Tagged: Basic Research Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:15 pm on January 24, 2022 Permalink | Reply
    Tags: "Radio footprints of galactic interactions discovered in the Shapely Supercluster", , Basic Research, , , , ,   

    From CSIRO (AU)-Commonwealth Scientific and Industrial Research Organisation: “Radio footprints of galactic interactions discovered in the Shapely Supercluster” 

    CSIRO bloc

    From CSIRO (AU)-Commonwealth Scientific and Industrial Research Organisation

    24 January 2022

    Rachel Rayner

    Interaction between clusters and groups of galaxies within a supercluster have been observed through the detection of radio waves by telescopes all over the world.

    ESA Planck Shapley Supercluster.

    A group of international radio astronomers led by INAF Italian National Institute for Astrophysics [Istituto Nazionale di Astrofisica](IT), and including Australian Astronomical Optics (AAO) Macquarie University (AU), have conducted a multi-frequency and multi-band study of the Shapley Supercluster, the largest constellation of galaxies in the local Universe. The astronomers discovered radio emission which was acting as a “bridge” between a cluster of galaxies and a group of galaxies.

    The observations, published in Astronomy & Astrophysics, were carried out with the Australian ASKAP radio telescope, the South African MeerKAT radio telescope, and the Indian Giant Metrewave Radio Telescope (GMRT). Optical data collected with ESO’s VLT Survey Telescope (VST) and X-ray data from ESA’s XMM-Newton space telescope completed the study.

    SKA ASKAP Pathfinder Radio Telescope.

    SKA SARAO Meerkat telescope , 90 km outside the small Northern Cape town of Carnarvon, SA.

    GMRT Upgraded Giant Metrewave Radio Telescope, an array of thirty telecopes, located near Pune in India.

    ESO VLT Survey Telescope [VST].

    European Space Agency [Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganisation](EU) XMM Newton X-ray Telescope.

    “The emission was triggered by the collision of these separate groupings of galaxies,” said co-author Professor Andrew Hopkins from AAO Macquarie. “Despite its difficulty to detect, this unique emission will now allow astronomers to better study the regions between clusters of galaxies.”

    Tiziana Venturi, Director of the INAF’s Radio Astronomy Institute and lead author of the article, explains: “This exceptional emission finally allows us to study the regions between clusters of galaxies, the ideal environments to look for traces of interaction between these structures. In the study, we also report the discovery of another couple of objects – a very peculiar head-tail radio galaxy and a ram-pressure stripped spiral galaxy, whose origin is traced back to the same collision phenomenon that generated the emission on the megaparsec scale”. The emission extends on the scale of millions of light-years, and it takes the form of an arc and a filament.

    “Ram pressure stripping can have a profound impact on the evolution of galaxies, removing the cooler gas that helps with star formation,” said Professor Hopkins. “This case shows that ram pressure stripping can involve both warm gas and radio-emitting plasma, and highlights the role of cluster-cluster interaction in triggering it,” said Professor Hopkins.

    “The head-tail radio galaxy, whose tail is broken and culminates in a misaligned bar, is now being observed in a number of clusters. Early analysis of this galaxy is showing some exciting results, which deserve further investigation.”

    The Shapley Supercluster covers a large area of the southern hemisphere sky 600 million light-years from the Milky Way in the Centaurus constellation. As a result, the region hosts over 1000 clusters and groups of galaxies, which allows an in-depth study of the role of the environment on the evolution of galaxies and on the thermal (gas) and non-thermal (radio emission and magnetic fields) components that make up the clusters of galaxies.

    This particular region first captured the interest of radio astronomers in the 1990s. However, before the development of ASKAP and MeerKAT (the two precursors of the SKA project, respectively managed by the Australia’s national science agency, CSIRO, and by the South African Radio Astronomy Observatory [SARAO]), it has basically been impossible to study it, in this fashion due to the lack of radio interferometers in the southern hemisphere with the necessary sensitivity.

    Venturi adds “Now, ASKAP and MeerKAT have both unlocked greater access to the Shapley Concentration with the higher resolution and sensitivity to study this area in more depth. The synergy between the very high-quality radio data and other X-ray and optical data allowed a very detailed study.”

    The radio data represent the state of the art of precursors of the SKA project and provide only a first taste of the wealth of information and discoveries that will come with the SKA radio telescopes (the construction will start in 2022 in Western Australia and South Africa), as well as the complexity of the data analysis that radio astronomers will have to face soon.

    The study aims to highlight the observational effects of the so-called minor merger phenomena. Until now, it was not clear whether scale relations between various clusters and groups would also apply to these phenomena, less striking but much more common in the Universe.

    “We were able to show through this study that these phenomena can be rather remarkable and that they leave detectable traces on single galaxies, on clusters and groups of galaxies, and even the regions between them,” said Professor Hopkins.

    The observations captured in this research also confirm the importance of technologies like SKA precursors on the understanding of the weak population of radio sources in clusters, both associated with individual galaxies and associated with the intra-cluster and inter-cluster medium.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    CSIRO campus

    CSIRO (AU)-Commonwealth Scientific and Industrial Research Organisation, is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

    CSIRO works with leading organisations around the world. From its headquarters in Canberra, CSIRO maintains more than 50 sites across Australia and in France, Chile and the United States, employing about 5,500 people.

    Federally funded scientific research began in Australia 104 years ago. The Advisory Council of Science and Industry was established in 1916 but was hampered by insufficient available finance. In 1926 the research effort was reinvigorated by establishment of the Council for Scientific and Industrial Research (CSIR), which strengthened national science leadership and increased research funding. CSIR grew rapidly and achieved significant early successes. In 1949 further legislated changes included renaming the organisation as CSIRO.

    Notable developments by CSIRO have included the invention of atomic absorption spectroscopy; essential components of Wi-Fi technology; development of the first commercially successful polymer banknote; the invention of the insect repellent in Aerogard and the introduction of a series of biological controls into Australia, such as the introduction of myxomatosis and rabbit calicivirus for the control of rabbit populations.

    Research and focus areas

    Research Business Units

    As at 2019, CSIRO’s research areas are identified as “Impact science” and organised into the following Business Units:

    Agriculture and Food
    Health and Biosecurity
    Data 61
    Energy
    Land and Water
    Manufacturing
    Mineral Resources
    Oceans and Atmosphere

    National Facilities
    CSIRO manages national research facilities and scientific infrastructure on behalf of the nation to assist with the delivery of research. The national facilities and specialized laboratories are available to both international and Australian users from industry and research. As at 2019, the following National Facilities are listed:

    Australian Animal Health Laboratory (AAHL)
    Australia Telescope National Facility – radio telescopes included in the Facility include the Australia Telescope Compact Array, the Parkes Observatory, Mopra Observatory and the Australian Square Kilometre Array Pathfinder.

    STCA CSIRO Australia Compact Array (AU), six radio telescopes at the Paul Wild Observatory, is an array of six 22-m antennas located about twenty five kilometres (16 mi) west of the town of Narrabri in Australia.

    CSIRO-Commonwealth Scientific and Industrial Research Organisation (AU) Parkes Observatory, [ Murriyang, the traditional Indigenous name] , located 20 kilometres north of the town of Parkes, New South Wales, Australia, 414.80m above sea level.

    CSIRO-Commonwealth Scientific and Industrial Research Organisation (AU) Mopra radio telescope.

    Australian Square Kilometre Array Pathfinder.

    NASA Canberra Deep Space Communication Complex, AU, Deep Space Network. Credit: NASA.

    CSIRO Canberra campus.

    ESA DSA 1, hosts a 35-metre deep-space antenna with transmission and reception in both S- and X-band and is located 140 kilometres north of Perth, Western Australia, near the town of New Norcia.

    CSIRO-Commonwealth Scientific and Industrial Research Organisation (AU)”>CSIRO R/V Investigator.

    UK Space NovaSAR-1 satellite (UK) synthetic aperture radar satellite.

    CSIRO Pawsey Supercomputing Centre AU)

    Magnus Cray XC40 supercomputer at Pawsey Supercomputer Centre Perth Australia.

    Galaxy Cray XC30 Series Supercomputer at at Pawsey Supercomputer Centre Perth Australia.

    Pausey Supercomputer CSIRO Zeus SGI Linux cluster.

    Others not shown

    SKA

    SKA- Square Kilometer Array.

    SKA Square Kilometre Array low frequency at Murchison Widefield Array, Boolardy station in outback Western Australia on the traditional lands of the Wajarri peoples.

    EDGES telescope in a radio quiet zone at the Murchison Radio-astronomy Observatory in Western Australia, on the traditional lands of the Wajarri peoples.

     
  • richardmitnick 5:59 pm on January 24, 2022 Permalink | Reply
    Tags: "Complex" numbers, "Complex" numbers are widely exploited in classical and relativistic physics., "Physics(US)", "Quantum Mechanics Must Be Complex", A basic starting point for quantum theory is to represent a particle state by a vector in a "complex"-valued space called a Hilbert space., Basic Research, Early on the pioneers of quantum mechanics abandoned the attempt to develop a quantum theory based on real numbers because they thought it impractical., Polarization-entangled photons generated by parametric down-conversion and detected in superconducting nanowire single-photon detectors., , , , Recent theoretical results suggested that a real-valued quantum theory could describe an unexpectedly broad range of quantum systems., Superconducting quantum processors in which the qubits have individual control and readout., The lack of a general proof left open some paths for refuting the equivalence between “complex” and “real” quantum theories., The possibility of using real numbers was never formally ruled out., This real-number approach has now been squashed by two independent experiments., Two teams show that within a standard formulation of quantum mechanics "complex" numbers are indispensable for describing experiments carried out on simple quantum networks.   

    From Physics(US): “Quantum Mechanics Must Be Complex” 

    About Physics

    From Physics(US)

    January 24, 2022

    Alessio Avella, The National Institute of Metrological Research [Istituto Nazionale di Ricerca Metrologica](IT)

    Two independent studies demonstrate that a formulation of quantum mechanics involving “complex” rather than real numbers is necessary to reproduce experimental results.

    1
    Credit: Carin Cain/American Physical Society(US)
    Figure 1: Conceptual sketch of the three-party game used by [Chen and colleagues] and [Li and colleagues] to demonstrate that a real quantum theory cannot describe certain measurements on small quantum networks. The game involves two sources distributing entangled qubits to three observers, who calculate a “score” from measurements performed on the qubits. In both experiments, the obtained score isn’t compatible with a real-valued, traditional formulation of quantum mechanics.

    “Complex” numbers are widely exploited in classical and relativistic physics. In electromagnetism, for instance, they tremendously simplify the description of wave-like phenomena. However, in these physical theories, “complex” numbers aren’t strictly needed, as all meaningful observables can be expressed in terms of real numbers. Thus, “complex” analysis is just a powerful computational tool. But are “complex” numbers essential in quantum physics—where the mathematics (the Schrödinger equation, the Hilbert space, etc.) is intrinsically “complex”-valued? This simple question has accompanied the development of quantum mechanics since its origins, when Schrödinger, Lorentz, and Planck debated it in their correspondence [1]. But early on, the pioneers of quantum mechanics abandoned the attempt to develop a quantum theory based on real numbers because they thought it impractical. However, the possibility of using real numbers was never formally ruled out, and recent theoretical results suggested that a real-valued quantum theory could describe an unexpectedly broad range of quantum systems [2]. But this real-number approach has now been squashed by two independent experiments, performed by Ming-Cheng Chen of The University of Science and Technology [中国科学技术大学](CN) at Chinese Academy of Sciences [中国科学院](CN) [3] and by Zheng-Da Li of The Southern University of Science and Technology[南方科技大學](CN) [4]. The two teams show that within a standard formulation of quantum mechanics “complex” numbers are indispensable for describing experiments carried out on simple quantum networks.

    A basic starting point for quantum theory is to represent a particle state by a vector in a “complex”-valued space called a Hilbert space. However, for a single, isolated quantum system, finding a description based purely on real numbers is straightforward: It can simply be obtained by doubling the dimension of the Hilbert space, as the space of complex numbers is equivalent, or “isomorphic,” to a two-dimensional, real plane, with the two dimensions representing the real and imaginary part of “complex” numbers, respectively. The problem becomes less trivial when we consider the unique quantum correlations, such as entanglement, that arise in quantum mechanics. These correlations can violate the principle of local realism, as proven by so-called Bell inequality tests [5]. Violations of Bell tests may appear to require “complex” values for their description [6]. But in 2009, a theoretical work demonstrated that, using real numbers, it is possible to reproduce the statistics of any standard Bell experiment, even those involving multiple quantum systems [2]. The result reinforced the conjecture that “complex” numbers aren’t necessary, but the lack of a general proof left open some paths for refuting the equivalence between “complex” and “real” quantum theories.

    One such path was identified in 2021 through the brilliant theoretical work of Marc-Olivier Renou of the The Institute of Photonic Sciences [Instituto de Ciencias Fotónicas](ES)and co-workers [7]. The researchers considered two theories that are both based on the postulates of quantum mechanics, but one uses a “complex” Hilbert space, as in the traditional formulation, while the other uses a real space. They then devised Bell-like experiments that could prove the inadequacy of the real theory. In their theorized experiments, two independent sources distribute entangled qubits in a quantum network configuration, while causally independent measurements on the nodes can reveal quantum correlations that do not admit any real quantum representation.

    Chen and colleagues and Li and colleagues now provide the experimental demonstration of Renou and co-workers’ proposal in two different physical platforms. The experiments are conceptually based on a “game” in which three parties (Alice, Bob, and Charlie) perform a Bell-like experiment (Fig. 1). In this game, two sources distribute entangled qubits between Alice and Bob and between Bob and Charlie, respectively. Each party independently chooses, from a set of possibilities, the measurements to perform on their qubit(s). Since the sources are independent, the qubits sent to Alice and Charlie are originally uncorrelated. Bob receives a qubit from both sources and, by performing a Bell-state measurement, he generates entanglement between Alice’s and Charlie’s qubits even though these qubits never interacted (a procedure called “entanglement swapping” [8]). Finally, a “score” is calculated from the statistical distribution of measurement outcomes. As demonstrated by Renou and co-workers, a “complex” quantum theory can produce a larger score than the one produced by a real quantum theory.

    The two groups follow different approaches to implement the quantum game. Chen and colleagues use a superconducting quantum processor in which the qubits have individual control and readout. The main challenge of this approach is making the qubits, which sit on the same circuit, truly independent and decoupled—a stringent requirement for the Bell-like tests. Li and colleagues instead choose a photonic implementation that more easily achieves this independence. Specifically, they use polarization-entangled photons generated by parametric down-conversion and detected in superconducting nanowire single-photon detectors. The optical implementation comes, however, with a different challenge: The protocol proposed by Renou and co-workers requires a complete Bell-state measurement, which can be directly implemented using superconducting qubits but is not achievable exploiting linear optical phenomena. Therefore, Li and colleagues had to rely on a so-called “partial” Bell-state measurement.

    Despite the difficulties inherent in each implementation, both experiments deliver compelling results. Impressively, they beat the score of real theory by many standard deviations (by 43 σ and 4.5 σ for Chen’s and Li’s experiments, respectively), providing convincing proof that complex numbers are needed to describe the experiments.

    Interestingly, both experiments are based on a minimal quantum network scheme (two sources and three nodes), which is a promising building block for a future quantum internet. The results thus offer one more demonstration that the availability of new quantum technologies is closely linked to the possibility of testing foundational aspects of quantum mechanics. Conversely, these new fundamental insights on quantum mechanics could have unexpected implications on the development of new quantum information technologies.

    We must be careful, however, in assessing the implications of these results. One might be tempted to conclude that “complex” numbers are indispensable to describe the physical reality of the Universe. However, this conclusion is true only if we accept the standard framework of quantum mechanics, which is based on several postulates. As Renou and his co-workers point out, these results would not be applicable to alternative formulations of quantum mechanics, such as Bohmian mechanics, which are based on different postulates. Therefore, these results could stimulate attempts to go beyond the standard formalism of quantum mechanics, which, despite great successes in predicting experimental results, is often considered inadequate from an interpretative point of view [9].

    References

    C. N. Yang, “Square root of minus one, complex phases and Erwin Schrödinger,” Selected Papers II with Commentary (World Scientific, Hackensack, 2013)[Amazon][WorldCat].
    M. McKague et al., “Simulating quantum systems using real Hilbert spaces,” Phys. Rev. Lett. 102, 020505 (2009).
    M.-C. Chen et al., “Ruling out real-valued standard formalism of quantum theory,” Phys. Rev. Lett. 128, 040403 (2022).
    Z.-D. Li et al., “Testing real quantum theory in an optical quantum network,” Phys. Rev. Lett. 128, 040402 (2022).
    A. Aspect, “Closing the door on Einstein and Bohr’s quantum debate,” Physics 8, 123 (2015).
    N. Gisin, “Bell Inequalities: Many Questions, a Few Answers,” in Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle, edited by W. C. Myrvold et al. The Western Ontario Series in Philosophy of Science, Vol. 73 (Springer, Dordrecht, 2009)[Amazon][WorldCat].
    M.-O. Renou et al., “Quantum theory based on real numbers can be experimentally falsified,” Nature 600, 625 (2021).
    J.-W. Pan et al., “Experimental entanglement swapping: Entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891 (1998).
    T. Norsen, Foundations of Quantum Mechanics – An Exploration of the Physical Meaning of Quantum Theory, Undergraduate Lecture Notes in Physics (Springer, Cham, 2017)[Amazon][WorldCat].

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Physicists are drowning in a flood of research papers in their own fields and coping with an even larger deluge in other areas of physics. How can an active researcher stay informed about the most important developments in physics? Physics (US) highlights a selection of papers from the Physical Review journals. In consultation with expert scientists, the editors choose these papers for their importance and/or intrinsic interest. To highlight these papers, Physics features three kinds of articles: Viewpoints are commentaries written by active researchers, who are asked to explain the results to physicists in other subfields. Focus stories are written by professional science writers in a journalistic style and are intended to be accessible to students and non-experts. Synopses are brief editor-written summaries. Physics provides a much-needed guide to the best in physics, and we welcome your comments.

     
  • richardmitnick 4:21 pm on January 24, 2022 Permalink | Reply
    Tags: "The Higgs boson could have kept our universe from collapsing", , Basic Research, , , , , , , ,   

    From Live Science: “The Higgs boson could have kept our universe from collapsing” 

    From Live Science

    1.24.22
    Paul Sutter

    Other patches in the multiverse would have, instead, met their ends.

    1
    Physicists have proposed our universe might be a tiny patch of a much larger cosmos that is constantly and rapidly inflating and popping off new universes. In our corner of this multiverse, the mass of the Higgs boson was low enough that this patch did not collapse like others may have. Image credit: MARK GARLICK/SCIENCE PHOTO LIBRARY via Getty Images.

    The Higgs boson, the mysterious particle that lends other particles their mass, could have kept our universe from collapsing. And its properties might be a clue that we live in a multiverse of parallel worlds, a wild new theory suggests.

    That theory, in which different regions of the universe have different sets of physical laws, would suggest that only worlds in which the Higgs boson is tiny would survive.

    If true, the new model would entail the creation of new particles, which in turn would explain why the strong interaction — which ultimately keeps atoms from collapsing — seems to obey certain symmetries. And along the way, it could help reveal the nature of Dark Matter — the elusive substance that makes up most matter.

    A tale of two Higgs

    In 2012, the Large Hadron Collider achieved a truly monumental feat; this underground particle accelerator along the French-Swiss border detected for the first time the Higgs boson, a particle that had eluded physicists for decades.

    The European Organization for Nuclear Research [Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN].

    The European Organization for Nuclear Research [Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] map.

    CERN LHC tube in the tunnel. Credit: Maximilien Brice and Julien Marius Ordan.

    SixTRack CERN LHC particles.

    The Higgs boson is a cornerstone of the Standard Model.

    European Organization for Nuclear Research [Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) ATLAS Higgs Event June 18, 2012.

    European Organization for Nuclear Research [Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) CMS Higgs Event May 27, 2012.

    This particle gives other particles their mass and creates the distinction between the weak interaction and the electromagnetic interaction.

    But with the good news came some bad. The Higgs had a mass of 125 gigaelectronvolts (GeV), which was orders of magnitude smaller than what physicists had thought it should be.

    To be perfectly clear, the framework physicists use to describe the zoo of subatomic particles, known as the Standard Model, doesn’t actually predict the value of the Higgs mass.

    Standard Model of Particle Physics, Quantum Diaries.

    For that theory to work, the number has to be derived experimentally. But back-of-the-envelope calculations made physicists guess that the Higgs would have an incredibly large mass. So once the champagne was opened and the Nobel prizes were handed out, the question loomed: Why does the Higgs have such a low mass?

    In another, and initially unrelated problem, the strong interaction isn’t exactly behaving as the Standard Model predicts it should. In the mathematics that physicists use to describe high-energy interactions, there are certain symmetries. For example, there is the symmetry of charge (change all the electric charges in an interaction and everything operates the same), the symmetry of time (run a reaction backward and it’s the same), and the symmetry of parity (flip an interaction around to its mirror-image and it’s the same).

    In all experiments performed to date, the strong interaction appears to obey the combined symmetry of both charge reversal and parity reversal. But the mathematics of the strong interaction do not show that same symmetry. No known natural phenomena should enforce that symmetry, and yet nature seems to be obeying it.

    What gives?

    A matter of multiverses

    A pair of theorists, Raffaele Tito D’Agnolo of the French Alternative Energies and Atomic Energy Commission (CEA) and Daniele Teresi of CERN, thought that these two problems might be related. In a paper published in January to the journal Physical Review Letters, they outlined their solution to the twin conundrums.

    Their solution: The universe was just born that way.

    They invoked an idea called the multiverse, which is born out of a theory called inflation. Inflation is the idea that in the earliest days of the Big Bang, our cosmos underwent a period of extremely enhanced expansion, doubling in size every billionth of a second.

    _____________________________________________________________________________________
    Inflation

    4
    Alan Guth, from M.I.T., who first proposed cosmic inflation.

    Lamda Cold Dark Matter Accerated Expansion of The universe http scinotions.com the-cosmic-inflation-suggests-the-existence-of-parallel-universes. Credit: Alex Mittelmann.

    Alan Guth’s notes:
    Alan Guth’s original notes on inflation.
    _____________________________________________________________________________________

    Physicists aren’t exactly sure what powered inflation or how it worked, but one outgrowth of the basic idea is that our universe has never stopped inflating. Instead, what we call “our universe” is just one tiny patch of a much larger cosmos that is constantly and rapidly inflating and constantly popping off new universes, like foamy suds in your bathtub.

    Different regions of this “multiverse” will have different values of the Higgs mass. The researchers found that universes with a large Higgs mass find themselves catastrophically collapsing before they get a chance to grow. Only the regions of the multiverse that have low Higgs masses survive and have stable expansion rates, leading to the development of galaxies, stars, planets and eventually high-energy particle colliders.

    To make a multiverse with varying Higgs masses, the team had to introduce two more particles into the mix. These particles would be new additions to the Standard Model. The interactions of these two new particles set the mass of the Higgs in different regions of the multiverse.

    And those two new particles are also capable of doing other things.

    Time for a test

    The newly proposed particles modify the strong interaction, leading to the charge-parity symmetry that exists in nature. They would act a lot like an axion, another hypothetical particle that has been introduced in an attempt to explain the nature of the strong interaction.

    The new particles don’t have a role limited to the early universe, either. They might still be inhabiting the present-day cosmos. If one of their masses is small enough, it could have evaded detection in our accelerator experiments, but would still be floating around in space.

    In other words, one of these new particles could be responsible for the Dark Matter, the invisible stuff that makes up over 85% of all the matter in the universe.

    It’s a bold suggestion: solving two of the greatest challenges to particle physics and also explaining the nature of Dark Matter.

    Could a solution really be this simple? As elegant as it is, the theory still needs to be tested. The model predicts a certain mass range for the Dark Matter, something that future experiments that are on the hunt for dark matter, like the underground facility the Super Cryogenic Dark Matter Search, could determine. Also, the theory predicts that the neutron should have a small but potentially measurable asymmetry in the electric charges within the neutron, a difference from the predictions of the Standard Model.

    Unfortunately, we’re going to have to wait awhile. Each of these measurements will take years, if not decades, to effectively rule out — or support – the new idea.

    ______________________________________________________
    Dark Matter Background
    Fritz Zwicky discovered Dark Matter in the 1930s when observing the movement of the Coma Cluster., Vera Rubin a Woman in STEM, denied the Nobel, some 30 years later, did most of the work on Dark Matter.

    Fritz Zwicky.
    Coma cluster via NASA/ESA Hubble, the original example of Dark Matter discovered during observations by Fritz Zwicky and confirmed 30 years later by Vera Rubin.
    In modern times, it was astronomer Fritz Zwicky, in the 1930s, who made the first observations of what we now call dark matter. His 1933 observations of the Coma Cluster of galaxies seemed to indicated it has a mass 500 times more than that previously calculated by Edwin Hubble. Furthermore, this extra mass seemed to be completely invisible. Although Zwicky’s observations were initially met with much skepticism, they were later confirmed by other groups of astronomers.

    Thirty years later, astronomer Vera Rubin provided a huge piece of evidence for the existence of dark matter. She discovered that the centers of galaxies rotate at the same speed as their extremities, whereas, of course, they should rotate faster. Think of a vinyl LP on a record deck: its center rotates faster than its edge. That’s what logic dictates we should see in galaxies too. But we do not. The only way to explain this is if the whole galaxy is only the center of some much larger structure, as if it is only the label on the LP so to speak, causing the galaxy to have a consistent rotation speed from center to edge.

    Vera Rubin, following Zwicky, postulated that the missing structure in galaxies is dark matter. Her ideas were met with much resistance from the astronomical community, but her observations have been confirmed and are seen today as pivotal proof of the existence of dark matter.
    Astronomer Vera Rubin at the Lowell Observatory in 1965, worked on Dark Matter (The Carnegie Institution for Science).

    Vera Rubin, with Department of Terrestrial Magnetism (DTM) image tube spectrograph attached to the Kitt Peak 84-inch telescope, 1970.

    Vera Rubin measuring spectra, worked on Dark Matter(Emilio Segre Visual Archives AIP SPL).
    Dark Matter Research

    Super Cryogenic Dark Matter Search from DOE’s SLAC National Accelerator Laboratory (US) at Stanford University (US) at SNOLAB (Vale Inco Mine, Sudbury, Canada).

    LBNL LZ Dark Matter Experiment (US) xenon detector at Sanford Underground Research Facility(US) Credit: Matt Kapust.

    Lamda Cold Dark Matter Accerated Expansion of The universe http scinotions.com the-cosmic-inflation-suggests-the-existence-of-parallel-universes. Credit: Alex Mittelmann.

    DAMA at Gran Sasso uses sodium iodide housed in copper to hunt for dark matter LNGS-INFN.

    Yale HAYSTAC axion dark matter experiment at Yale’s Wright Lab.

    DEAP Dark Matter detector, The DEAP-3600, suspended in the SNOLAB (CA) deep in Sudbury’s Creighton Mine.

    The LBNL LZ Dark Matter Experiment (US) Dark Matter project at SURF, Lead, SD, USA.

    DAMA-LIBRA Dark Matter experiment at the Italian National Institute for Nuclear Physics’ (INFN’s) Gran Sasso National Laboratories (LNGS) located in the Abruzzo region of central Italy.

    DARWIN Dark Matter experiment. A design study for a next-generation, multi-ton dark matter detector in Europe at The University of Zurich [Universität Zürich](CH).

    PandaX II Dark Matter experiment at Jin-ping Underground Laboratory (CJPL) in Sichuan, China.

    Inside the Axion Dark Matter eXperiment U Washington (US) Credit : Mark Stone U. of Washington. Axion Dark Matter Experiment.
    ______________________________________________________

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 12:39 pm on January 24, 2022 Permalink | Reply
    Tags: "Physicists discover 'secret sauce' behind exotic properties of a new quantum material", , Basic Research, Classical physics can be used to explain any number of phenomena that underlie our world-until things get exquisitely small., Enter quantum mechanics-the field that tries to explain the behavior of subatomic particles like electrons and quarks and resulting effects., In charge density waves the electrons arrange themselves in the shape of ripples-much like those in a sand dune., Kagome metal, Kagome metals can exhibit exotic properties such as unconventional superconductivity; nematicity and charge-density waves., MIT Materials Research Laboratory (US), , , The kagome metal family are composed of layers of atoms arranged in repeating units similar to a Star of David or sheriff’s badge., , The van Hove singularity involves the relationship between the electrons’ energy and velocity.   

    From The Massachusetts Institute of Technology (US): “Physicists discover ‘secret sauce’ behind exotic properties of a new quantum material” 

    MIT News

    From The Massachusetts Institute of Technology (US)

    January 21, 2022
    Elizabeth A. Thomson | MIT Materials Research Laboratory (US)

    1
    A visualization of the zero-energy electronic states — also known as a “Fermi surface” — from the kagome material studied by MIT’s Riccardo Comin and colleagues. Image courtesy of the Comin Laboratory.

    MIT physicists and colleagues have discovered the “secret sauce” behind some of the exotic properties of a new quantum material that has transfixed physicists due to those properties, which include superconductivity.

    Although theorists had predicted the reason for the unusual properties of the material, known as a kagome metal, this is the first time that the phenomenon behind those properties has been observed in the laboratory.

    “The hope is that our new understanding of the electronic structure of a kagome metal will help us build a rich platform for discovering other quantum materials,” says Riccardo Comin, the Class of 1947 Career Development Associate Professor of Physics at MIT, whose group led the study. That, in turn, could lead to a new class of superconductors, new approaches to quantum computing, and other quantum technologies.

    The work is reported in the Jan. 13 online issue of the journal Nature Physics.

    Classical physics can be used to explain any number of phenomena that underlie our world-until things get exquisitely small. Subatomic particles like electrons and quarks behave differently, in ways that are still not fully understood. Enter quantum mechanics, the field that tries to explain their behavior and resulting effects.

    The kagome metal at the heart of the current work is a new quantum material, or one that manifests the exotic properties of quantum mechanics at a macroscopic scale. In 2018 Comin and Joseph Checkelsky, MIT’s Mitsui Career Development Associate Professor of Physics, led the first study on the electronic structure of kagome metals, spurring interest into this family of materials. Members of the kagome metal family are composed of layers of atoms arranged in repeating units similar to a Star of David or sheriff’s badge. The pattern is also common in Japanese culture, particularly as a basket-weaving motif.

    “This new family of materials has attracted a lot of attention as a rich new playground for quantum matter that can exhibit exotic properties such as unconventional superconductivity, nematicity, and charge-density waves,” says Comin.

    Unusual properties

    Superconductivity and hints of charge density wave order in the new family of kagome metals studied by Comin and colleagues were discovered in the laboratory of Professor Stephen Wilson at The University of California -Santa Barbara (US), where single crystals were also synthesized (Wilson is a coauthor of the Nature Physics paper). The specific kagome material explored in the current work is made of only three elements (cesium, vanadium, and antimony) and has the chemical formula CsV3Sb5.

    The researchers focused on two of the exotic properties that a kagome metal shows when cooled below room temperatures. At those temperatures, electrons in the material begin to exhibit collective behavior. “They talk to each other, as opposed to moving independently,” says Comin.

    One of the resulting properties is superconductivity, which allows a material to conduct electricity extremely efficiently. In a regular metal, electrons behave much like people dancing individually in a room. In a kagome superconductor, when the material is cooled to 3 kelvins (about -454 degrees Fahrenheit) the electrons begin to move in pairs, like couples at a dance. “And all these pairs are moving in unison, as if they were part of a quantum choreography,” says Comin.

    At 100 K, the kagome material studied by Comin and collaborators exhibits yet another strange kind of behavior known as charge density waves. In this case, the electrons arrange themselves in the shape of ripples, much like those in a sand dune. “They’re not going anywhere; they’re stuck in place,” Comin says. A peak in the ripple represents a region that is rich in electrons. A valley is electron-poor. “Charge density waves are very different from a superconductor, but they’re still a state of matter where the electrons have to arrange in a collective, highly organized fashion. They form, again, a choreography, but they’re not dancing anymore. Now they form a static pattern.”

    Comin notes that kagome metals are of great interest to physicists in part because they can exhibit both superconductivity and charge density waves. “These two exotic phenomena are often in competition with one another, therefore it is unusual for a material to host both of them.”

    The secret sauce?

    But what is behind the emergence of these two properties? “What causes the electrons to start talking to each other, to start influencing each other? That is the key question,” says first author Mingu Kang, a graduate student in the MIT Department of Physics also affiliated with The MPG POSTECH Korea Research Initiative. That’s what the physicists report in Nature Physics. “By exploring the electronic structure of this new material, we discovered that the electrons exhibit an intriguing behavior known as an electronic singularity,” Kang says. This particular singularity is named for Léon van Hove, the Belgian physicist who first discovered it.

    The van Hove singularity involves the relationship between the electrons’ energy and velocity. Normally, the energy of a particle in motion is proportional to its velocity squared. “It’s a fundamental pillar of classical physics that [essentially] means the greater the velocity, the greater the energy,” says Comin. Imagine a Red Sox pitcher hitting you with a fast ball. Then imagine a kid trying to do the same. The pitcher’s ball would hurt a lot more than the kid’s, which has less energy.

    What the Comin team found is that in a kagome metal, this rule doesn’t hold anymore. Instead, electrons traveling with different velocities happen to all have the same energy. The result is that the pitcher’s fast ball would have the same physical effect as the kid’s. “It’s very counterintuitive,” Comin says. He noted that relating the energy to the velocity of electrons in a solid is challenging and requires special instruments at two international synchrotron research facilities: Beamline 4A1 of the Pohang Light Source and Beamline 7.0.2 (MAESTRO) of the Advanced Light Source at Lawrence Berkeley National Lab.

    3
    Pohang Light Source at The Pohang University of Science and Technology [성실; 창의; 진취](KR).

    Comments Professor Ronny Thomale of The Julius Maximilian University of Würzburg [Universität Würzburg](DE): “Theoretical physicists (including my group) have predicted the peculiar nature of van Hove singularities on the kagome lattice, a crystal structure made of corner-sharing triangles. Riccardo Comin has now provided the first experimental verification of these theoretical suggestions.” Thomale was not involved in the work.

    When many electrons exist at once with the same energy in a material, they are known to interact much more strongly. As a result of these interactions, the electrons can pair up and become superconducting, or otherwise form charge density waves. “The presence of a van Hove singularity in a material that has both makes perfect sense as the common source for these exotic phenomena” adds Kang. “Therefore, the presence of this singularity is the ‘secret sauce’ that enables the quantum behavior of kagome metals.”

    The team’s new understanding of the relationship between energy and velocities in the kagome material “is also important because it will enable us to establish new design principles for the development of new quantum materials,” Comin says. Further, “we now know how to find this singularity in other systems.”

    Direct feedback

    When physicists are analyzing data, most of the time that data must be processed before a clear trend is seen. The kagome system, however, “gave us direct feedback on what’s happening,” says Comin. “The best part of this study was being able to see the singularity right there in the raw data.”

    Additional authors of the Nature Physics paper are Shiang Fang of Rutgers University (US); Jeung-Kyu Kim, Jonggyu Yoo, and Jae-Hoon Park of Max Planck POSTECH/Korea Research Initiative and Pohang University of Science and Technology (Korea); Brenden Ortiz of the University of California-Santa Barbara (US); Jimin Kim of The Institute for Basic Science of Korea [기초과학연구원](KR); Giorgio Sangiovanni of the Universität Würzburg (Germany); Domenico Di Sante of The University of Bologna [Alma mater studiorum – Università di Bologna](IT) and The Flatiron Institute Center for Computational Astrophysics (US); Byeong-Gyu Park of Pohang Light Source (Korea); Sae Hee Ryu, Chris Jozwiak, Aaron Bostwick and Eli Rotenberg of DOE’s Lawrence Berkeley National Laboratory (US); and Efthimios Kaxiras of Harvard University (US).

    This work was funded by the Air Force Office of Scientific Research, the National Science Foundation, the National Research Foundation of Korea, a Samsung Scholarship, a Rutgers Center for Material Theory Distinguished Postdoctoral Fellowship, the California NanoSystems Institute, the European Union Horizon 2020 program, the German Research Foundation, and it used the resources of the Advanced Light Source, a Department of Energy Office of Science user facility.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology (US) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory (US), the MIT Bates Research and Engineering Center (US), and the Haystack Observatory (US), as well as affiliated laboratories such as the Broad Institute of MIT and Harvard(US) and Whitehead Institute (US).

    Massachusettes Institute of Technology-Haystack Observatory(US) Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology (US) adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology (US) . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology (US) is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia (US), wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after Massachusetts Institute of Technology (US) was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst (US)). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    Massachusetts Institute of Technology (US) was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology (US) faculty and alumni rebuffed Harvard University (US) president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the Massachusetts Institute of Technology (US) administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology (US) catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities (US)in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at Massachusetts Institute of Technology (US) that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    Massachusetts Institute of Technology (US)‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology (US)’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, Massachusetts Institute of Technology (US) became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected Massachusetts Institute of Technology (US) profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of Massachusetts Institute of Technology (US) between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, Massachusetts Institute of Technology (US) no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and Massachusetts Institute of Technology (US)’s defense research. In this period Massachusetts Institute of Technology (US)’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. Massachusetts Institute of Technology (US) ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT (US) Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six Massachusetts Institute of Technology (US) students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at Massachusetts Institute of Technology (US) over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, Massachusetts Institute of Technology (US)’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    Massachusetts Institute of Technology (US) has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology (US) classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    Massachusetts Institute of Technology (US) was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, Massachusetts Institute of Technology (US) launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, Massachusetts Institute of Technology (US) announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology (US) faculty adopted an open-access policy to make its scholarship publicly accessible online.

    Massachusetts Institute of Technology (US) has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology (US) community with thousands of police officers from the New England region and Canada. On November 25, 2013, Massachusetts Institute of Technology (US) announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the Massachusetts Institute of Technology (US) community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO (US) was designed and constructed by a team of scientists from California Institute of Technology (US), Massachusetts Institute of Technology (US), and industrial contractors, and funded by the National Science Foundation (US) .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology (US) physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an Massachusetts Institute of Technology (US) graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of Massachusetts Institute of Technology (US) is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 9:45 am on January 24, 2022 Permalink | Reply
    Tags: "At the interface of physics and mathematics", , Basic Research, Integrable model: equation that can be solved exactly., , , , , String Theory-which scientists hope will eventually provide a unified description of particle physics and gravity., ,   

    From The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “At the interface of physics and mathematics” 

    From The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    24.01.2022
    Barbara Vonarburg

    Sylvain Lacroix is a theoretical physicist who conducts research into fundamental concepts of physics – an exciting but intellectually challenging field of science. As an Advanced Fellow at ETH Zürich’s Institute for Theoretical Studies (ITS), he works on complex equations that can be solved exactly only thanks to their large number of symmetries.

    1
    “It was fascinating to learn abstract mathematical concepts and see them neatly applied in the realm of physics,” says Sylvain Lacroix, Advanced Fellow at the Institute for Theoretical Studies. Photo: Nicola Pitaro/ETH Zürich.

    “I got hooked on the interplay of physics and mathematics while I was still at secondary school,” says 30-​year-old Sylvain Lacroix, who was born and grew up near Paris. “It was fascinating to learn abstract mathematical concepts and see them neatly applied in the realm of physics.” During his studies at The University of Lyon [Université Claude Bernard Lyon 1] (FR), he devoted much of his energy and enthusiasm to physics problems that had highly complex underlying mathematical structures. So when it came to selecting a topic for his doctoral thesis, this area of research seemed like the obvious choice. He decided to explore the theory of what are known as integrable models – a subject he has continued to pursue up to the present day.

    Lacroix readily acknowledges that most people outside his line of work find the term “integrable models” completely incomprehensible: “I have to admit that it’s probably not the simplest or most accessible field of physics,” he says, almost apologetically. That’s why he takes pains to explain it in layman’s terms: “We define a model as a body of laws, a set of equations that describe the behaviour of certain quantities, for example how the position of an object changes over time.” An integrable model is characterised by equations that can be solved exactly, which is by no means a given.

    Symmetry is the key

    Many of the equations used in modern physics – such as that practised at The European Organization for Nuclear Research [Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN] – are so complex that they can be solved only approximately. These approximation methods often serve their purpose well, for instance if there is only a weak interaction between two particles. However, other cases require exact calculations – and that’s where integrable models come in. But what makes them so exact? “That’s another aspect that is tricky to explain,” Lacroix says, “but it ultimately comes down to symmetry.” Take, for example, the symmetry of time or space: a physics experiment will produce the same results whether you perform it today or – under identical conditions – ten days from now, and whether it takes place in Zürich or New York. Consequently, the equation that describes the experiment must remain invariant even if the time or location changes. This is reflected in the mathematical structure of the equation, which contains the corresponding constraints. “If we have enough symmetries, this results in so many constraints that we can simplify the equation to the point where we get exact results,” says the physicist.

    Integrable models and their exact solutions are actually very rare in mathematics. “If I chose a random equation, it would be extremely unlikely to have this property of exact solvability,” Lacroix says. “But equations of this kind really do exist in nature.” Some describe the movement of waves propagating in a channel, for example, while others describe the behaviour of a hydrogen atom. “But it’s important to note that my work doesn’t have any practical applications of that kind,” Lacroix says. “I don’t examine concrete physical models; instead, I study mathematical structures and attempt to find general approaches that will allow us to construct new exactly solvable equations.” Although some of these formulas may eventually find a real-​world application, others probably won’t.

    After completing his doctoral thesis, Lacroix spent three years working as a postdoc at The University of Hamburg [Universität Hamburg](DE), before finally moving to Zürich in September 2021. “I don’t have a family, so I had no problem making the switch,” he says. He is relieved that he can now spend five years at the ITS as an Advanced Fellow and focus entirely on his research without having to worry about the future. He admits it was a pleasure getting to know different countries as a postdoc and that he enjoyed moving from place to place. “But it makes it very hard to have any kind of stability in your life.”

    A beautiful setting

    Lacroix spends most of his time working in his office at the ITS, which is located in a stately building dating from 1882 not far from the ETH Main Building. “It’s a lovely place,” he says, glancing out the window at the green surroundings and the city beyond. “I feel very much at home here. Living in Zürich is wonderful, it’s such a great feeling being here.” In his spare time, he likes watching movies, reading books and socialising. “I love meeting up with friends in restaurants or cafés,” he says. He also feels fortunate that he didn’t start working in Zürich until after the Covid measures had been relaxed.

    “I’m vaccinated and everyone’s very careful at ETH. We still have restrictions in place, but life is slowly getting back to normal – and that made it much easier to get to know my colleagues from day one,” he says. One of the greatest privileges of working at the ITS, Lacroix says, is that it offers an international environment that brings together researchers from all over the world. As well as offering a space for experts to exchange ideas and holding seminars where Fellows can present their work, the Institute also has a tradition of organising joint excursions. In the autumn of 2021, Lacroix joined his colleagues on a hike in the Flumserberg mountain resort for the first time: “I love hiking and it’s incredible to have the mountains so close.”

    Normally, however, he can be found sitting at his desk jotting down a series of mostly abstract equations on a sheet of paper. Occasionally his computer comes in handy, he says, because it has become so much more than just a calculating device; today’s computers can also handle abstract mathematical concepts, which can be very useful. Most people don’t really understand much of what Lacroix puts down on paper, but that doesn’t bother him: “I’ve learned to live with that,” he says; “I don’t feel isolated in my research at all – at least not in the academic sphere.”

    A better understanding of quantum field theory

    Integrable models are extremely symmetrical models, Lacroix explains. The basic principle of symmetry plays an important role in modern physics, for example in quantum field theory – the theoretical basis of particle physics – as well as in string theory, which scientists hope will eventually provide a unified description of particle physics and gravity. So could such an all-​encompassing unified field theory turn out to be an integrable model? “That would obviously be great, especially for me!” Lacroix says with a wry smile. “But it’s a bit optimistic to believe that whatever unified theory of physics finally emerges will have enough symmetries to make it completely exact.”

    Even if the equations he studies don’t explain the world directly, he still believes they can help us achieve a better understanding of theoretical physics. For example, we can take advantage of so-​called “toy models”, which have a particularly large number of symmetries, to simplify extremely complex equations in quantum field theory. “This gives us a better understanding of how the theory works, even if these models are too simplistic for the real world,” Lacroix says. Yet his primary interest lies in the purely mathematical questions that integrable models pose, and he admits that the equations they involve sometimes even appear in his dreams: “It’s hard to shake off what I’ve been thinking about the entire day. But I’ve never managed to solve a mathematical problem in my dreams – at least not so far!”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus

    The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of The Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the The Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas The University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and The University of Cambridge(UK), respectively.

     
  • richardmitnick 7:28 pm on January 23, 2022 Permalink | Reply
    Tags: "A New Map of the Sun’s Local Bubble", , , Basic Research, , ,   

    From The New York Times : “A New Map of the Sun’s Local Bubble” 

    From The New York Times

    Jan. 20, 2022
    Dennis Overbye

    1
    A view of the center of Milky Way from 2011. Scientists believe a series of supernova explosions 14 million years ago led to the creation of a 1,000-light-year-wide region bereft of the gas and dust needed to form new stars.Credit: The National Aeronautics and Space Administration(US).

    Just a bit too late for New Year celebrations, astronomers have discovered that the Milky Way galaxy, our home, is, like champagne, full of bubbles.

    As it happens, our solar system is passing through the center of one of these bubbles. Fourteen million years ago, according to the astronomers, a firecracker chain of supernova explosions drove off all the gas and dust from a region roughly 1,000 light-years wide, leaving it bereft of the material needed to produce new generations of stars.

    As a result, all the baby stars in our neighborhood can be found stuck on the edges of this bubble. There, the staccato force of a previous generation of exploding stars has pushed gas clouds together into forms dense enough to collapse under their own ponderous if diffuse gravity and condense enough to ignite, as baby stars. Our sun, 4.5 billion years old, drifts through the middle of this space in a coterie of aged stars.

    “This is really an origin story,” Catherine Zucker said in a news release from The Harvard-Smithsonian Center for Astrophysics. “For the first time, we can explain how all nearby star formation began.”

    Dr. Zucker, now at The Space Telescope Science Institute (US), led a team that mapped what they call the Local Bubble in remarkable detail. They used data from a number of sources, particularly Gaia, a European spacecraft, that has mapped and measured more than a billion stars, to pinpoint the locations of gas and dust clouds.

    European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU) GAIA satellite.

    Last year, a group of scientists led by João Alves, an astrophysicist at The University of Vienna [Universität Wien](AT) announced the discovery of the Radcliffe Wave, an undulating string of dust and gas clouds 9,000 light-years long that might be the spine of our local arm of the galaxy. One section of the wave now appears to be part of our Local Bubble.

    2
    An artist’s illustration of the Local Bubble with star formation occurring on the bubble’s surface.Credit: Leah Hustak (STScI)/CfA.

    The same group of scientists published their latest findings in Nature, along with an elaborate animated map of the Local Bubble and its highlights.


    New Local Bubble Map. Credit: CfA

    The results, the astronomers write, provide “robust observational support” for a long-held theory that supernova explosions are important in triggering star formation, perhaps by jostling gas and dust clouds into collapsing and starting on the long road to thermonuclear luminosity.

    Astronomers have long recognized the Local Bubble. What is new, said Alyssa Goodman, a member of the team also from the Harvard-Smithsonian Center for Astrophysics, is the observation that all local star forming-regions lie on the Local Bubble’s surface. Researchers previously lacked the tools to map gas and dust clouds in three dimensions. “Thanks to 3-D dust-mapping, now we do,” Dr. Goodman said.

    According to the team’s calculations the Local Bubble began 14 million years ago with a massive supernova, the first of about 15; massive stars died and blew up. Their blast waves cleared out the region. As a result there are now no stars younger than 14 million years in the bubble, Dr. Goodman said.

    The bubble continues to grow at about 4 miles a second. “Still, more supernovae are expected to take place in the near future, like Antares, a red supergiant star near the edge of the bubble that could go any century now,” Dr. Alves said. “So the Local Bubble is not ‘done.’”

    With a score of well-known star-forming regions sitting on the surface of the bubble, the next generation of stars is securely on tap.

    The team plans to go on and map more bubbles in the our Milky Way flute of champagne. There must be more, Dr. Goodman said, because it would be too much of a coincidence for the sun to be smack in the middle of the only one.

    The sun’s presence in this one is nonetheless coincidental, Dr. Alves said. Our star wandered into the region only 5 million years ago, long after most of the action, and will exit about 5 million years from now.

    The motions of the stars are more irregular than commonly portrayed, as they are bumped gravitationally by other stars, clouds and the like, Dr. Alves said.

    “The sun is moving at a significantly different velocity than the average of the stars and gas in the solar neighborhood,” he noted. This would enable it to catch up and pass — or be passed by — the bubble.

    “It was a revelation,” Dr. Goodman said, “how kooky the sun’s path really is compared with a simple circle.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 5:36 pm on January 23, 2022 Permalink | Reply
    Tags: "Scientists make first detection of exotic “X” particles in quark-gluon plasma", , Basic Research, , In the next few years scientists want to use the quark-gluon plasma to probe the X particle’s internal structure which could change our view of what kind of material the universe should produce., MIT’s Laboratory for Nuclear Science, , Scientists suspect that X (3872) is either a compact tetraquark or a new kind of molecule made two loosely bound mesons-subatomic particles that themselves are made from two quarks., , The researchers were able to tease out about 100 X particles of a type known as X (3872) named for the particle’s estimated mass., The study’s co-authors are members of the CMS Collaboration., The team used machine-learning techniques to sift through more than 13 billion heavy ion collisions., These findings could redefine the kinds of particles that were abundant in the early universe., X (3872) was first discovered in 2003 by the Belle experiment-a particle collider in Japan that smashes together high-energy electrons and positrons., [Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN]   

    From The Massachusetts Institute of Technology (US): “Scientists make first detection of exotic “X” particles in quark-gluon plasma” 

    MIT News

    From The Massachusetts Institute of Technology (US)

    January 21, 2022
    Jennifer Chu

    The findings could redefine the kinds of particles that were abundant in the early universe.

    1
    Physicists have found evidence of rare X particles in the quark-gluon plasma produced in the Large Hadron Collider (LHC) at CERN. The findings could redefine the kinds of particles that were abundant in the early universe. Image: iStockphoto.

    In the first millionths of a second after the Big Bang, the universe was a roiling, trillion-degree plasma of quarks and gluons — elementary particles that briefly glommed together in countless combinations before cooling and settling into more stable configurations to make the neutrons and protons of ordinary matter.

    In the chaos before cooling, a fraction of these quarks and gluons collided randomly to form short-lived “X” particles, so named for their mysterious, unknown structures. Today, X particles are extremely rare, though physicists have theorized that they may be created in particle accelerators through quark coalescence, where high-energy collisions can generate similar flashes of quark-gluon plasma.

    Now physicists at MIT’s Laboratory for Nuclear Science and elsewhere have found evidence of X particles in the quark-gluon plasma produced in the Large Hadron Collider (LHC) at CERN, the European Organization for Nuclear Research, based near Geneva, Switzerland.

    The European Organization for Nuclear Research [Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN].

    The European Organization for Nuclear Research [Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] map.

    CERN LHC tube in the tunnel. Credit: Maximilien Brice and Julien Marius Ordan.

    SixTRack CERN LHC particles.

    The team used machine-learning techniques to sift through more than 13 billion heavy ion collisions, each of which produced tens of thousands of charged particles. Amid this ultradense, high-energy particle soup, the researchers were able to tease out about 100 X particles of a type known as X (3872) named for the particle’s estimated mass.

    The results, published this week in Physical Review Letters, mark the first time researchers have detected X particles in quark-gluon plasma — an environment that they hope will illuminate the particles’ as-yet unknown structure.

    “This is just the start of the story,” says lead author Yen-Jie Lee, the Class of 1958 Career Development Associate Professor of Physics at MIT. “We’ve shown we can find a signal. In the next few years we want to use the quark-gluon plasma to probe the X particle’s internal structure which could change our view of what kind of material the universe should produce.”

    The study’s co-authors are members of the CMS Collaboration, an international team of scientists that operates and collects data from the Compact Muon Solenoid, one of the LHC’s particle detectors.

    The European Organization for Nuclear Research [Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] CMS.

    The European Organization for Nuclear Research [Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] Compact Muon Solenoid Detector.

    X (3872) was first discovered in 2003 by the Belle experiment-a particle collider in Japan that smashes together high-energy electrons and positrons.

    Particles in the plasma

    The basic building blocks of matter are the neutron and the proton, each of which are made from three tightly bound quarks.

    The quark structure of the proton. 16 March 2006 Arpad Horvath.

    The quark structure of the neutron. 15 January 2018 Jacek Rybak.

    “For years we had thought that for some reason, nature had chosen to produce particles made only from two or three quarks,” Lee says.

    Only recently have physicists begun to see signs of exotic “tetraquarks” — particles made from a rare combination of four quarks.

    Tetraquarks-School of Physics and Astronomy – The University of Edinburgh (SCT).

    Scientists suspect that X (3872) is either a compact tetraquark or an entirely new kind of molecule made from not atoms but two loosely bound mesons — subatomic particles that themselves are made from two quarks.

    X (3872) was first discovered in 2003 by the Belle experiment-a particle collider in Japan that smashes together high-energy electrons and positrons.

    KEK Belle II detector, at The High Energy Accelerator Research Organization [高エネルギー加速器研究機構](JP) in Tsukuba, Ibaraki Prefecture, Japan.

    Within this environment, however, the rare particles decayed too quickly for scientists to examine their structure in detail. It has been hypothesized that X (3872) and other exotic particles might be better illuminated in quark-gluon plasma.

    “Theoretically speaking, there are so many quarks and gluons in the plasma that the production of X particles should be enhanced,” Lee says. “But people thought it would be too difficult to search for them because there are so many other particles produced in this quark soup.”

    “Really a signal”

    In their new study, Lee and his colleagues looked for signs of X particles within the quark-gluon plasma generated by heavy-ion collisions in CERN’s Large Hadron Collider. They based their analysis on the LHC’s 2018 dataset, which included more than 13 billion lead-ion collisions, each of which released quarks and gluons that scattered and merged to form more than a quadrillion short-lived particles before cooling and decaying.

    “After the quark-gluon plasma forms and cools down, there are so many particles produced, the background is overwhelming,” Lee says. “So we had to beat down this background so that we could eventually see the X particles in our data.”

    To do this, the team used a machine-learning algorithm which they trained to pick out decay patterns characteristic of X particles. Immediately after particles form in quark-gluon plasma, they quickly break down into “daughter” particles that scatter away. For X particles, this decay pattern, or angular distribution, is distinct from all other particles.

    The researchers, led by MIT postdoc Jing Wang, identified key variables that describe the shape of the X particle decay pattern. They trained a machine-learning algorithm to recognize these variables, then fed the algorithm actual data from the LHC’s collision experiments. The algorithm was able to sift through the extremely dense and noisy dataset to pick out the key variables that were likely a result of decaying X particles.

    “We managed to lower the background by orders of magnitude to see the signal,” says Wang.

    The researchers zoomed in on the signals and observed a peak at a specific mass, indicating the presence of X (3872) particles, about 100 in all.

    “It’s almost unthinkable that we can tease out these 100 particles from this huge dataset,” says Lee, who along with Wang ran multiple checks to verify their observation.

    “Every night I would ask myself, is this really a signal or not?” Wang recalls. “And in the end, the data said yes!”

    In the next year or two, the researchers plan to gather much more data, which should help to elucidate the X particle’s structure. If the particle is a tightly bound tetraquark, it should decay more slowly than if it were a loosely bound molecule. Now that the team has shown X particles can be detected in quark-gluon plasma, they plan to probe this particle with quark-gluon plasma in more detail, to pin down the X particle’s structure.

    “Currently our data is consistent with both because we don’t have a enough statistics yet. In next few years we’ll take much more data so we can separate these two scenarios,” Lee says. “That will broaden our view of the kinds of particles that were produced abundantly in the early universe.”

    This research was supported, in part, by the Department of Energy (US).

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology (US) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory (US), the MIT Bates Research and Engineering Center (US), and the Haystack Observatory (US), as well as affiliated laboratories such as the Broad Institute of MIT and Harvard(US) and Whitehead Institute (US).

    Massachusettes Institute of Technology-Haystack Observatory(US) Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology (US) adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology (US) . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology (US) is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia (US), wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after Massachusetts Institute of Technology (US) was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst (US)). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    Massachusetts Institute of Technology (US) was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology (US) faculty and alumni rebuffed Harvard University (US) president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the Massachusetts Institute of Technology (US) administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology (US) catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities (US)in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at Massachusetts Institute of Technology (US) that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    Massachusetts Institute of Technology (US)‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology (US)’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, Massachusetts Institute of Technology (US) became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected Massachusetts Institute of Technology (US) profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of Massachusetts Institute of Technology (US) between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, Massachusetts Institute of Technology (US) no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and Massachusetts Institute of Technology (US)’s defense research. In this period Massachusetts Institute of Technology (US)’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. Massachusetts Institute of Technology (US) ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT (US) Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six Massachusetts Institute of Technology (US) students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at Massachusetts Institute of Technology (US) over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, Massachusetts Institute of Technology (US)’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    Massachusetts Institute of Technology (US) has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology (US) classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    Massachusetts Institute of Technology (US) was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, Massachusetts Institute of Technology (US) launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, Massachusetts Institute of Technology (US) announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology (US) faculty adopted an open-access policy to make its scholarship publicly accessible online.

    Massachusetts Institute of Technology (US) has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology (US) community with thousands of police officers from the New England region and Canada. On November 25, 2013, Massachusetts Institute of Technology (US) announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the Massachusetts Institute of Technology (US) community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO (US) was designed and constructed by a team of scientists from California Institute of Technology (US), Massachusetts Institute of Technology (US), and industrial contractors, and funded by the National Science Foundation (US) .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology (US) physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an Massachusetts Institute of Technology (US) graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of Massachusetts Institute of Technology (US) is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 11:41 am on January 23, 2022 Permalink | Reply
    Tags: "Housed at Rochester the Flash Center advances cutting-edge physics research", , Basic Research, Flash Center - a research center devoted to computer simulations used to advance the understanding of astrophysics; plasma science; high-energy-density physics and fusion energy., ,   

    From The University of Rochester (US): “Housed at Rochester the Flash Center advances cutting-edge physics research” 

    From The University of Rochester (US)

    January 19, 2022

    Lindsey Valich
    lvalich@ur.rochester.edu

    1
    Petros Tzeferacos (right), associate professor of physics and astronomy at the University of Rochester, senior scientist at the University’s Laboratory for Laser Energetics (LLE), and director of the Flash Center for Computational Science, uses the University’s VISTA Collaboratory visualization facility to explain FLASH simulations of a laser-driven experiment to (from left) LLE deputy director Chris Deeney, Flash center graduate research assistant and Horton Fellow Abigail Armstrong, and Flash center research scientist Adam Reyes. The center is devoted to computer simulations used to advance an understanding of astrophysics, plasma science, high-energy-density physics, and fusion energy. Photo: J. Adam Fenster/University of Rochester.

    The Flash Center for Computational Science – University of Rochester (US) offers researchers worldwide access to a computer code that simulates phenomena in astrophysics, high-energy-density science, and fusion research.

    The University of Rochester is the new home of The Flash Center for Computational Science – a research center devoted to computer simulations used to advance the understanding of astrophysics, plasma science, high-energy-density physics, and fusion energy.

    The Flash Center for Computational Science recently moved from The University of Chicago (US) to the Department of Physics and Astronomy at Rochester. Located in the Bausch and Lomb building on the River Campus, the center encompasses numerous cross-disciplinary, computational physics research projects conducted using the FLASH code. The FLASH code is a publicly available multi-physics code that allows researchers to accurately simulate and model many scientific phenomena—including plasma physics, computational fluid dynamics, high-energy-density physics (HEDP), and fusion energy research—and inform the design and execution of experiments.

    “We are thrilled to have the Flash Center and the FLASH code join the University of Rochester research enterprise and family, and we want to thank the University of Chicago for working hand-in-hand with us to facilitate this transfer,” says Stephen Dewhurst. Dewhurst, the vice dean for research at the School of Medicine and Dentistry and associate vice president for health sciences research for the University, is currently serving a one-year appointment as interim vice president for research.

    The ‘premiere’ code used at the world’s top laser facilities

    Development of the FLASH code began in 1997 when the Flash Center was founded at the University of Chicago. The code, which is continuously updated, is currently used by more than 3,500 scientists across the globe to simulate various physics processes.

    The Flash Center fosters joint research projects between national laboratories, industry partners, and academic groups around the world. It also supports training in numerical modeling and code development for graduate students, undergraduate students, and postdoctoral research associates, while continuing to develop and steward the FLASH code itself.

    “In the last five years FLASH has become the premiere academic code for designing and interpreting experiments at the world’s largest laser facilities, such The National Ignition Facility (US) at DOE’s Lawrence Livermore National Laboratory(US) and the Omega Laser Facility at The Laboratory for Laser Energetics (LLE), here at the University of Rochester,” says Michael Campbell, the director of the LLE. “Having the Flash Center and the FLASH code at Rochester significantly strengthens LLE’s position as a unique national resource for research and education in science and technology.”

    Petros Tzeferacos, an associate professor of physics and astronomy and a senior scientist at the LLE, serves as the center’s director. Tzeferacos’s research combines theory, numerical modeling with the FLASH code, and laboratory experiments to study fundamental processes in plasma physics and astrophysics, high-energy-density laboratory astrophysics, and fusion energy. Tzeferacos became director of the Flash Center in 2018 after serving for five years as associate director and code group leader, when the center was still housed at the University of Chicago.

    “The University of Rochester is a unique place where plasma physics, plasma astrophysics, and high-energy-density science are core research efforts,” Tzeferacos says. “We have in-house computational resources and leverage the high-power computing resources at LLE, the Center for Integrated Research Computing (CIRC), and national supercomputing facilities to perform our numerical studies. We also train the next generation of computational physics and astrophysics scientists in the use and development of simulation codes.”

    Research at the Flash Center is funded by The Department of Energy (US) National Nuclear Security Administration (NNSA), the US DOE Office of Science Fusion Energy Sciences, the US DOE Advanced Research Projects Agency, The National Science Foundation (US), DOE’s Los Alamos National Laboratory (US), Lawrence Livermore National Laboratory (LLNL), and the LLE.

    “FLASH is a critically important simulation tool for academic groups engaging with NNSA’s academic programs and performing HEDP research on NNSA facilities,” says Ann J. Satsangi, federal program manager at the NNSA Office of Experimental Sciences. “The Flash Center joining forces with the LLE is a very positive development that promises to significantly contribute to advancing high-energy-density science and the NNSA mission.”

    4

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    University of Rochester campus

    The University of Rochester (US) is a private research university in Rochester, New York. The university grants undergraduate and graduate degrees, including doctoral and professional degrees.

    The University of Rochester (US) enrolls approximately 6,800 undergraduates and 5,000 graduate students. Its 158 buildings house over 200 academic majors. According to the National Science Foundation (US), Rochester spent $370 million on research and development in 2018, ranking it 68th in the nation. The university is the 7th largest employer in the Finger lakes region of New York.

    The College of Arts, Sciences, and Engineering is home to departments and divisions of note. The Institute of Optics was founded in 1929 through a grant from Eastman Kodak and Bausch and Lomb as the first educational program in the US devoted exclusively to optics and awards approximately half of all optics degrees nationwide and is widely regarded as the premier optics program in the nation and among the best in the world.

    The Departments of Political Science and Economics have made a significant and consistent impact on positivist social science since the 1960s and historically rank in the top 5 in their fields. The Department of Chemistry is noted for its contributions to synthetic organic chemistry, including the first lab based synthesis of morphine. The Rossell Hope Robbins Library serves as the university’s resource for Old and Middle English texts and expertise. The university is also home to Rochester’s Laboratory for Laser Energetics, a Department of Energy (US) supported national laboratory.

    University of Rochester(US) Laboratory for Laser Energetics.

    The University of Rochester’s Eastman School of Music (US) ranks first among undergraduate music schools in the U.S. The Sibley Music Library at Eastman is the largest academic music library in North America and holds the third largest collection in the United States.

    In its history university alumni and faculty have earned 13 Nobel Prizes; 13 Pulitzer Prizes; 45 Grammy Awards; 20 Guggenheim Awards; 5 National Academy of Sciences; 4 National Academy of Engineering; 3 Rhodes Scholarships; 3 National Academy of Inventors; and 1 National Academy of Inventors Hall of Fame.

    History

    Early history

    The University of Rochester traces its origins to The First Baptist Church of Hamilton (New York) which was founded in 1796. The church established the Baptist Education Society of the State of New York later renamed the Hamilton Literary and Theological Institution in 1817. This institution gave birth to both Colgate University(US) and the University of Rochester. Its function was to train clergy in the Baptist tradition. When it aspired to grant higher degrees it created a collegiate division separate from the theological division.

    The collegiate division was granted a charter by the State of New York in 1846 after which its name was changed to Madison University. John Wilder and the Baptist Education Society urged that the new university be moved to Rochester, New York. However, legal action prevented the move. In response, dissenting faculty, students, and trustees defected and departed for Rochester, where they sought a new charter for a new university.

    Madison University was eventually renamed as Colgate University (US).

    Founding

    Asahel C. Kendrick- professor of Greek- was among the faculty that departed Madison University for Rochester. Kendrick served as acting president while a national search was conducted. He reprised this role until 1853 when Martin Brewer Anderson of the Newton Theological Seminary in Massachusetts was selected to fill the inaugural posting.

    The University of Rochester’s new charter was awarded by the Regents of the State of New York on January 31, 1850. The charter stipulated that the university have $100,000 in endowment within five years upon which the charter would be reaffirmed. An initial gift of $10,000 was pledged by John Wilder which helped catalyze significant gifts from individuals and institutions.

    Classes began that November with approximately 60 students enrolled including 28 transfers from Madison. From 1850 to 1862 the university was housed in the old United States Hotel in downtown Rochester on Buffalo Street near Elizabeth Street- today West Main Street near the I-490 overpass. On a February 1851 visit Ralph Waldo Emerson said of the university:

    “They had bought a hotel, once a railroad terminus depot, for $8,500, turned the dining room into a chapel by putting up a pulpit on one side, made the barroom into a Pythologian Society’s Hall, & the chambers into Recitation rooms, Libraries, & professors’ apartments, all for $700 a year. They had brought an omnibus load of professors down from Madison bag and baggage… called in a painter and sent him up the ladder to paint the title “University of Rochester” on the wall, and they had runners on the road to catch students. And they are confident of graduating a class of ten by the time green peas are ripe.”

    For the next 10 years the college expanded its scope and secured its future through an expanding endowment; student body; and faculty. In parallel a gift of 8 acres of farmland from local businessman and Congressman Azariah Boody secured the first campus of the university upon which Anderson Hall was constructed and dedicated in 1862. Over the next sixty years this Prince Street Campus grew by a further 17 acres and was developed to include fraternities houses; dormitories; and academic buildings including Anderson Hall; Sibley Library; Eastman and Carnegie Laboratories the Memorial Art Gallery and Cutler Union.

    Twentieth century

    Coeducation

    The first female students were admitted in 1900- the result of an effort led by Susan B. Anthony and Helen Barrett Montgomery. During the 1890s a number of women took classes and labs at the university as “visitors” but were not officially enrolled nor were their records included in the college register. President David Jayne Hill allowed the first woman- Helen E. Wilkinson- to enroll as a normal student although she was not allowed to matriculate or to pursue a degree. Thirty-three women enrolled among the first class in 1900 and Ella S. Wilcoxen was the first to receive a degree in 1901. The first female member of the faculty was Elizabeth Denio who retired as Professor Emeritus in 1917. Male students moved to River Campus upon its completion in 1930 while the female students remained on the Prince Street campus until 1955.

    Expansion

    Major growth occurred under the leadership of Benjamin Rush Rhees over his 1900-1935 tenure. During this period George Eastman became a major donor giving more than $50 million to the university during his life. Under the patronage of Eastman the Eastman School of Music (US) was created in 1921. In 1925 at the behest of the General Education Board and with significant support for John D. Rockefeller George Eastman and Henry A. Strong’s family medical and dental schools were created. The university award its first Ph.D that same year.

    During World War II University of Rochester was one of 131 colleges and universities nationally that took part in the V-12 Navy College Training Program which offered students a path to a Navy commission. In 1942, the university was invited to join the Association of American Universities(US) as an affiliate member and it was made a full member by 1944. Between 1946 and 1947 in infamous uranium experiments researchers at the university injected uranium-234 and uranium-235 into six people to study how much uranium their kidneys could tolerate before becoming damaged.

    In 1955 the separate colleges for men and women were merged into The College on the River Campus. In 1958 three new schools were created in engineering; business administration and education. The Graduate School of Management was named after William E. Simon- former Secretary of the Treasury in 1986. He committed significant funds to the school because of his belief in the school’s free market philosophy and grounding in economic analysis.

    Financial decline and name change controversy

    Following the princely gifts given throughout his life George Eastman left the entirety of his estate to the university after his death by suicide. The total of these gifts surpassed $100 million before inflation and as such Rochester enjoyed a privileged position amongst the most well endowed universities. During the expansion years between 1936 and 1976 the University of Rochester’s financial position ranked third, near Harvard University’s(US) endowment and the University of Texas (US) System’s Permanent University Fund. Due to a decline in the value of large investments and a lack of portfolio diversity the university’s place dropped to the top 25 by the end of the 1980s. At the same time the preeminence of the city of Rochester’s major employers began to decline.

    In response the University commissioned a study to determine if the name of the institution should be changed to “Eastman University” or “Eastman Rochester University”. The study concluded a name change could be beneficial because the use of a place name in the title led respondents to incorrectly believe it was a public university, and because the name “Rochester” connoted a “cold and distant outpost.” Reports of the latter conclusion led to controversy and criticism in the Rochester community. Ultimately, the name “University of Rochester” was retained.

    Renaissance Plan
    In 1995 University of Rochester president Thomas H. Jackson announced the launch of a “Renaissance Plan” for The College that reduced enrollment from 4,500 to 3,600 creating a more selective admissions process. The plan also revised the undergraduate curriculum significantly creating the current system with only one required course and only a few distribution requirements known as clusters. Part of this plan called for the end of graduate doctoral studies in chemical engineering; comparative literature; linguistics; and mathematics the last of which was met by national outcry. The plan was largely scrapped and mathematics exists as a graduate course of study to this day.

    Twenty-first century

    Meliora Challenge

    Shortly after taking office university president Joel Seligman commenced the private phase of the “Meliora Challenge”- a $1.2 billion capital campaign- in 2005. The campaign reached its goal in 2015- a year before the campaign was slated to conclude. In 2016, the university announced the Meliora Challenge had exceeded its goal and surpassed $1.36 billion. These funds were allocated to support over 100 new endowed faculty positions and nearly 400 new scholarships.

    The Mangelsdorf Years

    On December 17, 2018 the University of Rochester announced that Sarah C. Mangelsdorf would succeed Richard Feldman as President of the University. Her term started in July 2019 with a formal inauguration following in October during Meliora Weekend. Mangelsdorf is the first woman to serve as President of the University and the first person with a degree in psychology to be appointed to Rochester’s highest office.

    In 2019 students from China mobilized by the Chinese Students and Scholars Association (CSSA) defaced murals in the University’s access tunnels which had expressed support for the 2019 Hong Kong Protests, condemned the oppression of the Uighurs, and advocated for Taiwanese independence. The act was widely seen as a continuation of overseas censorship of Chinese issues. In response a large group of students recreated the original murals. There have also been calls for Chinese government run CSSA to be banned from campus.

    Research

    Rochester is a member of the Association of American Universities (US) and is classified among “R1: Doctoral Universities – Very High Research Activity”.

    Rochester had a research expenditure of $370 million in 2018.

    In 2008 Rochester ranked 44th nationally in research spending but this ranking has declined gradually to 68 in 2018.

    Some of the major research centers include the Laboratory for Laser Energetics, a laser-based nuclear fusion facility, and the extensive research facilities at the University of Rochester Medical Center.

    Recently the university has also engaged in a series of new initiatives to expand its programs in biomedical engineering and optics including the construction of the new $37 million Robert B. Goergen Hall for Biomedical Engineering and Optics on the River Campus.

    Other new research initiatives include a cancer stem cell program and a Clinical and Translational Sciences Institute. UR also has the ninth highest technology revenue among U.S. higher education institutions with $46 million being paid for commercial rights to university technology and research in 2009. Notable patents include Zoloft and Gardasil. WeBWorK, a web-based system for checking homework and providing immediate feedback for students was developed by University of Rochester professors Gage and Pizer. The system is now in use at over 800 universities and colleges as well as several secondary and primary schools. Rochester scientists work in diverse areas. For example, physicists developed a technique for etching metal surfaces such as platinum; titanium; and brass with powerful lasers enabling self-cleaning surfaces that repel water droplets and will not rust if tilted at a 4 degree angle; and medical researchers are exploring how brains rid themselves of toxic waste during sleep.

     
  • richardmitnick 2:33 pm on January 22, 2022 Permalink | Reply
    Tags: "TESS Science Office at MIT hits milestone of 5000 exoplanet candidates", , Basic Research, , Now in its extended mission TESS is observing the Northern Hemisphere and ecliptic plane including regions of the sky previously observed by the Kepler and K2 missions., , , The TESS Science Office at MIT released the most recent batch of TESS Objects of Interest on Dec. 21 2021.   

    From The Massachusetts Institute of Technology (US): “TESS Science Office at MIT hits milestone of 5,000 exoplanet candidates” 

    MIT News

    From The Massachusetts Institute of Technology (US)

    January 20, 2022
    MIT Kavli Institute for Astrophysics and Space Research
    MIT Kavli Institute for Astrophysics and Space Research.

    1
    A map of the sky is now crowded with over 5,000 exoplanet candidates from NASA’s TESS mission. The TESS Science Office at MIT released the most recent batch of TESS Objects of Interest (large orange points on the map) on Dec. 21, boosting the catalog to this 5,000-count milestone. Image courtesy of NASA/MIT/TESS.

    _______________________________________________________
    National Aeronautics Space Agency (US)/Massachusetts Institute of Technology (US) TESS

    NASA/MIT Tess in the building.

    National Aeronautics Space Agency (US)/Massachusetts Institute of Technology(US) TESS – Transiting Exoplanet Survey Satellite replaced the Kepler Space Telescope in search for exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by Massachusetts Institute of Technology (US), and managed by NASA’s Goddard Space Flight Center (US).


    The Massachusetts Institute of Technology (US)


    The NASA Goddard Space Flight Center (US)

    Additional partners include Northrop Grumman, based in Falls Church, Virginia; NASA’s Ames Research Center in California’s Silicon Valley; the Center for Astrophysics – Harvard and Smithsonian; MIT Lincoln Laboratory; and the NASA Space Telescope Science Institute (US) in Baltimore.


    _______________________________________________________

    The catalog of planet candidates found with NASA’s Transiting Exoplanet Survey Satellite (TESS) recently passed 5,000 TOIs, or TESS Objects of Interest.

    The catalog has been growing steadily since the start of the mission in 2018, and the batch of TOIs boosting the catalog to over 5,000 come mostly from the Faint Star Search led by MIT postdoc Michelle Kunimoto.

    Kunimoto reflects, “This time last year, TESS had found just over 2,400 TOIs. Today, TESS has reached more than twice that number — a huge testament to the mission and all the teams scouring the data for new planets. I’m excited to see thousands more in the years to come!”

    Now in its extended mission TESS is observing the Northern Hemisphere and ecliptic plane including regions of the sky previously observed by the Kepler and K2 missions.

    NASA Kepler Space Telescope (US) launched in 2009 and retired on October 30 2018.

    The TOIs added in late December are from the third year of the TESS mission, which ran from July 2020 to June 2021. TESS re-observed the sky visible in the Earth’s Southern Hemisphere, revisiting stars it had first observed at the mission’s start in 2018.

    TOI manager Katharine Hesse remarks, “With data from the first year of the extended mission, we have found dozens of additional candidates to TOIs found during the prime mission. I am excited to see how many multi-planet systems we can find during the rest of the extended mission and in upcoming years with TESS.” Planned extensions of the TESS mission to 2025 and beyond should unveil many more new planet candidates.

    Discovering more planet candidates and adding them to the TESS Objects of Interest Catalog is the first step. In the coming months, astronomers around the world will study each of these TOIs to confirm whether they are bona fide planets, and the catalog of confirmed exoplanets from the TESS mission (175 as of Dec. 20) will continue to grow.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology (US) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory (US), the MIT Bates Research and Engineering Center (US), and the Haystack Observatory (US), as well as affiliated laboratories such as the Broad Institute of MIT and Harvard(US) and Whitehead Institute (US).

    Massachusettes Institute of Technology-Haystack Observatory(US) Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology (US) adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology (US) . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology (US) is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia (US), wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after Massachusetts Institute of Technology (US) was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst (US)). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    Massachusetts Institute of Technology (US) was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology (US) faculty and alumni rebuffed Harvard University (US) president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the Massachusetts Institute of Technology (US) administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology (US) catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities (US)in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at Massachusetts Institute of Technology (US) that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    Massachusetts Institute of Technology (US)‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology (US)’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, Massachusetts Institute of Technology (US) became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected Massachusetts Institute of Technology (US) profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of Massachusetts Institute of Technology (US) between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, Massachusetts Institute of Technology (US) no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and Massachusetts Institute of Technology (US)’s defense research. In this period Massachusetts Institute of Technology (US)’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. Massachusetts Institute of Technology (US) ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT (US) Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six Massachusetts Institute of Technology (US) students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at Massachusetts Institute of Technology (US) over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, Massachusetts Institute of Technology (US)’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    Massachusetts Institute of Technology (US) has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology (US) classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    Massachusetts Institute of Technology (US) was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, Massachusetts Institute of Technology (US) launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, Massachusetts Institute of Technology (US) announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology (US) faculty adopted an open-access policy to make its scholarship publicly accessible online.

    Massachusetts Institute of Technology (US) has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology (US) community with thousands of police officers from the New England region and Canada. On November 25, 2013, Massachusetts Institute of Technology (US) announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the Massachusetts Institute of Technology (US) community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO (US) was designed and constructed by a team of scientists from California Institute of Technology (US), Massachusetts Institute of Technology (US), and industrial contractors, and funded by the National Science Foundation (US) .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology (US) physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an Massachusetts Institute of Technology (US) graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of Massachusetts Institute of Technology (US) is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 6:03 pm on January 21, 2022 Permalink | Reply
    Tags: "BQL" and "BQuL", "Computer Scientists Eliminate Pesky Quantum Computations", 28 years ago computer scientists established that for quantum algorithms you can wait until the end of a computation to make intermediate measurements without changing the final result., , Basic Research, If at any point in a calculation you need to access the information contained in a qubit and you measure it the qubit collapses., Instead of encoding information in the 0s and 1s of typical bits quantum computers encode information in higher-dimensional combinations of bits called qubits., Proof that any quantum algorithm can be rearranged to move measurements performed in the middle of the calculation to the end of the process., , , , The basic difference between quantum computers and the computers we have at home is the way each stores information., This collapse possibly affects all the other qubits in the system., Virtually all algorithms require knowing the value of a computation as it’s in progress.   

    From Quanta Magazine (US): “Computer Scientists Eliminate Pesky Quantum Computations” 

    From Quanta Magazine (US)

    January 19, 2022
    Nick Thieme

    1
    Credit: Samuel Velasco/Quanta Magazine.

    As quantum computers have become more functional, our understanding of them has remained muddled. Work by a pair of computer scientists [Symposium on Theory of Computing] has clarified part of the picture, providing insight into what can be computed with these futuristic machines.

    “It’s a really nice result that has implications for quantum computation,” said John Watrous of The University of Waterloo (CA).

    The research, posted in June 2020 by Bill Fefferman and Zachary Remscrim of The University of Chicago (US), proves that any quantum algorithm can be rearranged to move measurements performed in the middle of the calculation to the end of the process, without changing the final result or drastically increasing the amount of memory required to carry out the task. Previously, computer scientists thought that the timing of those measurements affected memory requirements, creating a bifurcated view of the complexity of quantum algorithms.

    “This has been quite annoying,” said Fefferman. “We’ve had to talk about two complexity classes — one with intermediate measurements and one without.”

    This issue applies exclusively to quantum computers due to the unique way they work. The basic difference between quantum computers and the computers we have at home is the way each stores information. Instead of encoding information in the 0s and 1s of typical bits quantum computers encode information in higher-dimensional combinations of bits called qubits.

    This approach enables denser information storage and sometimes faster calculations. But it also presents a problem. If at any point in a calculation you need to access the information contained in a qubit and you measure it, the qubit collapses from a delicate combination of simultaneously possible bits into a single definite one, possibly affecting all the other qubits in the system.

    This can be a problem because virtually all algorithms require knowing the value of a computation as it’s in progress. For instance, an algorithm may contain a statement like “If the variable x is a number, multiply it by 10; if not, leave it alone.” Performing these steps would seem to require knowing what x is at that moment in the computation — a potential challenge for quantum computers, where measuring the state of a particle (to determine what x is) inherently changes it.

    But 28 years ago, computer scientists proved it’s possible to avoid this kind of no-win situation. They established that for quantum algorithms, you can wait until the end of a computation to make intermediate measurements without changing the final result.

    An essential part of that result showed that you can push intermediate measurements to the end of a computation without drastically increasing the total running time. These features of quantum algorithms — that measurements can be delayed without affecting the answer or the runtime — came to be called the principle of deferred measurement.

    This principle fortifies quantum algorithms, but at a cost. Deferring measurements uses a great deal of extra memory space, essentially one extra qubit per deferred measurement. While one bit per measurement might take only a tiny toll on a classical computer with 4 trillion bits, it’s prohibitive given the limited number of qubits currently in the largest quantum computers.

    Google 53-qubit “Sycamore” superconducting processor quantum computer.

    3
    IBM Unveils Breakthrough 127-Qubit Quantum Processor. Credit: IBM Corp.

    Fefferman and Remscrim’s work resolves this issue in a surprising way. With an abstract proof, they show that subject to a few caveats, anything calculable with intermediate measurements can be calculated without them. Their proof offers a memory-efficient way to defer intermediate measurements — circumventing the memory problems that such measurements created.

    3

    “In the most standard scenario, you don’t need intermediate measurements,” Fefferman said.

    Fefferman and Remscrim achieved their result by showing that a representative problem called “well-conditioned matrix powering” is, in a way, equivalent to a different kind of problem with important properties.

    The “well-conditioned matrix powering” problem effectively asks you to find the values for particular entries in a type of matrix (an array of numbers), given some conditions. Fefferman and Remscrim proved that matrix powering is just as hard as any other quantum computing problem that allows for intermediate measurements. This set of problems is called “BQL”, and the team’s work meant that matrix powering could serve as a representative for all other problems in that class — so anything they proved about matrix powering would be true for all other problems involving intermediate measurements.

    At this point, the researchers took advantage of some of their earlier work. In 2016, Fefferman and Cedric Lin proved that a related problem called “well-conditioned matrix inversion” was equivalent to the hardest problem in a very similar class of problems called “BQuL”. This class is like BQL’s little sibling. It’s identical to BQL, except that it comes with the requirement that every problem in the class must also be reversible.

    In quantum computing, the distinction between reversible and irreversible measurements is essential. If a calculation measures a qubit, it collapses the state of the qubit, making the initial information impossible to recover. As a result, all measurements in quantum algorithms are innately irreversible.

    That means that BQuL is not just the reversible version of BQL; it’s also BQL without any intermediate measurements (because intermediate measurements, like all quantum measurements, would be irreversible, violating the signal condition of the class). The 2016 work proved that matrix inversion is a prototypical quantum calculation without intermediate measurements — that is, a fully representative problem for BQuL.

    The new paper builds on that by connecting the two, proving that well-conditioned matrix powering, which represents all problems with intermediate measurements, can be reduced to well-conditioned matrix inversion, which represents all problems that cannot feature intermediate measurements. In other words, any quantum computing problem with intermediate measurements can be reduced to a quantum computing problem without intermediate measurements.

    This means that for quantum computers with limited memory, researchers no longer need to worry about intermediate measurements when classifying the memory needs of different types of quantum algorithms.

    In 2020, a group of researchers at Princeton University (US) — Ran Raz, Uma Girish and Wei Zhan — independently proved a slightly weaker but nearly identical result that they posted three days after Fefferman and Rimscrim’s work. Raz and Girish later extended the result, proving that intermediate measurements can be deferred in both a time-efficient and space-efficient way for a more limited class of computers.

    Altogether, the recent work provides a much better understanding of how limited-memory quantum computation works. With this theoretical guarantee, researchers have a road map for translating their theory into applied algorithms. Quantum algorithms are now free, in a sense, to proceed without the prohibitive costs of deferred measurements.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Formerly known as Simons Science News, Quanta Magazine (US) is an editorially independent online publication launched by the Simons Foundation to enhance public understanding of science. Why Quanta? Albert Einstein called photons “quanta of light.” Our goal is to “illuminate science.” At Quanta Magazine, scientific accuracy is every bit as important as telling a good story. All of our articles are meticulously researched, reported, edited, copy-edited and fact-checked.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: