Tagged: Basic Research Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:11 pm on March 31, 2015 Permalink | Reply
    Tags: , , Basic Research,   

    From NASA: “NASA’s OSIRIS-REx Mission Passes Critical Milestone” 

    NASA

    NASA

    March 31, 2015

    NASA Osiris -REx
    OSIRIS-REx

    NASA’s groundbreaking science mission to retrieve a sample from an ancient space rock has moved closer to fruition. The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission has passed a critical milestone in its path towards launch and is officially authorized to transition into its next phase.

    Key Decision Point-D (KDP-D) occurs after the project has completed a series of independent reviews that cover the technical health, schedule and cost of the project. The milestone represents the official transition from the mission’s development stage to delivery of systems, testing and integration leading to launch. During this part of the mission’s life cycle, known as Phase D, the spacecraft bus, or the structure that will carry the science instruments, is completed, the instruments are integrated into the spacecraft and tested, and the spacecraft is shipped to NASA’s Kennedy Space Center in Florida for integration with the rocket.

    “This is an exciting time for the OSIRIS-REx team,” said Dante Lauretta, principal investigator for OSIRIS-Rex at the University of Arizona, Tucson. “After almost four years of intense design efforts, we are now proceeding with the start of flight system assembly. I am grateful for the hard work and team effort required to get us to this point.”

    OSIRIS-REx is the first U.S. mission to return samples from an asteroid to Earth. The spacecraft will travel to a near-Earth asteroid called Bennu and bring at least a 60-gram (2.1-ounce) sample back to Earth for study. OSIRIS-REx carries five instruments that will remotely evaluate the surface of Bennu. The mission will help scientists investigate the composition of the very early solar system and the source of organic materials and water that made their way to Earth, and improve understanding of asteroids that could impact our planet.

    OSIRIS-REx is scheduled for launch in late 2016. The spacecraft will reach Bennu in 2018 and return a sample to Earth in 2023.

    “The spacecraft structure has been integrated with the propellant tank and propulsion system and is ready to begin system integration in the Lockheed Martin highbay,” said Mike Donnelly, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The payload suite of cameras and sensors is well into its environmental test phase and will be delivered later this summer/fall.”

    The key decision meeting was held at NASA Headquarters in Washington on March 30 and chaired by NASA’s Science Mission Directorate.

    On March 27, assembly, launch and test operations officially began at Lockheed Martin in Denver. These operations represent a critical stage of the program when the spacecraft begins to take form, culminating with its launch. Over the next several months, technicians will install the subsystems on the main spacecraft structure, comprising avionics, power, telecomm, thermal systems, and guidance, navigation and control.

    The next major milestone is the Mission Operations Review, scheduled for completion in June. The project will demonstrate that its navigation, planning, commanding, and science operations requirements are complete.

    The mission’s principal investigator is at the University of Arizona, Tucson. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, will provide overall mission management, systems engineering and safety and mission assurance for OSIRIS-REx. Lockheed Martin Space Systems in Denver will build the spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages New Frontiers for the agency’s Science Mission Directorate.

    OSIRIS-REx complements NASA’s Asteroid Initiative, which aligns portions of the agency’s science, space technology and human exploration capabilities in a coordinated asteroid research effort. The initiative will conduct research and analysis to better characterize and mitigate the threat these space rocks pose to our home planet.

    Included in the initiative is NASA’s Asteroid Redirect Mission (ARM), a robotic spacecraft mission that will capture a boulder from the surface of a near-Earth asteroid and move it into a stable orbit around the moon for exploration by astronauts, all in support of advancing the nation’s journey to Mars. The agency also is engaging new industrial capabilities, partnerships, open innovation and participatory exploration through the NASA Asteroid Initiative.

    NASA also has made tremendous progress in the cataloging and characterization of near Earth objects over the past five years. The president’s NASA budget included, and Congress authorized, $20.4 million for an expanded NASA Near-Earth Object (NEO) Observations Program, increasing the resources for this critical program from the $4 million per year it had received since the 1990s. The program was again expanded in fiscal year 2014, with a budget of $40.5 million. NASA is asking Congress for $50 million for this important work in the 2016 budget.

    NASA has identified more than 12,000 NEOs to date, including 96 percent of near-Earth asteroids larger than 0.6 miles (1 kilometer) in size. NASA has not detected any objects of this size that pose an impact hazard to Earth in the next 100 years. Smaller asteroids do pass near Earth, however, and some could pose an impact threat. In 2011, 893 near-Earth asteroids were found. In 2014, that number was increased to 1,472.

    In addition to NASA’s ongoing work detecting and cataloging asteroids, the agency has engaged the public in the hunt for these space rocks through the agency’s Asteroid Grand Challenge activities, including prize competitions. During the recent South by Southwest Festival in Austin, Texas, the agency announced the release of a software application based on an algorithm created by a NASA challenge that has the potential to increase the number of new asteroid discoveries by amateur astronomers.

    For more information about the OSIRIS-REx mission, visit:

    http://www.nasa.gov/osiris-rex

    and

    http://asteroidmission.org

    For more information about the ARM and NASA’s Asteroid Initiative, visit:

    http://www.nasa.gov/asteroidinitiative

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 5:18 pm on March 31, 2015 Permalink | Reply
    Tags: , Basic Research,   

    From NASA: “Curiosity Sniffs Out History of Martian Atmosphere” 

    NASA

    NASA

    March 31, 2015

    Dwayne Brown
    NASA Headquarters, Washington
    202-358-1726
    dwayne.c.brown@nasa.gov

    Nancy Neal Jones
    Goddard Space Flight Center, Greenbelt, Md.
    301-286-0039
    nancy.n.jones@nasa.gov

    1
    A Sample Analysis at Mars (SAM) team member at NASA Goddard prepares the SAM testbed for an experiment. This test copy of the SAM suite of instruments is inside a chamber that, when closed, can model the pressure and temperature environment that SAM sees inside Curiosity on Mars. Image Credit: NASA

    NASA’s Curiosity rover is using a new experiment to better understand the history of the Martian atmosphere by analyzing xenon.

    NASA Mars Curiosity Rover
    Curiosity

    While NASA’s Curiosity rover concluded its detailed examination of the rock layers of the “Pahrump Hills” in Gale Crater on Mars this winter, some members of the rover team were busy analyzing the Martian atmosphere for xenon, a heavy noble gas.

    Curiosity’s Sample Analysis at Mars (SAM) experiment analyzed xenon in the planet’s atmosphere. Since noble gases are chemically inert and do not react with other substances in the air or on the ground, they are excellent tracers of the history of the atmosphere. Xenon is present in the Martian atmosphere at a challengingly low quantity and can be directly measured only with on-site experiments such as SAM.

    “Xenon is a fundamental measurement to make on a planet such as Mars or Venus, since it provides essential information to understand the early history of these planets and why they turned out so differently from Earth,” said Melissa Trainer, one of the scientists analyzing the SAM data.

    A planetary atmosphere is made up of different gases, which are in turn made up of variants of the same chemical element called isotopes. When a planet loses its atmosphere, that process can affect the ratios of remaining isotopes.

    Measuring xenon tells us more about the history of the loss of the Martian atmosphere. The special characteristics of xenon – it exists naturally in nine different isotopes, ranging in atomic mass from 124 (with 70 neutrons per atom) to 136 (with 82 neutrons per atom) – allows us to learn more about the process by which the layers of atmosphere were stripped off of Mars than using measurements of other gases.

    A process removing gas from the top of the atmosphere removes lighter isotopes more readily than heavier ones leaving a ratio higher in heavier isotopes than it was originally.

    The SAM measurement of the ratios of the nine xenon isotopes traces a very early period in the history of Mars when a vigorous atmospheric escape process was pulling away even the heavy xenon gas. The lighter isotopes were escaping just a bit faster than the heavy isotopes.

    Those escapes affected the ratio of isotopes in the atmosphere left behind, and the ratios today are a signature retained in the atmosphere for billions of years. This signature was first inferred several decades ago from isotope measurements on small amounts of Martian atmospheric gas trapped in rocks from Mars that made their way to Earth as meteorites.

    “We are seeing a remarkably close match of the in-situ data to that from bits of atmosphere captured in some of the Martian meteorites,” said SAM Deputy Principal Investigator Pan Conrad.

    SAM previously measured the ratio of two isotopes of a different noble gas, argon. The results pointed to continuous loss over time of much of the original atmosphere of Mars.

    The xenon experiment required months of careful testing at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, using a close copy of the SAM instrument enclosed in a chamber that simulates the Mars environment. This testing was led by Goddard’s Charles Malespin, who developed and optimized the sequence of instructions for SAM to carry out on Mars.

    “I’m gratified that we were able to successfully execute this run on Mars and demonstrate this new capability for Curiosity,” said Malespin.

    NASA’s Mars Science Laboratory Project is using Curiosity to determine if life was possible on Mars and study major changes in Martian environmental conditions. NASA studies Mars to learn more about our own planet, and in preparation for future human missions to Mars. NASA’s Jet Propulsion Laboratory in Pasadena, California, a division of Caltech, manages the project for NASA’s Science Mission Directorate in Washington.

    For more information about SAM, visit:

    http://ssed.gsfc.nasa.gov/sam/

    SAM experiment data are archived in the Planetary Data System, online at:

    http://pds.nasa.gov/

    For more information about Curiosity, visit:

    http://www.nasa.gov/msl

    You can follow the mission on Facebook and Twitter at:

    http://www.facebook.com/marscuriosity

    and

    http://www.twitter.com/marscuriosity

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 3:36 pm on March 31, 2015 Permalink | Reply
    Tags: Basic Research, ,   

    From FNAL: “Director’s Corner – Welcome, DUNE” 

    FNAL Home


    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    1
    Fermilab Director
    Nigel Lockyer

    Significant progress has been made on the new international neutrino collaboration. Last week, scientists from 148 institutions around the world chose DUNE (Deep Underground Neutrino Experiment) as the name of the experiment that will use the Long-Baseline Neutrino Facility (LBNF) neutrino beam. And, the group elected André Rubbia, ETH Zurich, and Mark Thomson, University of Cambridge, as the collaboration’s spokespeople. Congratulations to both André and Mark.

    The DUNE collaboration, which includes participation from Asia, Europe, and North and South America, represents a significant milestone in the implementation of P5 report recommendations. More than 700 scientists from 23 countries currently belong to the collaboration, and the group seeks further international partners to participate in this world-class experiment.

    From April 16 to 18, the first DUNE collaboration meeting will be held at Fermilab, when funding agencies and research institutions come together for the first time. In the meantime, much work is already in progress.

    The collaboration is assembling work groups that will tackle different tasks, with the goal of defining the final design for the first 10-kiloton underground detector in South Dakota.

    Sanford Underground levels
    Sanford Underground Research Facility Interior
    Sanford Underground Research Facility

    CERN will build two large prototype detectors to advance the engineering aspects of liquid-argon technology. Here at Fermilab, DUNE scientists will soon be able to take data with a smaller, 35-ton liquid-argon prototype detector. In July, funding agencies will review the updated project plans for LBNF/DUNE.

    At the same time, we are working with the Department of Energy to advance cavern excavation plans for the detector in South Dakota. This spring, DOE will release its draft environmental assessment of LBNF and hold public meetings at Fermilab and in South Dakota. In addition, discussions are happening with other funding agencies about how they can benefit from the neutrino program at Fermilab and contribute to the construction of the DUNE detectors.

    Thank you to the all the individuals and organizations who have helped us get to this point. There is still much work to be done, but we have made excellent progress on the world’s most ambitious neutrino experiment.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 2:36 pm on March 31, 2015 Permalink | Reply
    Tags: , Basic Research, , ,   

    From CfA: “As Stars Form, Magnetic Fields Influence Regions Big and Small” 

    Smithsonian Astrophysical Observatory
    Smithsonian Astrophysical Observatory

    March 30, 2015
    Christine Pulliam
    Public Affairs Specialist
    Harvard-Smithsonian Center for Astrophysics
    617-495-7463
    cpulliam@cfa.harvard.edu

    1

    Stars form when gravity pulls together material within giant clouds of gas and dust. But gravity isn’t the only force at work. Both turbulence and magnetic fields battle gravity, either by stirring things up or by channeling and restricting gas flows, respectively. New research focusing on magnetic fields shows that they influence star formation on a variety of scales, from hundreds of light-years down to a fraction of a light-year.

    The new study, which the journal Nature is publishing online on March 30th, probed the Cat’s Paw Nebula, also known as NGC 6334. This nebula contains about 200,000 suns’ worth of material that is coalescing to form new stars, some with up to 30 to 40 times as much mass as our sun. It is located 5,500 light-years from Earth in the constellation Scorpius.

    The team painstakingly measured the orientation of magnetic fields within the Cat’s Paw. “We found that the magnetic field direction is quite well preserved from large to small scales, implying that self-gravity and cloud turbulence are not able to significantly alter the field direction,” said lead author Hua-bai Li (The Chinese University of Hong Kong), who conducted the high-resolution observations while a post-doctoral fellow at the Harvard-Smithsonian Center for Astrophysics (CfA).

    “Even though they’re much weaker than Earth’s magnetic field, these cosmic magnetic fields have an important effect in regulating how stars form,” added Smithsonian co-author T.K. Sridharan (CfA).

    The team observed polarized light coming from dust within the nebula using several facilities, including the Smithsonian’s Submillimeter Array. “The SMA’s unique capability to measure polarization at high angular resolution allowed access to the magnetic fields at the smallest spatial scales,” said SMA director Ray Blundell (CfA).

    Smithsonian Astrophysical Array of Radio Telescopes
    SMA

    “The SMA has made significant contributions in this field which continues with this work,” said Smithsonian co-author Qizhou Zhang (CfA).

    Because dust grains align themselves with the magnetic field, the researchers were able to use dust emission to measure the field’s geometry. They found that the magnetic fields tended to line up in the same direction, even though the relative size scales they examined were different by orders of magnitude. The magnetic fields only became misaligned on the smallest scales in cases where strong feedback from newly formed stars created other motions.

    This work represents the first time magnetic fields in a single region have been measured at so many different scales. It also has interesting implications for the history of our galaxy.

    When a molecular cloud collapses to form stars, magnetic fields hinder the process. As a result, only a fraction of the cloud’s material is incorporated into stars. The rest gets dispersed into space, where it is available to make new generations of stars. Thanks to magnetic fields, the star-forming process is more drawn out.

    Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

    See the full article here.

    Another view:

    3
    This image of the star formation region NGC 6334 is one of the first scientific images from the ArTeMiS instrument on ESO/APEX. The picture shows the glow detected at a wavelength of 0.35 millimetres coming from dense clouds of interstellar dust grains. The new observations from ArTeMiS show up in orange and have been superimposed on a view of the same region taken in near-infrared light by ESO’s VISTA telescope at Paranal.

    ESO APEX
    ESO/APEX

    ESO Vista Telescope
    ESO/VISTA

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About CfA

    The Center for Astrophysics combines the resources and research facilities of the Harvard College Observatory and the Smithsonian Astrophysical Observatory under a single director to pursue studies of those basic physical processes that determine the nature and evolution of the universe. The Smithsonian Astrophysical Observatory (SAO) is a bureau of the Smithsonian Institution, founded in 1890. The Harvard College Observatory (HCO), founded in 1839, is a research institution of the Faculty of Arts and Sciences, Harvard University, and provides facilities and substantial other support for teaching activities of the Department of Astronomy. The long relationship between the two organizations, which began when the SAO moved its headquarters to Cambridge in 1955, was formalized by the establishment of a joint center in 1973. The CfA’s history of accomplishments in astronomy and astrophysics is reflected in a wide range of awards and prizes received by individual CfA scientists.

    Today, some 300 Smithsonian and Harvard scientists cooperate in broad programs of astrophysical research supported by Federal appropriations and University funds as well as contracts and grants from government agencies. These scientific investigations, touching on almost all major topics in astronomy, are organized into the following divisions, scientific departments and service groups.

     
  • richardmitnick 2:08 pm on March 31, 2015 Permalink | Reply
    Tags: , Basic Research, ,   

    From New Scientist: “Is this ET? Mystery of strange radio bursts from space” 

    NewScientist

    New Scientist

    31 March 2015
    Sarah Scoles

    Mysterious radio wave flashes from far outside the galaxy are proving tough for astronomers to explain. Is it pulsars? A spy satellite? Or an alien message?

    CSIRO Parkes Observatory
    CSIRO/Parkes Radio telescope

    BURSTS of radio waves flashing across the sky seem to follow a mathematical pattern. If the pattern is real, either some strange celestial physics is going on, or the bursts are artificial, produced by human – or alien – technology.

    Telescopes have been picking up so-called fast radio bursts (FRBs) since 2001. They last just a few milliseconds and erupt with about as much energy as the sun releases in a month. Ten have been detected so far, most recently in 2014, when the Parkes Telescope in New South Wales, Australia, caught a burst in action for the first time. The others were found by sifting through data after the bursts had arrived at Earth. No one knows what causes them, but the brevity of the bursts means their source has to be small – hundreds of kilometres across at most – so they can’t be from ordinary stars. And they seem to come from far outside the galaxy.

    The weird part is that they all fit a pattern that doesn’t match what we know about cosmic physics.

    2

    To calculate how far the bursts have come, astronomers use a concept called the dispersion measure. Each burst covers a range of radio frequencies, as if the whole FM band were playing the same song. But electrons in space scatter and delay the radiation, so that higher frequency waves make it across space faster than lower frequency waves. The more space the signal crosses, the bigger the difference, or dispersion measure, between the arrival time of high and low frequencies – and the further the signal has travelled.

    Michael Hippke of the Institute for Data Analysis in Neukirchen-Vluyn, Germany, and John Learned at the University of Hawaii in Manoa found that all 10 bursts’ dispersion measures are multiples of a single number: 187.5 (see chart). This neat line-up, if taken at face value, would imply five sources for the bursts all at regularly spaced distances from Earth, billions of light-years away. A more likely explanation, Hippke and Lerned say, is that the FRBs all come from somewhere much closer to home, from a group of objects within the Milky Way that naturally emit shorter-frequency radio waves after higher-frequency ones, with a delay that is a multiple of 187.5 (arxiv.org/abs/1503.05245).

    They claim there is a 5 in 10,000 probability that the line-up is coincidence. “If the pattern is real,” says Learned, “it is very, very hard to explain.”

    Cosmic objects might, by some natural but unknown process, produce dispersions in regular steps. Small, dense remnant stars called pulsars are known to emit bursts of radio waves, though not in regular arrangements or with as much power as FRBs. But maybe superdense stars are mathematical oddities because of underlying physics we don’t understand.

    It’s also possible that the telescopes are picking up evidence of human technology, like an unmapped spy satellite, masquerading as signals from deep space.

    The most tantalising possibility is that the source of the bursts might be a who, not a what. If none of the natural explanations pan out, their paper concludes, “An artificial source (human or non-human) must be considered.”

    “Beacon from extraterrestrials” has always been on the list of weird possible origins for these bursts. “These have been intriguing as an engineered signal, or evidence of extraterrestrial technology, since the first was discovered,” says Jill Tarter, former director of the SETI Institute in California. “I’m intrigued. Stay tuned.”

    Astronomers have long speculated that a mathematically clever message – broadcasts encoded with pi, or flashes that count out prime numbers, as sent by aliens in the film Contact –could give away aliens’ existence. Perhaps extraterrestrial civilisations are flagging us down with basic multiplication.

    Power source

    But a fast radio burst is definitely not the easiest message aliens could send. As Maura McLaughlin of West Virginia University, who was part of the first FRB discovery points out, it takes a lot of energy to make a signal that spreads across lots of frequencies, instead of just a narrow one like a radio station. And if the bursts come from outside the galaxy, they would have to be incredibly energetic to get this far.

    If the bursts actually come from inside the Milky Way, they need not be so energetic (just like a nearby flashlight can light up the ground but a distant light does not). Either way, though, it would require a lot of power. In fact, the aliens would have to be from what SETI scientists call a Kardashev Type II civilisation (see “Keeping up with the Kardashevs”).

    But maybe there’s no pattern at all, let alone one that aliens embedded. There are only 10 bursts, and they fit into just five groups. “It’s very easy to find patterns when you have small-number statistics,” says McLaughlin. “On the other hand, I don’t think you can argue with the statistics, so it is odd.”

    The pattern might disappear as more FRBs are detected. Hippke and Learned plan to check their finding against new discoveries, and perhaps learn something about the universe. “Science is the best game around,” says Learned. “You don’t know what the rules are, or if you can win. This is science in action.”

    If the result holds up, says Hippke, “there is something really interesting we need to understand. This will either be new physics, like a new kind of pulsar, or, in the end, if we can exclude everything else, an ET.”

    Hippke is cautious, but notes that remote possibilities are still possibilities. “When you set out to search for something new,” he says, “you might find something unexpected.”

    THE first search for extraterrestrial intelligence, Frank Drake’s Project Ozma, looked for radio broadcasts from hypothetical aliens in the 1960s.

    Around the same time, cosmologist Nikolai Kardashev began to wonder what a truly advanced civilisation’s radio messages might be like. His main conclusion: more powerful than ours. In a 1963 paper called Transmission of Information by Extraterrestrial Civilizations, he grouped ETs into three categories according to how big their broadcasts could be. The labels stuck, and SETI scientists still use them today.

    A signal from a Kardashev Type I society uses a planet’s worth of energy, pulling from all its resources – solar, thermal, volcanic, tectonic, hydrodynamic, oceanic, and so on.

    A Type II civilisation has a star’s worth of output at its disposal. It would have to capture all its sun’s radiation, throw material into a black hole and suck up the radiation, or travel to many planets and strip them of resources.

    A Kardashev Type III civilisation controls the power output of a galaxy like the Milky Way. If a galaxy was home to just one Type III society, it would be completely dark except for the waste infrared radiation (heat) blowing from their massive engineering projects.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 1:22 pm on March 31, 2015 Permalink | Reply
    Tags: Basic Research, ,   

    From Quanta: “Dark Energy Tested on a Tabletop” 

    Quanta Magazine
    Quanta Magazine

    March 31, 2015
    Maggie McKee

    1
    A vacuum chamber with a marble-size sphere at its center was used to test the nature of dark energy. Courtesy of Holger Müller

    Dark energy has topped cosmologists’ “most wanted” list since 1998, when astronomers noticed that the expansion of the universe is speeding up rather than slowing down. The entity responsible — whatever it is — must be incredibly powerful, constituting nearly 70 percent of the universe. Figuring out the identity of this dark energy is “arguably the most important problem in physics,” said Clare Burrage of the University of Nottingham in the United Kingdom.

    Now a team of physicists has directly tested one option for dark energy using not powerful telescopes or satellites, but a vacuum chamber fashioned on a tabletop.

    The most straightforward explanation for dark energy is that it is the energy inherent in the vacuum of space itself. In this model, every teaspoonful of space brims with the same amount of dark energy, a value known as the cosmological constant [Λ]. But there’s a major flaw in this simple solution. Physicists’ best calculation of this energy, which is thought to be due to the constant appearance and disappearance of “virtual” quantum particles, overshoots the actual observed value by a factor of 10120.

    So perhaps instead of — or in addition to — the cosmological constant, there may be extra quantum fields, called scalar fields, that have a given strength at each point in space, just as a measurable temperature exists everywhere.

    “We know there’s no explanation for the cosmological-constant problem within general relativity and the Standard Model of particle physics,” said Burrage. “Pretty much anytime you want to go beyond that, the new physics you try and introduce gives you new scalar fields.”

    2
    Illustration of spacetime curvature.

    4
    Standard Model of Particle Physics. The diagram shows the elementary particles of the Standard Model (the Higgs boson, the three generations of quarks and leptons, and the gauge bosons), including their names, masses, spins, charges, chiralities, and interactions with the strong, weak and electromagnetic forces. It also depicts the crucial role of the Higgs boson in electroweak symmetry breaking, and shows how the properties of the various particles differ in the (high-energy) symmetric phase (top) and the (low-energy) broken-symmetry phase (bottom).

    Scalar fields could produce dark energy in the fields’ lowest-energy, or vacuum, state, just as the cosmological constant would. But many proposed scalar fields interact with matter, which raises its own problem. If a scalar field interacts with ordinary matter — like the stuff that makes up Earth and the sun — its presence should already have been observed in our own solar system as an extra, unexplained force, and none has been seen. “If your theory of dark energy tells you these extra scalar fields are around, you have to explain why we haven’t seen them,” Burrage said.

    One solution is that, like a chameleon, the field changes depending on the surrounding environment. Such a field would produce a negligible effect near high-density matter, like Earth, slipping by unnoticed in the presence of the stronger, familiar force of gravity. But in the emptiness of space between galaxies, it would produce a long-range pull. (Unfortunately, this pull would still be imperceptible to astronomers, since it would disappear around large objects whose movements they could track.)

    2
    Dark energy has the same value everywhere in a “cosmological constant” model. If dark energy is described by a “chameleon” field instead, it would have only minor effects around massive objects such as Earth. Olena Shmahalo/Quanta Magazine. Earth via NASA/Deglr6328.

    Chameleon models are not especially well motivated from the standpoint of fundamental physics, admits Burrage, who began studying them in graduate school, but since dark energy presents such a profound mystery, physicists are willing to consider just about anything.

    Last August, Burrage and her colleagues posted a paper on the scientific preprint site arxiv.org suggesting a way to lay a trap for these cagey cosmic chameleons. They envisioned a vacuum chamber about the size of a bowling ball with a marble-size sphere at its center. The chameleon field, assuming it was there, would be minimized near the walls of the chamber and immediately around the central sphere. It would have a higher value in the empty space between them. That means that an atom — whose own mass is too small to kill off the chameleon field — placed inside the vacuum chamber would feel a different force from the field depending on its position in the chamber.

    Pulses of laser light could be used to track the atom’s movement in the chamber at three different times. If the tracking revealed an unexplained acceleration, it could be due to the force of a chameleon field. “You use the light beam as a ruler, and you just watch the atoms moving across the ruler,” said Ed Hinds, the head of the Center for Cold Matter at Imperial College London and the lead experimentalist on the team proposing the test.

    After devising the chameleon trap, Hinds and his team set out to build it; he expects to get the first results in a few months. But other physicists led by Holger Müller at the University of California, Berkeley, already had a similar setup in their lab, so they got a head start on the tests and reported their first results in a paper posted to arxiv.org on Feb. 13 and submitted to a prominent peer-reviewed journal. (Müller declined to comment for this article, as the journal’s policies forbid him from speaking directly to the media until shortly before the paper is published.)

    Using cesium atoms as the test particles, Müller’s team found that the atoms’ movement did not change depending on their distance from the sphere. That ruled out most chameleon models that could account for dark energy, Müller reported at a talk at Harvard University on Feb. 23.

    The result came out “exactly as I predicted, so it’s a little bit galling that it wasn’t in my lab,” Hinds said. “But I must say they’ve done a very fine job.” Hinds believes that the test can be made 1,000 times more sensitive, allowing him to probe energies close to the scale where quantum mechanics becomes important for gravity. But he is closemouthed about how he plans to get there. “I need to have some way to come back at the Berkeley people,” he joked.

    3
    The Berkeley team that ruled out most chameleon models. From right to left: Paul Hamilton, Matt Jaffe, Holger Müller, Philipp Haslinger. Enar de Dios Rodriguez, courtesy of Holger Müller

    Lam Hui, a theoretical astrophysicist at Columbia University, said such experiments are interesting, but not for their ability to shed light on dark energy. That is because cosmic acceleration, according to chameleon models, would be caused not by any camouflaging behavior on the part of the field but simply by the value of its lowest-energy state. Instead, the experiments are “testing the chameleon mechanism,” he said — the general idea that the universe could harbor undetected scalar fields that interact with matter.

    Mikhail Lukin, a physicist at Harvard who attended Müller’s talk there, said the method holds a lot of promise. Such high-precision instruments should “really push the frontier of our understanding of the universe,” he said, but he added that “the big thing would be to really observe something” rather than rule models out.

    To date, cosmological observations have had an edge in this regard, said Ronald Walsworth, another Harvard physicist at the talk. “They’ve actually seen effects that we can’t explain,” he said, referring to the observations that revealed dark energy.

    Still, some of those who trade in cosmic observations are impressed with the new study. “That was a very neat idea,” said Valeria Pettorino of the University of Heidelberg in Germany. “It’s quite different from other kinds of tests we are used to for dark energy.” She led a team that recently compared the predictions of various models of dark energy with observations from the Planck satellite and other telescopes. The combined data from all sources revealed the faintest hint of a deviation from the simplest dark-energy model based on the cosmological constant.

    If chameleon models are one day ruled out completely, “then that is great,” said Amanda Weltman of the University of Cape Town in South Africa, who co-developed the first such models more than a decade ago. “It is exciting to be able to propose a theory that can be tested and ruled out in a reasonable time frame.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Formerly known as Simons Science News, Quanta Magazine is an editorially independent online publication launched by the Simons Foundation to enhance public understanding of science. Why Quanta? Albert Einstein called photons “quanta of light.” Our goal is to “illuminate science.” At Quanta Magazine, scientific accuracy is every bit as important as telling a good story. All of our articles are meticulously researched, reported, edited, copy-edited and fact-checked.

     
  • richardmitnick 11:43 am on March 31, 2015 Permalink | Reply
    Tags: , Basic Research, , , Galaxy clusters   

    From ESA: Herschel and Planck Find Missing Clue to Galaxy Cluster Formation 

    ESASpaceForEuropeBanner
    European Space Agency

    31 March 2015

    Markus Bauer

    ESA Science and Robotic Exploration Communication Officer

    Tel: +31 71 565 6799; +34 91 8131 199

    Mob: +31 61 594 3954

    Email: Markus.Bauer@esa.int

    Hervé Dole
    Institut d’Astrophysique Spatiale (CNRS & Univ. Paris-Sud) and Institut Universitaire de France Orsay, France

    Tel: +33 1 69 85 85 72
    Email: Herve.Dole@ias.u-psud.fr

    Ludovic Montier
    Institut de Recherche en Astrophysique et Planétologie (CNRS & Univ. Paul Sabatier Toulouse III), Toulouse, France
    Tel: +33 5 61 55 65 51
    Email: Ludovic.Montier@irap.omp.eu

    Jan Tauber

    ESA Planck Project Scientist

    Tel: +31 71 565 5342

    Email: Jan.Tauber@esa.int

    Göran Pilbratt

    ESA Herschel Project Scientist

    Tel: +31 71 565 3621

    Email: gpilbratt@cosmos.esa.int

    1
    Proto-cluster candidates

    By combining observations of the distant Universe made with ESA’s Herschel and Planck space observatories, cosmologists have discovered what could be the precursors of the vast clusters of galaxies that we see today.

    ESA Herschel
    Herschel

    ESA Planck
    Planck

    Galaxies like our Milky Way with its 100 billion stars are usually not found in isolation. In the Universe today, 13.8 billion years after the Big Bang, many are in dense clusters of tens, hundreds or even thousands of galaxies.

    However, these clusters have not always existed, and a key question in modern cosmology is how such massive structures assembled in the early Universe.

    Pinpointing when and how they formed should provide insight into the process of galaxy cluster evolution, including the role played by dark matter in shaping these cosmic metropolises.

    Now, using the combined strengths of Herschel and Planck, astronomers have found objects in the distant Universe, seen at a time when it was only three billion years old, which could be precursors of the clusters seen around us today.

    2
    The history of the Universe

    Planck’s main goal was to provide the most precise map of the relic radiation of the Big Bang, the cosmic microwave background [CMB].

    Cosmic Microwave Background  Planck
    CMB per Planck

    To do so, it surveyed the entire sky in nine different wavelengths from the far-infrared to radio, in order to eliminate foreground emission from our galaxy and others in the Universe.

    But those foreground sources can be important in other fields of astronomy, and it was in Planck’s short wavelength data that scientists were able to identify 234 bright sources with characteristics that suggested they were located in the distant, early Universe.

    Herschel then observed these objects across the far-infrared to submillimetre wavelength range, but with much higher sensitivity and angular resolution.

    Herschel revealed that the vast majority of the Planck-detected sources are consistent with dense concentrations of galaxies in the early Universe, vigorously forming new stars.

    Each of these young galaxies is seen to be converting gas and dust into stars at a rate of a few hundred to 1500 times the mass of our Sun per year. By comparison, our own Milky Way galaxy today is producing stars at an average rate of just one solar mass per year.

    While the astronomers have not yet conclusively established the ages and luminosities of many of these newly discovered distant galaxy concentrations, they are the best candidates yet found for ‘proto-clusters’ – precursors of the large, mature galaxy clusters we see in the Universe today.

    “Hints of these kinds of objects had been found earlier in data from Herschel and other telescopes, but the all-sky capability of Planck revealed many more candidates for us to study,” says Hervé Dole of the Institut d’Astrophysique Spatiale, Orsay, lead scientist of the analysis published today in Astronomy & Astrophysics.

    “We still have a lot to learn about this new population, requiring further follow-up studies with other observatories. But we believe that they are a missing piece of cosmological structure formation.”

    “We are now preparing an extended catalogue of possible proto-clusters detected by Planck, which should help us identify even more of these objects,” adds Ludovic Montier, a CNRS researcher at the Institut de Recherche en Astrophysique et Planétologie, Toulouse, who is the lead scientist of the Planck catalogue of high-redshift source candidates, which is about to be delivered to the community.

    “This exciting result was possible thanks to the synergy between Herschel and Planck: rare objects could be identified from the Planck data covering the entire sky, and then Herschel was able to scrutinise them in finer detail,” says ESA’s Herschel Project Scientist, Göran Pilbratt.

    “Both space observatories completed their science observations in 2013, but their rich datasets will be exploited for plentiful new insights about the cosmos for years to come.”

    Notes for Editors

    High-redshift infrared galaxy overdensity candidates and lensed sources discovered by Planck and confirmed by Herschel-SPIRE, is authored by the Planck Collaboration.

    Planck detected the sky at nine frequencies, from 30 GHz to 857 GHz. The Planck frequencies used to detect the candidate proto-clusters in this study were 857 GHz, 545 GHz and 353 GHz. The follow-up observations made by Herschel’s SPIRE instrument were at 250, 350 and 500 microns. The SPIRE 350 micron and 500 micron bands overlap with Planck’s High Frequency Instrument (HFI) at 857 GHz and 545 GHz.

    ESA Herschel SPIRE
    SPIRE on Herschel

    The Planck Scientific Collaboration consists of all the scientists who have contributed to the development of the mission, and who participate in the scientific exploitation of the data during the proprietary period. These scientists are members of one or more of four consortia: the LFI Consortium, the HFI Consortium, the DK-Planck Consortium and ESA’s Planck Science Office. The two European-led Planck Data Processing Centres are located in Paris, France and Trieste, Italy. The LFI consortium is led by N. Mandolesi, ASI, Italy (deputy PI: M. Bersanelli, Universita’ degli Studi di Milano, Italy), and was responsible for the development and operation of LFI. The HFI consortium is led by J.L. Puget, Institut d’Astrophysique Spatiale in Orsay, France (deputy PI: F. Bouchet, Institut d’Astrophysique de Paris, France), and was responsible for the development and operation of HFI.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 10:48 am on March 31, 2015 Permalink | Reply
    Tags: Basic Research, , , ,   

    From ALICE at CERN: “Interview with Savas Dimopoulos” 

    CERN New Masthead

    CERN ALICE Icon HUGE

    24 March 2015
    Panos Charitos

    1
    Savas Dimopoulos

    Savas Dimopoulos, professor at Stanford University, is searching for answers to some of the most profound mysteries of nature. In this interview we discuss the recent findings of the LHC and his expectations from future HEP experiments, the quest for “truth” that drives our scientific endeavours, as well as the relation between science and art.

    P.C. Why did you decide to become a physicist?

    S.D. What attracted me to physics and mathematics was the truth of the statements made in these disciplines. This dates back to my childhood. I was born in Constantinople, and my family moved to Athens when I was twelve. It was a time of great turmoil and I witnessed political tensions, people on the left and on the right were expressing opposing arguments that both seemed reasonable to me.

    I decided to go into a discipline that seeks the absolute truth: a truth that does not depend on the eloquence of the speaker. That limited my choices to mathematics and physics. I finally decided to study physics, as I had doubts about the certainty of truth in mathematics; in physics, in addition to mathematical proofs, the experiments add an extra layer of certainty that brings us closer to the truth.

    I was enamoured of the fact that through physics we can explain all phenomena from very few principles, as nature turns out to be exceedingly simple in principles and exceedingly complex in phenomena. The laws of nature can be written down on a single piece of paper and explain everything that we have seen so far in the universe. This is the magic of theory: it compactifies facts and reduces them to a handful of principles from which everything can be derived.

    P.C. You referred to the balance between experiment and theory, but it somehow seems that you were more intrigued by the latter. What attracted you to what is now called theoretical physics?

    S.D. In the beginning, I had not decided whether I was going to be a theorist or an experimentalist. I went to a high-school without laboratories in Greece. The first time I had the chance to work in a laboratory was as a student at the university. That’s when I realised that I lacked the talent to be an experimentalist and felt that I was better in theory.

    At the time, I thought that the truth of mathematics exists only in our human brains, whereas physics is independent of human existence and therefore the ultimate discipline for the search for the absolute and most important truths. Plato believed that mathematical reality in some sense exists in the so-called platonic world of ideas, where objects on earth have their idealized counterparts. A sphere, for example, is never perfect in real life but in the platonic world, which we call mathematics, perfectly round spheres exist. As mathematical entities are not necessarily realized in nature, I felt uncomfortable as a child to just focus on mathematics. However, I think that it is an amazing language. The rules are well defined and once you pose the right question anybody can follow the steps to find the correct answer, even computers.

    P.C. Do you think that, besides experiments, mathematics is also another way to control our theories?

    S.D. You are absolutely right. Mathematics is crucial for controlling the truth because it is not a random game. You start with a few axioms, and, as long as they are self-consistent, you can produce theorems and derive truths that follow from them. In that sense, mathematics is very important to theoreticians, as mathematical consistency is a huge constraint on our theoretical ideas.

    P.C. What is the situation today in theoretical physics, following the recent results of the LHC?

    S.D. We are now standing at a crossroads, with one path leading to naturalness and the other to the multiverse or something else. It is very exciting, we are testing if the idea of naturalness can be applied to the hierarchy problem – which is the disparity between the weak and gravitational forces. In the next several years, the LHC will be the epicentre of excitement, because it is testing such a fundamental principle and such a dichotomy in physics.

    In the light of these data, physicists react in different ways. As I often emphasize in my recent talks, the state of beyond Standard Model physics after the LHC8 can be compared to headless chickens running in all possible directions.

    4
    Standard Model of Particle Physics. The diagram shows the elementary particles of the Standard Model (the Higgs boson, the three generations of quarks and leptons, and the gauge bosons), including their names, masses, spins, charges, chiralities, and interactions with the strong, weak and electromagnetic forces. It also depicts the crucial role of the Higgs boson in electroweak symmetry breaking, and shows how the properties of the various particles differ in the (high-energy) symmetric phase (top) and the (low-energy) broken-symmetry phase (bottom)

    What is more interesting, headless chickens can live for up to two years; that is also the timescale which we need to get more results from the second run of the LHC. This run will indicate the research that we will pursue in the coming decades.

    2
    Mixed reactions should not frighten us, as they characterize every scientific revolution.

    P.C. Why do you believe there is so much enthusiasm for the search of supersymmetry at the LHC?

    Supersymmetry standard model
    Standard Model of Supersymmetry

    S.D. People are enthusiastic about the possibility of discovering supersymmetry for a number of reasons. In the early 1990s, LEP measured the strengths of the strong and weak electromagnetic interactions and discovered that supersymmetric grand unification is favoured over the non-supersymmetric one. That was a great source of excitement, and theorists looked forward to discovering the super-partners at LEP, LEP 2, or at the LHC. However, no hint of supersymmetry was found after the first collisions at the LHC8 energies.

    CERN LEP
    CERN/LEP

    This story reminds me one of Sherlock Holmes’ stories where he points out “the curious incident of the dog in the night-time”, the incident being that the dog did nothing. In the same way, the absence of supersymmetry at the energies explored so far at the LHC can teach us many things. Supersymmetry is one of the rare ideas that is so important, that even its absence is worth knowing about.

    In addition to that, there is also a sociological aspect to the popularity of supersymmetry: it is an easy theory to work with, and, as a result, it can be tested experimentally in great detail, unlike other alternatives to the hierarchy problem.

    Because of these reasons, the search for supersymmetry is the [?]primary aim of the LHC. In the next years we should have a better idea of the path chosen by nature and we may be talking with enthusiasm about the discovery of the first supersymmetric particle. In the best case scenario, though, our theories will be proven wrong, and we will discover something unanticipated, something truly revolutionary as was the case with quantum mechanics.

    P.C. How did it feel to have your prediction of unification of couplings confirmed by experiment?

    S.D. Having your theory confirmed by experiment feels like a present that you didn’t deserve. When we do science on a day-to-day basis, it’s sort of like a puzzle – this very intricate game with strict rules. It’s like nature is a giant puzzle and mathematics is the language of nature. When a mathematical theory is verified by experiment, you feel awe. It somehow becomes real. You get amazed when you realize that all these games you have been playing are not just games but actually describe nature.

    P.C. Do you think LHC will have the last word or will we also need to design new experiments?

    S.D. There are two directions that we should pursue vigorously. One is to continue with colliders, and go to much higher energy. The other is to design new experiments, as there are some great theoretical ideas that cannot be tested in colliders. For example, some very weakly interacting new particles such as the axion can only be discovered in low energy, tabletop, small-scale experiments.

    There can be forces that are too weak to be discovered in colliders but can nevertheless be observed by testing gravity-like forces in small scale. For example, one can look for deviations from Newton’s law at short distances. In addition to the theoretical importance, many fields (i.e. condensed matter physics, atomic physics, quantum information) have made great progress in precision studies, and these new techniques are begging to be used for fundamental discoveries. They also have the sociological advantage of shorter timescales, typically less than five years, compared to those between two consecutive colliders, which can be decades.

    Another interesting point is that you can roughly separate physics to two periods. Before WWII a number of techniques were used to explore the truth, and the job of theoreticians was both to come up with theoretical ideas and to design experiments to test them. Enrico Fermi and Felix Bloch, for example, did not just do theory; they came up with experiments and, in some cases, even conducted them themselves. After the War, fundamental physics started focusing increasingly on the high energy frontier. This has been a golden road, as the recent discovery of the Higgs shows. Nevertheless, in the long timescale between consecutive colliders, it will be exciting to look for new physics using low energy experiments.

    P.C. Do you think that we still learn something, even when our theories are proven wrong? Is this another step bringing us closer to truth?

    S.D. Absolutely. Truth is both discovering new things and proving that some preconceptions, speculations, or theories are wrong. For example, the idea of the aether seemed plausible at a time, as it was logical to assume that electromagnetic waves need a medium, but it was disproved by the Michelson–Morley experiment. In this case, it was the non-discovery of something that created the big earthquake that led to relativity. Knowing what is false can be as important as knowing what is true.

    3

    P.C. What drives people to formulate new theories and models?

    S.D. One obvious reason is the inconsistency of an existing theory with data. The Standard Model has survived every laboratory test so far and in some cases the validity of its predictions has been tested to 12 decimal precision. It nevertheless fails to explain roughly 95% of our Cosmos. It does not explain Dark Matter or what the origin of Dark Energy is. For the latter, the SM prediction is at least 60 orders of magnitude larger than what we observe it to be. In addition to all this, we eventually run into theoretical problems once we extrapolate the theory to high energies.

    The other motivations are beauty and economy. In the context of physics, the idea of beauty has a relatively precise meaning: it involves symmetry, i.e. the idea that one object appears the same from different perspectives. Economy refers to economy of structure, particles, and parameters. Ideally, there are as few “moving parts” postulated into the theory as possible. In that sense, it is hard to believe that the Standard Model, despite being an amazing theory, is fundamental, because it has over twenty parameters and tens of particles. There must be a more economic version.

    A philosophical, more reflective reason for doing theory is our love of patterns. We are pattern junkies. In our effort to find harmony and conceptually beautiful ways to understand everything at the deepest possible level we do science or create art. Neither of them directly enhances or contributes to our survival probability, but the least important things for our survival are the very things that make us human. For me, art and science are equally important; after a hard day of research I listen to music and find these patterns very relaxing because they are beautiful, and also because I don’t have to actively scrutinise them.

    P.C. Is it possible that at some point we will have answered all the fundamental questions and the scientific endeavours will come to an end?

    S.D. Humans tend to be quite dismissive of the things they learn. There is a famous saying: “Yesterday’s sensation, today’s calibration, tomorrow’s background”. We get bored, and want to move immediately to the next level. For many decades, if not centuries, we have been trying to find a model that explains all the interactions to any conceivable energy that we have experimented with so far. We came up with the Standard Model that may describe almost all known phenomena, but now we want to effectively build a meta-theory that explains the theory itself. However, I am sure that even if we find this meta-theory, we will still come up with more questions. That’s what makes us, as humans, a progressive species: we get excited, we investigate, we discover, and then we get bored and want to get excited again by moving to the next questions.

    P.C. Do you think that the social context is still in favour of researching particle physics and fundamental questions?

    S.D. I think that the public is very interested in fundamental physics. Physics enrollment at universities like Stanford has been going steadily up for the last 15 years at undergraduate and graduate level, despite the fact that there are more competing disciplines, such as biology and information technology. I have also received a lot of positive feedback from the movie Particle Fever.

    However, when the producer approached me ten years ago and told me that he wanted to make a movie about particle physics, I said: “That sounds boring. Who cares about particle physics? You are wasting your time”. “It’s not about particle physics,” he replied, “it’s about particle physicists”. I said: “This is even worse. They are the plainest people on the planet”. I was proven blatantly wrong. And it’s not just Particle Fever. This year there are several movies about science: Gravity, Interstellar, the Imitation Game that is about Alan Turing, and The Theory of Everything about Steven Hawking.

    I think that part of the reason why many more young people don’t go into physics in general and particle physics in particular is that we are not very good at communicating the sense of excitement or even the practical importance of our discoveries to the public. If more effort is put in that direction, it will do wonders to attract bright young people.

    Outreach is a little easier for astrophysicists and cosmologists, because people can lift their eyes to the sky and see what they talk about. Our job, however, is to explain that big entities consist of small parts, which, in a sense, are more fundamental.

    In my experience, two books that I read when I was twelve played a big role in my choosing to be a physicist. One was by Einstein and Infeld and the other was a biography of Einstein by Philipp Frank.

    P.C. Maybe this is the right time to ask you, as a teacher now, what’s your main advice to your students?

    S.D. Enjoy yourself and work on the biggest problems that you can tackle.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New
    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New

    LHC

    CERN LHC New
    CERN LHC Grand Tunnel

    LHC particles

    Quantum Diaries

     
  • richardmitnick 7:44 am on March 31, 2015 Permalink | Reply
    Tags: , Basic Research, , , Nobeyama Solar Radio Observatory   

    From NAOJ: “Aerial Photo Showing the History of the Nobeyama Solar Radio Observatory” 

    NAOJ

    NAOJ

    Mar 31, 2015
    Text by: Susumu Kawashima (NAOJ Chile Observatory)
    Translation by: Ramsey Lundock (NAOJ)

    1

    In fiscal year 2014, Nobeyama Solar Radio Observatory was removed from NAOJ’s organization. Borrowing Shinshu University Faculty of Agriculture’s Nobeyama highlands site, it constructed and improved radio instrument arrays dedicated to studying the Sun for over 40 years following the completion of the Solar Radio Interferometer in 1970. Operations continued every day without a break, offering the world continuous observational data. The Solar-Terrestrial Environment Laboratory, Nagoya University, with the support of an international consortium, will continue to operate the currently active Radioheliograph; and NAOJ will continue to operate the Radio Polarimeters.

    The Progression of Nobeyama’s Solar Radio Observation Instruments

    The first 160 MHz Solar Radio Interferometer observed radio waves originating from midlevel elevations in the corona extending around the Sun. It is composed of 11 antennas deployed east-to-west (longest baseline 2.3 kilometers) and 6 antennas deployed north-to-south. Four of the east-west antennas and 2 of the north-south antennas are pictured. (They have orange mounts and 6 m diameter silver mesh parabolic dishes.) The two 70-600 MHz Radiospectrographs, which use antennas of this same shape (6 m and 8 m diameters) to observe time dependent changes in the spectrum (radio intensity frequency distribution), stand in-between the east-west antennas. After those, in response to the scientific need to observe solar flares with higher spatial and time resolution, the correlator type 17 GHz Solar Radio Interferometer (14 antennas at the left edge of the picture, 1-dimensional east-west, 1.2 meter diameters) started operation in 1978, observing radio waves originating from the chromosphere and lower corona. There were many handmade pieces, but the performance was epoch-making. That experiment led to the construction of the radioheliograph (the T shaped array in the center of the picture, 84 antennas, 80 centimeter diameters) which started observations in 1992. In addition, you can see the 17 GHz, 35 GHz and 80 GHz Polarimeter antennas in the bottom part of the picture.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    The National Astronomical Observatory of Japan (NAOJ) is an astronomical research organisation comprising several facilities in Japan, as well as an observatory in Hawaii. It was established in 1988 as an amalgamation of three existing research organizations – the Tokyo Astronomical Observatory of the University of Tokyo, International Latitude Observatory of Mizusawa, and a part of Research Institute of Atmospherics of Nagoya University.

    In the 2004 reform of national research organizations, NAOJ became a division of the National Institutes of Natural Sciences.

    NAOJ Subaru Telescope

    NAOJ Subaru Telescope interior
    Subaru

    ALMA Array
    ALMA

    sft
    Solar Flare Telescope

    Nobeyama Radio Telescope - Copy
    Nobeyama Radio Observatory

    Nobeyama Solar Radio Telescope Array
    Nobeyama Radio Observatory: Solar

    Misuzawa Station Japan
    Mizusawa VERA Observatory

    NAOJ Okayama Astrophysical Observatory Telescope
    Okayama Astrophysical Observatory

    The National Astronomical Observatory of Japan (NAOJ) is an astronomical research organisation comprising several facilities in Japan, as well as an observatory in Hawaii. It was established in 1988 as an amalgamation of three existing research organizations – the Tokyo Astronomical Observatory of the University of Tokyo, International Latitude Observatory of Mizusawa, and a part of Research Institute of Atmospherics of Nagoya University.

    In the 2004 reform of national research organizations, NAOJ became a division of the National Institutes of Natural Sciences.

     
  • richardmitnick 7:14 am on March 31, 2015 Permalink | Reply
    Tags: , Basic Research, ,   

    From ALMA: “ALMA Disentangles Complex Birth of Giant Stars” 

    ESO ALMA Array
    ALMA

    31 March 2015
    Valeria Foncea
    Education and Public Outreach Officer
    Joint ALMA Observatory
    Santiago, Chile
    Tel: +56 2 467 6258
    Cell: +56 9 75871963
    Email: vfoncea@alma.cl

    Masaaki Hiramatsu
    Education and Public Outreach Officer, NAOJ Chile
    Observatory Tokyo, Japan
    Tel: +81 422 34 3630
    E-mail: hiramatsu.masaaki@nao.ac.jp

    Charles E. Blue
    Public Information Officer
    National Radio Astronomy Observatory
    Charlottesville, Virginia, USA
    Tel: +1 434 296 0314
    Cell: +1 434.242.9559
    E-mail: cblue@nrao.edu

    Richard Hook
    Public Information Officer, ESO
    Garching bei München, Germany
    Tel: +49 89 3200 6655
    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    A research group led by Aya Higuchi, a researcher at Ibaraki University in Japan, conducted observations of the massive-star forming region IRAS 16547-4247 with the Atacama Large Millimeter/submillimeter Array (ALMA). The observation results shows the presence of multiple, or at least two, gas outflows from a protostar, indicating the possible existence of two new-born stars in this region. Also, the radio observation results of molecular line emission of methanol revealed in vivid detail an hourglass structure created by gas outflows spreading outward while thrusting the ambient gas cloud away. It is the first time that such an hourglass structure was found in observations of methanol in high-mass star forming regions. Detailed observations of high-mass stars have been considered difficult so far because high-mass stars form in a complex environment with multiple protostars in clusters, and their forming regions are located farther away from the Earth compared to those of low-mass stars. However, high angular resolution observations with ALMA opened a new window to understand their formation environment in further details.

    1
    An artist’s concept of the distribution of the ambient gas around IRAS 16547-4247. The central high-density gas cloud is thought to contain multiple high-density protostars. Two outflows of gas spurt from the central part in the vertical and horizontal directions respectively while pushing the ambient gas away, which makes a balloon-like structure. A pair of narrow jets is the one that was found in past observations.

    Research Background

    All stars that twinkle in the night sky vary in their masses. While some stars have masses smaller than 1/10 of solar masses, others have masses larger than 100 solar masses. How such a wide variety of stars are born and what factors make the difference in their masses; these are the most fundamental and most enigmatic astronomical questions, which have yet to be answered. To solve these mysteries, it is essential to make detailed observations of various stars of different masses during formation.

    The formation process of high-mass stars, which have masses larger than ten times solar mass still has much to be explored. Detailed observations of high-mass stars at an early stage of formation are difficult because the number of high-mass stars is smaller than that of one-solar-mass stars and the evolution process of high-mass stars is faster than low-mass stars [1]. Another adverse condition in the study of high-mass stars is the distance from the Earth; while the forming regions of low-mass stars are about 500 light years away from the Earth, those of high-mass stars are farther and even the closest one in the Orion Nebula is about 1500 light years away.

    4
    Orion
    In one of the most detailed astronomical images ever produced, NASA/ESA’s Hubble Space Telescope captured an unprecedented look at the Orion Nebula. … This extensive study took 105 Hubble orbits to complete. All imaging instruments aboard the telescope were used simultaneously to study Orion. The Advanced Camera mosaic covers approximately the apparent angular size of the full moon.

    NASA Hubble Telescope
    NASA/ESA Hubble

    Since it is thought that high-mass stars are born in clusters far away from the Earth, it is impossible to understand their formation process in detail without high angular resolution observations. In this regard, ALMA is the most desirable telescope for this purpose as being capable of observing gas and dust, which will be ingredients of stars at high sensitivity and high resolution.

    2
    A mesh 3D model of gas distribution. The orange-colored, peanut-hull-like structure at the center represents the high-density gas cloud observed with ALMA; the blue-colored, big rugby-ball-like structure stretching out in the vertical direction represents the big outflow observed in past observations; and the lime-green-colored and purple-colored structures represent the outflows discovered with ALMA.

    Observations with ALMA

    The research team led by Aya Higuchi made observations of the luminous infrared source IRAS 16547-4247 in the direction of the Scorpion. IRAS 16547-4247 is an object emitting strong radiation with about 60 times solar luminosity and being surrounded by high-density molecular cloud with a mass of 1300 times solar mass in a distance of 9500 light years away from the Earth. Past radio observations of molecular carbon monoxide (CO) in this region revealed a pair of outflows, which was thought to be emitted from a young star, and some other radio sources have been found in addition to a bright object at the center. “Even though many of the astronomers assumed that this would be a fertile high-mass star forming region, we couldn’t probe the kinematics of gas around high-mass protostars at the level of resolution provided by existing telescopes,” Higuchi said.

    To study the structure and kinematics of gas around IRAS 16547-4247, the research group observed molecular line emission of dust, CO, and methanol (CH3OH). From the observation results of dust, it was first found that the center of the region contains two high-density compact gas clouds with masses 10 to 20 times solar mass. It is thought that these gas clouds are surrounding a newly forming high-mass star like a cocoon.

    3
    An artist’s concept of the distribution of the ambient gas around IRAS 16547-4247. The central high-density gas cloud is thought to contain multiple high-density protostars. Two outflows of gas spurt from the central part in the vertical and horizontal directions respectively while pushing the ambient gas away, which makes a balloon-like structure. A pair of narrow jets is the one that was found in past observations.

    And the observation results of CO indicates that the outflows which looked like a blurred object extending in the north-south direction was actually two pairs of outflows aligned with the north-south and east-west direction respectively. Furthermore, new high-velocity outflows have also been found in the observations. Since the angular resolution provided by ALMA was 36 times higher than that applied to the past CO observations, the observation results clearly revealed the details of complex structure and kinematics of gas. As it is assumed that one protostar is able to produce only a pair of outflows, these results suggests that multiple stars are being formed simultaneously in this region.

    On top of these, the research group discovered that methanol molecule is spreading from the center of IRAS1654-4247 in the form of hourglass structure. CH3OH is normally produced on the surface of dust, but when the temperature increases by some process, it will be released from the dust surface and turn into gas, which emits radio waves.

    Since the hourglass structure made by the distribution of CH3OH traces the contour of the observed CO outflow, CH3OH is assumed to have been produced by the interaction with the ambient gas, which was pushed away by the outflow from the protostar, resulting in the increase of temperature and consequent transition into gas. This kind of hourglass structure has often been found around low-mass protostars, but it was the first time that the distribution of CH3OH with this structure was found in a high-mass-star forming region. Furthermore, past observation results indicates the presence of a maser source [2] emitting extremely strong radio waves on the extended line of the CO outflow. Although it was unknown what is responsible for the maser source in this object, the observation results this time suggests that the maser source is excited by the shock influence between a high-velocity outflow and the ambient gas.

    “We conducted radio observations of carbon monoxide and methanol to explore the details of the distribution and kinematics of gas in the region where high-mass stars are forming in clusters,” Higuchi said. “A typical example of a high-mass star forming region is the Orion Nebula, but ALMA enabled us to see the complex formation environment of star clusters which is even 7 times farther away than the Orion Nebula with the highest imaging resolution ever achieved. ALMA will become indispensable for the future research on the high-mass star forming region.”

    Notes

    [1] The formation of high-mass stars completes over the course of a hundred thousand years, which is approximately one tenth of the formation period of low-mass stars.

    [2] Maser is a phenomenon that emits strong electromagnetic radiation of a coherent wavelength. Laser used in our daily life is also strong radiation produced on the same principle applied to maser. Since maser is produced when atoms are excited to a high-energy state, the presence of a maser source suggests the possibility of a physical state, which is different from that of common interstellar cloud.

    More information

    These observation results were published as Higuchi et al. IRAS 16547-4247: A New Candidate of a Protocluster Unveiled with ALMA in the astronomical journal Astrophysical Journal Letters, issued in January 2015.

    This research was conducted by: Aya Higuchi (Ibaraki University); Kazuya Saigo (National Astronomical Observatory of Japan); James Chibueze (National Astronomical Observatory of Japan/University of Nigeria); Patricio Sanhueza (National Astronomical Observatory of Japan); Shigehisa Takakuwa (Academia Sinica Institute of Astronomy and Astrophysics), and Guido Garay (University of Chile)

    This research is supported by Grant-in-Aid for Scientific Research on Innovative Areas “New Frontiers of Extrasolar Planets: Exploring Terrestrial Planets”. Guide Garay is supported by CONICYT project PFB-06.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small

    ESO 50

    NAOJ

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 426 other followers

%d bloggers like this: