the campus to the donated land was met with outrage, and the land has only been used for auxiliary purposes such as graduate student housing. Part of the tract was sold in the late-1990s for luxury housing, and there are controversial proposals to sell the remainder of the tract. The Brackenridge Field Laboratory was established on 82 acres (33 ha) of the land in 1967.

    In 1916, Gov. James E. Ferguson became involved in a serious quarrel with the University of Texas. The controversy grew out of the board of regents’ refusal to remove certain faculty members whom the governor found objectionable. When Ferguson found he could not have his way, he vetoed practically the entire appropriation for the university. Without sufficient funding, the university would have been forced to close its doors. In the middle of the controversy, Ferguson’s critics brought to light a number of irregularities on the part of the governor. Eventually, the Texas House of Representatives prepared 21 charges against Ferguson, and the Senate convicted him on 10 of them, including misapplication of public funds and receiving $156,000 from an unnamed source. The Texas Senate removed Ferguson as governor and declared him ineligible to hold office.

    In 1921, the legislature appropriated $1.35 million for the purchase of land next to the main campus. However, expansion was hampered by the restriction against using state revenues to fund construction of university buildings as set forth in Article 7, Section 14 of the Constitution. With the completion of Santa Rita No. 1 well and the discovery of oil on university-owned lands in 1923, the university added significantly to its Permanent University Fund. The additional income from Permanent University Fund investments allowed for bond issues in 1931 and 1947, which allowed the legislature to address funding for the university along with the Agricultural and Mechanical College (now known as Texas A&M University). With sufficient funds to finance construction on both campuses, on April 8, 1931, the Forty Second Legislature passed H.B. 368. which dedicated the Agricultural and Mechanical College a 1/3 interest in the Available University Fund, the annual income from Permanent University Fund investments.

    The University of Texas was inducted into the Association of American Universities in 1929. During World War II, the University of Texas was one of 131 colleges and universities nationally that took part in the V-12 Navy College Training Program which offered students a path to a Navy commission.

    In 1950, following Sweatt v. Painter, the University of Texas was the first major university in the South to accept an African-American student. John S. Chase went on to become the first licensed African-American architect in Texas.

    In the fall of 1956, the first black students entered the university’s undergraduate class. Black students were permitted to live in campus dorms, but were barred from campus cafeterias. The University of Texas integrated its facilities and desegregated its dorms in 1965. UT, which had had an open admissions policy, adopted standardized testing for admissions in the mid-1950s at least in part as a conscious strategy to minimize the number of Black undergraduates, given that they were no longer able to simply bar their entry after the Brown decision.

    Following growth in enrollment after World War II, the university unveiled an ambitious master plan in 1960 designed for “10 years of growth” that was intended to “boost the University of Texas into the ranks of the top state universities in the nation.” In 1965, the Texas Legislature granted the university Board of Regents to use eminent domain to purchase additional properties surrounding the original 40 acres (160,000 m^2). The university began buying parcels of land to the north, south, and east of the existing campus, particularly in the Blackland neighborhood to the east and the Brackenridge tract to the southeast, in hopes of using the land to relocate the university’s intramural fields, baseball field, tennis courts, and parking lots.

    On March 6, 1967, the Sixtieth Texas Legislature changed the university’s official name from “The University of Texas” to “The University of Texas at Austin” to reflect the growth of the University of Texas System.

    Recent history

    The first presidential library on a university campus was dedicated on May 22, 1971, with former President Johnson, Lady Bird Johnson and then-President Richard Nixon in attendance. Constructed on the eastern side of the main campus, the Lyndon Baines Johnson Library and Museum is one of 13 presidential libraries administered by the National Archives and Records Administration.

    A statue of Martin Luther King Jr. was unveiled on campus in 1999 and subsequently vandalized. By 2004, John Butler, a professor at the McCombs School of Business suggested moving it to Morehouse College, a historically black college, “a place where he is loved”.

    The University of Texas at Austin has experienced a wave of new construction recently with several significant buildings. On April 30, 2006, the school opened the Blanton Museum of Art. In August 2008, the AT&T Executive Education and Conference Center opened, with the hotel and conference center forming part of a new gateway to the university. Also in 2008, Darrell K Royal-Texas Memorial Stadium was expanded to a seating capacity of 100,119, making it the largest stadium (by capacity) in the state of Texas at the time.

    On January 19, 2011, the university announced the creation of a 24-hour television network in partnership with ESPN, dubbed the Longhorn Network. ESPN agreed to pay a $300 million guaranteed rights fee over 20 years to the university and to IMG College, the school’s multimedia rights partner. The network covers the university’s intercollegiate athletics, music, cultural arts, and academics programs. The channel first aired in September 2011.

     
  • richardmitnick 9:28 am on July 18, 2021 Permalink | Reply
    Tags: "Neurons Unexpectedly Encode Information in the Timing of Their Firing", , Artificial Intelligence researchers typically have to train artificial neural networks on hundreds or thousands of examples of a pattern or concept before the synapse strengthens., , , , Chemistry, Information seems to be encoded through the strengthening of synapses only when two neurons fire within tens of milliseconds of each other., It’s really important not just how many [neuron activations] occur but when exactly they occur., Phase precession: a relationship between the continuous rhythm of a brain wave and the specific moments that neurons in that brain area activate., , Place cells: each of which is tuned to a specific region or “place field.”, , The closer you get to the center of a place field the faster the corresponding place cell fires., The pattern of phase precession was elusive in humans until now., There are other theories about our rapid learning abilities. And researchers stressed that it’s difficult to draw conclusions about any widespread role for phase precession., These studies suggest that phase precession allows the brain to link sequences of times; images; and events in the same way as it does spatial positions.   

    From Quanta Magazine : “Neurons Unexpectedly Encode Information in the Timing of Their Firing” 

    From Quanta Magazine

    July 7, 2021
    Elena Renken

    1
    Samuel Velasco/Quanta Magazine.

    For decades, neuroscientists have treated the brain somewhat like a Geiger counter: The rate at which neurons fire is taken as a measure of activity, just as a Geiger counter’s click rate indicates the strength of radiation. But new research suggests the brain may be more like a musical instrument. When you play the piano, how often you hit the keys matters, but the precise timing of the notes is also essential to the melody.

    “It’s really important not just how many [neuron activations] occur but when exactly they occur,” said Joshua Jacobs, a neuroscientist and biomedical engineer at Columbia University (US) who reported new evidence for this claim last month in Cell.

    For the first time, Jacobs and two coauthors spied neurons in the human brain encoding spatial information through the timing, rather than rate, of their firing. This temporal firing phenomenon is well documented in certain brain areas of rats, but the new study and others suggest it might be far more widespread in mammalian brains. “The more we look for it, the more we see it,” Jacobs said.

    Some researchers think the discovery might help solve a major mystery: how brains can learn so quickly.

    The phenomenon is called phase precession. It’s a relationship between the continuous rhythm of a brain wave — the overall ebb and flow of electrical signaling in an area of the brain — and the specific moments that neurons in that brain area activate. A theta brain wave, for instance, rises and falls in a consistent pattern over time, but neurons fire inconsistently, at different points on the wave’s trajectory. In this way, brain waves act like a clock, said one of the study’s coauthors, Salman Qasim, also of Columbia. They let neurons time their firings precisely so that they’ll land in range of other neurons’ firing — thereby forging connections between neurons.

    Researchers began noticing phase precession decades ago among the neurons in rat brains that encode information about spatial position. Human brains and rat brains both contain these so-called place cells, each of which is tuned to a specific region or “place field.” Our brains seem to scale these place fields to cover our current surroundings, whether that’s miles of freeway or the rooms of one’s home, said Kamran Diba, a neuroscientist at the University of Michigan (US). The closer you get to the center of a place field the faster the corresponding place cell fires. As you leave one place field and enter another, the firing of the first place cell peters out, while that of the second picks up.

    But along with rate, there’s also timing: As the rat passes through a place field, the associated place cell fires earlier and earlier with respect to the cycle of the background theta wave. As the rat crosses from one place field into another, the very early firing of the first place cell occurs close in time with the late firing of the next place cell. Their near-coincident firings cause the synapse, or connection, between them to strengthen, and this coupling of the place cells ingrains the rat’s trajectory into the brain. (Information seems to be encoded through the strengthening of synapses only when two neurons fire within tens of milliseconds of each other.)

    Phase precession is obvious in rats. “It’s so prominent and prevalent in the rodent brain that it makes you want to assume it’s a generalizable mechanism,” Qasim said. Scientists had also identified phase precession in the spatial processing of bats and marmosets, but the pattern was elusive in humans until now.

    Monitoring individual neurons is too invasive to do on the average human study participant, but the Columbia team took advantage of data collected years ago from 13 epilepsy patients who had already had electrodes implanted to map the electrical signals of their seizures. The electrodes recorded the firings of individual neurons while patients steered their way through a virtual-reality simulation using a joystick. As the patients maneuvered themselves around, the researchers identified phase precession in 12% of the neurons they were monitoring.

    Pulling out these signals required sophisticated statistical analysis, because humans exhibit a more complicated pattern of overlapping brain waves than rodents do — and because less of our neural activity is devoted to navigation. But the researchers could say definitively that phase precession is there.

    Other research suggests that phase precession may be crucial beyond navigation. In animals, the phenomenon has been tied to non-spatial perceptions, including processing sounds and smell. And in humans, research co-authored by Jacobs last year found phase precession in time-sensitive brain cells NIH-NLB-PNAS. A not-yet-peer-reviewed preprint [bioRxiv] by cognitive scientists in France and the Netherlands indicated that processing serial images involved phase precession, too. Finally, in Jacobs’ new study, it was found not just in literal navigation, but also as the humans progressed toward abstract goals in the simulation.

    These studies suggest that phase precession allows the brain to link sequences of times; images; and events in the same way as it does spatial positions. “Finding that first evidence really opens the door for it to be some sort of universal coding mechanism in the brain — across mammalian species, possibly,” Qasim said. “You might be missing a whole lot of information coding if you’re not tracking the relative timing of neural activity.”

    Neuroscientists are, in fact, on the lookout for a new kind of coding in the brain to answer the longstanding question: How does the brain encode information so quickly? It’s understood that patterns in external data become ingrained in the firing patterns of the network through the strengthening and weakening of synaptic connections. But artificial intelligence researchers typically have to train artificial neural networks on hundreds or thousands of examples of a pattern or concept before the synapse strengths adjust enough for the network to learn the pattern. Mysteriously, humans can typically learn from just one or a handful of examples.

    Phase precession could play a role in that disparity. One hint of this comes from a study [Journal of Neuroscience] by Johns Hopkins University (US) researchers who found that phase precession showed up in rats learning an unfamiliar track — on their first lap. “As soon as you’re learning something, this pattern for learning sequences is already in place,” Qasim added. “That might facilitate very rapid learning of sequences.”

    Phase precession organizes the timing so that learning happens more often than it could otherwise. It arranges for neurons activated by related information to fire in quick-enough succession for the synapse between them to strengthen. “It would point to this notion that the brain is basically computing faster than you would imagine from rate coding alone,” Diba said.

    There are other theories about our rapid learning abilities. And researchers stressed that it’s difficult to draw conclusions about any widespread role for phase precession in the brain from the limited studies so far.

    Still, a thorough search for the phenomenon may be in order. Bradley Lega, a neurologist at the UTexas Southwestern Medical Center(US), said, “There’s a lot of problems that phase precession can solve.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Formerly known as Simons Science News, Quanta Magazine is an editorially independent online publication launched by the Simons Foundation to enhance public understanding of science. Why Quanta? Albert Einstein called photons “quanta of light.” Our goal is to “illuminate science.” At Quanta Magazine, scientific accuracy is every bit as important as telling a good story. All of our articles are meticulously researched, reported, edited, copy-edited and fact-checked.

     
  • richardmitnick 3:21 pm on July 17, 2021 Permalink | Reply
    Tags: "The paradox of a free-electron laser without the laser: a new source of coherent radiation", , , , Chemistry, Common electron-beam based light sources-known as fourth-generation light sources-are based on the free-electron laser (FEL) which uses an undulator to convert electron beam energy into X-rays., , , , The scientists have developed a type of ultra-short wavelength coherent light source that does not require laser action to produce coherence., University of Strathclyde [Oilthigh Shrath Chluaidh] (SCT),   

    From University of Strathclyde [Oilthigh Shrath Chluaidh] (SCT): “The paradox of a free-electron laser without the laser: a new source of coherent radiation” 

    From University of Strathclyde [Oilthigh Shrath Chluaidh] (SCT)

    16 July 2021

    1

    A new way of producing coherent light in the ultra-violet spectral region, which points the way to developing brilliant table-top x-ray sources, has been produced in research led at the University of Strathclyde.

    The scientists have developed a type of ultra-short wavelength coherent light source that does not require laser action to produce coherence. Common electron-beam based light sources-known as fourth-generation light sources-are based on the free-electron laser (FEL) which uses an undulator to convert electron beam energy into X-rays.

    Coherent light sources are powerful tools that enable research in many areas of medicine, biology, material sciences, chemistry and physics.

    Making ultraviolet and X-ray coherent light sources more widely available would transform the way science is done; a university could have one of the devices in a single room, on a table top, for a reasonable price.

    The group is now planning a proof-of-principle experiment in the ultraviolet spectral range to demonstrate this new way of producing coherent light. If successful, it should dramatically accelerate the development of even shorter wavelength coherent sources based on the same principle. The Strathclyde group has set up a facility to investigate these types of sources: the Scottish Centre for the Application of Plasma-based Accelerators (SCAPA), which hosts one of the highest power lasers in the UK.

    The new research has been published in Scientific Reports.

    Professor Dino Jaroszynski, of Strathclyde’s Department of Physics, led the research. He said: “This work significantly advances the state-of-the-art of synchrotron sources by proposing a new method of producing short-wavelength coherent radiation, using a short undulator and attosecond duration electron bunches.

    “This is more compact and less demanding on the electron beam quality than free-electron lasers and could provide a paradigm shift in light sources, which would stimulate a new direction of research. It proposes to use bunch compression – as in chirped pulse amplification lasers – within the undulator to significantly enhance the radiation brightness.

    “The new method presented would be of wide interest to a diverse community developing and using light sources.”

    In FELs, as in all lasers, the intensity of light is amplified by a feedback mechanism that locks the phases of individual radiators, which in this case are “free” electrons. In the FEL, this is achieved by passing a high energy electron beam through the undulator, which is an array of alternating polarity magnets.

    Light emitted from the electrons as they wiggle through the undulator creates a force called the ponderomotive force that bunches the electrons – some are slowed down, some are sped up, which causes bunching, similar to traffic on a motorway periodically slowing and speeding up.

    Electrons passing through the undulator radiate incoherent light if they are uniformly distributed – for every electron that emits light, there is another electron that partially cancels out the light because they radiate out of phase. An analogy of this partial cancelling out is rain on the sea: it produces many small ripples that partially cancel each other out, effectively quelling the waves – reducing their amplitude. In contrast, steady or pulsating wind will cause the waves to amplify through the mutual interaction of the wind with the sea.

    In the FEL, electron bunching causes amplification of the light and the increase in its coherence, which usually takes a long time – thus very long undulators are required. In an X-ray FEL, the undulators can be more than a hundred metres long. The accelerators driving these X-ray FELs are kilometres long, which makes these devices very expensive and some of the largest instruments in the world.

    However, using a free-electron laser to produce coherent radiation is not the only way; a “pre-bunched” beam or ultra-short electron bunch can also be used to achieve exactly the same coherence in a very short undulator that is less than a metre in length. As long as the electron bunch is shorter than the wavelength of the light produced by the undulator, it will automatically produce coherent light – all the light waves will add up or interfere constructively, which leads to very brilliant light with exactly the same properties of light from a laser.

    The researchers have demonstrated theoretically that this can be achieved using a laser-plasma wakefield accelerator, which produces electron bunches that can have a length of a few tens of nanometres. They show that if these ultra-short bunches of high energy electrons pass through a short undulator, they can produce as may photons as a very expensive FEL can produce. Moreover, they have also shown that by producing an electron bunch that has an energy “chirp”, they can ballistically compress the bunch to a very short duration inside the undulator, which provides a unique way of going to even shorter electron bunches and therefore produce even shorter wavelength light.

    The research collaboration also involved the University of Manchester (UK), Pulsar Physics (NL) and the STFC ASTeC group at Daresbury Laboratories. The study has received funding from the EPSRC (Engineering and Physical Sciences Research Council), to support a project named “Lab in a Bubble”.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Strathclyde [Oilthigh Shrath Chluaidh] (SCT)) is a public research university located in Glasgow, Scotland. Founded in 1796 as the Andersonian Institute, it is Glasgow’s second-oldest university, having received its royal charter in 1964 as the first technological university in the United Kingdom. Taking its name from the historic Kingdom of Strathclyde, it is Scotland’s third-largest university by number of students, with students and staff from over 100 countries.

    The institution was named University of the Year 2012 by Times Higher Education and again in 2019, becoming the first university to receive this award twice. The annual income of the institution for 2019–20 was £334.8 million of which £81.2 million was from research grants and contracts, with an expenditure of £298.8 million. It is one of the 39 old universities in the UK comprising the distinctive second cluster of elite universities after Oxbridge.

    Research

    In 2011 the University’s Advanced Forming Research Centre was announced as a leading partner in the first UK-wide Technology Strategy Board Catapult Centre. The Government also announced that the University is to lead the UK-wide EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation.

    The University has become the base for the first Fraunhofer Centre to be established in the UK. Fraunhofer-Gesellschaft, Europe’s largest organisation for contract research, is creating the new Fraunhofer Centre for Applied Photonics in collaboration with Strathclyde, for research in sectors including healthcare, security, energy and transport.

    Strathclyde was chosen in 2012 as the exclusive European partner university for South Korea’s global research and commercialisation programme – the Global Industry-Academia Cooperation Programme, funded by South Korea’s Ministry of Knowledge and Economics.

    In 2012 the University became a key partner in its second UK Catapult Centre. Plans for the Catapult Centre for Offshore Renewable Energy were announced at Strathclyde by Business Secretary Vince Cable. The University has also become a partner in the Industrial Doctorate Centre for Offshore Renewable Energy, which is one of 11 doctoral centres at Strathclyde.

    Engineers at the University are leading the €4 million, Europe-wide Stardust project, a research-based training network investigating the removal of space debris and the deflection of asteroids.

    Strathclyde has become part of the new ESRC Enterprise Research Centre, a £2.9 million venture generating world-class research to help stimulate growth for small and medium-sized enterprises.

    The University has centres in pharmacy, drug delivery and development, micro and ultrasonic engineering, biophotonics and photonics, biomedical engineering, medical devices, new therapies,prosthetics and orthotics, public health history, law, crime and justice and social work. The University is involved in 11 partnerships with other universities through the Scottish Funding Councils’ Research Pooling Programme, covering areas such as engineering, life sciences, energy, marine science and technology, physics, chemistry, computer sciences and economics.

    Several Strathclyde staff have been elected to Fellowships in the Royal Societies of Edinburgh and London.

     
  • richardmitnick 11:24 am on July 15, 2021 Permalink | Reply
    Tags: "New mechanism of superconductivity discovered in graphene", , Chemistry, , , , Placing a 2D Bose-Einstein condensate in the vicinity of a graphene layer confers superconductivity to the material.   

    From Institute for Basic Science [ 기초과학연구원](KR): “New mechanism of superconductivity discovered in graphene” 

    From Institute for Basic Science [ 기초과학연구원](KR)

    2021-04-14 [Just now in social media.]
    Park Jong Woo

    Placing a 2D Bose-Einstein condensate in the vicinity of a graphene layer confers superconductivity to the material.

    Superconductivity is a physical phenomenon where the electrical resistance of a material drops to zero under a certain critical temperature. Bardeen-Cooper-Schrieffer (BCS) theory is a well-established explanation that describes superconductivity in most materials. It states that Cooper pairs of electrons are formed in the lattice under sufficiently low temperature and that BCS superconductivity arises from their condensation. While graphene itself is an excellent conductor of electricity, it does not exhibit BCS superconductivity due to the suppression of electron-phonon interactions. This is also the reason that most ‘good’ conductors such as gold and copper are ‘bad’ superconductors.

    Researchers at the Center for Theoretical Physics of Complex Systems (PCS), within the Institute for Basic Science (IBS, South Korea) have reported on a novel alternative mechanism to achieve superconductivity in graphene. They achieved this feat by proposing a hybrid system consisting of graphene and 2D Bose-Einstein condensate (BEC). This research is published in the journal 2D Materials.

    1
    Figure 1. A hybrid system consisting of an electron gas in graphene (top layer) separated from a two-dimensional Bose-Einstein condensate, represented by indirect excitons (blue and red layers). The electrons in the graphene and the excitons are coupled by the Coulomb force.

    Along with superconductivity, BEC is another phenomenon that arises at low temperatures. It is the fifth state of matter first predicted by Einstein in 1924. The formation of BEC occurs when low-energy atoms clump together and enter the same energy state, and it is an area that is widely studied in condensed matter physics. A hybrid Bose-Fermi system essentially represents a layer of electrons interacting with a layer of bosons, such as indirect excitons, exciton-polaritons, etc. The interaction between Bose and Fermi particles leads to various novel fascinating phenomena, which piques interests from both the fundamental and application-oriented perspectives.

    In this work, the researchers report a new mechanism of superconductivity in graphene, which arises due to interactions between electrons and “bogolons”, rather than phonons as in typical BCS systems. Bogolons, or Bogoliubov quasiparticles, are excitation within BEC which has some characteristics of a particle. In certain ranges of parameters, this mechanism permits the critical temperature for superconductivity up to 70 Kelvin within graphene. The researchers also developed a new microscopic BCS theory which focuses specifically on the novel hybrid graphene-based system. Their proposed model also predicts that superconducting properties can be enhanced with temperature, resulting in the non-monotonous temperature dependence of the superconducting gap.

    Furthermore, the research showed that the Dirac dispersion of graphene is preserved in this bogolon-mediated scheme. This indicates that this superconducting mechanism involves electrons with relativistic dispersion — a phenomenon that is not so well-explored in condensed matter physics.

    “This work sheds light on an alternative way to achieve high-temperature superconductivity. Meanwhile, by controlling the properties of a condensate, we can tune the superconductivity of graphene. This suggests another channel to control the superconductor devices in the future.”, explains Ivan Savenko, the leader of the Light-Matter Interaction in Nanostructures (LUMIN) team at the PCS IBS.

    2
    Figure 2. (a) Temperature dependence of the superconducting gap for bogolon-mediated process with temperature correction (dashed) and without temperature correction (solid). (b) The critical temperature of the superconductivity transition as a function of condensate density for bogolon-mediated interaction with (red dashed) and without (black solid) the temperature correction. The blue dash-dotted line shows the BKT transition temperature as a function of the condensate density.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Making Discoveries for Humanity & Society

    Institute for Basic Science [ 기초과학연구원](KR) pursues excellence in basic science research. The goal of IBS is to advance the frontiers of knowledge and to train the leading scientists of tomorrow.

    Accelerate Transformation through New Knowledge

    Institute for Basic Science [ 기초과학연구원](KR) was established in November 2011 as Korea’s first dedicated basic science research institute. By studying the fundamental principles of nature, basic science is essential in creating new knowledge from which significant societal transformations are derived. IBS promotes the highest quality of research that will increase the national basic science capacity and generate new opportunities for this nation.

    IBS specializes in long-term projects that require large groups of researchers. As research in the 21st century requires more interdisciplinary collaborations from larger groups of people, scientists at IBS work together in the same laboratory base with a long-term perspective on research. We promote autonomy in research. IBS believes scientists unleash their creative potential most effectively when they conduct research in an autonomous environment with world-class research infrastructure, including RISP, the rare isotope accelerator, to enable major scientific advances. By developing strong synergies from outstanding talents, autonomous research support systems, and world-class infrastructure, IBS is steadily growing into a major basic research institute that meets the global standards of excellence.
    Ensure Excellence in Research

    By pursuing excellence in research, IBS has selected global leading scientists as directors of Centers. These directors are operating 31 Centers of which research proposals are evaluated superior in the IBS peer review process. The review is carried out by a Review Panel composed of independent and expert scientists from Korea and abroad. Directors choose the themes of their research and allocate funds accordingly. Generally, Centers operate projects with no fixed term for their duration as long as the quality of research is verified in evaluations. New Centers receive an initial evaluation five years after its launch, followed by three-year interval evaluations.

    IBS has been inviting top scientists from around the globe and providing them full support for their relocations. Young scientists also enjoy unique research opportunities to collaborate with world renowned scientists and to organize and operate their own research groups, broadening their professional expertise. IBS brings together outstanding talents throughout all career levels to grow and inspire each other through close collaborations.

    Stimulate Collaboration Without Boundaries

    IBS welcomes scientists from Korea and abroad seeking to work in a collaborative research environment. IBS’ faculty researcher program and IBS’s affiliation with the founding body of University of Science & Technology [과학 기술 연합 대학원대학교] (KR) help IBS scientists to reach out to and foster young talent outside the institution. Centers serve as a catalyst for research collaboration with universities and other government-funded research institutions through joint research and the sharing of research equipment. Other efforts are also underway to stimulate collaborations, including overseas training programs and visiting scientist programs.

    To disseminate research findings, IBS holds “IBS Conferences” and develops a global network with the world’s prominent research institutions including the MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] (DE) and the Royal Society (UK). We expect our work to make transformative changes outside as well as inside the institution. To realize this exciting vision, IBS will serve as a national R&D platform and accelerate the creation and use of new knowledge to support universities, research institutions, and businesses. As a driving force for dynamic research collaborations, IBS will continually develop and refresh its science, while always remaining receptive to outside talents and ideas.
    Continue its Endeavor to Make a Brighter Future

    IBS shares the same passion as other great minds to investigate the origin of the universe, nature, and life for the development of humanity, as shown in its vision Masking Discoveries for Humanity & Society. We are committed to realizing this vision through a phased endeavor as outlined in our Five-year Plan (2013 – 2017). We aim to:

    Become a national hub for basic science research by 2017
    Complete the construction of the rare isotope accelerator by 2021
    Evolve into one of the world’s top 20 basic research institution by 2030 (measured in terms of impact on research).

    Serving as a stimulus for the innovation, IBS HQ will evolve into an urban science park that will promote public outreach and community engagement. Our commitment to enhance the quality of life and make sustainable progress continues every day.

     
  • richardmitnick 11:49 am on July 10, 2021 Permalink | Reply
    Tags: "Rare meteorite could hold secrets to life on Earth", , Chemistry, , It is a stony meteorite rich in water and organic matter which has retained its chemistry from the formation of the solar system., Meteorite is a carbonaceous chondrite., , Organics, Research suggests that the space rock dates back to the beginning of the Solar System 4.5 billion years ago., , The meteorite fell in the UK earlier this year., The Winchcombe meteorite, , Volatiles, Winchcombe is a member of the CM (“Mighei-like”) group of carbonaceous chondrites have now been formally approved by the Meteoritical Society.   

    From University of Glasgow [Oilthigh Ghlaschu] (SCT): “Rare meteorite could hold secrets to life on Earth” 

    U Glasgow bloc

    From University of Glasgow [Oilthigh Ghlaschu] (SCT)

    9 July 2021

    Dr Luke Daly
    Lecturer (School of Geographical & Earth Sciences)
    Tel: 01413302000
    Luke.Daly@glasgow.ac.uk

    1
    An image of one of the fragments of the Winchcombe meteorite. CREDIT Trustee of the Natural History Museum-London (UK).

    Scientists are set to uncover the secrets of a rare meteorite and possibly the origins of oceans and life on Earth, thanks to Science and Technology Facilities Council (STFC) (UK) funding.

    Research carried out on the meteorite, which fell in the UK earlier this year, suggests that the space rock dates back to the beginning of the Solar System, 4.5 billion years ago.

    The meteorite has now been officially classified, thanks in part to the STFC-funded studies on the sample.

    The Winchcombe meteorite, aptly named after the Gloucestershire town where it landed, is an extremely rare type called a carbonaceous chondrite. It is a stony meteorite rich in water and organic matter which has retained its chemistry from the formation of the solar system. Initial analyses showing Winchcombe to be a member of the CM (“Mighei-like”) group of carbonaceous chondrites have now been formally approved by the Meteoritical Society.

    STFC provided an urgency grant in order to help fund the work of planetary scientists across the UK. The funding has enabled the Natural History Museum to invest in state-of-the-art curation facilities to preserve the meteorite, and also supported time-sensitive mineralogical and organic analyses in specialist laboratories at several leading UK institutions.

    Dr Ashley King, a UK Research and Innovation (UKRI) Future Leaders Fellow in the Department of Earth Sciences at the Natural History Museum, said: “We are grateful for the funding STFC has provided. Winchcombe is the first meteorite fall to be recovered in the UK for 30 years and the first ever carbonaceous chondrite to be recovered in our country. STFC’s funding is aiding us with this unique opportunity to discover the origins of water and life on Earth. Through the funding, we have been able to invest in state-of-the-art equipment that has contributed to our analysis and research into the Winchcombe meteorite.”

    The meteorite was tracked using images and video footage from the UK Fireball Alliance (UKFAll), a collaboration between the UK’s meteor camera networks that includes the UK Fireball Network, which is funded by STFC. Fragments were then quickly located and recovered. Since the discovery, UK scientists have been studying Winchcombe to understand its mineralogy and chemistry to learn about how the Solar System formed.

    Dr Luke Daly from the University of Glasgow and co-lead of the UK Fireball Network, said: “Being able to investigate Winchcombe is a dream come true. Many of us have spent our entire careers studying this type of rare meteorite. We are also involved in JAXA’s Hayabusa2 and NASA’s OSIRIS-REx missions, which aim to return pristine samples of carbonaceous asteroids to the Earth.

    For a carbonaceous chondrite meteorite to fall in the UK, and for it to be recovered so quickly and have a known orbit, is a really special event and a fantastic opportunity for the UK planetary science community.”

    Funding from STFC enabled scientists to quickly begin the search for signs of water and organics in Winchcombe before it could be contaminated by the terrestrial environment.

    Dr Queenie Chan from Royal Holloway, University of London (UK) added: “The teams preliminary analyses confirm that Winchcombe contains a wide range of organic material! Studying the meteorite only weeks after the fall, before any significant terrestrial contamination, means that we really are peering back in time at the ingredients present at the birth of the solar system, and learning about how they came together to make planets like the Earth.”

    A piece of the Winchcombe meteorite that was recovered during an organised search by the UK planetary science community is now on public display at London’s Natural History Museum.

    Institutions involved include:

    STFC – urgency grant is funding Natural History Museum and other STFC-funded planetary science groups.
    Natural History Museum (Curation and Minerals)
    Imperial College London (UK) (Organics)
    Open University (UK) (Volatiles)
    Royal Holloway University(UK) (Organics)
    University of Glasgow (Minerals and Organics)
    University of Plymouth (UK) (Minerals)

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Glasgow campus

    The University of Glasgow [Oilthigh Ghlaschu] (SCT) is the fourth oldest university in the English-speaking world and one of Scotland’s four ancient universities. It was founded in 1451. Along with the University of Edinburgh (SCT), the University was part of the Scottish Enlightenment during the 18th century. It is currently a member of Universitas 21, the international network of research universities, and the Russell Group (UK).

    In common with universities of the pre-modern era, Glasgow originally educated students primarily from wealthy backgrounds, however it became a pioneerin British higher education in the 19th century by also providing for the needs of students from the growing urban and commercial middle class. Glasgow University served all of these students by preparing them for professions: the law, medicine, civil service, teaching, and the church. It also trained smaller but growing numbers for careers in science and engineering.

    Originally located in the city’s High Street, since 1870 the main University campus has been located at Gilmorehill in the West End of the city. Additionally, a number of university buildings are located elsewhere, such as the University Marine Biological Station Millport on the Island of Cumbrae in the Firth of Clyde and the Crichton Campus in Dumfries.

    Alumni or former staff of the University include philosopher Francis Hutcheson, engineer James Watt, philosopher and economist Adam Smith, physicist Lord Kelvin, surgeon Joseph Lister, 1st Baron Lister, seven Nobel laureates, and two British Prime Ministers.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: