Tagged: Chemistry Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:45 am on June 3, 2023 Permalink | Reply
    Tags: "AI could run a million microbial experiments per year", , Artificial intelligence platform dubbed "BacterAI", , , , Chemistry, , ,   

    From Engineering At The University of Michigan: “AI could run a million microbial experiments per year” 


    From Engineering


    U Michigan bloc

    The University of Michigan

    5.4.23 [Just today in social media.]
    Jim Lynch

    Professor Paul Jensen (second to the right) and graduate students (from left) Deepthi Suresh, Noelle Toong, and Benjamin David examine their robot performing automated experiments. Photo by Marcin Szczepanski/Michigan Engineering.

    An artificial intelligence system enables robots to conduct autonomous scientific experiments—as many as 10,000 per day—potentially driving a drastic leap forward in the pace of discovery in areas from medicine to agriculture to environmental science.

    Reported today in Nature Microbiology [below], the team was led by a professor now at the University of Michigan.

    Autonomous experiments with AI robots.

    That artificial intelligence platform, dubbed “BacterAI”, mapped the metabolism of two microbes associated with oral health—with no baseline information to start with. Bacteria consume some combination of the 20 amino acids needed to support life, but each species requires specific nutrients to grow. The U-M team wanted to know what amino acids are needed by the beneficial microbes in our mouths so they can promote their growth.

    “We know almost nothing about most of the bacteria that influence our health. Understanding how bacteria grow is the first step toward reengineering our microbiome,” said Paul Jensen, U-M assistant professor of biomedical engineering who was at the University of Illinois when the project started.

    Figuring out the combination of amino acids that bacteria like is tricky, however. Those 20 amino acids yield more than a million possible combinations, just based on whether each amino acid is present or not. Yet BacterAI was able to discover the amino acid requirements for the growth of both Streptococcus gordonii and Streptococcus sanguinis.

    To find the right formula for each species, BacterAI tested hundreds of combinations of amino acids per day, honing its focus and changing combinations each morning based on the previous day’s results. Within nine days, it was producing accurate predictions 90% of the time.

    Unlike conventional approaches that feed labeled data sets into a machine-learning model, BacterAI creates its own data set through a series of experiments. By analyzing the results of previous trials, it comes up with predictions of what new experiments might give it the most information. As a result, it figured out most of the rules for feeding bacteria with fewer than 4,000 experiments.

    “When a child learns to walk, they don’t just watch adults walk and then say ‘Ok, I got it,’ stand up, and start walking. They fumble around and do some trial and error first,” Jensen said.

    “We wanted our AI agent to take steps and fall down, to come up with its own ideas and make mistakes. Every day, it gets a little better, a little smarter.”

    Little to no research has been conducted on roughly 90% of bacteria, and the amount of time and resources needed to learn even basic scientific information about them using conventional methods is daunting. Automated experimentation can drastically speed up these discoveries. The team ran up to 10,000 experiments in a single day.

    But the applications go beyond microbiology. Researchers in any field can set up questions as puzzles for AI to solve through this kind of trial and error.

    “With the recent explosion of mainstream AI over the last several months, many people are uncertain about what it will bring in the future, both positive and negative,” said Adam Dama, a former engineer in the Jensen Lab and lead author of the study. “But to me, it’s very clear that focused applications of AI like our project will accelerate everyday research.”

    The research was funded by the National Institutes of Health with support from NVIDIA.

    Nature Microbiology

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    Please support STEM education in your local school system

    Stem Education Coalition

    University of Michigan Engineering campus[/caption]

    Michigan Engineering provides scientific and technological leadership to the people of the world. Through our people-first engineering approach, we’re committed to fostering a community of engineers who will close critical gaps and elevate all people. We aspire to be the world’s preeminent college of engineering serving the common good.


    Leadership and excellence
    Creativity, innovation and daring
    Diversity, equity and social impact
    Collegiality and collaboration
    Transparency and trustworthiness

    U MIchigan Campus

    The University of Michigan is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States, the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

    At over $12.4 billion in 2019, Michigan’s endowment is among the largest of any university. As of October 2019, 53 MacArthur “genius award” winners (29 alumni winners and 24 faculty winners), 26 Nobel Prize winners, six Turing Award winners, one Fields Medalist and one Mitchell Scholar have been affiliated with the university. Its alumni include eight heads of state or government, including President of the United States Gerald Ford; 38 cabinet-level officials; and 26 living billionaires. It also has many alumni who are Fulbright Scholars and MacArthur Fellows.


    Michigan is one of the founding members (in the year 1900) of the Association of American Universities. With over 6,200 faculty members, 73 of whom are members of the National Academy and 471 of whom hold an endowed chair in their discipline, the university manages one of the largest annual collegiate research budgets of any university in the United States. According to the National Science Foundation, Michigan spent $1.6 billion on research and development in 2018, ranking it 2nd in the nation. This figure totaled over $1 billion in 2009. The Medical School spent the most at over $445 million, while the College of Engineering was second at more than $160 million. U-M also has a technology transfer office, which is the university conduit between laboratory research and corporate commercialization interests.

    In 2009, the university signed an agreement to purchase a facility formerly owned by Pfizer. The acquisition includes over 170 acres (0.69 km^2) of property, and 30 major buildings comprising roughly 1,600,000 square feet (150,000 m^2) of wet laboratory space, and 400,000 square feet (37,000 m^2) of administrative space. At the time of the agreement, the university’s intentions for the space were not set, but the expectation was that the new space would allow the university to ramp up its research and ultimately employ in excess of 2,000 people.

    The university is also a major contributor to the medical field with the EKG and the gastroscope. The university’s 13,000-acre (53 km^2) biological station in the Northern Lower Peninsula of Michigan is one of only 47 Biosphere Reserves in the United States.

    In the mid-1960s U-M researchers worked with IBM to develop a new virtual memory architectural model that became part of IBM’s Model 360/67 mainframe computer (the 360/67 was initially dubbed the 360/65M where the “M” stood for Michigan). The Michigan Terminal System (MTS), an early time-sharing computer operating system developed at U-M, was the first system outside of IBM to use the 360/67’s virtual memory features.

    U-M is home to the National Election Studies and the University of Michigan Consumer Sentiment Index. The Correlates of War project, also located at U-M, is an accumulation of scientific knowledge about war. The university is also home to major research centers in optics, reconfigurable manufacturing systems, wireless integrated microsystems, and social sciences. The University of Michigan Transportation Research Institute and the Life Sciences Institute are located at the university. The Institute for Social Research (ISR), the nation’s longest-standing laboratory for interdisciplinary research in the social sciences, is home to the Survey Research Center, Research Center for Group Dynamics, Center for Political Studies, Population Studies Center, and Inter-Consortium for Political and Social Research. Undergraduate students are able to participate in various research projects through the Undergraduate Research Opportunity Program (UROP) as well as the UROP/Creative-Programs.

    The U-M library system comprises nineteen individual libraries with twenty-four separate collections—roughly 13.3 million volumes. U-M was the original home of the JSTOR database, which contains about 750,000 digitized pages from the entire pre-1990 backfile of ten journals of history and economics, and has initiated a book digitization program in collaboration with Google. The University of Michigan Press is also a part of the U-M library system.

    In the late 1960s U-M, together with Michigan State University and Wayne State University, founded the Merit Network, one of the first university computer networks. The Merit Network was then and remains today administratively hosted by U-M. Another major contribution took place in 1987 when a proposal submitted by the Merit Network together with its partners IBM, MCI, and the State of Michigan won a national competition to upgrade and expand the National Science Foundation Network (NSFNET) backbone from 56,000 to 1.5 million, and later to 45 million bits per second. In 2006, U-M joined with Michigan State University and Wayne State University to create the the University Research Corridor. This effort was undertaken to highlight the capabilities of the state’s three leading research institutions and drive the transformation of Michigan’s economy. The three universities are electronically interconnected via the Michigan LambdaRail (MiLR, pronounced ‘MY-lar’), a high-speed data network providing 10 Gbit/s connections between the three university campuses and other national and international network connection points in Chicago.

  • richardmitnick 1:11 pm on June 2, 2023 Permalink | Reply
    Tags: "Treasure hunt", A search for rare earth minerals might begin by looking for an unusual kind of carbon-rich rock called a carbonatite., Africa collided with North America to form the Appalachian Mountains [but see John McPhee “In Suspect Terrain” which posits not one but four orogenies which created what we have today]., , , Chemistry, Earth Mapping Resources Initiative, , Few topics draw more bipartisan support in Washington D.C. than the need for the United States to find reliable sources of “critical minerals”- a collection of 50 mined substances including “rar, For decades companies had been moving mining operations abroad in part to avoid relatively stringent U.S. environmental regulations., , , Having high-quality large-scale data in the public domain will drive new ideas and new discoveries., Last decade when lawmakers began to ask USGS about U.S. supplies the response was unsettling: The agency did not even know where to look., , , , The first U.S. nationwide geological survey in a generation could reveal badly needed supplies of critical minerals., The list: Yttrium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Scandium, These days no mineral may be more critical than the lithium-not a "rare earth"., , U.S. is “undermapped” compared with most developed countries including Australia and Canada and even Ireland. “We’re at an embarrassing point.”   

    From “Science Magazine” : “Treasure hunt” 

    From “Science Magazine”

    Paul Voosen

    The first U.S. nationwide geological survey in a generation could reveal badly needed supplies of critical minerals

    The U.S. Geological Survey is funding mapping of metamorphic rocks in eastern Alaska that are likely to hold a number of critical minerals, including rare earths. Adrian Bender/U.S. Geological Survey.

    From the air, Maine is a uniform sea of green: Forests cover 90% of the state. But beneath the foliage and the dirt lies an array of geological terrains that is far more diverse, built from the relics of volcanic islands that collided with North America hundreds of millions of years ago.

    Two years ago, sensor-laden aircraft began to survey these geochemically rich terrains for precious minerals. Researchers spotted an anomalous signal streaming out of Pennington Mountain, 50 kilometers from the Canadian border. State geologists bushwhacked through the paper mill–bound pine forests, taking rock samples. They eventually uncovered deposits containing billions of dollars’ worth of zirconium, niobium, and other elements that are critical in electronics, defense, and renewable energy technologies.

    The anomaly at Pennington Mountain is visible in the geophysical data collected in aerial surveys conducted in 2021. Sources/Usage: Public Domain.
    Above mapping:

    Anjana K Shah
    Research Geophysicist
    Geology, Geophysics, and Geochemistry Science Center

    Alex Demas
    Public Affairs Specialist
    Communications and Publishing

    “It was a perfect discovery,” says John Slack, an emeritus scientist at the U.S. Geological Survey (USGS) who worked on the Maine find. He expects more like it. “We think there’s potential throughout the Appalachians.”

    Great Appalachian Valley
    Newfoundland and Labrador, Saint Pierre and Miquelon, Québec, Nova Scotia, New Brunswick, Maine, New Hampshire, Vermont, Massachusetts, Connecticut, New York, New Jersey, Pennsylvania, Maryland, Washington, D.C., Delaware, Virginia, West Virginia, Ohio, Kentucky, Tennessee, North Carolina, South Carolina, Georgia and Alabama.

    A remarkable feature of the belt is the longitudinal chain of broad valleys, including the Great Appalachian Valley, which in the southerly sections divides the mountain system into two unequal portions.

    Few topics draw more bipartisan support in Washington, D.C., than the need for the United States to find reliable sources of “critical minerals,” a collection of 50 mined substances that now come mostly from other countries, including some that are unfriendly or unstable. The list, created by USGS at the direction of Congress, contains not only the 17 rare earth elements produced mostly in China, but also less exotic materials such as zinc, used to produce steel, and cobalt, used in electric car batteries. “These commodities are necessary for everything,” says Sarah Ryker, USGS’s associate director for energy and minerals. “They’re also a flashpoint for conflict.”

    The list: Yttrium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium
    Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Scandium

    But last decade, when lawmakers began to ask USGS about U.S. supplies, the response was unsettling: The agency didn’t even know where to look. For decades, companies had been moving mining operations abroad, in part to avoid relatively stringent U.S. environmental regulations. The basic exploration needed to identify mineral resources and spur corporate interest had languished. The last nationwide survey, a quest for uranium, ended in the 1980s. Ryker says the U.S. is “undermapped” compared with most developed countries, including Australia, Canada, and even Ireland. “We’re at an embarrassing point.”

    To start filling in this knowledge void, USGS in 2019 began what it calls the Earth Mapping Resources Initiative, or Earth MRI. With a modest $10 million annual budget, the agency began working with state geological surveys to digitize data and commission fieldwork to map the most promising terrain in fine detail.

    Then, in 2021, the Bipartisan Infrastructure Law directed $320 million into the program—nearly one-third of the entire USGS budget—to be spent over 5 years. That spending has already enabled hundreds of survey flights, and it is opening a golden age for economic geology. It is also a boon for basic science—filling in gaps in geologic history, identifying unknown earthquake faults, and revealing geothermal systems. “We’re seeing a renaissance throughout the whole country,” says Virginia McLemore, an economic geologist at the New Mexico Bureau of Geology and Mineral Resources. “I’ve been training all my life to get to this point.”

    The discoveries could spur a rash of mining, and environmentalists are wary. If USGS spots promising ore systems, companies will have to show that they can develop them safely and with minimal environmental impact, says Melissa Barbanell, director of U.S.-international engagement at the World Resources Institute, an environmental nonprofit. “It can never be zero harm,” she says. “But how can we minimize the harm and keep it to the mine itself?”

    Mining companies, meanwhile, are embracing Earth MRI. Donald Hicks, a geophysicist at global mining giant Rio Tinto, which has dozens of operations worldwide but only a few in the U.S., says he has encouraged fellow miners to collaborate and share data with the program. Rio Tinto even funded some USGS flights in Montana, in return for 1 year’s exclusive access to the data. “Having this high-quality, large-scale data in the public domain will drive new ideas and new discoveries,” Hicks says.

    For most of the history of mining, the origin story of a mineral lode was beside the point. Prospectors found it and miners dug it up. But by now, most of the obvious finds are gone, says Anne McCafferty, a USGS geophysicist. “The low-hanging fruit has been picked.”

    This scarcity has pushed Earth MRI into adopting a “mineral systems” approach, first pioneered in Australia, that attempts to predict where critical minerals might be found based on the processes that form them. For example, a search for rare earth minerals might begin by looking for an unusual kind of carbon-rich rock called a carbonatite, which often contains pockets of rare earths formed when it crystallized out of lava. Or geologists might seek out clay-rich rocks or sediments that can capture concentrations of the rare earths after water erodes them from a source rock. Prospectors would also look for signs that these ore rocks were preserved across the eons.

    To assemble these telltale rock histories, USGS scientists need to integrate a variety of information sources. Some already exist: large-scale geological maps based on decades of fieldwork, and surveys of the deep structure of rock formations based on the reflections of seismic waves from artificial or natural earthquakes.

    Earth MRI’s airborne surveys, with flights just 100 meters above the surface, will add much more detail and inform a new generation of sharper geologic maps. One tool affixed to the aircraft is a magnetometer, which detects rocks rich in iron and other magnetic minerals—often a clue that they hold critical minerals. Another is a gamma ray spectrometer, which like a Geiger counter can capture the radiation emitted by thorium, uranium, and potassium. Those elements frequent the same volcanic rocks as rare earth minerals and are often incorporated into their crystal structures. Other aircraft carry laser altimeters that can map surface relief to reveal geologic history. And a pioneering “hyperspectral” instrument developed by NASA can identify minerals exposed on the surface based on the specific wavelengths of light they absorb. In the combined data, “You can see all the geology underneath,” says Anjana Shah, the USGS geophysicist leading the agency’s East Coast airborne surveys. “It’s a very powerful way of understanding the Earth.”

    In early forays, Earth MRI aircraft criss-crossed North and South Carolina, tracing the ancient roots of the landscape. Hidden beneath the states’ tobacco farms are fossilized beaches that mark shorelines left during the warm periods between past ice ages, when sea levels were higher than today. Laser altimeter maps capturing subtle relief bloom with those shorelines and the paleorivers that dissected them, says Kathleen Farrell, a geomorphologist at the North Carolina Geological Survey. “There’s a lot more coastal plain than anyone thought.”

    The ancient beaches hold deposits of black sands, eroded from mountains and deposited by rivers, that are rich in heavy elements. By combining the new airborne data collected by Shah with field mapping and boreholes drilled to sample the deep sediments, Farrell and her colleagues hope to learn how the Carolina sands originated. They want to know how the coastal plains were assembled over time, why the heavy sands formed only during certain periods, and where upriver those sands came from. The answers should help guide geologists to new heavy metal deposits; similar sites in northern Florida are among the few commercial sources of titanium in the U.S.

    The airborne campaigns in South Carolina will have another benefit, Shah adds: They flew over Charleston, collecting magnetic data that, by identifying shifts and offsets in subsurface rocks, reveal the hidden seismic faults that ruptured in 1886 in an earthquake as large as magnitude 7. Such a quake, if it struck again today, would cause billions of dollars in damage.

    This year, an Earth MRI survey covering parts of Missouri, Kentucky, Tennessee, Arkansas, Illinois, and Indiana will probe another mysterious seismic zone. Buried under kilometers of sediment lurks the Reelfoot Rift, a gash in the continent’s bedrock likely created some 750 million years ago when the Rodinia supercontinent began to crack apart. In 1811 and 1812, faults tied to this rift caused the New Madrid earthquakes, the largest to ever strike the U.S. east of the Rocky Mountains. But despite the potential hazard, the fault zone remains poorly understood.

    The Reelfoot and nearby bedrock deformations not only create hazards; they also create opportunities for minerals to form. The rifts provided conduits for magma to well up much later in geologic time, when Africa collided with North America to form the Appalachian Mountains [but see John McPhee “In Suspect Terrain” which posits not one but four orogenies which created what we have today]. This magma is thought to have expelled gases that flowed into limestones, chemically altering them. One result is the fluorspar district of southern Illinois, which once produced a majority of the country’s fluorite—used to smelt steel and create hydrofluoric acid.

    Those magma injections could have played a role in creating Hicks Dome, which rises 1 kilometer above the Illinois countryside and is the closest thing the state has to a volcano. Jared Freiburg, critical minerals chief for the Illinois State Geological Survey, calls it “a crazy magmatic cryptovolcanic explosive structure.” It pops out as a magnetic anomaly in USGS airborne data, and cores drilled from the dome are rich in rare earth minerals. Geochemical tracers from the cores hint that deposits deeper in the dome were formed from carbonatites—the unusual volcanic rocks associated with the world’s best rare earth deposits. “It’s like a kitchen sink of critical minerals there,” McCafferty says.

    The midcontinent surveys could also help geologists assess another resource: natural hydrogen, a clean-burning fuel. Currently, all hydrogen is manufactured, but some researchers believe, contrary to conventional wisdom, that Earth produces and traps vast stores of the gas. The iron-rich volcanic rocks of the Reelfoot are exactly the kind that could produce hydrogen. Yaoguo Li, a geophysicist at the Colorado School of Mines, is developing a Department of Energy (DOE) grant proposal to prospect for hydrogen source rocks with the USGS data. “We have not done anything yet,” he says. “But I can see there’s so much we can do.”

    Besides identifying resources to extract, the surveys could pay other dividends. They are pinpointing the steel casings of abandoned oil and gas wells that often leak greenhouse gases. They will help identify porous rock reservoirs, bounded by faults, that could hold carbon dioxide captured from smokestacks, keeping it out of the atmosphere. And they could also map variations in the radioactive rocks that emit radon gas, a health hazard.

    These days, no mineral may be more critical than the lithium, used in cellphone and electric car batteries, that moves an ever-increasing number of the world’s electrons. Yet only one lithium mine exists in the U.S., in Nevada, and its raw lithium is sent abroad for processing. The state has potential to hold much, much more, and could become an international lithium “epicenter,” says James Faulds, Nevada’s state geologist.

    Lithium is often found in igneous rocks—magma that crystallized in the crust or lava that cooled on the surface. Many of the known lithium deposits are in the state’s north, in the McDermitt caldera, a volcanic crater formed 16 million years ago by the deep-Earth hot spot currently fueling Yellowstone. Rainwater falling within the caldera or hot water from below has concentrated lithium within caldera clay deposits to levels not seen elsewhere, in other eruptions of the Yellowstone hot spot. “Why did this mineralization happen?” asks Carolina Muñoz-Saez, a geologist at the University of Nevada, Reno. She and her collaborators are studying the geochemistry of the lithium and the clays to find out whether the element was formed and concentrated during the eruption itself by superheated water or whether the concentration came later, as water infiltrated the caldera’s ash-rich rocks. The answer could lead the geologists to other, equally rich deposits.

    Mountain Pass in California is the only U.S. mine producing rare earth elements. The U.S. Geological Survey hopes the Earth Mapping Resources Initiative will encourage more mining.TMY350/Wikimedia Commons.

    Earth MRI has already shown that lithium prospectors need not stick to calderas. Field geologists have found rocks that seem to be rich in lithium in basins bounded by tectonically uplifted blocks of crust. Nevada, famous for its “basin and range” topography, has a lot of places like that, Faulds says. Even better, the basins tend to host systems of hot brine, a potential source of geothermal power—one reason DOE is funding surveys in the state, says Jonathan Glen, a USGS geophysicist.

    Just south of Nevada, DOE has similarly invested in USGS flights over California’s Salton Sea, which is being stretched apart by the movement of the Northern American and Pacific tectonic plates, leaving the crust thin and hot.

    A woman walks along the shore of the Salton Sea in Southern California Robert Alexander / Getty Images

    “Temperatures are really high,” Glen says. “There’s huge geothermal potential.” Beyond mapping potential lithium deposits and geothermal sites, the surveys have also found new faults at the southern end of the San Andreas, and what appear to be buried volcanoes beneath the Salton Sea. “This is brand new stuff,” Glen says. “We didn’t know any of this.”

    The mineral stibnite is the ore for antimony, used in batteries.Niki Wintzer/USGS.

    Those insights come from magnetometer, radiometric, and laser altimeter flights. But Earth MRI is also planning hyperspectral surveys that will scan the treeless, arid surface for pay dirt. Lithium and rare earth elements, for example, have strong spectral reflections; and other signatures can reveal the iron or clay minerals associated with lithium or other minerals. Beyond prospecting, the data will be valuable for spotting volcanic hazards. Those include rocks on the flanks of volcanoes that have been altered into soft clays by melting snow and heat, says Bernard Hubbard, a remote-sensing geologist at USGS. “Those become unstable—and then they collapse.”

    Besides identifying the rock formations likely to hold mineral deposits, Earth MRI has accelerated USGS efforts to detect valuable resources left behind in tailings from defunct copper or iron mines. Last decade, Shah spotted the distinctive radioactive signatures of rare earths in such piles in Mineville, a hamlet in New York. With state geological agencies, USGS is compiling a national database of mine waste sites, along with methods for researchers to assess the waste’s mineral potential. “What’s the point of digging another hole in the ground if you can remine the rocks?” asks Darcy McPhee, Earth MRI’s program coordinator at USGS.

    Those lingering tailings piles are a reminder of the environmental damage mining can do. For decades, the U.S. avoided environmental debates over mining by outsourcing it to other countries. The new consensus is that work should happen here, Ryker says. “But that means we have to deal with the conflict.” The survey will reveal new resources. But the rest is up to us, she says. “How much should we develop? That’s a much more complicated question.”

    Those questions are now unfolding, state by state. In Nevada, lithium prospecting is booming, spurred by the Inflation Reduction Act’s mandate that electric cars must use some U.S.-sourced minerals for buyers to get a tax credit. But in Maine, legislators enacted a strict mining law in 2017, when the state’s largest landowner, the Canadian forestry company J.D. Irving, considered exploiting reserves of gold, silver, and copper found on its lands. Following the discovery of rare earth deposits at Pennington Mountain and lithium elsewhere in the state, lawmakers are now considering amending the law to allow some responsible mining.

    Given the demands of green technology and the imperative to lower carbon emissions, many environmental groups are softening their stance on critical-mineral mining, Barbanell says. This exploitation doesn’t have to go on forever, she adds. Unlike coal, which must be mined indefinitely as it’s burned, the minerals used for batteries and wind turbines can almost always be recycled—as long as policymakers push for their reuse.

    Slack would also welcome some mining. He retired to Maine for its natural splendor, but until recycling can cover society’s needs, critical mineral exploitation needs to happen somewhere. “We cannot have a low carbon future and green tech without mining,” he says. “It’s not an option. It’s a necessity. It’s essential.”

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    Please help promote STEM in your local schools.

    Stem Education Coalition

  • richardmitnick 10:02 am on June 2, 2023 Permalink | Reply
    Tags: "Understanding the Tantalizing Benefits of Tantalum for Improved Quantum Processors", , , Chemistry, Coherence time is a measure of how long a qubit retains quantum information., , In addition tantalum is a superconductor which means it has no electrical resistance when cooled to sufficiently low temperatures and consequently can carry current without any energy loss., , , , , Researchers working to improve the performance of superconducting qubits have been experimenting using different base materials in an effort to increase the coherent lifetimes of qubits., Scientists decode the chemical profile of tantalum surface oxides to understand loss and improve qubit performance., Scientists discovered that using tantalum in superconducting qubits makes them perform better but no one has been able to determine why—until now., Tantalum also has a high melting point and is resistant to corrosion making it useful in many commercial applications., Tantalum is a unique and versatile metal. It is dense and hard and easy with which to work., Tantalum-based superconducting qubits have demonstrated record-long lifetimes of more than five times longer than the lifetimes of qubits made with niobium and aluminum.,   

    From The DOE’s Brookhaven National Laboratory: “Understanding the Tantalizing Benefits of Tantalum for Improved Quantum Processors” 

    From The DOE’s Brookhaven National Laboratory

    Written by Denise Yazak

    Peter Genzer
    (631) 344-3174

    Scientists decode the chemical profile of tantalum surface oxides to understand loss and improve qubit performance.

    Tantalum oxide (TaOx) being characterized using x-ray photoelectron spectroscopy. BNL.

    Whether it’s baking a cake, building a house, or developing a quantum device, the quality of the end product significantly depends on its ingredients or base materials. Researchers working to improve the performance of superconducting qubits, the foundation of quantum computers, have been experimenting using different base materials in an effort to increase the coherent lifetimes of qubits. The coherence time is a measure of how long a qubit retains quantum information, and thus a primary measure of performance. Recently, scientists discovered that using tantalum in superconducting qubits makes them perform better, but no one has been able to determine why—until now.

    Scientists from the Center for Functional Nanomaterials (CFN) [below], the National Synchrotron Light Source II (NSLS-II) [below], the Co-design Center for Quantum Advantage (C2QA), and Princeton University investigated the fundamental reasons that these qubits perform better by decoding the chemical profile of tantalum. The results of this work, which were recently published in the journal Advanced Science [below], will provide key knowledge for designing even better qubits in the future. CFN and NSLS-II are U.S. Department of Energy (DOE) Office of Science User Facilities at DOE’s Brookhaven National Laboratory. C2QA is a Brookhaven-led national quantum information science research center, of which Princeton University is a key partner.

    Finding the right ingredient

    Tantalum is a unique and versatile metal. It is dense, hard, and easy to work with. Tantalum also has a high melting point and is resistant to corrosion, making it useful in many commercial applications. In addition, tantalum is a superconductor, which means it has no electrical resistance when cooled to sufficiently low temperatures, and consequently can carry current without any energy loss.

    Tantalum-based superconducting qubits have demonstrated record-long lifetimes of more than half a millisecond. That is five times longer than the lifetimes of qubits made with niobium and aluminum, which are currently deployed in large-scale quantum processors.

    These properties make tantalum an excellent candidate material for building better qubits. Still, the goal of improving superconducting quantum computers has been hindered by a lack of understanding as to what is limiting qubit lifetimes, a process known as decoherence. Noise and microscopic sources of dielectric loss are generally thought to contribute; however, scientists are unsure exactly why and how.

    “The work in this paper is one of two parallel studies aiming to address a grand challenge in qubit fabrication,” explained Nathalie de Leon, an associate professor of electrical and computer engineering at Princeton University and the materials thrust leader for C2QA. “Nobody has proposed a microscopic, atomistic model for loss that explains all the observed behavior and then was able to show that their model limits a particular device. This requires measurement techniques that are precise and quantitative, as well as sophisticated data analysis.”

    Surprising results

    To get a better picture of the source of qubit decoherence, scientists at Princeton and CFN grew and chemically processed tantalum films on sapphire substrates. They then took these samples to the Spectroscopy Soft and Tender Beamlines (SST-1 and SST-2) at NSLS-II to study the tantalum oxide that formed on the surface using x-ray photoelectron spectroscopy (XPS). XPS uses x-rays to kick electrons out of the sample and provides clues about the chemical properties and electronic state of atoms near the sample surface. The scientists hypothesized that the thickness and chemical nature of this tantalum oxide layer played a role in determining the qubit coherence, as tantalum has a thinner oxide layer compared to the niobium more typically used in qubits.

    “We measured these materials at the beamlines in order to better understand what was happening,” explained Andrew Walter, a lead beamline scientist in NSLS-II’s soft x-ray scattering & spectroscopy program. “There was an assumption that the tantalum oxide layer was fairly uniform, but our measurements showed that it’s not uniform at all. It’s always more interesting when you uncover an answer you don’t expect, because that’s when you learn something.”

    The team found several different kinds of tantalum oxides at the surface of the tantalum, which has prompted a new set of questions on the path to creating better superconducting qubits. Can these interfaces be modified to improve overall device performance, and which modifications would provide the most benefit? What kinds of surface treatments can be used to minimize loss?

    Embodying the spirit of codesign

    “It was inspiring to see experts of very different backgrounds coming together to solve a common problem,” said Mingzhao Liu, a materials scientist at CFN and the materials subthrust leader in C2QA. “This was a highly collaborative effort, pooling together the facilities, resources, and expertise shared between all of our facilities. From a materials science standpoint, it was exciting to create these samples and be an integral part of this research.”

    Walter said, “Work like this speaks to the way C2QA was built. The electrical engineers from Princeton University contributed a lot to device management, design, data analysis, and testing. The materials group at CFN grew and processed samples and materials. My group at NSLS-II characterized these materials and their electronic properties.”

    Having these specialized groups come together not only made the study move smoothly and more efficiently, but it gave the scientists an understanding of their work in a larger context. Students and postdocs were able to get invaluable experience in several different areas and contribute to this research in meaningful ways.

    “Sometimes, when materials scientists work with physicists, they’ll hand off their materials and wait to hear back regarding results,” said de Leon, “but our team was working hand-in-hand, developing new methods along the way that could be broadly used at the beamline going forward.”

    Advanced Science

    Figure 1.a) High angle annular dark field scanning transmission electron microscope image of the cross-section of a tantalum film on sapphire. The tantalum film has a BCC crystal structure and was grown in the (111) orientation on a c-plane sapphire substrate. An amorphous oxide layer can be seen on top of the tantalum at the tantalum air interface. b) Experimental results of the tantalum binding energy spectrum obtained from X-ray photo electron spectroscopy (XPS) performed using 760 eV incident photon energy. Each oxidation state of tantalum contributes a pair of peaks to the spectrum due tospin-orbit splitting. At the highest binding energy (26–30 eV), there is a pair of peaks corresponding to the Ta5+state. At the lowest binding energy, we see a pair of sharp asymmetric peaks corresponding to metallic tantalum (21–25 eV). c) Schematic explaining the physics behind variable energy X-ray photoelectron spectroscopy (VEXPS). The red and blue dots correspond to photoelectrons excited from a surface oxidation state and bulk oxidation state of the tantalum films respectively. When low energy X-rays are incident on the film surface, photoelectrons are excited with low kinetic energy (depictedby a small tail on the dots). These low energy photoelectrons have a shorter mean free path so that only those emitted from the surface species (colored red) will exit the material and impinge on the detector. When high energy X-rays are incident on the film surface, photoelectrons with high kinetic energy are excited (depicted by a longer tail on the dots). These higher energy photoelectrons have comparatively longer mean free paths so that electrons from the bulk of the film will exit the material alongside electrons from the surface. In our experiment, the angle between the surface and the incident X-rays varies between 6°and 10°; the X-rays in this image are shown at a steeper angle for legibility.

    Figure 2.Shirley background corrected XPS spectra of Ta4f binding energy obtained at three different incident photon energies. Left panel: with 760 eVX-ray photons, the Ta5+ peaks dominate over the Ta0 peaks. Middle panel: at 2200 eV photon energy, there is almost equal contribution of photoelectrons at Ta0and Ta5+. Right panel: At 5000 eV photon energy, the dominant photoelectron contribution is coming from Ta0. In all three plots there is non-zerointensity between the Ta5+ and metallic tantalum peaks, indicating minority tantalum oxidation states. The complete set of data and fits corresponding to all 17 incident X-ray energies is shown in Section S3.3 (Supporting Information). The data are fit with Gaussian profiles for the Ta5+, Ta3+, and Ta1+ species, and skewed Voigt profiles for the Ta0 and Ta0int. Included in the fit is also a Gaussian profile corresponding to the O2s peak; the amplitude ofthis peak is fixed to 5% of the measured O1s peak intensity.

    See the science paper for instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the The DOE Office of Science, The DOE’s Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Energy research
    Structural biology
    Accelerator physics


    Brookhaven National Lab was originally owned by the Atomic Energy Commission and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University and Battelle Memorial Institute. From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.


    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology to have a facility near Boston, Massachusetts. Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University, Cornell University, Harvard University, Johns Hopkins University, Massachusetts Institute of Technology, Princeton University, University of Pennsylvania, University of Rochester, and Yale University.

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.

    BNL Cosmotron 1952-1966.

    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    BNL Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II. [below].

    BNL National Synchrotron Light Source.

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider (CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, it was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.

    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.

    BNL National Synchrotron Light Source II, Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years. NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.

    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.

    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University-SUNY.

    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to the ATLAS experiment, one of the four detectors located at the The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] Large Hadron Collider(LHC). Credit: CERN.

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] map. Credit: CERN.

    It is currently operating at The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH) [CERN] near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the Spallation Neutron Source at DOE’s Oak Ridge National Laboratory, Tennessee.

    DOE’s Oak Ridge National Laboratory Spallation Neutron Source annotated.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China .

  • richardmitnick 2:15 pm on June 1, 2023 Permalink | Reply
    Tags: "Colorful Kuiper Belt puzzle solved by University of Hawai’i-Manoa researchers", , , , Chemistry, , Objects observed in the Kuiper Belt exhibit a more unique color range than any other solar system population ranging from white to dark reddish., Scientists have speculated that the coloration is likely the result of prolonged exposure to the radiation of organic materials by galactic cosmic rays.,   

    From The University of Hawai’i-Manoa: “Colorful Kuiper Belt puzzle solved by University of Hawai’i-Manoa researchers” 

    From The University of Hawai’i-Manoa


    Aromatic structures linked through unsaturated hydrocarbon chains drive the color variety of hydrocarbon rich surfaces of Kuiper Belt objects. UHawai’i.

    The Kuiper Belt is a massive disk of icy bodies, including Pluto, that is located just outside of Neptune’s orbit in our solar system.

    Objects observed in the Kuiper Belt exhibit a more unique color range than any other solar system population ranging from white to dark reddish. While the source of this diversity in colors is unknown, scientists have speculated that it is likely the result of the prolonged exposure to radiation of organic materials by galactic cosmic rays.

    A new study led by researchers in University of Hawaiʻi at Mānoa’s Department of Chemistry has replicated the environment in the Kuiper Belt to discover what is causing the array of colors in hydrocarbon-rich surfaces of Kuiper Belt objects, providing a solution to a long-standing problem in astrophysics. The study was published in Science Advances [below] on May 31.

    The research team led by Professor Ralf I. Kaiser performed the cutting-edge research at UH Mānoa. They used ultrahigh vacuum irradiation experiments and conducted comprehensive analyses to examine the color evolution and their source on the molecular level as galactic cosmic rays processed hydrocarbons, such as methane and acetylene, under Kuiper Belt-like conditions.

    Aromatic (organic molecules with fused benzene rings) structural units carrying up to three rings, for example in chemical compounds phenanthrene, phenalene and acenaphthylene, connected by hydrogen-deficient bridges among each other were found to play a key role in producing reddish colors. The UH experiments demonstrated the level of molecular complexity of galactic cosmic rays processing hydrocarbons and provided insight into the role played by ices exposed to radiation in the early production of biological precursor molecules, a molecule that participates in a chemical reaction that produces another molecule.

    “This research is a critical first step to systematically unravel the carriers of the molecular units responsible for hydrocarbon-rich surfaces of Kuiper Belt objects,” Kaiser said. “Since astronomical detections also detected, e.g., ammonia, water, and methanol, on the surfaces of Kuiper Belt objects, further experiments on the cosmic ray processing of these ices hopefully reveal the nature of the true color diversity of Kuiper Belt objects on the molecular level.”

    The research team consisted of Ralf I. Kaiser, Chaojiang Zhang, Cheng Zhu, Andrew M. Turner and Ivan O. Antonov from UH Mānoa; Adrien D. Garcia and Cornelia Meinert from Côte d’Azur University in France; Leslie A. Young from the Southwest Research Institute in Colorado; and David C. Jewitt from UCLA, who previously worked at UH’s Institute for Astronomy.

    Science Advances

    Fig. 1. UV-vis reflectance spectra collected during the irradiation of 13C-acetylene (13C2H2) and 13C-methane (13CH4) ices.
    (A) 13C2H2 ice irradiated at 10 K. (B) 13C2H2 ice irradiated at 40 K. (C) 13CH4 ice irradiated at 10 K. (D) 13CH4 ice irradiated at 20 K. All the spectra were normalized at 550 nm.

    Fig. 2. Comparison of the color from irradiated 13C-acetylene (13C2H2) and 13C-methane (13CH4) ices with KBOs.
    (A) Color slopes of irradiated 13C-acetylene (13C2H2) and 13C-methane (13CH4). (B) Color-color diagram comparing irradiated 13C-acetylene (13C2H2) and 13C-methane (13CH4) at different doses with KBOs. The colors of 10 K 13C2H2 (square), 40 K 13C2H2 (circle), 10 K 13CH4 (triangle), and 20 K 13CH4 (pentagon) are obtained from their UV-vis spectra. The gray circle indicates the color of the Sun. (C) Images of the residues for 13C-acetylene (13C2H2) ices irradiated at 10 K at distinct doses recorded after annealing the ices to 300 K.

    See the science paper for further instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    System Overview

    The University of Hawai‘i includes 10 campuses and dozens of educational, training and research centers across the Hawaiian Islands. As the public system of higher education in Hawai‘i, UH offers opportunities as unique and diverse as our Island home.

    The 10 UH campuses and educational centers on six Hawaiian Islands provide unique opportunities for both learning and recreation.

    UH is the State’s leading engine for economic growth and diversification, stimulating the local economy with jobs, research and skilled workers.

    The University of Hawaiʻi system is a public college and university system that confers associate, bachelor’s, master’s, and doctoral degrees through three university campuses, seven community college campuses, an employment training center, three university centers, four education centers and various other research facilities distributed across six islands throughout the state of Hawaii in the United States. All schools of the University of Hawaiʻi system are accredited by the Western Association of Schools and Colleges. The U.H. system’s main administrative offices are located on the property of the University of Hawaiʻi at Mānoa in Honolulu CDP.

    The University of Hawaiʻi-Mānoa is the flagship institution of the University of Hawaiʻi system. It was founded as a land-grant college under the terms of the Morrill Acts of 1862 and 1890. Programs include Hawaiian/Pacific Studies, Astronomy, East Asian Languages and Literature, Asian Studies, Comparative Philosophy, Marine Science, Second Language Studies, along with Botany, Engineering, Ethnomusicology, Geophysics, Law, Business, Linguistics, Mathematics, and Medicine. The second-largest institution is the University of Hawaiʻi at Hilo on the “Big Island” of Hawaiʻi, with over 3,000 students. The University of Hawaiʻi-West Oʻahu in Kapolei primarily serves students who reside in Honolulu’s western and central suburban communities. The University of Hawaiʻi Community College system comprises four community colleges island campuses on O’ahu and one each on Maui, Kauaʻi, and Hawaiʻi. The schools were created to improve accessibility of courses to more Hawaiʻi residents and provide an affordable means of easing the transition from secondary school/high school to college for many students. University of Hawaiʻi education centers are located in more remote areas of the State and its several islands, supporting rural communities via distance education.

    Research facilities

    Center for Philippine Studies
    Cancer Research Center of Hawaiʻi
    East-West Center
    Haleakalā Observatory
    Hawaiʻi Natural Energy Institute
    Institute for Astronomy
    Institute of Geophysics and Planetology
    Institute of Marine Biology
    Lyon Arboretum
    Mauna Kea Observatory
    W. M. Keck Observatory
    Waikīkī Aquarium

    University of Hawaii 2.2 meter telescope.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth.

    W.M. Keck Observatory two ten meter telescopes operated by California Institute of Technology and the University of California Mauna Kea Hawaii, altitude 4207 m (13802 ft). Credit: Caltech.

    The two, 10-meter optical/infrared telescopes near the summit of Maunakea on the island of Hawai’i feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrographs and world-leading laser guide star adaptive optics systems.

    Pann-STARS 1 Telescope, U Hawaii, situated at Haleakala Observatories near the summit of Haleakala in Hawaii, altitude 3052 m (10013 ft).

  • richardmitnick 8:20 pm on May 31, 2023 Permalink | Reply
    Tags: "A protein mines and sorts rare earths better than humans paving way for green tech", , , , Chemistry, , ,   

    From The Pennsylvania State University: “A protein mines and sorts rare earths better than humans paving way for green tech” 

    Penn State Bloc

    From The Pennsylvania State University

    Adrienne Berard

    Joseph Cotruvo Jr., associate professor of chemistry at Penn State, holds a sample of a clay containing rare earths. His lab and their collaborators have previously developed a process to use a natural protein discovered by his group to recover rare earths from these types of sources. In a recent study, the team focused on separation of rare earths and discovered a new protein that can sort one rare earth from another. Credit: Patrick Mansell / Penn State. Creative Commons.

    Rare earth elements, like neodymium and dysprosium, are a critical component to almost all modern technologies, from smartphones to hard drives, but they are notoriously hard to separate from the Earth’s crust and from one another.

    Penn State scientists have discovered a new mechanism by which bacteria can select between different rare earth elements, using the ability of a bacterial protein to bind to another unit of itself, or “dimerize,” when it is bound to certain rare earths, but prefer to remain a single unit, or “monomer,” when bound to others.

    By figuring out how this molecular handshake works at the atomic level, the researchers have found a way to separate these similar metals from one another quickly, efficiently, and under normal room temperature conditions. This strategy could lead to more efficient, greener mining and recycling practices for the entire tech sector, the researchers state.

    “Biology manages to differentiate rare earths from all the other metals out there — and now, we can see how it even differentiates between the rare earths it finds useful and the ones it doesn’t,” said Joseph Cotruvo Jr., associate professor of chemistry at Penn State and lead author on a paper about the discovery published today (May 31) in the journal Nature [below]. “We’re showing how we can adapt these approaches for rare earth recovery and separation.”


    Fig. 1: Hans-LanM diverges from Mex-LanM in sequence and RE versus RE selectivity.
    a) Sequence similarity network of core LanM sequences indicates that Hans-LanM forms a distinct cluster. The sequence similarity network includes 696 LanM sequences connected with 48,647 edges, thresholded at a BLAST E value of 1 × 10^−5 and 65% sequence identity. The black box encloses nodes clustered with Hans-LanM. The LanM sequence associated with Mex (downtriangle) and four within Hansschlegelia (uptriangle) are enlarged compared to other nodes (circles). Colours of the nodes represent the family from which the sequences originate. b) Comparison of the sequences of the four EF hands of Mex- and Hans-LanMs. Residues canonically involved in metal binding in EF hands are in blue; Pro residues are in purple. c) Circular dichroism spectra from a representative titration of Hans-LanM with LaIII, showing the metal-associated conformational response increasing helicity; apoprotein is bold black, LaIII-saturated protein is bold red. d) Circular dichroism titration of Hans-LanM with LaIII, NdIII and DyIII (pH 5.0). Each point represents the mean ± s.d. from three independent experiments. e) Comparison of Kd,app values (pH 5.0) for Mex-LanM (black [18*]) and Hans-LanM (red), plotted versus ionic radius [7*]. Mean ± s.e.m. from three independent experiments.
    *References to the science paper.

    See the science paper for further instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.

    Penn State Campus

    The The Pennsylvania State University is a public state-related land-grant research university with campuses and facilities throughout Pennsylvania. Founded in 1855 as the Farmers’ High School of Pennsylvania, Penn State became the state’s only land-grant university in 1863. Today, Penn State is a major research university which conducts teaching, research, and public service. Its instructional mission includes undergraduate, graduate, professional and continuing education offered through resident instruction and online delivery. In addition to its land-grant designation, it also participates in the sea-grant, space-grant, and sun-grant research consortia; it is one of only four such universities (along with Cornell University, Oregon State University, and University of Hawaiʻi at Mānoa). Its University Park campus, which is the largest and serves as the administrative hub, lies within the Borough of State College and College Township. It has two law schools: Penn State Law, on the school’s University Park campus, and Dickinson Law, in Carlisle. The College of Medicine is in Hershey. Penn State is one university that is geographically distributed throughout Pennsylvania. There are 19 commonwealth campuses and 5 special mission campuses located across the state. The University Park campus has been labeled one of the “Public Ivies,” a publicly funded university considered as providing a quality of education comparable to those of the Ivy League.
    The Pennsylvania State University is a member of The Association of American Universities an organization of American research universities devoted to maintaining a strong system of academic research and education.

    Annual enrollment at the University Park campus totals more than 46,800 graduate and undergraduate students, making it one of the largest universities in the United States. It has the world’s largest dues-paying alumni association. The university offers more than 160 majors among all its campuses.

    Annually, the university hosts the Penn State IFC/Panhellenic Dance Marathon (THON), which is the world’s largest student-run philanthropy. This event is held at the Bryce Jordan Center on the University Park campus. The university’s athletics teams compete in Division I of the NCAA and are collectively known as the Penn State Nittany Lions, competing in the Big Ten Conference for most sports. Penn State students, alumni, faculty and coaches have received a total of 54 Olympic medals.

    Early years

    The school was sponsored by the Pennsylvania State Agricultural Society and founded as a degree-granting institution on February 22, 1855, by Pennsylvania’s state legislature as the Farmers’ High School of Pennsylvania. The use of “college” or “university” was avoided because of local prejudice against such institutions as being impractical in their courses of study. Centre County, Pennsylvania, became the home of the new school when James Irvin of Bellefonte, Pennsylvania, donated 200 acres (0.8 km2) of land – the first of 10,101 acres (41 km^2) the school would eventually acquire. In 1862, the school’s name was changed to the Agricultural College of Pennsylvania, and with the passage of the Morrill Land-Grant Acts, Pennsylvania selected the school in 1863 to be the state’s sole land-grant college. The school’s name changed to the Pennsylvania State College in 1874; enrollment fell to 64 undergraduates the following year as the school tried to balance purely agricultural studies with a more classic education.

    George W. Atherton became president of the school in 1882, and broadened the curriculum. Shortly after he introduced engineering studies, Penn State became one of the ten largest engineering schools in the nation. Atherton also expanded the liberal arts and agriculture programs, for which the school began receiving regular appropriations from the state in 1887. A major road in State College has been named in Atherton’s honor. Additionally, Penn State’s Atherton Hall, a well-furnished and centrally located residence hall, is named not after George Atherton himself, but after his wife, Frances Washburn Atherton. His grave is in front of Schwab Auditorium near Old Main, marked by an engraved marble block in front of his statue.

    Early 20th century

    In the years that followed, Penn State grew significantly, becoming the state’s largest grantor of baccalaureate degrees and reaching an enrollment of 5,000 in 1936. Around that time, a system of commonwealth campuses was started by President Ralph Dorn Hetzel to provide an alternative for Depression-era students who were economically unable to leave home to attend college.

    In 1953, President Milton S. Eisenhower, brother of then-U.S. President Dwight D. Eisenhower, sought and won permission to elevate the school to university status as The Pennsylvania State University. Under his successor Eric A. Walker (1956–1970), the university acquired hundreds of acres of surrounding land, and enrollment nearly tripled. In addition, in 1967, the Penn State Milton S. Hershey Medical Center, a college of medicine and hospital, was established in Hershey with a $50 million gift from the Hershey Trust Company.

    Modern era

    In the 1970s, the university became a state-related institution. As such, it now belongs to the Commonwealth System of Higher Education. In 1975, the lyrics in Penn State’s alma mater song were revised to be gender-neutral in honor of International Women’s Year; the revised lyrics were taken from the posthumously-published autobiography of the writer of the original lyrics, Fred Lewis Pattee, and Professor Patricia Farrell acted as a spokesperson for those who wanted the change.

    In 1989, the Pennsylvania College of Technology in Williamsport joined ranks with the university, and in 2000, so did the Dickinson School of Law. The university is now the largest in Pennsylvania. To offset the lack of funding due to the limited growth in state appropriations to Penn State, the university has concentrated its efforts on philanthropy.


    Penn State is classified among “R1: Doctoral Universities – Very high research activity”. Over 10,000 students are enrolled in the university’s graduate school (including the law and medical schools), and over 70,000 degrees have been awarded since the school was founded in 1922.

    Penn State’s research and development expenditure has been on the rise in recent years. For fiscal year 2013, according to institutional rankings of total research expenditures for science and engineering released by the National Science Foundation , Penn State stood second in the nation, behind only Johns Hopkins University and tied with the Massachusetts Institute of Technology , in the number of fields in which it is ranked in the top ten. Overall, Penn State ranked 17th nationally in total research expenditures across the board. In 12 individual fields, however, the university achieved rankings in the top ten nationally. The fields and sub-fields in which Penn State ranked in the top ten are materials (1st), psychology (2nd), mechanical engineering (3rd), sociology (3rd), electrical engineering (4th), total engineering (5th), aerospace engineering (8th), computer science (8th), agricultural sciences (8th), civil engineering (9th), atmospheric sciences (9th), and earth sciences (9th). Moreover, in eleven of these fields, the university has repeated top-ten status every year since at least 2008. For fiscal year 2011, the National Science Foundation reported that Penn State had spent $794.846 million on R&D and ranked 15th among U.S. universities and colleges in R&D spending.

    For the 2008–2009 fiscal year, Penn State was ranked ninth among U.S. universities by the National Science Foundation, with $753 million in research and development spending for science and engineering. During the 2015–2016 fiscal year, Penn State received $836 million in research expenditures.

    The Applied Research Lab (ARL), located near the University Park campus, has been a research partner with the Department of Defense since 1945 and conducts research primarily in support of the United States Navy. It is the largest component of Penn State’s research efforts statewide, with over 1,000 researchers and other staff members.

    The Materials Research Institute was created to coordinate the highly diverse and growing materials activities across Penn State’s University Park campus. With more than 200 faculty in 15 departments, 4 colleges, and 2 Department of Defense research laboratories, MRI was designed to break down the academic walls that traditionally divide disciplines and enable faculty to collaborate across departmental and even college boundaries. MRI has become a model for this interdisciplinary approach to research, both within and outside the university. Dr. Richard E. Tressler was an international leader in the development of high-temperature materials. He pioneered high-temperature fiber testing and use, advanced instrumentation and test methodologies for thermostructural materials, and design and performance verification of ceramics and composites in high-temperature aerospace, industrial, and energy applications. He was founding director of the Center for Advanced Materials (CAM), which supported many faculty and students from the College of Earth and Mineral Science, the Eberly College of Science, the College of Engineering, the Materials Research Laboratory and the Applied Research Laboratories at Penn State on high-temperature materials. His vision for Interdisciplinary research played a key role in creating the Materials Research Institute, and the establishment of Penn State as an acknowledged leader among major universities in materials education and research.

    The university was one of the founding members of the Worldwide Universities Network (WUN), a partnership that includes 17 research-led universities in the United States, Asia, and Europe. The network provides funding, facilitates collaboration between universities, and coordinates exchanges of faculty members and graduate students among institutions. Former Penn State president Graham Spanier is a former vice-chair of the WUN.

    The Pennsylvania State University Libraries were ranked 14th among research libraries in North America in the 2003–2004 survey released by The Chronicle of Higher Education. The university’s library system began with a 1,500-book library in Old Main. In 2009, its holdings had grown to 5.2 million volumes, in addition to 500,000 maps, five million microforms, and 180,000 films and videos.

    The university’s College of Information Sciences and Technology is the home of CiteSeerX, an open-access repository and search engine for scholarly publications. The university is also the host to the Radiation Science & Engineering Center, which houses the oldest operating university research reactor. Additionally, University Park houses the Graduate Program in Acoustics, the only freestanding acoustics program in the United States. The university also houses the Center for Medieval Studies, a program that was founded to research and study the European Middle Ages, and the Center for the Study of Higher Education (CSHE), one of the first centers established to research postsecondary education.

  • richardmitnick 1:57 pm on May 31, 2023 Permalink | Reply
    Tags: "How the humble neutron can help solve some of the universe’s deepest mysteries", "Spallation": wherein high-energy particles destabilize an atom’s nucleus which in turn releases some of the neutrons found there., , , Chemistry, Currently under construction in Lund in Sweden the European Spallation Source (ESS) is expected to come online in 2027., , Newly freed neutrons can be used like X-rays to map the inner structure of materials., , , Scientists are unleashing the power of neutrons to improve understanding of everyday materials and tackle fundamental questions in physics., The ESS will have 15 different beamlines to conduct fundamental research., The European Spallation Source is set to become the most powerful and versatile neutron source for science in the world., The neutron found in the nucleus of every atom but hydrogen can shed light on everything from the climate crisis and energy to health and quantum computing.   

    From “Horizon” The EU Research and Innovation Magazine : “How the humble neutron can help solve some of the universe’s deepest mysteries” 

    From “Horizon” The EU Research and Innovation Magazine

    Michael Allen

    Scientists are unleashing the power of neutrons to improve understanding of everyday materials and tackle fundamental questions in physics.

    Apart from flashbacks that the hit Netflix series Breaking Bad may have conjured up, most of us have likely happily forgotten what we learned in chemistry classes back in school.

    So here’s a quick brush-up: chemistry looks at the building blocks of our physical world, such as atoms, and the changes they undergo. An atom consists of a nucleus of protons and neutrons surrounded by a cloud of electrons.

    Free the neutrons

    Now for something high school chemistry might not have taught us: the humble neutron, found in the nucleus of every atom but hydrogen, can – if manipulated in just the right way – shed light on everything from the climate crisis and energy to health and quantum computing.

    One such way is a rather spectacular process known as “spallation” where high-energy particles destabilize an atom’s nucleus, which in turn releases some of the neutrons found there.

    When harnessed, these newly freed neutrons can be used like X-rays to map the inner structure of materials.

    Currently under construction in Lund in Sweden the European Spallation Source (ESS) is expected to come online in 2027. Once it achieves its full specifications, its unprecedented flux and spectral range is set to make it the most powerful and versatile neutron source for science in the world.

    The purpose of the facility, said Jimmy Binderup Andersen, head of innovation and industry at the ESS, ‘is to create neutrons, a neutron beam, to be used for scientific purposes.’

    Once the facility is up and running, scientists from across Europe and the rest of the world will be able to use its 15 different beamlines to conduct fundamental research.

    Not X-ray

    According to Andersen, a neutron beam “is not the same as an X-ray, but it is complementary and uses some of the same physical laws.”

    Like X-rays, neutrons can be used to probe materials and biological systems. But they interact with materials in different ways to the photons in high-energy X-ray beams and therefore provide different types of information about their targets.

    For example, neutron beams can say something about the interior dynamics of lithium-ion batteries, reveal obscured details from ancient artefacts or clarify the mechanisms of antibiotic resistance in bacteria. They can also be used to explore fundamental physics. It almost seems like a case of “what can’t they do?”

    Neutron bombardments

    As part of the EU-funded BrightnESS-2 project, partly coordinated by Andersen, technologies developed for the ESS were shared with industry in Europe, to benefit society at large. For instance, some of the power systems developed for the ESS beamlines could be useful for renewable energy technologies like wind turbines.

    Recently, the ESS was contacted by a European semiconductor manufacturer interested in the radiation fields the neutron source can generate. The world we live in is constantly bombarded with neutrons, produced when high-energy particles from outer space, such as cosmic rays from the sun, collide with Earth’s atmosphere.

    Over time, this exposure can damage electrical components.

    The ESS can mimic this neutron bombardment, but on a much faster time scale, enabling it to be used to test the durability of critical electrical components, such as those used in airplanes, wind turbines and spacecraft.

    Now ESS is teaming up with other research institutes and companies to find a possible future use of a facility like ESS to address such specific industry needs.

    ESS 2.0

    Although the ESS is still being built, scientists are already working on an upgrade to the facility.

    When the ESS first opens it will have one moderator, but the EU-funded HighNESS project is developing a second moderator system. The moderators will slow down the neutrons generated during the spallation process to an energy level that the scientific instruments can use.

    ‘The neutron energy really matters in a neutron facility, because depending on the neutron energy, you can do different kinds of physics,’ said Valentina Santoro, coordinator of the HighNESS project.

    While the first moderator will provide high-brightness, which is a very focused beam of neutrons, the source being developed by the HighNESS project will deliver a high intensity. In other words, a large number of neutrons.

    The two moderators will allow scientists to explore different aspects of the dynamics and structure of materials such as polymers, biomolecules, liquid metals and batteries.

    A fundamental mystery

    The second moderator will also enable explorations of fundamental physics to try and see a neutron become an antineutron for the first time.

    “This is very interesting, because you observe a phenomenon where matter becomes antimatter,” said Santoro, who is a particle physicist based at the ESS. ‘If you observe something like that you can understand one of the biggest unsolved mysteries – why there is more matter than antimatter in the universe.’

    This experiment can only be done at ESS, Santoro said, because it requires a huge number of neutrons and the ESS will have the highest number in the world.

    “You just need one neutron that becomes an antineutron, and that is it, you’ve found this process where matter becomes antimatter,” Santoro said.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    Please help promote STEM in your local schools.

    Stem Education Coalition
    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.

  • richardmitnick 7:52 am on May 31, 2023 Permalink | Reply
    Tags: "In a first researchers capture fleeting 'transition state' in ring-shaped molecules excited by light", "Photochemical ring-opening reaction": triggered when light energy is absorbed by a substance's molecules., "Transition states" generally occur in chemical reactions which are triggered not by light but by heat., , , Chemistry, , , Scientists have directly imaged a photochemical “transition state”- a specific configuration of a molecule’s atoms determining the chemical outcome., , The investigation of similar critical configurations in photochemical reactions could lead to a better understanding of reactions with key roles in chemistry and biology., The results should further our understanding of similar reactions with vital roles in chemistry such as the production of vitamin D in our bodies., These reactions are important for understanding the quantum mechanics underpinning photochemistry.   

    From The DOE’s SLAC National Accelerator Laboratory: “In a first researchers capture fleeting ‘transition state’ in ring-shaped molecules excited by light” 

    From The DOE’s SLAC National Accelerator Laboratory

    Ali Sundermier

    Using SLAC’s ultrafast “electron camera,” scientists have directly imaged a photochemical “transition state” as it happened. (Greg Stewart/SLAC National Accelerator Laboratory)

    With SLAC’s ultrafast “electron camera,” researchers were able to confirm a half-century-old set of rules predicting the outcome of ring-opening reactions, demonstrating that the molecules open exclusively in the way predicted by the rules. The reaction pathway is illustrated in this graphic representation. (Greg Stewart/SLAC National Accelerator Laboratory) 2021

    The results should further our understanding of similar reactions with vital roles in chemistry such as the production of vitamin D in our bodies.

    Using a high-speed “electron camera” at the Department of Energy’s SLAC National Accelerator Laboratory and cutting-edge quantum simulations, scientists have directly imaged a photochemical “transition state,” a specific configuration of a molecule’s atoms determining the chemical outcome, during a ring-opening reaction in the molecule α-terpinene. This is the first time that scientists have precisely tracked molecular structure through a “photochemical ring-opening reaction” which is triggered when light energy is absorbed by a substance’s molecules.

    The results, published in Nature Communications [below], could further our understanding of similar reactions with vital roles in chemistry, such as the production of vitamin D in our bodies.

    “Transition states” generally occur in chemical reactions which are triggered not by light but by heat. They are like a point of no return for molecules involved in a chemical reaction: As the molecules gain the energy needed to fuel the reaction, they rearrange themselves into a fleeting configuration before they complete their transformation into new molecules.

    “Transition states really tell you a lot about how and why reactions happen,” said co-author and SLAC scientist Thomas Wolf. “The investigation of similar critical configurations in photochemical reactions could lead to a better understanding of reactions with key roles in chemistry and biology. It’s important that we can now look at some specific characteristics of such reactions using our diffraction techniques.”

    Until now, no method existed that was sensitive enough to capture these fleeting states, which last for only millionths of a billionth of second. At MeV-UED, SLAC’s instrument for ultrafast electron diffraction, the researchers sent an electron beam with high energy, measured in millions of electronvolts (MeV), through a gas to precisely measure distances between the atoms within the molecules in the gas. Taking snapshots of these distances at different intervals after an initial laser flash allows scientists to create a stop-motion movie of the light-induced atomic rearrangements in the molecules.

    “These reactions are important for understanding the quantum mechanics underpinning photochemistry,” said SLAC scientist and co-author Yusong Liu. “Comparing our experimental results with quantum simulations of the reaction allows us to get a highly accurate picture of how molecules behave and benchmark the predictive power of theoretical and computational methods.”

    In a previous study [Science (below)]of a related reaction, MeV-UED allowed the team to capture the coordinated dance between electrons and nuclei. The results provided the first direct confirmation of a half-century-old set of rules about the final product’s stereochemistry, or the three-dimensional arrangement of its atoms.

    In the present experiment, the researchers discovered that some parts of the atomic rearrangements happen earlier than other parts, which provides an explanation for why the specific stereochemistry is created by the reaction.

    “I recently looked back on some old presentations I did in college about these types of reactions and the famous set of rules that predict the outcomes. But these rules don’t actually explain why and how reactions happen.” Wolf said. “And now I’m coming back to that and can start answering these questions and that makes it incredibly exciting for me.”

    Another big motivation for doing these experiments, Wolf said, is that the same reaction also happens in biological processes such as the biosynthesis of vitamin D in human skin. The researchers plan to conduct follow-up studies further exploring this connection.

    MeV-UED is an instrument of SLAC’s Linac Coherent Light Source (LCLS) X-ray laser facility [below]. LCLS is a DOE Office of Science user facility. This research was supported by the Office of Science.

    Nature Communications

    Fig. 1: Schematic description of the observed electrocyclic ring-opening dynamics of α-terpinene.
    After photoexcitation to the first excited state (S1), the molecule relaxes along a coordinate representing deplanarization with respect to the reactant double bond positions and planarization with respect to the product double bond positions into the pericyclic minimum. The pericyclic minimum is close to, but separated by a shallow barrier from a conical intersection (S0/S1 CI) with the electronic ground state (S0). Population which relaxes through the CI either returns to the S0 reactant minimum or evolves along a carbon–carbon bond dissociation coordinate RC–C into three S0 minima representing different triene photoproduct isomers labeled with cZc, cZt, tZc, and tZt. Visualizations of representative structures along the reaction coordinate are shown together with specific carbon–carbon distances in yellow and blue. Additionally, the distances are reported by color-coded numbers. Both the structures and the distances are extracted from the simulations. The carbon numbering used in the text is shown in black. The double bond positions are highlighted in the structure visualizations as red bars.

    Fig. 2: Experimental and simulated structural information of αTP.
    The line plots in panel a show both the simulated and experimental pair distribution functions (PDFs) of the molecule in the ground state. The histograms below the PDFs represent carbon–carbon distance distribution functions (ccDDF) based on the initial geometries of our ab initio multiple spawning simulations separated and color-coded with respect to carbon coordination spheres. The inset of panel a shows the labeling of the carbon atoms of αTP as used in the text. Additionally, representative distances for the first three coordination spheres are marked by color-coded arrows. Panel b shows experimental and simulated difference PDF (ΔPDF) at a pump-probe delay of 550 fs. The light-orange-colored area-plot indicates the total difference carbon–carbon distance distribution function (ΔccDDF) from all the carbon coordination spheres. Three regions are labeled as α, β, and γ. Uncertainties (s.e.m.) derived from bootstrapping analyses are shown as error bars (experiment) and shaded areas (simulation).

    See this science paper for further instructive material with images.

    Science 2021

    Fig. 1. Conformer-specific photochemistry in α-phellandrene.
    (A) Woodward-Hoffmann predictions for the conformer specificity of photoinduced electrocyclic ring opening in α-phellandrene. Its isopropyl substituent (R) can be in axial or equatorial orientation with respect to the carbon ring. Axial and equatorial conformers are in thermal equilibrium in solution phase (Δ). (6) The Woodward-Hoffmann rules predict a concerted, conrotatory ring-opening motion (orange arrows) yielding isomers with R in different positions depending on the reactant conformer. (B) Schematic based on ab initio multiple spawning simulations of the photoinduced ring opening. Equatorial and axial conformers are photoexcited from their respective ground-state (S0) energy minima to the first excited state (S1); they evolve along an out-of-plane (OOP, green) coordinate toward conical intersections CI-1 and CI-2 or along the ring-opening coordinate (purple) toward CI-3. CI-1 and CI-2 lead to reformation of α-phellandrene, whereas CI-3 leads to both αPH reformation and ring opening. Several different conformers of the ZZDOT/ZEDOT photoproduct minima (cZc, cZt, and tZt) are accessible in the ground state. The two pie charts visualize the photoproduct distribution for axial and equatorial conformers as well as the distribution among the CI geometries CI-1 to CI-3; errors representing 68% confidence intervals were obtained from bootstrap analysis.

    Fig. 2. Comparison of experimental and simulated structural information.
    (A) Experimental (black) and simulated pair distribution functions PDF(r) of six α-phellandrene (αPH) conformers, which are depicted below together with the dihedral angles defining the rotation of the isopropyl group [two gauche orientations (G+/G–) and one trans (T) orientation of the marked isopropyl hydrogen with respect to the marked ring carbon]. Carbon-carbon coordination spheres for axial (red) and equatorial (blue) conformers are shown as bars. Additionally, the α, β, and γ ranges of Fig. 3 are shown. The inset shows the carbon atom numbering used in the text. (B) Experimental difference PDF [ΔPDF(r)] at a pump-probe delay of 0.26 ps (black) and simple simulations of the signature of Woodward-Hoffmann (WH)–allowed and WH-forbidden reaction product signatures of the equatorial (eq-αPH) and axial (ax-αPH) reactant conformers and (3Z,5E)-3,7-dimethylocta-1,3,5-triene (ZEDOT) and (3Z,5Z)-dimethylocta-1,3,5-triene (ZZDOT) product isomers. Shaded areas represent a 68% confidence interval obtained from bootstrap analysis.

    See this science paper for further instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    Please help promote STEM in your local schools.

    Stem Education Coalition

    DOE’s SLAC National Accelerator Laboratory campus

    The DOE’s SLAC National Accelerator Laboratory originally named Stanford Linear Accelerator Center, is a Department of Energy National Laboratory operated by Stanford University under the programmatic direction of the Department of Energy Office of Science and located in Menlo Park, California. It is the site of the Stanford Linear Accelerator, a 3.2 kilometer (2-mile) linear accelerator constructed in 1966 and shut down in the 2000s, which could accelerate electrons to energies of 50 GeV.
    Today SLAC research centers on a broad program in atomic and solid-state physics, chemistry, biology, and medicine using X-rays from synchrotron radiation and a free-electron laser as well as experimental and theoretical research in elementary particle physics, astroparticle physics, and cosmology.

    Founded in 1962 as the Stanford Linear Accelerator Center, the facility is located on 172 hectares (426 acres) of Stanford University-owned land on Sand Hill Road in Menlo Park, California—just west of the University’s main campus. The main accelerator is 3.2 kilometers (2 mi) long—the longest linear accelerator in the world—and has been operational since 1966.

    Research at SLAC has produced three Nobel Prizes in Physics

    1976: The charm quark—see J/ψ meson
    1990: Quark structure inside protons and neutrons
    1995: The tau lepton

    SLAC’s meeting facilities also provided a venue for the Homebrew Computer Club and other pioneers of the home computer revolution of the late 1970s and early 1980s.

    In 1984 the laboratory was named an ASME National Historic Engineering Landmark and an IEEE Milestone.

    SLAC developed and, in December 1991, began hosting the first World Wide Web server outside of Europe.

    In the early-to-mid 1990s, the Stanford Linear Collider (SLC) investigated the properties of the Z boson using the Stanford Large Detector [below].

    As of 2005, SLAC employed over 1,000 people, some 150 of whom were physicists with doctorate degrees, and served over 3,000 visiting researchers yearly, operating particle accelerators for high-energy physics and the Stanford Synchrotron Radiation Laboratory (SSRL) [below] for synchrotron light radiation research, which was “indispensable” in the research leading to the 2006 Nobel Prize in Chemistry awarded to Stanford Professor Roger D. Kornberg.

    In October 2008, the Department of Energy announced that the center’s name would be changed to SLAC National Accelerator Laboratory. The reasons given include a better representation of the new direction of the lab and the ability to trademark the laboratory’s name. Stanford University had legally opposed the Department of Energy’s attempt to trademark “Stanford Linear Accelerator Center”.

    In March 2009, it was announced that the SLAC National Accelerator Laboratory was to receive $68.3 million in Recovery Act Funding to be disbursed by Department of Energy’s Office of Science.

    In October 2016, Bits and Watts launched as a collaboration between SLAC and Stanford University to design “better, greener electric grids”. SLAC later pulled out over concerns about an industry partner, the state-owned Chinese electric utility.


    The main accelerator was an RF linear accelerator that accelerated electrons and positrons up to 50 GeV. At 3.2 km (2.0 mi) long, the accelerator was the longest linear accelerator in the world, and was claimed to be “the world’s most straight object.” until 2017 when the European x-ray free electron laser opened. The main accelerator is buried 9 m (30 ft) below ground and passes underneath Interstate Highway 280. The above-ground klystron gallery atop the beamline, was the longest building in the United States until the LIGO project’s twin interferometers were completed in 1999. It is easily distinguishable from the air and is marked as a visual waypoint on aeronautical charts.

    A portion of the original linear accelerator is now part of the Linac Coherent Light Source [below].

    Stanford Linear Collider

    The Stanford Linear Collider was a linear accelerator that collided electrons and positrons at SLAC. The center of mass energy was about 90 GeV, equal to the mass of the Z boson, which the accelerator was designed to study. Grad student Barrett D. Milliken discovered the first Z event on 12 April 1989 while poring over the previous day’s computer data from the Mark II detector. The bulk of the data was collected by the SLAC Large Detector, which came online in 1991. Although largely overshadowed by the Large Electron–Positron Collider at CERN, which began running in 1989, the highly polarized electron beam at SLC (close to 80%) made certain unique measurements possible, such as parity violation in Z Boson-b quark coupling.

    Presently no beam enters the south and north arcs in the machine, which leads to the Final Focus, therefore this section is mothballed to run beam into the PEP2 section from the beam switchyard.

    The SLAC Large Detector (SLD) was the main detector for the Stanford Linear Collider. It was designed primarily to detect Z bosons produced by the accelerator’s electron-positron collisions. Built in 1991, the SLD operated from 1992 to 1998.

    SLAC National Accelerator Laboratory Large Detector


    PEP (Positron-Electron Project) began operation in 1980, with center-of-mass energies up to 29 GeV. At its apex, PEP had five large particle detectors in operation, as well as a sixth smaller detector. About 300 researchers made used of PEP. PEP stopped operating in 1990, and PEP-II began construction in 1994.


    From 1999 to 2008, the main purpose of the linear accelerator was to inject electrons and positrons into the PEP-II accelerator, an electron-positron collider with a pair of storage rings 2.2 km (1.4 mi) in circumference. PEP-II was host to the BaBar experiment, one of the so-called B-Factory experiments studying charge-parity symmetry.

    SLAC National Accelerator Laboratory BaBar

    SLAC National Accelerator Laboratory SSRL

    Fermi Gamma-ray Space Telescope

    SLAC plays a primary role in the mission and operation of the Fermi Gamma-ray Space Telescope, launched in August 2008. The principal scientific objectives of this mission are:

    To understand the mechanisms of particle acceleration in AGNs, pulsars, and SNRs.
    To resolve the gamma-ray sky: unidentified sources and diffuse emission.
    To determine the high-energy behavior of gamma-ray bursts and transients.
    To probe dark matter and fundamental physics.

    National Aeronautics and Space Administration Fermi Large Area Telescope

    National Aeronautics and Space Administration Fermi Gamma Ray Space Telescope.


    KIPAC campus

    The Stanford PULSE Institute (PULSE) is a Stanford Independent Laboratory located in the Central Laboratory at SLAC. PULSE was created by Stanford in 2005 to help Stanford faculty and SLAC scientists develop ultrafast x-ray research at LCLS.

    The Linac Coherent Light Source (LCLS)[below] is a free electron laser facility located at SLAC. The LCLS is partially a reconstruction of the last 1/3 of the original linear accelerator at SLAC, and can deliver extremely intense x-ray radiation for research in a number of areas. It achieved first lasing in April 2009.

    The laser produces hard X-rays, 10^9 times the relative brightness of traditional synchrotron sources and is the most powerful x-ray source in the world. LCLS enables a variety of new experiments and provides enhancements for existing experimental methods. Often, x-rays are used to take “snapshots” of objects at the atomic level before obliterating samples. The laser’s wavelength, ranging from 6.2 to 0.13 nm (200 to 9500 electron volts (eV)) is similar to the width of an atom, providing extremely detailed information that was previously unattainable. Additionally, the laser is capable of capturing images with a “shutter speed” measured in femtoseconds, or million-billionths of a second, necessary because the intensity of the beam is often high enough so that the sample explodes on the femtosecond timescale.

    The LCLS-II [below] project is to provide a major upgrade to LCLS by adding two new X-ray laser beams. The new system will utilize the 500 m (1,600 ft) of existing tunnel to add a new superconducting accelerator at 4 GeV and two new sets of undulators that will increase the available energy range of LCLS. The advancement from the discoveries using these new capabilities may include new drugs, next-generation computers, and new materials.


    In 2012, the first two-thirds (~2 km) of the original SLAC LINAC were recommissioned for a new user facility, the Facility for Advanced Accelerator Experimental Tests (FACET). This facility was capable of delivering 20 GeV, 3 nC electron (and positron) beams with short bunch lengths and small spot sizes, ideal for beam-driven plasma acceleration studies. The facility ended operations in 2016 for the constructions of LCLS-II which will occupy the first third of the SLAC LINAC. The FACET-II project will re-establish electron and positron beams in the middle third of the LINAC for the continuation of beam-driven plasma acceleration studies in 2019.

    SLAC National Accelerator Laboratory FACET

    SLAC National Accelerator Laboratory FACET-II upgrading its Facility for Advanced Accelerator Experimental Tests (FACET) – a test bed for new technologies that could revolutionize the way we build particle accelerators.

    The Next Linear Collider Test Accelerator (NLCTA) is a 60-120 MeV high-brightness electron beam linear accelerator used for experiments on advanced beam manipulation and acceleration techniques. It is located at SLAC’s end station B

    SLAC National Accelerator Laboratory Next Linear Collider Test Accelerator (NLCTA)

    SLAC National Accelerator LaboratoryLCLS

    SLAC National Accelerator LaboratoryLCLS II projected view

    Magnets called undulators stretch roughly 100 meters down a tunnel at SLAC National Accelerator Laboratory, with one side (right) producing hard x-rays and the other soft x-rays.

    SSRL and LCLS are DOE Office of Science user facilities.

    Stanford University campus

    Leland and Jane Stanford founded Stanford University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members.

    Stanford University, officially Leland Stanford Junior University, is a private research university located in Stanford, California. Stanford was founded in 1885 by Leland and Jane Stanford in memory of their only child, Leland Stanford Jr., who had died of typhoid fever at age 15 the previous year. Stanford is consistently ranked as among the most prestigious and top universities in the world by major education publications. It is also one of the top fundraising institutions in the country, becoming the first school to raise more than a billion dollars in a year.

    Leland Stanford was a U.S. senator and former governor of California who made his fortune as a railroad tycoon. The school admitted its first students on October 1, 1891, as a coeducational and non-denominational institution. Stanford University struggled financially after the death of Leland Stanford in 1893 and again after much of the campus was damaged by the 1906 San Francisco earthquake. Following World War II, provost Frederick Terman supported faculty and graduates’ entrepreneurialism to build self-sufficient local industry in what would later be known as Silicon Valley.

    The university is organized around seven schools: three schools consisting of 40 academic departments at the undergraduate level as well as four professional schools that focus on graduate programs in law, medicine, education, and business. All schools are on the same campus. Students compete in 36 varsity sports, and the university is one of two private institutions in the Division I FBS Pac-12 Conference. It has gained 126 NCAA team championships, and Stanford has won the NACDA Directors’ Cup for 24 consecutive years, beginning in 1994–1995. In addition, Stanford students and alumni have won 270 Olympic medals including 139 gold medals.

    As of October 2020, 84 Nobel laureates, 28 Turing Award laureates, and eight Fields Medalists have been affiliated with Stanford as students, alumni, faculty, or staff. In addition, Stanford is particularly noted for its entrepreneurship and is one of the most successful universities in attracting funding for start-ups. Stanford alumni have founded numerous companies, which combined produce more than $2.7 trillion in annual revenue, roughly equivalent to the 7th largest economy in the world (as of 2020). Stanford is the alma mater of one president of the United States (Herbert Hoover), 74 living billionaires, and 17 astronauts. It is also one of the leading producers of Fulbright Scholars, Marshall Scholars, Rhodes Scholars, and members of the United States Congress.

    Stanford University was founded in 1885 by Leland and Jane Stanford, dedicated to Leland Stanford Jr, their only child. The institution opened in 1891 on Stanford’s previous Palo Alto farm.

    Jane and Leland Stanford modeled their university after the great eastern universities, most specifically Cornell University. Stanford opened being called the “Cornell of the West” in 1891 due to faculty being former Cornell affiliates (either professors, alumni, or both) including its first president, David Starr Jordan, and second president, John Casper Branner. Both Cornell and Stanford were among the first to have higher education be accessible, nonsectarian, and open to women as well as to men. Cornell is credited as one of the first American universities to adopt this radical departure from traditional education, and Stanford became an early adopter as well.

    Despite being impacted by earthquakes in both 1906 and 1989, the campus was rebuilt each time. In 1919, The Hoover Institution on War, Revolution and Peace was started by Herbert Hoover to preserve artifacts related to World War I. The Stanford Medical Center, completed in 1959, is a teaching hospital with over 800 beds. The DOE’s SLAC National Accelerator Laboratory (originally named the Stanford Linear Accelerator Center), established in 1962, performs research in particle physics.


    Most of Stanford is on an 8,180-acre (12.8 sq mi; 33.1 km^2) campus, one of the largest in the United States. It is located on the San Francisco Peninsula, in the northwest part of the Santa Clara Valley (Silicon Valley) approximately 37 miles (60 km) southeast of San Francisco and approximately 20 miles (30 km) northwest of San Jose. In 2008, 60% of this land remained undeveloped.

    Stanford’s main campus includes a census-designated place within unincorporated Santa Clara County, although some of the university land (such as the Stanford Shopping Center and the Stanford Research Park) is within the city limits of Palo Alto. The campus also includes much land in unincorporated San Mateo County (including the SLAC National Accelerator Laboratory and the Jasper Ridge Biological Preserve), as well as in the city limits of Menlo Park (Stanford Hills neighborhood), Woodside, and Portola Valley.

    Non-central campus

    Stanford currently operates in various locations outside of its central campus.

    On the founding grant:

    Jasper Ridge Biological Preserve is a 1,200-acre (490 ha) natural reserve south of the central campus owned by the university and used by wildlife biologists for research.

    SLAC National Accelerator Laboratory is a facility west of the central campus operated by the university for the Department of Energy. It contains the longest linear particle accelerator in the world, 2 miles (3.2 km) on 426 acres (172 ha) of land. Golf course and a seasonal lake: The university also has its own golf course and a seasonal lake (Lake Lagunita, actually an irrigation reservoir), both home to the vulnerable California tiger salamander. As of 2012 Lake Lagunita was often dry and the university had no plans to artificially fill it.

    Off the founding grant:

    Hopkins Marine Station, in Pacific Grove, California, is a marine biology research center owned by the university since 1892., in Pacific Grove, California, is a marine biology research center owned by the university since 1892.
    Study abroad locations: unlike typical study abroad programs, Stanford itself operates in several locations around the world; thus, each location has Stanford faculty-in-residence and staff in addition to students, creating a “mini-Stanford”.

    Redwood City campus for many of the university’s administrative offices located in Redwood City, California, a few miles north of the main campus. In 2005, the university purchased a small, 35-acre (14 ha) campus in Midpoint Technology Park intended for staff offices; development was delayed by The Great Recession. In 2015 the university announced a development plan and the Redwood City campus opened in March 2019.

    The Bass Center in Washington, DC provides a base, including housing, for the Stanford in Washington program for undergraduates. It includes a small art gallery open to the public.

    China: Stanford Center at Peking University, housed in the Lee Jung Sen Building, is a small center for researchers and students in collaboration with Beijing University [北京大学](CN) (Kavli Institute for Astronomy and Astrophysics at Peking University(CN) (KIAA-PKU).

    Administration and organization

    Stanford is a private, non-profit university that is administered as a corporate trust governed by a privately appointed board of trustees with a maximum membership of 38. Trustees serve five-year terms (not more than two consecutive terms) and meet five times annually.[83] A new trustee is chosen by the current trustees by ballot. The Stanford trustees also oversee the Stanford Research Park, the Stanford Shopping Center, the Cantor Center for Visual Arts, Stanford University Medical Center, and many associated medical facilities (including the Lucile Packard Children’s Hospital).

    The board appoints a president to serve as the chief executive officer of the university, to prescribe the duties of professors and course of study, to manage financial and business affairs, and to appoint nine vice presidents. The provost is the chief academic and budget officer, to whom the deans of each of the seven schools report. Persis Drell became the 13th provost in February 2017.

    As of 2018, the university was organized into seven academic schools. The schools of Humanities and Sciences (27 departments), Engineering (nine departments), and Earth, Energy & Environmental Sciences (four departments) have both graduate and undergraduate programs while the Schools of Law, Medicine, Education and Business have graduate programs only. The powers and authority of the faculty are vested in the Academic Council, which is made up of tenure and non-tenure line faculty, research faculty, senior fellows in some policy centers and institutes, the president of the university, and some other academic administrators, but most matters are handled by the Faculty Senate, made up of 55 elected representatives of the faculty.

    The Associated Students of Stanford University (ASSU) is the student government for Stanford and all registered students are members. Its elected leadership consists of the Undergraduate Senate elected by the undergraduate students, the Graduate Student Council elected by the graduate students, and the President and Vice President elected as a ticket by the entire student body.

    Stanford is the beneficiary of a special clause in the California Constitution, which explicitly exempts Stanford property from taxation so long as the property is used for educational purposes.

    Endowment and donations

    The university’s endowment, managed by the Stanford Management Company, was valued at $27.7 billion as of August 31, 2019. Payouts from the Stanford endowment covered approximately 21.8% of university expenses in the 2019 fiscal year. In the 2018 NACUBO-TIAA survey of colleges and universities in the United States and Canada, only Harvard University, the University of Texas System, and Yale University had larger endowments than Stanford.

    In 2006, President John L. Hennessy launched a five-year campaign called the Stanford Challenge, which reached its $4.3 billion fundraising goal in 2009, two years ahead of time, but continued fundraising for the duration of the campaign. It concluded on December 31, 2011, having raised a total of $6.23 billion and breaking the previous campaign fundraising record of $3.88 billion held by Yale. Specifically, the campaign raised $253.7 million for undergraduate financial aid, as well as $2.33 billion for its initiative in “Seeking Solutions” to global problems, $1.61 billion for “Educating Leaders” by improving K-12 education, and $2.11 billion for “Foundation of Excellence” aimed at providing academic support for Stanford students and faculty. Funds supported 366 new fellowships for graduate students, 139 new endowed chairs for faculty, and 38 new or renovated buildings. The new funding also enabled the construction of a facility for stem cell research; a new campus for the business school; an expansion of the law school; a new Engineering Quad; a new art and art history building; an on-campus concert hall; a new art museum; and a planned expansion of the medical school, among other things. In 2012, the university raised $1.035 billion, becoming the first school to raise more than a billion dollars in a year.

    Research centers and institutes

    DOE’s SLAC National Accelerator Laboratory
    Stanford Research Institute, a center of innovation to support economic development in the region.
    Hoover Institution, a conservative American public policy institution and research institution that promotes personal and economic liberty, free enterprise, and limited government.
    Hasso Plattner Institute of Design, a multidisciplinary design school in cooperation with the Hasso Plattner Institute of University of Potsdam [Universität Potsdam](DE) that integrates product design, engineering, and business management education).
    Martin Luther King Jr. Research and Education Institute, which grew out of and still contains the Martin Luther King Jr. Papers Project.
    John S. Knight Fellowship for Professional Journalists
    Center for Ocean Solutions
    Together with UC Berkeley and UC San Francisco, Stanford is part of the Biohub, a new medical science research center founded in 2016 by a $600 million commitment from Facebook CEO and founder Mark Zuckerberg and pediatrician Priscilla Chan.

    Discoveries and innovation

    Natural sciences

    Biological synthesis of deoxyribonucleic acid (DNA) – Arthur Kornberg synthesized DNA material and won the Nobel Prize in Physiology or Medicine 1959 for his work at Stanford.
    First Transgenic organism – Stanley Cohen and Herbert Boyer were the first scientists to transplant genes from one living organism to another, a fundamental discovery for genetic engineering. Thousands of products have been developed on the basis of their work, including human growth hormone and hepatitis B vaccine.
    Laser – Arthur Leonard Schawlow shared the 1981 Nobel Prize in Physics with Nicolaas Bloembergen and Kai Siegbahn for his work on lasers.
    Nuclear magnetic resonance – Felix Bloch developed new methods for nuclear magnetic precision measurements, which are the underlying principles of the MRI.

    Computer and applied sciences

    ARPANETStanford Research Institute, formerly part of Stanford but on a separate campus, was the site of one of the four original ARPANET nodes.

    Internet—Stanford was the site where the original design of the Internet was undertaken. Vint Cerf led a research group to elaborate the design of the Transmission Control Protocol (TCP/IP) that he originally co-created with Robert E. Kahn (Bob Kahn) in 1973 and which formed the basis for the architecture of the Internet.

    Frequency modulation synthesis – John Chowning of the Music department invented the FM music synthesis algorithm in 1967, and Stanford later licensed it to Yamaha Corporation.

    Google – Google began in January 1996 as a research project by Larry Page and Sergey Brin when they were both PhD students at Stanford. They were working on the Stanford Digital Library Project (SDLP). The SDLP’s goal was “to develop the enabling technologies for a single, integrated and universal digital library” and it was funded through the National Science Foundation, among other federal agencies.

    Klystron tube – invented by the brothers Russell and Sigurd Varian at Stanford. Their prototype was completed and demonstrated successfully on August 30, 1937. Upon publication in 1939, news of the klystron immediately influenced the work of U.S. and UK researchers working on radar equipment.

    RISCARPA funded VLSI project of microprocessor design. Stanford and University of California- Berkeley are most associated with the popularization of this concept. The Stanford MIPS would go on to be commercialized as the successful MIPS architecture, while Berkeley RISC gave its name to the entire concept, commercialized as the SPARC. Another success from this era were IBM’s efforts that eventually led to the IBM POWER instruction set architecture, PowerPC, and Power ISA. As these projects matured, a wide variety of similar designs flourished in the late 1980s and especially the early 1990s, representing a major force in the Unix workstation market as well as embedded processors in laser printers, routers and similar products.
    SUN workstation – Andy Bechtolsheim designed the SUN workstation for the Stanford University Network communications project as a personal CAD workstation, which led to Sun Microsystems.

    Businesses and entrepreneurship

    Stanford is one of the most successful universities in creating companies and licensing its inventions to existing companies; it is often held up as a model for technology transfer. Stanford’s Office of Technology Licensing is responsible for commercializing university research, intellectual property, and university-developed projects.

    The university is described as having a strong venture culture in which students are encouraged, and often funded, to launch their own companies.

    Companies founded by Stanford alumni generate more than $2.7 trillion in annual revenue, equivalent to the 10th-largest economy in the world.

    Some companies closely associated with Stanford and their connections include:

    Hewlett-Packard, 1939, co-founders William R. Hewlett (B.S, PhD) and David Packard (M.S).
    Silicon Graphics, 1981, co-founders James H. Clark (Associate Professor) and several of his grad students.
    Sun Microsystems, 1982, co-founders Vinod Khosla (M.B.A), Andy Bechtolsheim (PhD) and Scott McNealy (M.B.A).
    Cisco, 1984, founders Leonard Bosack (M.S) and Sandy Lerner (M.S) who were in charge of Stanford Computer Science and Graduate School of Business computer operations groups respectively when the hardware was developed.[163]
    Yahoo!, 1994, co-founders Jerry Yang (B.S, M.S) and David Filo (M.S).
    Google, 1998, co-founders Larry Page (M.S) and Sergey Brin (M.S).
    LinkedIn, 2002, co-founders Reid Hoffman (B.S), Konstantin Guericke (B.S, M.S), Eric Lee (B.S), and Alan Liu (B.S).
    Instagram, 2010, co-founders Kevin Systrom (B.S) and Mike Krieger (B.S).
    Snapchat, 2011, co-founders Evan Spiegel and Bobby Murphy (B.S).
    Coursera, 2012, co-founders Andrew Ng (Associate Professor) and Daphne Koller (Professor, PhD).

    Student body

    Stanford enrolled 6,996 undergraduate and 10,253 graduate students as of the 2019–2020 school year. Women comprised 50.4% of undergraduates and 41.5% of graduate students. In the same academic year, the freshman retention rate was 99%.

    Stanford awarded 1,819 undergraduate degrees, 2,393 master’s degrees, 770 doctoral degrees, and 3270 professional degrees in the 2018–2019 school year. The four-year graduation rate for the class of 2017 cohort was 72.9%, and the six-year rate was 94.4%. The relatively low four-year graduation rate is a function of the university’s coterminal degree (or “coterm”) program, which allows students to earn a master’s degree as a 1-to-2-year extension of their undergraduate program.

    As of 2010, fifteen percent of undergraduates were first-generation students.


    As of 2016 Stanford had 16 male varsity sports and 20 female varsity sports, 19 club sports and about 27 intramural sports. In 1930, following a unanimous vote by the Executive Committee for the Associated Students, the athletic department adopted the mascot “Indian.” The Indian symbol and name were dropped by President Richard Lyman in 1972, after objections from Native American students and a vote by the student senate. The sports teams are now officially referred to as the “Stanford Cardinal,” referring to the deep red color, not the cardinal bird. Stanford is a member of the Pac-12 Conference in most sports, the Mountain Pacific Sports Federation in several other sports, and the America East Conference in field hockey with the participation in the inter-collegiate NCAA’s Division I FBS.

    Its traditional sports rival is the University of California, Berkeley, the neighbor to the north in the East Bay. The winner of the annual “Big Game” between the Cal and Cardinal football teams gains custody of the Stanford Axe.

    Stanford has had at least one NCAA team champion every year since the 1976–77 school year and has earned 126 NCAA national team titles since its establishment, the most among universities, and Stanford has won 522 individual national championships, the most by any university. Stanford has won the award for the top-ranked Division 1 athletic program—the NACDA Directors’ Cup, formerly known as the Sears Cup—annually for the past twenty-four straight years. Stanford athletes have won medals in every Olympic Games since 1912, winning 270 Olympic medals total, 139 of them gold. In the 2008 Summer Olympics, and 2016 Summer Olympics, Stanford won more Olympic medals than any other university in the United States. Stanford athletes won 16 medals at the 2012 Summer Olympics (12 gold, two silver and two bronze), and 27 medals at the 2016 Summer Olympics.


    The unofficial motto of Stanford, selected by President Jordan, is Die Luft der Freiheit weht. Translated from the German language, this quotation from Ulrich von Hutten means, “The wind of freedom blows.” The motto was controversial during World War I, when anything in German was suspect; at that time the university disavowed that this motto was official.
    Hail, Stanford, Hail! is the Stanford Hymn sometimes sung at ceremonies or adapted by the various University singing groups. It was written in 1892 by mechanical engineering professor Albert W. Smith and his wife, Mary Roberts Smith (in 1896 she earned the first Stanford doctorate in Economics and later became associate professor of Sociology), but was not officially adopted until after a performance on campus in March 1902 by the Mormon Tabernacle Choir.
    “Uncommon Man/Uncommon Woman”: Stanford does not award honorary degrees, but in 1953 the degree of “Uncommon Man/Uncommon Woman” was created to recognize individuals who give rare and extraordinary service to the University. Technically, this degree is awarded by the Stanford Associates, a voluntary group that is part of the university’s alumni association. As Stanford’s highest honor, it is not conferred at prescribed intervals, but only when appropriate to recognize extraordinary service. Recipients include Herbert Hoover, Bill Hewlett, Dave Packard, Lucile Packard, and John Gardner.
    Big Game events: The events in the week leading up to the Big Game vs. UC Berkeley, including Gaieties (a musical written, composed, produced, and performed by the students of Ram’s Head Theatrical Society).
    “Viennese Ball”: a formal ball with waltzes that was initially started in the 1970s by students returning from the now-closed Stanford in Vienna overseas program. It is now open to all students.
    “Full Moon on the Quad”: An annual event at Main Quad, where students gather to kiss one another starting at midnight. Typically organized by the Junior class cabinet, the festivities include live entertainment, such as music and dance performances.
    “Band Run”: An annual festivity at the beginning of the school year, where the band picks up freshmen from dorms across campus while stopping to perform at each location, culminating in a finale performance at Main Quad.
    “Mausoleum Party”: An annual Halloween Party at the Stanford Mausoleum, the final resting place of Leland Stanford Jr. and his parents. A 20-year tradition, the “Mausoleum Party” was on hiatus from 2002 to 2005 due to a lack of funding, but was revived in 2006. In 2008, it was hosted in Old Union rather than at the actual Mausoleum, because rain prohibited generators from being rented. In 2009, after fundraising efforts by the Junior Class Presidents and the ASSU Executive, the event was able to return to the Mausoleum despite facing budget cuts earlier in the year.
    Former campus traditions include the “Big Game bonfire” on Lake Lagunita (a seasonal lake usually dry in the fall), which was formally ended in 1997 because of the presence of endangered salamanders in the lake bed.

    Award laureates and scholars

    Stanford’s current community of scholars includes:

    19 Nobel Prize laureates (as of October 2020, 85 affiliates in total)
    171 members of the National Academy of Sciences
    109 members of National Academy of Engineering
    76 members of National Academy of Medicine
    288 members of the American Academy of Arts and Sciences
    19 recipients of the National Medal of Science
    1 recipient of the National Medal of Technology
    4 recipients of the National Humanities Medal
    49 members of American Philosophical Society
    56 fellows of the American Physics Society (since 1995)
    4 Pulitzer Prize winners
    31 MacArthur Fellows
    4 Wolf Foundation Prize winners
    2 ACL Lifetime Achievement Award winners
    14 AAAI fellows
    2 Presidential Medal of Freedom winners

  • richardmitnick 9:26 pm on May 30, 2023 Permalink | Reply
    Tags: "Artificial leaves", "Driving on sunshine - clean usable liquid fuels made from solar power", , , Chemistry, Ethanol and propanol have a high energy density and can be easily stored or transported., Researchers have developed a solar-powered technology converting carbon dioxide and water into liquid fuels to add directly to a car’s engine as fuel., , These fuels do not divert any agricultural land away from food production., These solar fuels produce net-zero carbon emissions and are completely renewable.   

    From The University of Cambridge (UK): “Driving on sunshine – clean usable liquid fuels made from solar power” 

    U Cambridge bloc

    From The University of Cambridge (UK)

    Sarah Collins

    A photoreactor with an artificial leaf working under solar irradiation. Credit: Motiar Rahaman.

    Researchers have developed a solar-powered technology that converts carbon dioxide and water into liquid fuels that can be added directly to a car’s engine as drop-in fuel.

    The researchers, from the University of Cambridge, harnessed the power of photosynthesis to convert CO2, water and sunlight into multicarbon fuels – ethanol and propanol – in a single step. These fuels have a high energy density and can be easily stored or transported.

    Unlike fossil fuels, these solar fuels produce net-zero carbon emissions and are completely renewable, and unlike most bioethanol, they do not divert any agricultural land away from food production.

    While the technology is still at laboratory scale, the researchers say their ‘artificial leaves’ are an important step in the transition away from a fossil fuel-based economy. The results are reported in the journal Nature Energy [below].

    Bioethanol is touted as a cleaner alternative to petrol, since it is made from plants instead of fossil fuels. Most cars and trucks on the road today run on petrol containing up to 10% ethanol (E10 fuel). The United States is the world’s largest bioethanol producer: according to the U.S. Department of Agriculture, almost 45% of all corn grown in the US is used for ethanol production.

    “Biofuels like ethanol are a controversial technology, not least because they take up agricultural land that could be used to grow food instead,” said Professor Erwin Reisner, who led the research.

    For several years, Reisner’s research group, based in the Yusuf Hamied Department of Chemistry, has been developing sustainable, zero-carbon fuels inspired by photosynthesis – the process by which plants convert sunlight into food – using “artificial leaves”.

    To date, these artificial leaves have only been able to make simple chemicals, such as syngas, a mixture of hydrogen and carbon monoxide that is used to produce fuels, pharmaceuticals, plastics and fertilisers. But to make the technology more practical, it would need to be able to produce more complex chemicals directly in a single solar-powered step.

    Now, the artificial leaf can directly produce clean ethanol and propanol without the need for the intermediary step of producing syngas.

    The researchers developed a copper and palladium-based catalyst. The catalyst was optimized in a way that allowed the artificial leaf to produce more complex chemicals, specifically the multicarbon alcohols ethanol and n-propanol. Both alcohols are high energy density fuels that can be easily transported and stored.

    Other scientists have been able to produce similar chemicals using electrical power, but this is the first time that such complex chemicals have been produced with an artificial leaf using only the energy from the Sun.

    “Shining sunlight on the artificial leaves and getting liquid fuel from carbon dioxide and water is an amazing bit of chemistry,” said Dr Motiar Rahaman, the paper’s first author. “Normally, when you try to convert CO2 into another chemical product using an artificial leaf device, you almost always get carbon monoxide or syngas, but here, we’ve been able to produce a practical liquid fuel just using the power of the Sun. It’s an exciting advance that opens up whole new avenues in our work.”

    At present, the device is a proof of concept and shows only modest efficiency. The researchers are working to optimize the light absorbers so that they can better absorb sunlight and optimizing the catalyst so it can convert more sunlight into fuel. Further work will also be required to make the device scalable so that it can produce large volumes of fuel.

    “Even though there’s still work to be done, we’ve shown what these artificial leaves are capable of doing,” said Reisner. “It’s important to show that we can go beyond the simplest molecules and make things that are directly useful as we transition away from fossil fuels.”

    The research was supported in part by the European Commission Marie Skłodowska-Curie Fellowship, the Cambridge Trust, and the Winton Programme for the Physics of Sustainability. Erwin Reisner is a Fellow and Motiar Rahaman is a Research Associate of St John’s College, Cambridge.

    Nature Energy

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Cambridge Campus

    The University of Cambridge (UK) [legally The Chancellor, Masters, and Scholars of the University of Cambridge] is a collegiate public research university in Cambridge, England. Founded in 1209 Cambridge is the second-oldest university in the English-speaking world and the world’s fourth-oldest surviving university. It grew out of an association of scholars who left the University of Oxford (UK) after a dispute with townsfolk. The two ancient universities share many common features and are often jointly referred to as “Oxbridge”.

    Cambridge is formed from a variety of institutions which include 31 semi-autonomous constituent colleges and over 150 academic departments, faculties and other institutions organized into six schools. All the colleges are self-governing institutions within the university, each controlling its own membership and with its own internal structure and activities. All students are members of a college. Cambridge does not have a main campus and its colleges and central facilities are scattered throughout the city. Undergraduate teaching at Cambridge is organized around weekly small-group supervisions in the colleges – a feature unique to the Oxbridge system. These are complemented by classes, lectures, seminars, laboratory work and occasionally further supervisions provided by the central university faculties and departments. Postgraduate teaching is provided predominantly centrally.

    Cambridge University Press a department of the university is the oldest university press in the world and currently the second largest university press in the world. Cambridge Assessment also a department of the university is one of the world’s leading examining bodies and provides assessment to over eight million learners globally every year. The university also operates eight cultural and scientific museums, including the Fitzwilliam Museum, as well as a botanic garden. Cambridge’s libraries – of which there are 116 – hold a total of around 16 million books, around nine million of which are in Cambridge University Library, a legal deposit library. The university is home to – but independent of – the Cambridge Union – the world’s oldest debating society. The university is closely linked to the development of the high-tech business cluster known as “Silicon Fe”. It is the central member of Cambridge University Health Partners, an academic health science centre based around the Cambridge Biomedical Campus.

    By both endowment size and consolidated assets Cambridge is the wealthiest university in the United Kingdom. In the fiscal year ending 31 July 2019, the central university – excluding colleges – had a total income of £2.192 billion of which £592.4 million was from research grants and contracts. At the end of the same financial year the central university and colleges together possessed a combined endowment of over £7.1 billion and overall consolidated net assets (excluding “immaterial” historical assets) of over £12.5 billion. It is a member of numerous associations and forms part of the ‘golden triangle’ of English universities.

    Cambridge has educated many notable alumni including eminent mathematicians; scientists; politicians; lawyers; philosophers; writers; actors; monarchs and other heads of state. As of October 2020, 121 Nobel laureates; 11 Fields Medalists; 7 Turing Award winners; and 14 British prime ministers have been affiliated with Cambridge as students; alumni; faculty or research staff. University alumni have won 194 Olympic medals.


    By the late 12th century, the Cambridge area already had a scholarly and ecclesiastical reputation due to monks from the nearby bishopric church of Ely. However, it was an incident at Oxford which is most likely to have led to the establishment of the university: three Oxford scholars were hanged by the town authorities for the death of a woman without consulting the ecclesiastical authorities who would normally take precedence (and pardon the scholars) in such a case; but were at that time in conflict with King John. Fearing more violence from the townsfolk scholars from the University of Oxford started to move away to cities such as Paris; Reading; and Cambridge. Subsequently enough scholars remained in Cambridge to form the nucleus of a new university when it had become safe enough for academia to resume at Oxford. In order to claim precedence, it is common for Cambridge to trace its founding to the 1231 charter from Henry III granting it the right to discipline its own members (ius non-trahi extra) and an exemption from some taxes; Oxford was not granted similar rights until 1248.

    A bull in 1233 from Pope Gregory IX gave graduates from Cambridge the right to teach “everywhere in Christendom”. After Cambridge was described as a studium generale in a letter from Pope Nicholas IV in 1290 and confirmed as such in a bull by Pope John XXII in 1318 it became common for researchers from other European medieval universities to visit Cambridge to study or to give lecture courses.

    Foundation of the colleges

    The colleges at the University of Cambridge were originally an incidental feature of the system. No college is as old as the university itself. The colleges were endowed fellowships of scholars. There were also institutions without endowments called hostels. The hostels were gradually absorbed by the colleges over the centuries; but they have left some traces, such as the name of Garret Hostel Lane.

    Hugh Balsham, Bishop of Ely, founded Peterhouse – Cambridge’s first college in 1284. Many colleges were founded during the 14th and 15th centuries but colleges continued to be established until modern times. There was a gap of 204 years between the founding of Sidney Sussex in 1596 and that of Downing in 1800. The most recently established college is Robinson built in the late 1970s. However, Homerton College only achieved full university college status in March 2010 making it the newest full college (it was previously an “Approved Society” affiliated with the university).

    In medieval times many colleges were founded so that their members would pray for the souls of the founders and were often associated with chapels or abbeys. The colleges’ focus changed in 1536 with the Dissolution of the Monasteries. Henry VIII ordered the university to disband its Faculty of Canon Law and to stop teaching “scholastic philosophy”. In response, colleges changed their curricula away from canon law and towards the classics; the Bible; and mathematics.

    Nearly a century later the university was at the centre of a Protestant schism. Many nobles, intellectuals and even commoners saw the ways of the Church of England as too similar to the Catholic Church and felt that it was used by the Crown to usurp the rightful powers of the counties. East Anglia was the centre of what became the Puritan movement. In Cambridge the movement was particularly strong at Emmanuel; St Catharine’s Hall; Sidney Sussex; and Christ’s College. They produced many “non-conformist” graduates who, greatly influenced by social position or preaching left for New England and especially the Massachusetts Bay Colony during the Great Migration decade of the 1630s. Oliver Cromwell, Parliamentary commander during the English Civil War and head of the English Commonwealth (1649–1660), attended Sidney Sussex.

    Modern period

    After the Cambridge University Act formalized the organizational structure of the university the study of many new subjects was introduced e.g. theology, history and modern languages. Resources necessary for new courses in the arts architecture and archaeology were donated by Viscount Fitzwilliam of Trinity College who also founded the Fitzwilliam Museum. In 1847 Prince Albert was elected Chancellor of the University of Cambridge after a close contest with the Earl of Powis. Albert used his position as Chancellor to campaign successfully for reformed and more modern university curricula, expanding the subjects taught beyond the traditional mathematics and classics to include modern history and the natural sciences. Between 1896 and 1902 Downing College sold part of its land to build the Downing Site with new scientific laboratories for anatomy, genetics, and Earth sciences. During the same period the New Museums Site was erected including the Cavendish Laboratory which has since moved to the West Cambridge Site and other departments for chemistry and medicine.

    The University of Cambridge began to award PhD degrees in the first third of the 20th century. The first Cambridge PhD in mathematics was awarded in 1924.

    In the First World War 13,878 members of the university served and 2,470 were killed. Teaching and the fees it earned came almost to a stop and severe financial difficulties followed. As a consequence, the university first received systematic state support in 1919 and a Royal Commission appointed in 1920 recommended that the university (but not the colleges) should receive an annual grant. Following the Second World War the university saw a rapid expansion of student numbers and available places; this was partly due to the success and popularity gained by many Cambridge scientists.

  • richardmitnick 9:17 am on May 30, 2023 Permalink | Reply
    Tags: "Breaking the ice over a 40-year problem of supercooled water", , , Chemistry, , , , Researchers at EPFL have found a way to study water in “no man's land” a subzero temperature range where water crystallizes rapidly., The scientists performed the experiments with a specialized time-resolved electron microscope they custom built in their lab.,   

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “Breaking the ice over a 40-year problem of supercooled water” 

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    Nik Papageorgiou

    Credit: iStock photos.

    Researchers at EPFL have found a way to study water in “no man’s land,” a subzero temperature range where water crystallizes rapidly. Historically, the inability to access “no man’s land” has prevented scientists from unriddling the anomalous nature of water, but the breakthrough method can now change that.

    Water is one of the most essential and widespread compounds on Earth. Covering over 70% of the planet’s surface, it has shaped its composition and geology, it regulates its climate and weather patterns, and is at the foundation of all life as we know it.

    But water is also weird. It exhibits a number of anomalous properties, of which scientists have identified over seventy – so far. Several theories try to explain these anomalies, but verifying them experimentally is difficult. One of the reasons is that this would require studying water between 160 K and 232 K (-113 °C to -41 °C), a notorious temperature range known as “no man’s land” where water crystallizes so fast that it has been impossible for scientists to study its properties.

    But why would anyone want to cool water to such low temperatures? Because when water is cooled way below its freezing point it becomes ‘supercooled’ with unique and fascinating properties; for example, under certain conditions it can remain in liquid form but can freeze instantly when disturbed or exposed to certain substances. Supercooled water is obtained by taking liquid water and cooling it below the freezing point while using tricks to prevent it from crystallizing or at least slowing this process down. However, even with these tricks, crystallization in ‘no man’s land’ is still too fast.

    “An experiment to systematically probe the structure of water across so-called ‘no man’s land’ has remained elusive for decades,” says Professor Ulrich Lorenz at EPFL’s School of Basic Sciences. Now, scientists led by Lorenz have found a way to do just that. The team developed a way to rapidly prepare deeply supercooled water at a well-defined temperature and probe it with electron diffraction before it can crystallize.

    “We have still not fully understood why water is an anomalous liquid, despite this topic being hotly debated for over forty years,” says Lorenz. “The answer appears to lie in ‘no man’s land’. But because of fast crystallization, any measurement over the full temperature range has not been possible. We do this for the first time. This brings us closer to solving this long-standing mystery.”

    The scientists performed the experiments with a specialized time-resolved electron microscope they custom built in their lab. They prepared the supercooled water at a well-defined temperature and probed it directly before crystallization occurred. To do this, they cooled a layer of graphene to 101 K and deposited a thin film of amorphous ice. They then locally melted the film with a microsecond laser pulse to obtain water in ‘no man’s land’, and captured a diffraction pattern with an intense, high-brightness electron pulse.

    The researchers found that as water is cooled from room temperature to cryogenic temperatures, its structure evolves smoothly. At temperatures just below 200 K (about -73oC), the structure of water begins to look like that of amorphous ice — a form of ice where water molecules are in a disordered state – unlike the tidy crystalline ice we are usually familiar with.

    “The fact that the structure evolves smoothly allows us to narrow down the range of possible explanations for the origin of water anomalies,” says Lorenz. “Our findings and the method we have developed bring us closer to unriddling the mysteries of water. It is difficult to escape the fascination of this ubiquitous and seemingly simple liquid that still has not given up all of its secrets.”

    Nature Communications

    Fig. 1: Illustration of the experimental approach.
    a) ) Illustration of the sample geometry. A gold mesh supports a holey gold film that is covered with few-layer graphene. A 176 nm thick layer of amorphous solid water is deposited (101 K sample temperature), which is then locally heated with a shaped microsecond laser pulse to prepare water in no man’s land. c A diffraction pattern of the supercooled liquid is captured with an intense, 6 µs electron pulse.

    Fig. 2: Simulation of temperature evolution of the sample.
    a) Simulation of the temperature evolution of the sample (black) under irradiation with a shaped microsecond laser pulse (green). The sample is first heated above the melting point and then rapidly cooled to the desired temperature in no man’s land by reducing the laser power. Once the temperature has stabilized, we capture a diffraction pattern with a 6 µs electron pulse (blue). b) Simulations show that this temperature (black circles) increases linearly with laser power. It only starts to level off above ~260 K, where evaporative cooling becomes important. The black line corresponds to a spline of the simulated data points, while the blue line is a linear fit. The inset shows diffraction patterns recorded over a range of temperatures. Scale bar, 2 Å^−1.

    See the science paper for further instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich] (CH). Associated with several specialized research institutes, the two universities form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles Polytechniques Fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École Polytechnique Fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École Spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices were located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganized and acquired the status of a university in 1890, the technical faculty changed its name to École d’Ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich (CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.


    EPFL is organized into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences
    Institute of Mathematics
    Institute of Chemical Sciences and Engineering
    Institute of Physics
    European Centre of Atomic and Molecular Computations
    Bernoulli Center
    Biomedical Imaging Research Center
    Interdisciplinary Center for Electron Microscopy
    MPG-EPFL Centre for Molecular Nanosciences and Technology
    Swiss Plasma Center
    Laboratory of Astrophysics

    School of Engineering

    Institute of Electrical Engineering
    Institute of Mechanical Engineering
    Institute of Materials
    Institute of Microengineering
    Institute of Bioengineering

    School of Architecture, Civil and Environmental Engineering

    Institute of Architecture
    Civil Engineering Institute
    Institute of Urban and Regional Sciences
    Environmental Engineering Institute

    School of Computer and Communication Sciences

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing

    School of Life Sciences

    Bachelor-Master Teaching Section in Life Sciences and Technologies
    Brain Mind Institute
    Institute of Bioengineering
    Swiss Institute for Experimental Cancer Research
    Global Health Institute
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics
    NCCR Synaptic Bases of Mental Diseases

    College of Management of Technology

    Swiss Finance Institute at EPFL
    Section of Management of Technology and Entrepreneurship
    Institute of Technology and Public Policy
    Institute of Management of Technology and Entrepreneurship
    Section of Financial Engineering

    College of Humanities

    Human and social sciences teaching program

    EPFL Middle East

    Section of Energy Management and Sustainability

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École Cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: