Tagged: Basic Research Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:03 pm on October 7, 2022 Permalink | Reply
    Tags: "Stabilizing polarons opens up new physics", A new approach for solving a major shortcoming of a well-established theory that physicists use to study the interactions of electrons in materials: “DFT” - density functional theory., , “DFT” is used in physics; chemistry; and materials science to study the electronic structure of many-body systems like atoms and molecules., Basic Research, DFT is susceptible to spurious interactions of the electron with its own self – what physicists refer to as the “self-interaction problem”., One of the many peculiarities of quantum mechanics is that particles can also be described as waves., , , Technically a polaron is a quasi-particle made up of an electron “dressed” by its self-induced phonons which represent the quantized vibrations of the crystal., The new work introduces a theoretical formulation for electron self-interaction that solves the problem of polaron localization in density functional theory.,   

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “Stabilizing polarons opens up new physics” 

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    10.7.22
    Papageorgiou

    1
    Physicists at EPFL have developed a formulation to solve the longstanding problem of electron self-interaction when studying polarons – quasiparticles produced by electron-phonon interactions in materials. The work can lead to unprecedented calculations of polarons in large systems, systematic studies of large sets of materials, and molecular dynamics evolving over long time periods.

    One of the many peculiarities of quantum mechanics is that particles can also be described as waves. A common example is the photon, the particle associated with light.

    In ordered structures, known as crystals, electrons can be seen and described as waves that spread across the entire system – a rather harmonious picture. As electrons move through the crystal, ions – atoms carrying a negative or positive charge — are periodically arranged in space.

    Now, if we were to add an extra electron to the crystal, its negative charge could make the ions around it move away from their equilibrium positions. The electron charge would localize in space and couple to the surrounding structural – “lattice” – distortions of the crystal, giving rise to a new particle known as a polaron.

    “Technically, a polaron is a quasi-particle, made up of an electron “dressed” by its self-induced phonons, which represent the quantized vibrations of the crystal,” says Stefano Falletta at EPFL’s School of Basic Sciences. He continues: “The stability of polarons arises from a competition between two energy contributions: the gain due to charge localization, and the cost due to lattice distortions. When the polaron destabilizes, the extra electron delocalizes over the entire system, while the ions restore their equilibrium positions.”

    2
    A polaron forming in magnesium oxide atoms. Credit: S. Falletta (EPFL)

    Working with Professor Alfredo Pasquarello at EPFL, they have published two papers in Physical Review Letters [below] and Physical Review B [below] describing a new approach for solving a major shortcoming of a well-established theory that physicists use to study the interactions of electrons in materials. The method is called density functional theory or DFT, and is used in physics, chemistry, and materials science to study the electronic structure of many-body systems like atoms and molecules.

    DFT is a powerful tool for performing ab-initio calculations of materials, by simplified treatment of the electron interactions. However, DFT is susceptible to spurious interactions of the electron with its own self – what physicists refer to as the “self-interaction problem”. This self-interaction is one of the greatest limitations of DFT, often leading to incorrect description of polarons, which are often destabilized.

    “In our work, we introduce a theoretical formulation for the electron self-interaction that solves the problem of polaron localization in density functional theory,” says Falletta. “This gives access to accurate polaron stabilities within a computationally-efficient scheme. Our study paves the way to unprecedented calculations of polarons in large systems, in systematic studies involving large sets of materials, or in molecular dynamics evolving over long time periods.”

    Science papers:
    Physical Review Letters
    Physical Review B

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich] (CH). Associated with several specialized research institutes, the two universities form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles Polytechniques Fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École Polytechnique Fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École Spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices were located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganized and acquired the status of a university in 1890, the technical faculty changed its name to École d’Ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich (CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organized into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences
    Institute of Mathematics
    Institute of Chemical Sciences and Engineering
    Institute of Physics
    European Centre of Atomic and Molecular Computations
    Bernoulli Center
    Biomedical Imaging Research Center
    Interdisciplinary Center for Electron Microscopy
    MPG-EPFL Centre for Molecular Nanosciences and Technology
    Swiss Plasma Center
    Laboratory of Astrophysics

    School of Engineering

    Institute of Electrical Engineering
    Institute of Mechanical Engineering
    Institute of Materials
    Institute of Microengineering
    Institute of Bioengineering

    School of Architecture, Civil and Environmental Engineering

    Institute of Architecture
    Civil Engineering Institute
    Institute of Urban and Regional Sciences
    Environmental Engineering Institute

    School of Computer and Communication Sciences

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences

    Bachelor-Master Teaching Section in Life Sciences and Technologies
    Brain Mind Institute
    Institute of Bioengineering
    Swiss Institute for Experimental Cancer Research
    Global Health Institute
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics
    NCCR Synaptic Bases of Mental Diseases

    College of Management of Technology

    Swiss Finance Institute at EPFL
    Section of Management of Technology and Entrepreneurship
    Institute of Technology and Public Policy
    Institute of Management of Technology and Entrepreneurship
    Section of Financial Engineering

    College of Humanities

    Human and social sciences teaching program

    EPFL Middle East

    Section of Energy Management and Sustainability

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École Cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 8:10 am on October 7, 2022 Permalink | Reply
    Tags: "How satellites harm astronomy - what’s being done", , Basic Research, , , , , International Telecommunication Union, , , Square Kilometer Array Observatory (SKAO),   

    From “EarthSky” : “How satellites harm astronomy – what’s being done” 

    1

    From “EarthSky”

    10.6.22
    Kelly Kizer Whitt

    1
    Artist’s concept shows the 30,000 planned satellites from the Starlink Generation 2 constellation as of 2022. Different sub-constellations are in different colors. Learn more about how mega constellations of satellites harm astronomy. Image via The European Southern Observatory [La Observatorio Europeo Austral] [Observatoire européen austral][Europäische Südsternwarte](EU)(CL).

    You may have heard the growing complaints from astronomers as companies such as SpaceX add more satellites to our sky. Astronomers are not against the communication networks that the satellites provide, but they have valid concerns for the future of ground-based explorations of the universe. And there is only so much astronomers can do on their own to mitigate the problem. A report from the 2021 conference for Dark and Quiet Skies stated:

    “The advantages to society that the communication constellations are offering cannot be disputed, but their impact on the pristine appearance of the night sky and on astronomy must be considered with great attention because they affect both the cultural heritage of humanity and the progress of science.”

    How satellites harm astronomy: The problem with increasing satellites

    Astronomers face a variety of problems with the increasing numbers of satellites filling low-Earth orbit. Optical and near-infrared telescopes feel the impacts from these mega constellations. Some of the biggest are on wide-field surveys, longer exposures and evening and morning twilight observations when sunlight reflects off the satellites. The European Southern Observatory, the European Space Organization, reported these findings from a 2021 study [Astronomy & Astrophysics(below)]:

    “The effect is more pronounced for long exposures, up to three percent of which may be ruined during twilight. The study also found that the greatest impact of new satellite constellations will be on wide-field surveys made by telescopes such as the US National Science Foundation’s Vera C. Rubin Observatory. Up to 30-50 percent of twilight observations being seriously impacted.”

    And because we’re talking about scientists, of course they’ve officially started studying the issue. Studies in 2020 [ Astronomy and Astrophysics (below)] and 2021 [Astronomy & Astrophysics (below)] showed the impact on optical and near-infrared telescopes. They found that telescopes such as the Very Large Telescope (VLT) and the future Extremely Large Telescope (ELT) will be “moderately affected” by new satellite mega constellations.

    Some telescopes, such as the Rubin Observatory under construction in Chile, will experience greater impacts. These telescopes scan wide areas quickly. This makes them crucial in spotting supernovae or potentially dangerous asteroids.

    The impact on radio astronomy

    Radio astronomy has its own particular concerns. Radio telescopes don’t look in the visible wavelengths of the electromagnetic spectrum, so it’s not the same “visibility” issue. For radio telescopes, the main problem is with the signals the satellites transmit down to Earth. Plus, radio telescopes aren’t only looking at dim lights in the night. They’re looking at the sky 24/7. So, satellites are a problem every hour of the day, not just at twilight.

    But there’s more. A satellite’s signal is much, much stronger than the faint background sources that radio astronomers study. And a satellite doesn’t have to pass right in front of the object of study to cause interference. Satellite sources in a radio telescope’s “peripheral vision” also interfere.

    The European Southern Observatory (ESO) described the potential impact of satellites on radio astronomy:

    “They amount to hundreds of radio transmitters above the observatory’s horizon, which will affect the measurements made by our highly sensitive radio telescopes.”

    Radio astronomy has some protection against interference. Radio astronomers call this spectrum management, and the Radio Communication Sector of the International Telecommunication Union (ITU-R) create regulations that help protect astronomers studying certain frequency bands and wavelength ranges. But the recent large constellations of telecommunication satellites pose new threats.

    One recommendation is for satellite designs that avoid direct illumination of radio telescopes and radio-quiet zones. Also, the cumulative background electromagnetic noise created by satellite constellations should be kept below the limit already agreed to by the ITU.

    Philip Diamond of the Square Kilometer Array Observatory (SKAO) summed up the issue:

    “The deployment of thousands of satellites in low-Earth orbit in the coming years will inevitably change this landscape by creating a much larger number of fast-moving radio sources in the sky, which will interfere with humanity’s ability to explore the universe.”

    What can visual astronomers do?

    It would be great if a computer program could quickly eliminate all the satellites trails or interference from astronomers’ data. But it’s not quite that easy. One recent report outlined the problem of low-Earth orbit satellites on images:

    “They leave traces of their transit on astronomical images, significantly decreasing the scientific usability of the collected data. Post-processing of the affected images only partially remedies the problem: the brighter trails may saturate the detectors, making portions of images unusable, while the removal of the fainter trails leaves residual effects that seriously affect important scientific programs, as, for example, statistical, automated surveys of faint galaxies.”

    But there are some things astronomers could do, and have been doing thus far. They can avoid observing where satellites will pass, limit observations to areas of the sky that are in Earth’s shadow and close the shutter precisely when a satellite crosses the field of view. This all takes a lot of knowledge of the paths of thousands of satellites and plenty of pre-planning. Obviously, these are not realistic possibilities for many situations.

    What can satellite operators do?

    Another way to mitigate the problem is for satellite operators to adjust their designs (for example, darkening the satellite). They can also operate the satellites in a way that would raise their orbits out of vision of the optical telescopes, deorbit satellites that are no longer functioning, as well as other considerations for minimizing disruption. In several cases, the satellite operators have shown willingness to cooperate on this.

    Unfortunately, the companies planning these mega satellite constellations did not warn astronomers in advance. So many of these satellites were already filling the skies without any restrictions as astronomers scrambled to figure out how to save their observations and lessen the impact. Their efforts led to the creation of a new center that is collecting data from the community, astronomers and the general public, among others, to learn more about the effects on the night sky.

    Official efforts to reduce harm from satellites

    In June 2022, the International Astronomical Union (IAU), together with the National Science Foundation’s National Optical-Infrared Astronomy Research Laboratory (NOIRLab) and SKAO, opened the Center for the Protection of the Dark and Quiet Sky from Satellite Constellation Interference (CPS). The center highlights the dramatically increased risk of interference from low-Earth orbit satellites – both planned and already in orbit – that provide broadband services. On their website, you can see a running total of the number of operational constellation satellites (2,994) and the number of planned constellation satellites (431,713), among other stats.

    Co-director Connie Walker from NOIRLab said:

    “Three years ago SpaceX launched the first 60 Starlink satellites. The number of satellites from this and other companies is increasing exponentially and impacting the field of astronomy. During the last two years, four key workshops identified issues and recommended mitigation solutions with the help of astronomers, satellite industry folk, space lawyers and people from the general community worldwide.”

    In the peer-reviewed journal Air & Space Law [below], scientists at ESO published a study in September 2021 extensively warning of the dangers of unlimited satellites on astronomy. They’re trying to address satellite constellations’ impact on astronomy. They’re making efforts to coordinate solutions so both satellites and observational astronomy can continue developing without harmful interference.

    A reminder of what we’re losing when satellites harm astronomy

    One of ESO’s studies estimated that in the future, up to 100 satellites could be visible to the unaided eye during twilight. Imagine how that will change your own view of the night sky. Then imagine if your profession depended upon seeing what is beyond the satellites. How will we learn about the universe or detect potential threats to Earth?

    The IAU created the Dark and Quiet Skies Working Group. As Debra Elmegreen, IAU President, summed up:

    “Interference of our view of the sky caused by ground-based artificial lights, optical and infrared trails of satellite constellations and radio transmission on the ground and in space is an existential threat to astronomical observations. Viewing the night sky has been culturally important throughout humanity’s history, and dark skies are important for wildlife as well.”

    Science papers:
    Astronomy & Astrophysics
    Astronomy and Astrophysics 2020
    Astronomy & Astrophysics 2021
    Air & Space Law 2021
    See the science papers for instructive material.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    Deborah Byrd created the EarthSky radio series in 1991 and founded EarthSky.org in 1994. Today, she serves as Editor-in-Chief of this website. She has won a galaxy of awards from the broadcasting and science communities, including having an asteroid named 3505 Byrd in her honor. A science communicator and educator since 1976, Byrd believes in science as a force for good in the world and a vital tool for the 21st century. “Being an EarthSky editor is like hosting a big global party for cool nature-lovers,” she says.

     
  • richardmitnick 8:31 pm on October 6, 2022 Permalink | Reply
    Tags: "Metamorphic core complexes", "Study Shows Gravitational Forces Deep Within the Earth Have Great Impact on Landscape Evolution", , Basic Research, Collaborative national research centers on integrating tectonics climate and mammal diversity., , , ,   

    From Stoney Brook University – SUNY : “Study Shows Gravitational Forces Deep Within the Earth Have Great Impact on Landscape Evolution” 

    Stoney Brook bloc

    From Stoney Brook University – SUNY

    10.6.22

    Collaborative national research centers on integrating tectonics climate and mammal diversity.

    Stony Brook University is leading a research project that focuses on the interplay between the evolution of the landscape, climate and fossil record of mammal evolution and diversification in the Western United States. A little explored aspect of this geosciences research is the connection between gravitational forces deep in the Earth and landscape evolution. Now in a newly published paper in Nature Communications [below], the researchers show by way of computer modeling that deep roots under mountain belts (analogous to the massive ice below the tip of an iceberg) trigger dramatic movements along faults that result in collapse of the mountain belt and exposure of rocks that were once some 15 miles below the surface.

    The origin of these enigmatic exposures, called “metamorphic core complexes,” has been hotly debated within the scientific community. This study finding may alter the way scientists attempt to uncover the history of Earth as an evolving planet.

    Lead principal investigator William E. Holt, PhD, a Professor of Geophysics the Department of Geosciences in the School of Arts and Sciences at Stony Brook University, first author Alireza Bahadori, a former PhD student under Holt and now at Columbia University, and colleagues found that these core complexes are a fossil signature of past mountain belts in the Western United States that occupied regions around Phoenix and Las Vegas. These mountain areas left traces in the form of gravel deposits from ancient northward and eastward flowing rivers, found today south and west of Flagstaff, Arizona.

    1
    These visuals from the modeling illustrate metamorphic core complex development showing crustal stresses and strain rates, faults, uplift of deeper rocks, and sedimentation from surface erosion. These processes of core complex development occur after a thickened crustal root supporting topography is weakened through the introduction of heat, fluids, and partial melt. Credit: Alireza Bahadori and William E. Holt.

    The work articulated in the paper highlights the development of what the research team terms as a general model for metamorphic core complex formation and a demonstration that they result from the collapse of a mountain belt supported by a thickened crustal root.

    The authors further explain: “We show that gravitational body forces generated by topography and crustal root cause an upward flow pattern of the ductile lower-middle crust, facilitated by a detachment surface evolving into a low-angle normal fault. This detachment surface acquires large amounts of finite strain, consistent with thick mylonite zones found in metamorphic core complexes.”

    The work builds on research also published in Nature Communications [below] in 2022. Holt and colleagues published a first-of-a-kind model in three dimensions to illustrate the linkage between climate and tectonics to simulate the landscape and erosion/deposition history of the region before, during and after the formation of these metamorphic core complexes.

    This modeling was linked to a global climate model that predicted precipitation trends throughout the southwestern U.S. over time. The 3-D model accurately predicts deposition of sediments in basins that contain the mammal fossil and climate records.

    The group also published a paper in Science Advances [below] in November 2021, led by team member Katie Loughney.

    This research showed that a major peak in mammal diversification can be statistically tied to the peak in extensional collapse of the ancient mountain belts. Thus, the collaborative study is the first of its kind to quantify how deep Earth forces combine with climate to influence the landscape and impact mammal diversification and species dispersal found within the fossil record.

    The study required the vast computing resources provided by the High-Performance Computing Cluster SeaWulf at Stony Brook University. The climate modeling, produced by Ran Feng, University of Connecticut, was supported by the Cheyenne supercomputer maintained at NCAR-Wyoming Supercomputing Center.

    Much of the research that led to these findings reported each of the papers was supported by multiple grants from the National Science Foundation, including grant number EAR-1814051 to Stony Brook University.

    In addition to Holt, the national collaborative team included several researchers from Stony Brook University: Drs. Emma Troy Rasbury, Daniel Davis, Ali Bahadori (now at Columbia University) and Tara Smiley. Other colleagues include researchers from the University of Michigan (Drs. Catherine Badgley and Katie Loughney – now University of Georgia); University of Connecticut (Dr. Ran Feng); Purdue University (Dr. Lucy Flesch), as well a researcher from a consulting business, e4Sciences (Dr. Bruce Ward).

    Science papers:
    Nature Communications
    Nature Communications
    Science Advances 2021
    See the science papers for instructive material.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stoney Brook campus

    Stony Brook University-SUNY’s reach extends from its 1,039-acre campus on Long Island’s North Shore–encompassing the main academic areas, an 8,300-seat stadium and sports complex and Stony Brook Medicine–to Stony Brook Manhattan, a Research and Development Park, four business incubators including one at Calverton, New York, and the Stony Brook Southampton campus on Long Island’s East End. Stony Brook also co-manages Brookhaven National Laboratory, joining Princeton, the University of Chicago, Stanford, and the University of California on the list of major institutions involved in a research collaboration with a national lab.

    And Stony Brook is still growing. To the students, the scholars, the health professionals, the entrepreneurs and all the valued members who make up the vibrant Stony Brook community, this is a not only a great local and national university, but one that is making an impact on a global scale.

     
  • richardmitnick 4:06 pm on October 6, 2022 Permalink | Reply
    Tags: "Josephson junction": A single-photon detector meets a superconducting circuit element., "Neuromorphic chips", "NIST’s Superconducting Hardware Could Scale Up Brain-Inspired Computing", A Josephson junction is a sandwich of superconducting materials separated by a thin insulating film., , Basic Research, Further work is required to integrate all the components on a single chip., NIST researchers have achieved for the first time a circuit that behaves much like a biological synapse yet uses just single photons to transmit and receive signals., Researchers have designed networks with tiny light sources at each neuron that broadcast optical signals to thousands of connections., Scientists have long looked to the brain as an inspiration for designing computing systems., , The team’s next milestone will be to combine these designed synapses with on-chip sources of light to demonstrate full superconducting optoelectronic neurons.   

    From The National Institute of Standards and Technology: “NIST’s Superconducting Hardware Could Scale Up Brain-Inspired Computing” 

    From The National Institute of Standards and Technology

    10.6.22
    Ben P. Stein
    benjamin.stein@nist.gov
    (301) 975-2763

    1

    Artistic rendering of how superconducting circuits that mimic synapses (connections between neurons in the brain) might be used to create artificial optoelectronic neurons of the future. Credits: J. Chiles and J. Shainline/NIST.

    Scientists have long looked to the brain as an inspiration for designing computing systems. Some researchers have recently gone even further by making computer hardware with a brainlike structure. These “neuromorphic chips” have already shown great promise, but they have used conventional digital electronics, limiting their complexity and speed. As the chips become larger and more complex, the signals between their individual components become backed up like cars on a gridlocked highway and reduce computation to a crawl.

    Now, a team at the National Institute of Standards and Technology (NIST) has demonstrated a solution to these communication challenges that may someday allow artificial neural systems to operate 100,000 times faster than the human brain.

    The human brain is a network of about 86 billion cells called neurons, each of which can have thousands of connections (known as synapses) with its neighbors. The neurons communicate with each other using short electrical pulses called spikes to create rich, time-varying activity patterns that form the basis of cognition. In “neuromorphic chips”, electronic components act as artificial neurons, routing spiking signals through a brainlike network.

    Doing away with conventional electronic communication infrastructure, researchers have designed networks with tiny light sources at each neuron that broadcast optical signals to thousands of connections. This scheme can be especially energy-efficient if superconducting devices are used to detect single particles of light known as photons — the smallest possible optical signal that could be used to represent a spike.

    In a new Nature Electronics paper [below], NIST researchers have achieved for the first time a circuit that behaves much like a biological synapse yet uses just single photons to transmit and receive signals. Such a feat is possible using superconducting single-photon detectors. The computation in the NIST circuit occurs where a single-photon detector meets a superconducting circuit element called a Josephson junction. A Josephson junction is a sandwich of superconducting materials separated by a thin insulating film. If the current through the sandwich exceeds a certain threshold value, the Josephson junction begins to produce small voltage pulses called fluxons. Upon detecting a photon, the single-photon detector pushes the Josephson junction over this threshold and fluxons are accumulated as current in a superconducting loop. Researchers can tune the amount of current added to the loop per photon by applying a bias (an external current source powering the circuits) to one of the junctions. This is called the synaptic weight.

    2
    Photograph of a NIST superconducting circuit that behaves like an artificial version of a synapse, a connection between nerve cells (neurons) in the brain. The labels show various components of the circuit and their functions. Credits: S. Khan and B. Primavera/NIST.

    This behavior is similar to that of biological synapses. The stored current serves as a form of short-term memory, as it provides a record of how many times the neuron produced a spike in the near past. The duration of this memory is set by the time it takes for the electric current to decay in the superconducting loops, which the NIST team demonstrated can vary from hundreds of nanoseconds to milliseconds, and likely beyond. This means the hardware could be matched to problems occurring at many different time scales — from high-speed industrial control systems to more leisurely conversations with humans. The ability to set different weights by changing the bias to the Josephson junctions permits a longer-term memory that can be used to make the networks programmable so that the same network could solve many different problems.

    Synapses are a crucial computational component of the brain, so this demonstration of superconducting single-photon synapses is an important milestone on the path to realizing the team’s full vision of superconducting optoelectronic networks [Optoelectronic intelligence (below)]. Yet the pursuit is far from complete. The team’s next milestone will be to combine these synapses with on-chip sources of light to demonstrate full superconducting optoelectronic neurons.

    “We could use what we’ve demonstrated here to solve computational problems, but the scale would be limited,” NIST project leader Jeff Shainline said. “Our next goal is to combine this advance in superconducting electronics with semiconductor light sources. That will allow us to achieve communication between many more elements and solve large, consequential problems.”

    The team has already demonstrated light sources that could be used in a full system, but further work is required to integrate all the components on a single chip. The synapses themselves could be improved by using detector materials that operate at higher temperatures than the present system, and the team is also exploring techniques to implement synaptic weighting in larger-scale neuromorphic chips.

    The work was funded in part by the Defense Advanced Research Projects Agency.

    Science papers:
    Nature Electronics
    Optoelectronic intelligence

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NIST Campus, Gaitherberg, MD.

    The National Institute of Standards and Technology‘s Mission, Vision, Core Competencies, and Core Values

    Mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

    Background

    The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

    In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

    From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

    Bureau of Standards

    In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

    President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

    Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

    In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

    Due to a changing mission, the “National Bureau of Standards” became the “ The National Institute of Standards and Technology” in 1988.

    Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.

    Organization

    NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

    Communications Technology Laboratory (CTL)
    Engineering Laboratory (EL)
    Information Technology Laboratory (ITL)
    Center for Neutron Research (NCNR)
    Material Measurement Laboratory (MML)
    Physical Measurement Laboratory (PML)

    Extramural programs include:

    Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
    Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
    Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

    NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock.

    NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

    NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR).

    The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

    The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961.

    SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

    The Center for Nanoscale Science and Technology performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility.

    This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).
    Committees

    NIST has seven standing committees:

    Technical Guidelines Development Committee (TGDC)
    Advisory Committee on Earthquake Hazards Reduction (ACEHR)
    National Construction Safety Team Advisory Committee (NCST Advisory Committee)
    Information Security and Privacy Advisory Board (ISPAB)
    Visiting Committee on Advanced Technology (VCAT)
    Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
    Manufacturing Extension Partnership National Advisory Board (MEPNAB)

    Measurements and standards

    As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

    Handbook 44

    NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

    NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.

     
  • richardmitnick 2:24 pm on October 6, 2022 Permalink | Reply
    Tags: "Brigham Young University scientists collaborate with astronomers around the world to understand distant galaxy", , , Basic Research, Brigham Young University,   

    From Brigham Young University : “Brigham Young University scientists collaborate with astronomers around the world to understand distant galaxy” 

    From Brigham Young University

    10.4.22
    Tyler Stahle

    2
    Artistic rendering of the BL Lac jet with a spiral magnetic field. Photo by Iris Nieh.

    A team of 86 scientists from 13 countries recently carried out extensive high-time resolution optical monitoring of a distant active galaxy, BL Lacertae (BL Lac). Mike Joner, BYU research professor of physics and astronomy, was one of the astronomers contributing to the project.

    Dr. Joner and BYU undergraduate student Gilvan Apolonio secured over 200 observations of the galaxy using the 0.9-meter reflecting telescope at the BYU West Mountain Observatory. Their measurements were combined with observations made by other scientists around the world in a collaboration known as the Whole Earth Blazar Telescope (WEBT). The WEBT network makes it possible to monitor objects around the clock from different locations during times of high variability.

    Using the WEBT observations made in the summer of 2020, astronomers discovered surprisingly rapid oscillations of brightness in the central jet of the galaxy BL Lac. The scientists attribute these cycles of brightness change to twists in the jet’s magnetic field. Their study was recently published in the scientific journal Nature [below].

    BYU’s West Mountain Observatory was one of 37 ground-based telescopes throughout the world monitoring the optical variations of BL Lac – an active galaxy classified as a blazar that is roughly 1 billion light years away. Joner and Apolonio alternated working different groups of nights at the observatory throughout the spring and summer of 2020 – a task that was extra burdensome during the height of the pandemic. This atypical work schedule was necessary since observations were needed on every clear night and there were no other trained student observers remaining in the Provo area.

    An analysis of the high-cadence optical observations was critical to understanding the high-energy observations from the space-based Fermi Gamma-Ray Telescope.

    “You need to combine data from high-energy space observatories with optical ground-based monitoring data. The billion-dollar space telescopes that are used on projects like this often need to compare results with optical ground-based observations,” said Joner. “Correlating what was seen in the high energy observations with the ground-based light curves helped confirm the rapid periodic oscillations that were observed in the high-energy data from space.”

    Although he’s an established expert in astrophysical research, Joner says he continues to be amazed at the level of detail scientists are capturing through such observations. And he’s grateful for the chance to explore the far reaches of the cosmos with his students at BYU.

    “On a galactic scale, the central jet of a blazar is quite small. It is amazing to be able to see the variations of the jet so clearly. The variability of the jet is easily seen even though it is combined with the light from the hundreds of billions of stars in the host galaxy,” he said.

    “It is noteworthy that in this age of giant telescopes and space-based research, it is still necessary to rely on modest sized and well-equipped facilities like we have available at BYU to explore the unknown reaches of the Universe.”

    Boston University doctoral student Melissa Hallum, a BYU graduate and former student of Dr. Joner’s, was also a co-author of the paper.

    Science paper:
    Nature

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Brigham Young University is a private research university in Provo, Utah. It was founded in 1875 by religious leader Brigham Young, and is sponsored by The Church of Jesus Christ of Latter-day Saints (LDS Church).

    Brigham Young University offers a variety of academic programs, including liberal arts, engineering, agriculture, management, physical and mathematical sciences, nursing, and law. It has 186 undergraduate majors, 64 master’s programs, and 26 doctoral programs. It is broadly organized into 11 colleges or schools at its main Provo campus, with certain colleges and divisions defining their own admission standards. The university also administers two satellite campuses, one in Jerusalem and one in Salt Lake City, while its parent organization the Church Educational System (CES) sponsors sister schools in Hawaii and Idaho. The university is accredited by the Northwest Commission on Colleges and Universities.

    Almost all Brigham Young University students are members of the LDS Church. Students attending BYU agree to follow an honor code, which mandates behavior in line with teachings of the church, such as academic honesty, adherence to dress and grooming standards, abstinence from extramarital sex, from same-sex romantic behavior, and from the consumption of drugs and alcohol. Undergraduate students are also required to complete curriculum in LDS religious education for graduation regardless of their course of study. Due in part to the church’s emphasis on missionary service, nearly 50% of BYU students have lived outside the United States, 65% speak a second language, and 63 languages are taught at the university regularly.

    BYU’s athletic teams compete in Division I of the NCAA and are collectively known as the BYU Cougars. Their football team is a D1 Independent, while their other sports teams compete in either the West Coast Conference or Mountain Pacific Sports Federation. BYU’s sports teams have won a total of 12 NCAA championships and 26 non-NCAA championships. On September 10, 2021, BYU formally accepted an invitation to the Big 12 Conference and will start participating in the conference in the 2023–24 school year.

    According to the National Science Foundation, Brigham Young University spent $40.7 million on research and development in 2018. Scientists associated with Brigham Young University have created some notable inventions. Philo T. Farnsworth, inventor and pioneer of the electronic television, began college at Brigham Young University, and later returned to do fusion research, receiving an honorary degree from the university in 1967. Alumnus Harvey Fletcher, inventor of stereophonic sound, went on to carry out the now famous oil-drop experiment with Robert Millikan, and was later Founding Dean of the Brigham Young University College of Engineering. H. Tracy Hall, inventor of the man-made diamond, left General Electric in 1955 and became a full professor of chemistry and Director of Research at Brigham Young University. While there, he invented a new type of diamond press, the tetrahedral press. In student achievements, Brigham Young University Ad Lab teams won both the 2007 and 2008 L’Oréal National Brandstorm Competition, and students developed the Magnetic Lasso algorithm found in Adobe Photoshop. In prestigious scholarships, Brigham Young University has produced 10 Rhodes Scholars, four Gates Scholars in the last six years, and in the last decade has claimed 41 Fulbright scholars and 3 Jack Kent Cooke scholars.

     
  • richardmitnick 9:58 am on October 6, 2022 Permalink | Reply
    Tags: " ATP": Adenosine Triphosphate, "ADP": Adenosine Diphosphate, "Every Life Form on Earth Uses The Same Chemical For Energy. This Could Explain Why", A phosphate molecule is added to ADP through a reaction called phosphorylation – resulting in ATP., , Basic Research, , , Reactions that release that same phosphate provide chemical energy that our cells use for countless processes., ,   

    From University College London (UK) Via “Science Alert (AU)” : “Every Life Form on Earth Uses The Same Chemical For Energy. This Could Explain Why” 

    UCL bloc

    From University College London (UK)

    Via

    ScienceAlert

    “Science Alert (AU)”

    10.6.22
    Tessa Koumoundouros

    1
    TEM of a mitochondria (believed to be of bacteria origin), where ATP production takes place in animal cells. (Callista Images/Image Source/Getty Images)

    All life as we know it uses the exact same energy-carrying molecule as a kind of ‘universal cellular fuel’. Now, ancient chemistry may explain how that all-important molecule ended up being ATP (adenosine triphosphate) a new study [PLOS Biology (below)] reports.

    ATP is an organic molecule, charged up by photosynthesis or by cellular respiration (the way organisms break down food) and used in every single cell. Every day, we recycle our own body weight in ATP.

    In both the above systems, a phosphate molecule is added to ADP (adenosine diphosphate) through a reaction called phosphorylation – resulting in ATP.

    Reactions that release that same phosphate (in another process called hydrolysis) provide chemical energy that our cells use for countless processes, from brain signaling to movement and reproduction.

    How ATP ascended to metabolic dominance, in place of many possible equivalents, has been a long-standing mystery in biology and the focus of the research.

    “Our results suggest… that the emergence of ATP as the universal energy currency of the cell was not the result of a ‘frozen accident’,” but arose from unique interactions of phosphorylation molecules, explains evolutionary biochemist Nick Lane from University College London.

    The fact that ATP is used by all living things suggests it has been around since life’s very beginning and even before, during the prebiotic conditions that preceded all us animate matter.

    But researchers are puzzled as to how this could be the case when ATP has such a complicated structure that involves six different phosphorylation reactions and a whole lot of energy to create it from scratch.

    “There is nothing particularly special about the ‘high-energy’ [phosphorus] bonds in ATP,” says biochemist Silvana Pinna who was with UCL at the time, and colleagues in their paper.

    But as ATP also helps build our cells’ genetic information, it may have been roped in for energy use through this other pathway, they note.

    Pinna and team suspect some other molecules must have been involved initially in the complicated phosphorylation process. So they took a close look at another phosphorylating molecule, AcP, that’s still used by bacteria and archaea in their metabolism of chemicals, including phosphate and thioester – a chemical thought to have been abundant at the beginning of life.

    In the presence of iron ions (Fe3+), AcP can phosphorylate ADP to ATP in water. Upon testing the ability of other ions and minerals to catalyze ATP formation in water, the researchers could not replicate this with other substitute metals or phosphorylating molecules.

    “It was very surprising to discover the reaction is so selective – in the metal ion, phosphate donor, and substrate – with molecules that life still uses,” says Pinna.

    “The fact that this happens best in water under mild, life-compatible conditions is really quite significant for the origin of life.”

    This suggests that with AcP, these energy-storing reactions could take place in prebiotic conditions, before biological life was there to hoard and spur the now self-perpetuating cycle of ATP production.

    Furthermore, the experiments suggest that the creation of prebiotic ATP was most likely to take place in freshwater, where photochemical reactions and volcanic eruptions, for instance, could provide the right mix of ingredients, the team explains.

    While this doesn’t completely preclude its occurrence in the sea, it does hint that the birth of life may have required a strong link to land, they note.

    “Our results suggest that ATP became established as the universal energy currency in a prebiotic, monomeric world, on the basis of its unusual chemistry in water,” Pinna and colleagues write.

    What’s more, pH gradients in hydrothermal systems could have created an uneven ratio of ATP to ADP, enabling ATP to drive work even in the prebiotic world of small molecules.

    “Over time, with the emergence of suitable catalysts, ATP could eventually displace AcP as a ubiquitous phosphate donor, and promote the polymerization of amino acids and nucleotides to form RNA, DNA, and proteins,” explains Lane.

    Science paper:
    PLOS Biology
    See the science paper for instructive material.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UCL campus

    Established in 1826, as London University by founders inspired by the radical ideas of Jeremy Bentham, University College London (UK) was the first university institution to be established in London, and the first in England to be entirely secular and to admit students regardless of their religion. University College London also makes contested claims to being the third-oldest university in England and the first to admit women. In 1836, University College London became one of the two founding colleges of the University of London, which was granted a royal charter in the same year. It has grown through mergers, including with the Institute of Ophthalmology (in 1995); the Institute of Neurology (in 1997); the Royal Free Hospital Medical School (in 1998); the Eastman Dental Institute (in 1999); the School of Slavonic and East European Studies (in 1999); the School of Pharmacy (in 2012) and the Institute of Education (in 2014).

    University College London has its main campus in the Bloomsbury area of central London, with a number of institutes and teaching hospitals elsewhere in central London and satellite campuses in Queen Elizabeth Olympic Park in Stratford, east London and in Doha, Qatar. University College London is organised into 11 constituent faculties, within which there are over 100 departments, institutes and research centres. University College London operates several museums and collections in a wide range of fields, including the Petrie Museum of Egyptian Archaeology and the Grant Museum of Zoology and Comparative Anatomy, and administers the annual Orwell Prize in political writing. In 2019/20, UCL had around 43,840 students and 16,400 staff (including around 7,100 academic staff and 840 professors) and had a total income of £1.54 billion, of which £468 million was from research grants and contracts.

    University College London is a member of numerous academic organisations, including the Russell Group(UK) and the League of European Research Universities, and is part of UCL Partners, the world’s largest academic health science centre, and is considered part of the “golden triangle” of elite, research-intensive universities in England.

    University College London has many notable alumni, including the respective “Fathers of the Nation” of India; Kenya and Mauritius; the founders of Ghana; modern Japan; Nigeria; the inventor of the telephone; and one of the co-discoverers of the structure of DNA. UCL academics discovered five of the naturally occurring noble gases; discovered hormones; invented the vacuum tube; and made several foundational advances in modern statistics. As of 2020, 34 Nobel Prize winners and 3 Fields medalists have been affiliated with UCL as alumni, faculty or researchers.

    History

    University College London was founded on 11 February 1826 under the name London University, as an alternative to the Anglican universities of the University of Oxford(UK) and University of Cambridge(UK). London University’s first Warden was Leonard Horner, who was the first scientist to head a British university.

    Despite the commonly held belief that the philosopher Jeremy Bentham was the founder of University College London, his direct involvement was limited to the purchase of share No. 633, at a cost of £100 paid in nine installments between December 1826 and January 1830. In 1828 he did nominate a friend to sit on the council, and in 1827 attempted to have his disciple John Bowring appointed as the first professor of English or History, but on both occasions his candidates were unsuccessful. This suggests that while his ideas may have been influential, he himself was less so. However, Bentham is today commonly regarded as the “spiritual father” of University College London, as his radical ideas on education and society were the inspiration to the institution’s founders, particularly the Scotsmen James Mill (1773–1836) and Henry Brougham (1778–1868).

    In 1827, the Chair of Political Economy at London University was created, with John Ramsay McCulloch as the first incumbent, establishing one of the first departments of economics in England. In 1828 the university became the first in England to offer English as a subject and the teaching of Classics and medicine began. In 1830, London University founded the London University School, which would later become University College School. In 1833, the university appointed Alexander Maconochie, Secretary to the Royal Geographical Society, as the first professor of geography in the British Isles. In 1834, University College Hospital (originally North London Hospital) opened as a teaching hospital for the university’s medical school.

    1836 to 1900 – University College, London

    In 1836, London University was incorporated by royal charter under the name University College, London. On the same day, the University of London was created by royal charter as a degree-awarding examining board for students from affiliated schools and colleges, with University College and King’s College, London being named in the charter as the first two affiliates.

    The Slade School of Fine Art was founded as part of University College in 1871, following a bequest from Felix Slade.

    In 1878, the University College London gained a supplemental charter making it the first British university to be allowed to award degrees to women. The same year University College London admitted women to the faculties of Arts and Law and of Science, although women remained barred from the faculties of Engineering and of Medicine (with the exception of courses on public health and hygiene). While University College London claims to have been the first university in England to admit women on equal terms to men, from 1878, the University of Bristol(UK) also makes this claim, having admitted women from its foundation (as a college) in 1876. Armstrong College, a predecessor institution of Newcastle University (UK), also allowed women to enter from its foundation in 1871, although none actually enrolled until 1881. Women were finally admitted to medical studies during the First World War in 1917, although limitations were placed on their numbers after the war ended.

    In 1898, Sir William Ramsay discovered the elements krypton; neon; and xenon whilst professor of chemistry at University College London.

    1900 to 1976 – University of London, University College

    In 1900, the University College London was reconstituted as a federal university with new statutes drawn up under the University of London Act 1898. UCL, along with a number of other colleges in London, became a school of the University of London. While most of the constituent institutions retained their autonomy, University College London was merged into the University in 1907 under the University College London (Transfer) Act 1905 and lost its legal independence. Its formal name became University College London, University College, although for most informal and external purposes the name “University College, London” (or the initialism UCL) was still used.

    1900 also saw the decision to appoint a salaried head of the college. The first incumbent was Carey Foster, who served as Principal (as the post was originally titled) from 1900 to 1904. He was succeeded by Gregory Foster (no relation), and in 1906 the title was changed to Provost to avoid confusion with the Principal of the University of London. Gregory Foster remained in post until 1929. In 1906, the Cruciform Building was opened as the new home for University College Hospital.

    As it acknowledged and apologized for in 2021, University College London played “a fundamental role in the development, propagation and legitimisation of eugenics” during the first half of the 20th century. Among the prominent eugenicists who taught at University College London were Francis Galton, who coined the term “eugenics”, and Karl Pearson, and eugenics conferences were held at UCL until 2017.

    University College London sustained considerable bomb damage during the Second World War, including the complete destruction of the Great Hall and the Carey Foster Physics Laboratory. Fires gutted the library and destroyed much of the main building, including the dome. The departments were dispersed across the country to Aberystwyth; Bangor; Gwynedd; University of Cambridge; University of Oxford; Rothamsted near Harpenden; Hertfordshire; and Sheffield, with the administration at Stanstead Bury near Ware, Hertfordshire. The first UCL student magazine, Pi, was published for the first time on 21 February 1946. The Institute of Jewish Studies relocated to UCL in 1959.

    The Mullard Space Science Laboratory (UK) was established in 1967. In 1973, UCL became the first international node to the precursor of the internet, the ARPANET.

    ARPANET schematic

    Although University College London was among the first universities to admit women on the same terms as men, in 1878, the college’s senior common room, the Housman Room, remained men-only until 1969. After two unsuccessful attempts, a motion was passed that ended segregation by sex at University College London. This was achieved by Brian Woledge (Fielden Professor of French at University College London from 1939 to 1971) and David Colquhoun, at that time a young lecturer in pharmacology.

    1976 to 2005 – University College London (UK)

    In 1976, a new charter restored University College London’s legal independence, although still without the power to award its own degrees. Under this charter the college became formally known as University College London. This name abandoned the comma used in its earlier name of “University College, London”.

    In 1986, University College London merged with the Institute of Archaeology. In 1988, University College London merged with the Institute of Laryngology & Otology; the Institute of Orthopaedics; the Institute of Urology & Nephrology; and Middlesex Hospital Medical School.

    In 1993, a reorganization of the University of London meant that University College London and other colleges gained direct access to government funding and the right to confer University of London degrees themselves. This led to University College London being regarded as a de facto university in its own right.

    In 1994, the University College London Hospitals NHS Trust was established. University College London merged with the College of Speech Sciences and the Institute of Ophthalmology in 1995; the Institute of Child Health and the School of Podiatry in 1996; and the Institute of Neurology in 1997. In 1998, UCL merged with the Royal Free Hospital Medical School to create the Royal Free and University College Medical School (renamed the University College London Medical School in October 2008). In 1999, UCL merged with the School of Slavonic and East European Studies and the Eastman Dental Institute.

    The University College London Jill Dando Institute of Crime Science, the first university department in the world devoted specifically to reducing crime, was founded in 2001.

    Proposals for a merger between University College London and Imperial College London(UK) were announced in 2002. The proposal provoked strong opposition from University College London teaching staff and students and the AUT union, which criticized “the indecent haste and lack of consultation”, leading to its abandonment by University College London provost Sir Derek Roberts. The blogs that helped to stop the merger are preserved, though some of the links are now broken: see David Colquhoun’s blog and the Save University College London blog, which was run by David Conway, a postgraduate student in the department of Hebrew and Jewish studies.

    The London Centre for Nanotechnology was established in 2003 as a joint venture between University College London and Imperial College London (UK). They were later joined by King’s College London(UK) in 2018.

    Since 2003, when University College London professor David Latchman became master of the neighboring Birkbeck, he has forged closer relations between these two University of London colleges, and personally maintains departments at both. Joint research centres include the UCL/Birkbeck Institute for Earth and Planetary Sciences; the University College London /Birkbeck/IoE Centre for Educational Neuroscience; the University College London /Birkbeck Institute of Structural and Molecular Biology; and the Birkbeck- University College London Centre for Neuroimaging.

    2005 to 2010

    In 2005, University College London was finally granted its own taught and research degree awarding powers and all University College London students registered from 2007/08 qualified with University College London degrees. Also in 2005, University College London adopted a new corporate branding under which the name University College London was replaced by the initialism UCL in all external communications. In the same year, a major new £422 million building was opened for University College Hospital on Euston Road, the University College London Ear Institute was established and a new building for the University College London School of Slavonic and East European Studies was opened.

    In 2007, the University College London Cancer Institute was opened in the newly constructed Paul O’Gorman Building. In August 2008, University College London formed UCL Partners, an academic health science centre, with Great Ormond Street Hospital for Children NHS Trust; Moorfields Eye Hospital NHS Foundation Trust; Royal Free London NHS Foundation Trust; and University College London Hospitals NHS Foundation Trust. In 2008, University College London established the University College London School of Energy & Resources in Adelaide, Australia, the first campus of a British university in the country. The School was based in the historic Torrens Building in Victoria Square and its creation followed negotiations between University College London Vice Provost Michael Worton and South Australian Premier Mike Rann.

    In 2009, the Yale UCL Collaborative was established between University College London; UCL Partners; Yale University; Yale School of Medicine; and Yale – New Haven Hospital. It is the largest collaboration in the history of either university, and its scope has subsequently been extended to the humanities and social sciences.

    2010 to 2015

    In June 2011, the mining company BHP Billiton agreed to donate AU$10 million to University College London to fund the establishment of two energy institutes – the Energy Policy Institute; based in Adelaide, and the Institute for Sustainable Resources, based in London.

    In November 2011, University College London announced plans for a £500 million investment in its main Bloomsbury campus over 10 years, as well as the establishment of a new 23-acre campus next to the Olympic Park in Stratford in the East End of London. It revised its plans of expansion in East London and in December 2014 announced to build a campus (UCL East) covering 11 acres and provide up to 125,000m^2 of space on Queen Elizabeth Olympic Park. UCL East will be part of plans to transform the Olympic Park into a cultural and innovation hub, where University College London will open its first school of design, a centre of experimental engineering and a museum of the future, along with a living space for students.

    The School of Pharmacy, University of London merged with University College London on 1 January 2012, becoming the University College London School of Pharmacy within the Faculty of Life Sciences. In May 2012, University College London , Imperial College London (UK) and the semiconductor company Intel announced the establishment of the Intel Collaborative Research Institute for Sustainable Connected Cities, a London-based institute for research into the future of cities.

    In August 2012, University College London received criticism for advertising an unpaid research position; it subsequently withdrew the advert.

    University College London and the Institute of Education formed a strategic alliance in October 2012, including co-operation in teaching, research and the development of the London schools system. In February 2014, the two institutions announced their intention to merge, and the merger was completed in December 2014.

    In September 2013, a new Department of Science, Technology, Engineering and Public Policy (STEaPP) was established within the Faculty of Engineering, one of several initiatives within the university to increase and reflect upon the links between research and public sector decision-making.

    In October 2013, it was announced that the Translation Studies Unit of Imperial College London would move to University College London, becoming part of the University College London School of European Languages, Culture and Society. In December 2013, it was announced that University College London and the academic publishing company Elsevier would collaborate to establish the UCL Big Data Institute. In January 2015, it was announced that University College London had been selected by the UK government as one of the five founding members of the Alan Turing Institute(UK) (together with the universities of Cambridge, University of Edinburgh(SCL), Oxford and University of Warwick(UK)), an institute to be established at the British Library to promote the development and use of advanced mathematics, computer science, algorithms and big data.

    2015 to 2020

    In August 2015, the Department of Management Science and Innovation was renamed as the School of Management and plans were announced to greatly expand University College London’s activities in the area of business-related teaching and research. The school moved from the Bloomsbury campus to One Canada Square in Canary Wharf in 2016.

    University College London established the Institute of Advanced Studies (IAS) in 2015 to promote interdisciplinary research in humanities and social sciences. The prestigious annual Orwell Prize for political writing moved to the IAS in 2016.

    In June 2016 it was reported in Times Higher Education that as a result of administrative errors hundreds of students who studied at the UCL Eastman Dental Institute between 2005–06 and 2013–14 had been given the wrong marks, leading to an unknown number of students being attributed with the wrong qualifications and, in some cases, being failed when they should have passed their degrees. A report by University College London’s Academic Committee Review Panel noted that, according to the institute’s own review findings, senior members of University College London staff had been aware of issues affecting students’ results but had not taken action to address them. The Review Panel concluded that there had been an apparent lack of ownership of these matters amongst the institute’s senior staff.

    In December 2016 it was announced that University College London would be the hub institution for a new £250 million national dementia research institute, to be funded with £150 million from the Medical Research Council and £50 million each from Alzheimer’s Research UK and the Alzheimer’s Society.

    In May 2017 it was reported that staff morale was at “an all time low”, with 68% of members of the academic board who responded to a survey disagreeing with the statement ” University College London is well managed” and 86% with “the teaching facilities are adequate for the number of students”. Michael Arthur, the Provost and President, linked the results to the “major change programme” at University College London. He admitted that facilities were under pressure following growth over the past decade, but said that the issues were being addressed through the development of UCL East and rental of other additional space.

    In October 2017 University College London’s council voted to apply for university status while remaining part of the University of London. University College London’s application to become a university was subject to Parliament passing a bill to amend the statutes of the University of London, which received royal assent on 20 December 2018.

    The University College London Adelaide satellite campus closed in December 2017, with academic staff and student transferring to the University of South Australia (AU). As of 2019 UniSA and University College London are offering a joint master’s qualification in Science in Data Science (international).

    In 2018, University College London opened UCL at Here East, at the Queen Elizabeth Olympic Park, offering courses jointly between the Bartlett Faculty of the Built Environment and the Faculty of Engineering Sciences. The campus offers a variety of undergraduate and postgraduate master’s degrees, with the first undergraduate students, on a new Engineering and Architectural Design MEng, starting in September 2018. It was announced in August 2018 that a £215 million contract for construction of the largest building in the UCL East development, Marshgate 1, had been awarded to Mace, with building to begin in 2019 and be completed by 2022.

    In 2017 University College London disciplined an IT administrator who was also the University and College Union (UCU) branch secretary for refusing to take down an unmoderated staff mailing list. An employment tribunal subsequently ruled that he was engaged in union activities and thus this disciplinary action was unlawful. As of June 2019 University College London is appealing this ruling and the UCU congress has declared this to be a “dispute of national significance”.

    2020 to present

    In 2021 University College London formed a strategic partnership with Facebook AI Research (FAIR), including the creation of a new PhD programme.

    Research

    University College London has made cross-disciplinary research a priority and orientates its research around four “Grand Challenges”, Global Health, Sustainable Cities, Intercultural Interaction and Human Wellbeing.

    In 2014/15, University College London had a total research income of £427.5 million, the third-highest of any British university (after the University of Oxford (UK) and Imperial College London (UK)). Key sources of research income in that year were BIS research councils (£148.3 million); UK-based charities (£106.5 million); UK central government; local/health authorities and hospitals (£61.5 million); EU government bodies (£45.5 million); and UK industry, commerce and public corporations (£16.2 million). In 2015/16, University College London was awarded a total of £85.8 million in grants by UK research councils, the second-largest amount of any British university (after the University of Oxford (UK)), having achieved a 28% success rate. For the period to June 2015, University College London was the fifth-largest recipient of Horizon 2020 EU research funding and the largest recipient of any university, with €49.93 million of grants received. University College London also had the fifth-largest number of projects funded of any organization, with 94.

    According to a ranking of universities produced by SCImago Research Group University College London is ranked 12th in the world (and 1st in Europe) in terms of total research output. According to data released in July 2008 by ISI Web of Knowledge, University College London is the 13th most-cited university in the world (and most-cited in Europe). The analysis covered citations from 1 January 1998 to 30 April 2008, during which 46,166 UCL research papers attracted 803,566 citations. The report covered citations in 21 subject areas and the results revealed some of University College London’s key strengths, including: Clinical Medicine (1st outside North America); Immunology (2nd in Europe); Neuroscience & Behavior (1st outside North America and 2nd in the world); Pharmacology & Toxicology (1st outside North America and 4th in the world); Psychiatry & Psychology (2nd outside North America); and Social Sciences, General (1st outside North America).

    University College London submitted a total of 2,566 staff across 36 units of assessment to the 2014 Research Excellence Framework assessment, in each case the highest number of any UK university (compared with 1,793 UCL staff submitted to the 2008 Research Assessment Exercise (RAE 2008)). In the REF results 43% of University College London’s submitted research was classified as 4* (world-leading); 39% as 3* (internationally excellent); 15% as 2* (recognised internationally) and 2% as 1* (recognised nationally), giving an overall GPA of 3.22 (RAE 2008: 4* – 27%, 3* – 39%, 2* – 27% and 1* – 6%). In rankings produced by Times Higher Education based upon the REF results, University College London was ranked 1st overall for “research power” and joint 8th for GPA (compared to 4th and 7th respectively in equivalent rankings for the RAE 2008).

     
  • richardmitnick 4:49 pm on October 5, 2022 Permalink | Reply
    Tags: "PEARLS": Prime Extragalactic Areas for Reionization and Lensing Science project, "Webb images reveal interstellar discovery", , Basic Research, , , , The VV191 galaxy pair, The Webb images are combined with Hubble data to accurately model both the original light from the background elliptical galaxy and how much it was reddened by the foreground spiral., This is a distant galaxy seen within the first few billion years after the Big Bang. Its light was gravitationally distorted by the enormous mass of the elliptical galaxy., This is a rather unique opportunity to measure how much dust has been produced in this spiral galaxy-like our own-by previous generations of stars., Webb scientists are now able to delineate how star formation can happen in these kinds of galaxies from the gas and the dust that formed in the past., Webb’s technology allows for a better visualization of the attenuation by dust that Hubble was not able to do.   

    From The Arizona State University: “Webb images reveal interstellar discovery” 

    From The Arizona State University

    10.5.22

    1
    Above the white elliptical galaxy at left, a faint red arc appears in the inset at 10 o’clock. This is a very distant galaxy whose appearance is warped. Its light is bent by the gravity of the elliptical foreground galaxy. Plus, its appearance is duplicated. The stretched red arc is warped where it reappears — as a dot — at 4 o’clock.

    Researchers traced light that was emitted by the bright white elliptical galaxy on the left through the spiral galaxy at right. As a result, they were able to identify the effects of interstellar dust in the spiral galaxy. Webb’s near-infrared data also shows us the galaxy’s longer, extremely dusty spiral arms in far more detail, giving them an appearance of overlapping with the central bulge of the bright white elliptical galaxy on the left, though the pair are not interacting.

    In this image, green, yellow and red were assigned to Webb’s near-infrared data taken in 0.9, 1.5 and 3.56 microns. Blue was assigned to two Hubble filters, ultraviolet data taken in 0.34 microns and visible light in 0.61 microns. Credit: NASA, ESA, CSA, Rogier Windhorst (ASU), William Keel (University of Alabama), Stuart Wyithe JWST PEARLS Team.

    2
    Second-year astrophysics and math student Jake Summers (left) looks on as research scientist Seth Cohen and Regents Professor Rogier Windhorst examine a new image from the Webb telescope in Windhorst’s lab. Photo by Charlie Leight/ASU News.

    3
    Research scientist Seth Cohen talks during a Zoom meeting. Students, staff and faculty had gathered in the lab to analyze data and images coming in from the new James Webb Space Telescope, the older Hubble Space Telescope as well as ground-based telescopes based around the globe. Photo by Charlie Leight/ASU News.

    Arizona State University astronomers are sharing one of their first and most beautiful NASA James Webb Space Telescope images of a galaxy pair at a distance of about 700 million light-years away from us.

    Using Webb’s new images and data, the scientists were able to trace the light that was emitted by the bright white elliptical galaxy through the winding spiral galaxy in front of it, allowing astronomers to identify the effects of interstellar dust in the spiral galaxy.

    Webb interdisciplinary scientist and ASU Regents Professor Rogier Windhorst and his team obtained the data used in these images from early results of the telescope’s Prime Extragalactic Areas for Reionization and Lensing Science (PEARLS) project.

    “This is a rather unique opportunity to measure how much dust has been produced in this spiral galaxy-like our own-by previous generations of stars. Mind you that this is the kind of dust that the next generation of stars and planets, and in our case people, are also formed from,” Windhorst said.

    Webb scientists are now able to delineate how star formation can happen in these kinds of galaxies from the gas and the dust that formed in the past. They folded in Hubble images to provide some of the bluish light, but almost all of this light is coming from Webb.

    The Webb images used for this study observe wavelengths longer than those visible to the naked eye, but they are mapped onto our familiar family of colors to make our images. They are combined with Hubble data observing visible light to accurately model both the original light from the background elliptical galaxy, and how much it was reddened by the foreground spiral.

    A sunset at the horizon, for example in Arizona, appears red because of dust in the atmosphere, and because our atmosphere transmits red light better than the blue light. The same principle applies in the Webb images.

    The infrared light that Webb observes from the elliptical galaxy is very well visible in the images, even when passing through the dust of the foreground spiral. Windhorst says that most of this light is rendered as false color. You’re not actually looking at blue or violet light, but at near-infrared light that has been rendered for the eye to see.

    Webb’s technology allows for a better visualization of the attenuation by dust that Hubble was not able to do. Webb’s eight new infrared filters allow for a more accurate analysis when mapping the attenuation by dust.

    Windhorst explained that by comparing images of Hubble and Webb, the dust lanes in the foreground spiral become visible, the same dust that our solar system is made from when it formed our sun and its planets.

    This dust now becomes visible because that background elliptical galaxy acts like a flashlight. It is the dust attenuation in this spiral galaxy that Windhorst and his team are trying to map, and it can be traced very well with the new Webb infrared images.

    The Windhorst group combined data from Hubble and Webb to get some other surprising results. The image and data showed not only this a rather unique alignment of an elliptical in the background and a spiral galaxy they were trying to measure in the foreground, but they saw a strange-looking arc-shaped object behind the elliptical galaxy.

    This is a distant galaxy seen within the first few billion years after the Big Bang. Its light was gravitationally distorted by the enormous mass of the elliptical galaxy, which is close to the mass of a hundred billion suns. And the very large mass of the elliptical galaxy stretches the very distant small galaxy into an arc.

    The light from that distant galaxy is in reality almost directly behind the center of the elliptical, but its light comes around via two gravitationally bent paths: One is a stretched arc-like image, and the other is a faint counterimage on the other side of the elliptical galaxy center.

    “We got more than we bargained for by combining data from NASA’s James Webb Space Telescope and NASA’s Hubble Space Telescope,” Windhorst said. “Webb’s new data allowed us to trace the light that was emitted by the bright white elliptical galaxy, at left, through the winding spiral galaxy at right — and identify the effects of interstellar dust in the spiral galaxy.”

    Video by Steve Filmer/ASU Media Relations

    The scientific paper was submitted recently to The Astrophysical Journal [below]. The research has also allowed ASU-NASA Space Grant intern Jake Summers to be part of the working for the ASU Cosmology Research Group as part of the Webb Telescope PEARLS team.

    “I find it astonishing how Webb can provide for completely unexpected findings, such as the lensed galaxy behind the elliptical galaxy in the VV191 system, with relative ease and with only half an hour of exposure time,” Summers said. “The resolution of Webb never ceases to amaze me — I was blown away by the fact that it can resolve individual globular clusters in the main elliptical galaxy.”

    William Keel of the University of Alabama is the lead author of this study, with co-authors including Windhorst, and Seth Cohen and Rolf Jansen from the School of Earth and Space Exploration.

    The VV191 galaxy pair was called to the attention of researchers by citizen science group Galaxy Zoo. Keel has been involved Galaxy Zoo for nearly 15 years and was initially drawn to the group for the ability of participants to pick out rare galaxy types, especially silhouetted or overlapping galaxy systems.

    “VV191 is the latest addition to a small number of galaxies that helps researchers like us directly compare the properties of galactic dust,” Keel said. “This target was selected from nearly 2,000 superimposed galaxy pairs identified by Galaxy Zoo citizen science volunteers.”

    Science paper:
    The Astrophysical Journal
    See the science paper for instructive images.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Arizona State University Tempe Campus

    The Arizona State University is a public research university in the Phoenix metropolitan area. Founded in 1885 by the 13th Arizona Territorial Legislature, ASU is one of the largest public universities by enrollment in the U.S.

    One of three universities governed by the Arizona Board of Regents, The Arizona State University is a member of the Universities Research Association and classified among “R1: Doctoral Universities – Very High Research Activity.” The Arizona State University has nearly 150,000 students attending classes, with more than 38,000 students attending online, and 90,000 undergraduates and more nearly 20,000 postgraduates across its five campuses and four regional learning centers throughout Arizona. The Arizona State University offers 350 degree options from its 17 colleges and more than 170 cross-discipline centers and institutes for undergraduates students, as well as more than 400 graduate degree and certificate programs. The Arizona State Sun Devils compete in 26 varsity-level sports in the NCAA Division I Pac-12 Conference and is home to over 1,100 registered student organizations.

    The Arizona State University ‘s charter, approved by the board of regents in 2014, is based on the New American University model created by The Arizona State University President Michael M. Crow upon his appointment as the institution’s 16th president in 2002. It defines The Arizona State University as “a comprehensive public research university, measured not by whom it excludes, but rather by whom it includes and how they succeed; advancing research and discovery of public value; and assuming fundamental responsibility for the economic, social, cultural and overall health of the communities it serves.” The model is widely credited with boosting The Arizona State University ‘s acceptance rate and increasing class size.

    The university’s faculty of more than 4,700 scholars has included 5 Nobel laureates, 6 Pulitzer Prize winners, 4 MacArthur Fellows, and 19 National Academy of Sciences members. Additionally, among the faculty are 180 Fulbright Program American Scholars, 72 National Endowment for the Humanities fellows, 38 American Council of Learned Societies fellows, 36 members of the Guggenheim Fellowship, 21 members of the American Academy of Arts and Sciences, 3 members of National Academy of Inventors, 9 National Academy of Engineering members and 3 National Academy of Medicine members. The National Academies has bestowed “highly prestigious” recognition on 227 Arizona State University faculty members.
    History

    The Arizona State University was established as the Territorial Normal School at Tempe on March 12, 1885, when the 13th Arizona Territorial Legislature passed an act to create a normal school to train teachers for the Arizona Territory. The campus consisted of a single, four-room schoolhouse on a 20-acre plot largely donated by Tempe residents George and Martha Wilson. Classes began with 33 students on February 8, 1886. The curriculum evolved over the years and the name was changed several times; the institution was also known as Tempe Normal School of Arizona (1889–1903), Tempe Normal School (1903–1925), Tempe State Teachers College (1925–1929), Arizona State Teachers College (1929–1945), Arizona State College (1945–1958) and, by a 2–1 margin of the state’s voters, The Arizona State University in 1958.

    In 1923, the school stopped offering high school courses and added a high school diploma to the admissions requirements. In 1925, the school became the Tempe State Teachers College and offered four-year Bachelor of Education degrees as well as two-year teaching certificates. In 1929, the 9th Arizona State Legislature authorized Bachelor of Arts in Education degrees as well, and the school was renamed The Arizona State Teachers College. Under the 30-year tenure of president Arthur John Matthews (1900–1930), the school was given all-college student status. The first dormitories built in the state were constructed under his supervision in 1902. Of the 18 buildings constructed while Matthews was president, six are still in use. Matthews envisioned an “evergreen campus,” with many shrubs brought to the campus, and implemented the planting of 110 Mexican Fan Palms on what is now known as Palm Walk, a century-old landmark of the Tempe campus.

    During the Great Depression, Ralph Waldo Swetman was hired to succeed President Matthews, coming to The Arizona State Teachers College in 1930 from The Humboldt State Teachers College where he had served as president. He served a three-year term, during which he focused on improving teacher-training programs. During his tenure, enrollment at the college doubled, topping the 1,000 mark for the first time. Matthews also conceived of a self-supported summer session at the school at The Arizona State Teachers College, a first for the school.

    1930–1989

    In 1933, Grady Gammage, then president of The Arizona State Teachers College at Flagstaff, became president of The Arizona State Teachers College at Tempe, beginning a tenure that would last for nearly 28 years, second only to Swetman’s 30 years at the college’s helm. Like President Arthur John Matthews before him, Gammage oversaw the construction of several buildings on the Tempe campus. He also guided the development of the university’s graduate programs; the first Master of Arts in Education was awarded in 1938, the first Doctor of Education degree in 1954 and 10 non-teaching master’s degrees were approved by the Arizona Board of Regents in 1956. During his presidency, the school’s name was changed to Arizona State College in 1945, and finally to The Arizona State University in 1958. At the time, two other names were considered: Tempe University and State University at Tempe. Among Gammage’s greatest achievements in Tempe was the Frank Lloyd Wright-designed construction of what is Grady Gammage Memorial Auditorium/ASU Gammage. One of the university’s hallmark buildings, Arizona State University Gammage was completed in 1964, five years after the president’s (and Wright’s) death.

    Gammage was succeeded by Harold D. Richardson, who had served the school earlier in a variety of roles beginning in 1939, including director of graduate studies, college registrar, dean of instruction, dean of the College of Education and academic vice president. Although filling the role of acting president of the university for just nine months (Dec. 1959 to Sept. 1960), Richardson laid the groundwork for the future recruitment and appointment of well-credentialed research science faculty.

    By the 1960s, under G. Homer Durham, the university’s 11th president, The Arizona State University began to expand its curriculum by establishing several new colleges and, in 1961, the Arizona Board of Regents authorized doctoral degree programs in six fields, including Doctor of Philosophy. By the end of his nine-year tenure, The Arizona State University had more than doubled enrollment, reporting 23,000 in 1969.

    The next three presidents—Harry K. Newburn (1969–71), John W. Schwada (1971–81) and J. Russell Nelson (1981–89), including and Interim President Richard Peck (1989), led the university to increased academic stature, the establishment of The Arizona State University West campus in 1984 and its subsequent construction in 1986, a focus on computer-assisted learning and research, and rising enrollment.

    1990–present

    Under the leadership of Lattie F. Coor, president from 1990 to 2002, The Arizona State University grew through the creation of the Polytechnic campus and extended education sites. Increased commitment to diversity, quality in undergraduate education, research, and economic development occurred over his 12-year tenure. Part of Coor’s legacy to the university was a successful fundraising campaign: through private donations, more than $500 million was invested in areas that would significantly impact the future of The Arizona State University. Among the campaign’s achievements were the naming and endowing of Barrett, The Honors College, and the Herberger Institute for Design and the Arts; the creation of many new endowed faculty positions; and hundreds of new scholarships and fellowships.

    In 2002, Michael M. Crow became the university’s 16th president. At his inauguration, he outlined his vision for transforming The Arizona State University into a “New American University”—one that would be open and inclusive, and set a goal for the university to meet Association of American Universities criteria and to become a member. Crow initiated the idea of transforming The Arizona State University into “One university in many places”—a single institution comprising several campuses, sharing students, faculty, staff and accreditation. Subsequent reorganizations combined academic departments, consolidated colleges and schools, and reduced staff and administration as the university expanded its West and Polytechnic campuses. The Arizona State University’s Downtown Phoenix campus was also expanded, with several colleges and schools relocating there. The university established learning centers throughout the state, including The Arizona State University Colleges at Lake Havasu City and programs in Thatcher, Yuma, and Tucson. Students at these centers can choose from several Arizona State University degree and certificate programs.

    During Crow’s tenure, and aided by hundreds of millions of dollars in donations, The Arizona State University began a years-long research facility capital building effort that led to the establishment of the Biodesign Institute at The Arizona State University, the Julie Ann Wrigley Global Institute of Sustainability, and several large interdisciplinary research buildings. Along with the research facilities, the university faculty was expanded, including the addition of five Nobel Laureates. Since 2002, the university’s research expenditures have tripled and more than 1.5 million square feet of space has been added to the university’s research facilities.

    The economic downturn that began in 2008 took a particularly hard toll on Arizona, resulting in large cuts to The Arizona State University ‘s budget. In response to these cuts, The Arizona State University capped enrollment, closed some four dozen academic programs, combined academic departments, consolidated colleges and schools, and reduced university faculty, staff and administrators; however, with an economic recovery underway in 2011, the university continued its campaign to expand the West and Polytechnic Campuses, and establish a low-cost, teaching-focused extension campus in Lake Havasu City.

    As of 2011, an article in Slate reported that, “the bottom line looks good,” noting that:

    “Since Crow’s arrival, The Arizona State University’s research funding has almost tripled to nearly $350 million. Degree production has increased by 45 percent. And thanks to an ambitious aid program, enrollment of students from Arizona families below poverty is up 647 percent.”

    In 2015, the Thunderbird School of Global Management became the fifth Arizona State University campus, as the Thunderbird School of Global Management at The Arizona State University. Partnerships for education and research with Mayo Clinic established collaborative degree programs in health care and law, and shared administrator positions, laboratories and classes at the Mayo Clinic Arizona campus.

    The Beus Center for Law and Society, the new home of The Arizona State University’s Sandra Day O’Connor College of Law, opened in fall 2016 on the Downtown Phoenix campus, relocating faculty and students from the Tempe campus to the state capital.

     
  • richardmitnick 12:39 pm on October 5, 2022 Permalink | Reply
    Tags: , , Basic Research, , , , "A Stellar ‘Light Switch’ Orbiting a Black Hole", The event was called AT2018fyk and further analysis found that the emission was coming from the nucleus of a galaxy named LCRS B224721.6−450748., 600 days after the initial discovery there was a sharp decrease in the brightness of the X-ray and UV emission., 600 days after the dimming began the ‘light switch’ was flipped and the X-ray and UV emission from AT2018fyk have returned to close to pre-dimming levels.   

    From Astrobites : “A Stellar ‘Light Switch’ Orbiting a Black Hole” 

    Astrobites bloc

    From Astrobites

    10.5.22
    Evan Lewis

    Title: The rebrightening of AT2018fyk as a repeating partial tidal disruption event

    Authors: T. Wevers, E.R. Coughlin, D.R. Pasham, M. Guolo, Y. Sun, S. Wen, P.G. Jonker, A. Zabludoff, A. Malyali, R. Arcodia, Z. Liu, A. Merloni, A. Rau, I. Grotova, P. Short, Z. Cao

    First Author’s Institution: The European Southern Observatory [La Observatorio Europeo Austral] [Observatoire européen austral][Europaiche Sûdsternwarte] (EU)(CL)
    Status: Submitted to ApJ Letters [open access]

    Out in the center of a distant galaxy, a star is being torn apart as it circles the drain around an enormous black hole! Today’s paper reports on the re-emergence of X-ray and UV emission from a star orbiting a supermassive black hole (SMBH). After being discovered, this emission suddenly flicked off and stayed undetectable for ~600 days, before it quickly returned like a light switch being turned back on after a blackout– making this a very dynamic system to study.

    In 2018, optical emission from the star was discovered by the All-Sky Automated Survey for Supernovae (ASASSN), a supernova search using 24 telescopes around the world which can see objects 50,000 times dimmer than we can see with our naked eyes!

    The event was called AT2018fyk and further analysis found that the emission was coming from the nucleus of a galaxy named LCRS B224721.6−450748. These super catchy and memorable names are thanks to astronomers using astrometric coordinates and dates of discovery to name new objects, since there are too many in the sky to give each a unique name! But 600 days after the initial discovery there was a sharp decrease in the brightness of the X-ray and UV emission, with the X-ray emission plummeting to less than 1/6,000th of its original brightness. For 600 days, this dimming persisted, suggesting that the star had been torn apart by the gravitational pull of the black hole, and all of the stellar material had fallen onto the surface of the black hole, leaving nothing behind. This is known as a tidal disruption event (TDE), since the tidal forces (yes, the same ones that cause the ocean tides on Earth!) rip the star apart.

    However, today’s authors report that 600 days after the dimming began the ‘light switch’ was flipped and the X-ray and UV emission from AT2018fyk have returned to close to pre-dimming levels. In most tidal disruptions, the star is totally torn apart and the emission slowly fades, never to return– so their hypothesis is that this event was only a partial TDE, where the core of the star remained intact while only the outer layers were stripped away.

    1
    Figure 1: Cartoons illustrating the evolution of the star/SMBH system over time. The binary system is torn apart in panels a) and b), the stellar material begins to fall onto the black hole in panel c), the star moves away from the black hole in panel e), and the tidal disruption begins once again in panel f). Figure 3 from today’s paper.

    Figure 1 shows a schematic which illustrates the key phases of AT2018fyk’s history. The origins of this system are unique- given the previously estimated SMBH mass, a star should theoretically take at least a few thousand years to make one full orbit around the central black hole– way longer than the timescales of a few years that we’re seeing! But, if the star was originally part of a binary system, the black hole can disrupt the binary, pulling one star into an orbit around the black hole while the other star is shot at extremely high speeds away from the galaxy. Panels a) and b) of Figure 1 show this process, with the yellow dot representing the star’s ex-binary companion (now called a hypervelocity star) which is flung off into space.

    Panel c), at t=0, matches up with the initial discovery of the system, with material falling onto the surface of the supermassive black hole and getting heated up, which creates X-rays. This process is called accretion, or stellar fallback. Panel e), at t=600 days after discovery, shows that at this point the core of the star has moved farther away from the SMBH, and the stellar material remains gravitationally attracted to the stellar core, so it has stopped falling onto the SMBH– this is the point at which the X-ray and UV emission got much dimmer. At t=1200 days (the focus of this paper), what remains of the star has moved back into the region where the outer material of the star will be pulled onto the SMBH, and the emission ‘turns on’ once again.

    2
    Figure 2- the light curve of the stellar/SMBH system over time, since its discovery. Both the UV (green diamond; from Swift) and X-ray (black, from Swift/XMM-Newton/Chandra/eROSITA) light curves are shown. The x-axis is measured in days, with t=0 equal to the discovery of the system. Top left panel of Figure 1 from today’s paper.

    Figure 2 shows the light curve, or the luminosity of the emission over time, in the UV (green) and X-ray (black) wavelength ranges over the course of the observational history of AT2018fyk. Letters A-D represent the first 600 days of bright emission: at first, the UV emission is brighter (higher up on the y-axis) than the X-ray emission, but they switch around letter C. Why do we observe this behavior? At early times, the gas surrounding SMBH will be optically thick, but when the star moves away and the rate of fallback declines, the gas is able to expand and cool, becoming more optically thin (puffier) so it’s easier to see through to the hot inner region of the system, leading to brighter X-ray emission. At letter E, the dimming period begins as the star moves away from the SMBH, and the emission brightness drops sharply into its “quiescent” state. Finally, at letter F, the bright emission returns at similar luminosity levels to before, implying that the same star has orbited back around to a point where material is falling onto the SMBH.

    The authors predict that there will be another sharp brightness decline in August 2023 and, if the star survives this second encounter, a third episode of re-brightening should begin around March 2025. This gives astronomers an exciting prediction to look forward to confirming or denying, as we continue to learn about exotic systems like this!

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    What do we do?

    Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
    Why read Astrobites?

    Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.

    Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.

     
  • richardmitnick 11:18 am on October 5, 2022 Permalink | Reply
    Tags: "Astronomers find a 'cataclysmic' pair of stars with the shortest orbit yet", , , Basic Research, , Scientists caught this system in the act of switching from hydrogen to helium accretion., , , The newly discovered system tagged ZTF J1813+4251, This is the first time such a transitioning system has been observed directly.,   

    From The Massachusetts Institute of Technology And The Harvard-Smithsonian Center for Astrophysics: “Astronomers find a ‘cataclysmic’ pair of stars with the shortest orbit yet” 

    From The Massachusetts Institute of Technology

    And

    The Harvard-Smithsonian Center for Astrophysics

    10.5.22
    Jennifer Chu

    1
    An artist’s illustration shows a white dwarf (right) circling a larger, sun-like star (left) in an ultra-short orbit, forming a “cataclysmic” binary system. Credit: M.Weiss/Center for Astrophysics | Harvard & Smithsonian.

    Nearly half the stars in our galaxy are solitary like the sun. The other half comprises stars that circle other stars, in pairs and multiples, with orbits so tight that some stellar systems could fit between Earth and the moon.

    Astronomers at MIT and elsewhere have now discovered a stellar binary, or pair of stars, with an extremely short orbit, appearing to circle each other every 51 minutes. The system seems to be one of a rare class of binaries known as a “cataclysmic variable,” in which a star similar to our sun orbits tightly around a white dwarf — a hot, dense core of a burned-out star.

    A cataclysmic variable occurs when the two stars draw close, over billions of years, causing the white dwarf to start accreting, or eating material away from its partner star. This process can give off enormous, variable flashes of light that, centuries ago, astronomers assumed to be a result of some unknown cataclysm.

    The newly discovered system, which the team has tagged ZTF J1813+4251, is a cataclysmic variable with the shortest orbit detected to date. Unlike other such systems observed in the past, the astronomers caught this cataclysmic variable as the stars eclipsed each other multiple times, allowing the team to precisely measure properties of each star.

    With these measurements, the researchers ran simulations of what the system is likely doing today and how it should evolve over the next hundreds of millions of years. They conclude that the stars are currently in transition, and that the sun-like star has been circling and “donating” much of its hydrogen atmosphere to the voracious white dwarf. The sun-like star will eventually be stripped down to a mostly dense, helium-rich core. In another 70 million years, the stars will migrate even closer together, with an ultrashort orbit reaching just 18 minutes, before they begin to expand and drift apart.

    Decades ago, researchers at MIT and elsewhere predicted that such cataclysmic variables should transition to ultrashort orbits. This is the first time such a transitioning system has been observed directly.

    “This is a rare case where we caught one of these systems in the act of switching from hydrogen to helium accretion,” says Kevin Burdge, a Pappalardo Fellow in MIT’s Department of Physics. “People predicted these objects should transition to ultrashort orbits, and it was debated for a long time whether they could get short enough to emit detectable gravitational waves. This discovery puts that to rest.”​

    Burdge and colleagues report their discovery today in Nature [below]. The study’s co-authors include collaborators from multiple institutions, including the Harvard and Smithsonian Center for Astrophysics.

    Sky search

    The astronomers discovered the new system within a vast catalog of stars, observed by the Zwicky Transient Facility (ZTF), a survey that uses a camera attached to a telescope at the Palomar Observatory in California to take high-resolution pictures of wide swaths of the sky.

    The survey has taken more than 1,000 images of each of the more than 1 billion stars in the sky, recording each star’s changing brightness over days, months, and years.

    Burdge combed through the catalog, looking for signals of systems with ultrashort orbits, the dynamics of which can be so extreme that they should give off dramatic bursts of light and emit gravitational waves.

    “Gravitational waves are allowing us to study the universe in a totally new way,” says Burdge, who is searching the sky for new gravitational-wave sources.

    For this new study, Burdge looked through the ZTF data for stars that appeared to flash repeatedly, with a period of less than an hour — a frequency that typically signals a system of at least two closely orbiting objects, with one crossing the other and briefly blocking its light.

    He used an algorithm to weed through over 1 billion stars, each of which was recorded in more than 1,000 images. The algorithm sifted out about 1 million stars that appeared to flash every hour or so. Among these, Burdge then looked by eye for signals of particular interest. His search zeroed in on ZTF J1813+4251 — a system that resides about 3,000 light years from Earth, in the Hercules constellation.

    “This thing popped up, where I saw an eclipse happening every 51 minutes, and I said, OK, this is definitely a binary,” Burdge recalls.

    A dense core

    He and his colleagues further focused on the system using the W.M. Keck Observatory in Hawai’i and the Gran Telescopio Canarias in Spain.

    They found that the system was exceptionally “clean,” meaning they could clearly see its light change with each eclipse. With such clarity, they were able to precisely measure each object’s mass and radius, as well as their orbital period.

    They found that the first object was likely a white dwarf, at 1/100th the size of the sun and about half its mass. The second object was a sun-like star near the end of its life, at a tenth the size and mass of the sun (about the size of Jupiter). The stars also appeared to orbit each other every 51 minutes.

    Yet, something didn’t quite add up.

    “This one star looked like the sun, but the sun can’t fit into an orbit shorter than eight hours — what’s up here?” Burdge says.

    He soon hit upon an explanation: Nearly 30 years ago, researchers including MIT Professor Emeritus Saul Rappaport had predicted that ultrashort-orbit systems should exist as cataclysmic variables. As the white dwarf eats orbits the sun-like star and eats away its light hydrogen, the sun-like star should burn out, leaving a core of helium — an element that is more dense than hydrogen, and heavy enough to keep the dead star in a tight, ultrashort orbit.

    Burdge realized that ZTF J1813+4251 was likely a cataclysmic variable, in the act of transitioning from a hydrogen- to helium-rich body. The discovery both confirms the predictions made by Rappaport and others, and also stands as the shortest orbit cataclysmic variable detected to date.

    “This is a special system,” Burdge says. “We got doubly lucky to find a system that answers a big open question, and is one of the most beautifully behaved cataclysmic variables known.”

    This research was supported, in part, by the European Research Council.

    Science paper:
    Nature

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The The Harvard-Smithsonian Center for Astrophysics combines the resources and research facilities of the Harvard College Observatory and the Smithsonian Astrophysical Observatory under a single director to pursue studies of those basic physical processes that determine the nature and evolution of the universe. The Smithsonian Astrophysical Observatory is a bureau of the Smithsonian Institution, founded in 1890. The Harvard College Observatory, founded in 1839, is a research institution of the Faculty of Arts and Sciences, Harvard University, and provides facilities and substantial other support for teaching activities of the Department of Astronomy.

    Founded in 1973 and headquartered in Cambridge, Massachusetts, the CfA leads a broad program of research in astronomy, astrophysics, Earth and space sciences, as well as science education. The CfA either leads or participates in the development and operations of more than fifteen ground- and space-based astronomical research observatories across the electromagnetic spectrum, including the forthcoming Giant Magellan Telescope(CL) and the Chandra X-ray Observatory, one of NASA’s Great Observatories.

    GMT Giant Magellan Telescope(CL) 21 meters, to be at the Carnegie Institution for Science’s NSF NOIRLab NOAO Las Campanas Observatory(CL) some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.

    National Aeronautics and Space Administration Chandra X-ray telescope.

    Hosting more than 850 scientists, engineers, and support staff, the CfA is among the largest astronomical research institutes in the world. Its projects have included Nobel Prize-winning advances in cosmology and high energy astrophysics, the discovery of many exoplanets, and the first image of a black hole. The CfA also serves a major role in the global astrophysics research community: the CfA’s Astrophysics Data System, for example, has been universally adopted as the world’s online database of astronomy and physics papers. Known for most of its history as the “Harvard-Smithsonian Center for Astrophysics”, the CfA rebranded in 2018 to its current name in an effort to reflect its unique status as a joint collaboration between Harvard University and the Smithsonian Institution. The CfA’s current Director (since 2004) is Charles R. Alcock, who succeeds Irwin I. Shapiro (Director from 1982 to 2004) and George B. Field (Director from 1973 to 1982).

    The Center for Astrophysics | Harvard & Smithsonian is not formally an independent legal organization, but rather an institutional entity operated under a Memorandum of Understanding between Harvard University and the Smithsonian Institution. This collaboration was formalized on July 1, 1973, with the goal of coordinating the related research activities of the Harvard College Observatory (HCO) and the Smithsonian Astrophysical Observatory (SAO) under the leadership of a single Director, and housed within the same complex of buildings on the Harvard campus in Cambridge, Massachusetts. The CfA’s history is therefore also that of the two fully independent organizations that comprise it. With a combined lifetime of more than 300 years, HCO and SAO have been host to major milestones in astronomical history that predate the CfA’s founding.

    History of the Smithsonian Astrophysical Observatory (SAO)

    Samuel Pierpont Langley, the third Secretary of the Smithsonian, founded the Smithsonian Astrophysical Observatory on the south yard of the Smithsonian Castle (on the U.S. National Mall) on March 1,1890. The Astrophysical Observatory’s initial, primary purpose was to “record the amount and character of the Sun’s heat”. Charles Greeley Abbot was named SAO’s first director, and the observatory operated solar telescopes to take daily measurements of the Sun’s intensity in different regions of the optical electromagnetic spectrum. In doing so, the observatory enabled Abbot to make critical refinements to the Solar constant, as well as to serendipitously discover Solar variability. It is likely that SAO’s early history as a solar observatory was part of the inspiration behind the Smithsonian’s “sunburst” logo, designed in 1965 by Crimilda Pontes.

    In 1955, the scientific headquarters of SAO moved from Washington, D.C. to Cambridge, Massachusetts to affiliate with the Harvard College Observatory (HCO). Fred Lawrence Whipple, then the chairman of the Harvard Astronomy Department, was named the new director of SAO. The collaborative relationship between SAO and HCO therefore predates the official creation of the CfA by 18 years. SAO’s move to Harvard’s campus also resulted in a rapid expansion of its research program. Following the launch of Sputnik (the world’s first human-made satellite) in 1957, SAO accepted a national challenge to create a worldwide satellite-tracking network, collaborating with the United States Air Force on Project Space Track.

    With the creation of National Aeronautics and Space Administration the following year and throughout the space race, SAO led major efforts in the development of orbiting observatories and large ground-based telescopes, laboratory and theoretical astrophysics, as well as the application of computers to astrophysical problems.

    History of Harvard College Observatory (HCO)

    Partly in response to renewed public interest in astronomy following the 1835 return of Halley’s Comet, the Harvard College Observatory was founded in 1839, when the Harvard Corporation appointed William Cranch Bond as an “Astronomical Observer to the University”. For its first four years of operation, the observatory was situated at the Dana-Palmer House (where Bond also resided) near Harvard Yard, and consisted of little more than three small telescopes and an astronomical clock. In his 1840 book recounting the history of the college, then Harvard President Josiah Quincy III noted that “…there is wanted a reflecting telescope equatorially mounted…”. This telescope, the 15-inch “Great Refractor”, opened seven years later (in 1847) at the top of Observatory Hill in Cambridge (where it still exists today, housed in the oldest of the CfA’s complex of buildings). The telescope was the largest in the United States from 1847 until 1867. William Bond and pioneer photographer John Adams Whipple used the Great Refractor to produce the first clear Daguerrotypes of the Moon (winning them an award at the 1851 Great Exhibition in London). Bond and his son, George Phillips Bond (the second Director of HCO), used it to discover Saturn’s 8th moon, Hyperion (which was also independently discovered by William Lassell).

    Under the directorship of Edward Charles Pickering from 1877 to 1919, the observatory became the world’s major producer of stellar spectra and magnitudes, established an observing station in Peru, and applied mass-production methods to the analysis of data. It was during this time that HCO became host to a series of major discoveries in astronomical history, powered by the Observatory’s so-called “Computers” (women hired by Pickering as skilled workers to process astronomical data). These “Computers” included Williamina Fleming; Annie Jump Cannon; Henrietta Swan Leavitt; Florence Cushman; and Antonia Maury, all widely recognized today as major figures in scientific history. Henrietta Swan Leavitt, for example, discovered the so-called period-luminosity relation for Classical Cepheid variable stars, establishing the first major “standard candle” with which to measure the distance to galaxies. Now called “Leavitt’s Law”, the discovery is regarded as one of the most foundational and important in the history of astronomy; astronomers like Edwin Hubble, for example, would later use Leavitt’s Law to establish that the Universe is expanding, the primary piece of evidence for the Big Bang model.

    Upon Pickering’s retirement in 1921, the Directorship of HCO fell to Harlow Shapley (a major participant in the so-called “Great Debate” of 1920). This era of the observatory was made famous by the work of Cecelia Payne-Gaposchkin, who became the first woman to earn a Ph.D. in astronomy from Radcliffe College (a short walk from the Observatory). Payne-Gapochkin’s 1925 thesis proposed that stars were composed primarily of hydrogen and helium, an idea thought ridiculous at the time. Between Shapley’s tenure and the formation of the CfA, the observatory was directed by Donald H. Menzel and then Leo Goldberg, both of whom maintained widely recognized programs in solar and stellar astrophysics. Menzel played a major role in encouraging the Smithsonian Astrophysical Observatory to move to Cambridge and collaborate more closely with HCO.

    Joint history as the Center for Astrophysics (CfA)

    The collaborative foundation for what would ultimately give rise to the Center for Astrophysics began with SAO’s move to Cambridge in 1955. Fred Whipple, who was already chair of the Harvard Astronomy Department (housed within HCO since 1931), was named SAO’s new director at the start of this new era; an early test of the model for a unified Directorship across HCO and SAO. The following 18 years would see the two independent entities merge ever closer together, operating effectively (but informally) as one large research center.

    This joint relationship was formalized as the new Harvard–Smithsonian Center for Astrophysics on July 1, 1973. George B. Field, then affiliated with University of California- Berkeley, was appointed as its first Director. That same year, a new astronomical journal, the CfA Preprint Series was created, and a CfA/SAO instrument flying aboard Skylab discovered coronal holes on the Sun. The founding of the CfA also coincided with the birth of X-ray astronomy as a new, major field that was largely dominated by CfA scientists in its early years. Riccardo Giacconi, regarded as the “father of X-ray astronomy”, founded the High Energy Astrophysics Division within the new CfA by moving most of his research group (then at American Sciences and Engineering) to SAO in 1973. That group would later go on to launch the Einstein Observatory (the first imaging X-ray telescope) in 1976, and ultimately lead the proposals and development of what would become the Chandra X-ray Observatory. Chandra, the second of NASA’s Great Observatories and still the most powerful X-ray telescope in history, continues operations today as part of the CfA’s Chandra X-ray Center. Giacconi would later win the 2002 Nobel Prize in Physics for his foundational work in X-ray astronomy.

    Shortly after the launch of the Einstein Observatory, the CfA’s Steven Weinberg won the 1979 Nobel Prize in Physics for his work on electroweak unification. The following decade saw the start of the landmark CfA Redshift Survey (the first attempt to map the large scale structure of the Universe), as well as the release of the Field Report, a highly influential Astronomy & Astrophysics Decadal Survey chaired by the outgoing CfA Director George Field. He would be replaced in 1982 by Irwin Shapiro, who during his tenure as Director (1982 to 2004) oversaw the expansion of the CfA’s observing facilities around the world.

    Harvard Smithsonian Center for Astrophysics Fred Lawrence Whipple Observatory located near Amado, Arizona on the slopes of Mount Hopkins, Altitude 2,606 m (8,550 ft)

    European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation] (EU)/National Aeronautics and Space Administration SOHO satellite. Launched in 1995.

    National Aeronautics Space Agency NASA Kepler Space Telescope

    CfA-led discoveries throughout this period include canonical work on Supernova 1987A, the “CfA2 Great Wall” (then the largest known coherent structure in the Universe), the best-yet evidence for supermassive black holes, and the first convincing evidence for an extrasolar planet.

    The 1990s also saw the CfA unwittingly play a major role in the history of computer science and the internet: in 1990, SAO developed SAOImage, one of the world’s first X11-based applications made publicly available (its successor, DS9, remains the most widely used astronomical FITS image viewer worldwide). During this time, scientists at the CfA also began work on what would become the Astrophysics Data System (ADS), one of the world’s first online databases of research papers. By 1993, the ADS was running the first routine transatlantic queries between databases, a foundational aspect of the internet today.

    The CfA Today

    Research at the CfA

    Charles Alcock, known for a number of major works related to massive compact halo objects, was named the third director of the CfA in 2004. Today Alcock overseas one of the largest and most productive astronomical institutes in the world, with more than 850 staff and an annual budget in excess of $100M. The Harvard Department of Astronomy, housed within the CfA, maintains a continual complement of approximately 60 Ph.D. students, more than 100 postdoctoral researchers, and roughly 25 undergraduate majors in astronomy and astrophysics from Harvard College. SAO, meanwhile, hosts a long-running and highly rated REU Summer Intern program as well as many visiting graduate students. The CfA estimates that roughly 10% of the professional astrophysics community in the United States spent at least a portion of their career or education there.

    The CfA is either a lead or major partner in the operations of the Fred Lawrence Whipple Observatory, the Submillimeter Array, MMT Observatory, the South Pole Telescope, VERITAS, and a number of other smaller ground-based telescopes. The CfA’s 2019-2024 Strategic Plan includes the construction of the Giant Magellan Telescope as a driving priority for the Center.

    CFA Harvard Smithsonian Submillimeter Array on Mauna Kea, Hawaii, Altitude 4,205 m (13,796 ft).

    South Pole Telescope SPTPOL. The SPT collaboration is made up of over a dozen (mostly North American) institutions, including The University of Chicago ; The University of California-Berkeley ; Case Western Reserve University; Harvard/Smithsonian Astrophysical Observatory; The University of Colorado- Boulder; McGill (CA) University, The University of Illinois, Urbana-Champaign; The University of California- Davis; Ludwig Maximilians Universität München(DE); DOE’s Argonne National Laboratory; and The National Institute for Standards and Technology.

    Along with the Chandra X-ray Observatory, the CfA plays a central role in a number of space-based observing facilities, including the recently launched Parker Solar Probe, Kepler Space Telescope, the Solar Dynamics Observatory (SDO), and HINODE. The CfA, via the Smithsonian Astrophysical Observatory, recently played a major role in the Lynx X-ray Observatory, a NASA-Funded Large Mission Concept Study commissioned as part of the 2020 Decadal Survey on Astronomy and Astrophysics (“Astro2020”). If launched, Lynx would be the most powerful X-ray observatory constructed to date, enabling order-of-magnitude advances in capability over Chandra.

    [caption id="attachment_60988" align="alignnone" width="632"] NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker. The Johns Hopkins University Applied Physics Lab.

    National Aeronautics and Space Administration Solar Dynamics Observatory.

    Japan Aerospace Exploration Agency (JAXA) (国立研究開発法人宇宙航空研究開発機構] (JP)/National Aeronautics and Space Administration HINODE spacecraft.

    SAO is one of the 13 stakeholder institutes for the Event Horizon Telescope Board, and the CfA hosts its Array Operations Center. In 2019, the project revealed the first direct image of a black hole.

    Messier 87*, The first image of the event horizon of a black hole. This is the supermassive black hole at the center of the galaxy Messier 87. Image via The Event Horizon Telescope Collaboration released on 10 April 2019 via National Science Foundation.

    The result is widely regarded as a triumph not only of observational radio astronomy, but of its intersection with theoretical astrophysics. Union of the observational and theoretical subfields of astrophysics has been a major focus of the CfA since its founding.

    In 2018, the CfA rebranded, changing its official name to the “Center for Astrophysics | Harvard & Smithsonian” in an effort to reflect its unique status as a joint collaboration between Harvard University and the Smithsonian Institution. Today, the CfA receives roughly 70% of its funding from NASA, 22% from Smithsonian federal funds, and 4% from the National Science Foundation. The remaining 4% comes from contributors including the United States Department of Energy, the Annenberg Foundation, as well as other gifts and endowments.

    MIT Seal

    [caption id="attachment_116504" align="alignnone" width="632"] USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

    Massachusettes Institute of Technology-Haystack Observatory Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities.

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However, six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched “OpenCourseWare” to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 9:13 am on October 5, 2022 Permalink | Reply
    Tags: "Molecule-Building Innovators Win Nobel Prize in Chemistry", , Basic Research, ,   

    From “Quanta Magazine” : “Molecule-Building Innovators Win Nobel Prize in Chemistry” 

    From “Quanta Magazine”

    10.5.22
    Yasemin Saplakoglu

    1
    Carolyn Bertozzi, Morten Meldal and K. Barry Sharpless have been awarded the 2022 Nobel Prize in Chemistry for the development of click chemistry and bioorthogonal chemistry. Credit: (left): Roy Kaltschmidt, LBNL; Jens Christian Navarro Poulsen, University of Copenhagen; Bengt Oberger

    Carolyn Bertozzi, Morten Meldal and K. Barry Sharpless have been awarded the 2022 Nobel Prize in Chemistry for the development of click chemistry and bioorthogonal chemistry. Click chemistry revolutionized the options available to chemists for creating the molecules they desired. Bioorthogonal chemistry made it possible to monitor the chemical processes going on inside living cells without harming them.

    “It’s all about snapping molecules together,” said Johan Aqvist, chair of the Nobel Committee for Chemistry, during the announcement. Imagine, he told the audience, that you could attach small chemical buckles to a bunch of different types of molecular building blocks and then link these buckles together to produce complex molecules. That idea, put forth by Barry Sharpless of Scripps Research about 20 years ago, later became reality when he and Morten Meldal of the University of Copenhagen independently found the first perfect candidates for the job. Their buckles easily snapped together and wouldn’t link onto anything they shouldn’t.

    Then, in 2003, Carolyn Bertozzi put forth the idea of using click chemistry in biological systems without interfering with the system itself. Bertozzi called this “bioorthogonal” chemistry in a paper [PNAS (below)] she and her colleagues published that year. It has since become a widely-adopted term in the field [National Library of Medicine].

    The ability to perform complex reactions in living systems without interfering with natural biological reactions made it possible to study diseases inside cells, or even inside complex organisms [American Chemical Society] such as zebrafish, rather than in laboratory dishes. It has already helped scientists understand an important protein processing reaction called glycosylation, helped to develop molecular imaging molecules that could detect disease in living organisms and opened up the possibility of selectively delivering drugs to particular tissues in the body [Angewandte Chemie].

    These findings have “led to a revolution in how chemists think about linking molecules together and how to do it in living cells,” Aqvist said.

    Today’s announcement marks the second time that Sharpless has won a Nobel Prize in Chemistry. In 2001, he shared in the prize with William Knowles and Ryoji Noyori for their development of catalytic asymmetric synthesis.

    What is click chemistry?

    Sharpless spent much of the 1990s considering the need to find less cumbersome ways to synthesize complex molecules. His thinking culminated in a 2001 paper Angewandte Chemie in which he and his coauthors proposed the term “click chemistry” to refer to any reaction that links together molecular building blocks in an efficient and quick manner. Shortly after the publication of the paper, Meldal and Sharpless independently discovered the first click-chemistry reaction: a highly useful one called the copper-catalyzed azide-alkyne cycloaddition.

    On one side of the reaction is an azide, a molecule that has three nitrogen atoms in a row. On the other side of the reaction is an alkyne, a molecule in which two carbon atoms are bonded together with a triplet bond. By themselves, these two building blocks aren’t very reactive: Mixed together, they are slow to react and yield a mixture of products. But Meldal and Sharpless separately realized that if they added a bit of copper to the mix, the reaction accelerated dramatically and led primarily to a stable product known as a triazole.

    By strategically adding azide and alkyne “tags” to molecules, chemists can use this copper-catalyzed reaction to link them precisely into much larger molecules with specific structures.

    The copper-catalyzed reaction immediately gained “enormous interest” across chemistry and related fields, said Olof Ramström of the Nobel Committee for Chemistry during the announcement. Although other click chemistry reactions have been found, “this particular reaction has almost become synonymous with the click chemistry concept and is also often called the click reaction,” Ramström said. “You can say that it’s still the crown jewel of click reactions.”

    What is bioorthogonal chemistry?

    In 2003, Bertozzi coined the term “bioorthogonal chemistry” for any kind of chemical reaction that could occur within a living system without interfering or harming it. It’s click chemistry that can be applied to living organisms.

    The seeds for this idea sprouted in the 1990s, when Bertozzi began to study a particular glycan, or complex sugar found on the surface of cells. Conducting research on this glycan wasn’t easy with the chemical techniques available to her at the time. But after hearing another scientist give a seminar on coaxing cells to produce an unnatural sugar molecule, Bertozzi was inspired to wonder whether she could do something similar to map the glycans on cells. That’s when her work into bioorthogonal chemistry began.

    How is bioorthogonal chemistry used to study living systems?

    Bertozzi came up with a simple way to track glycans on a cell. First, she grew cells near a modified sugar that was linked with an azide. The cells up took this outside molecule and incorporated it into glycans on their surface. Then Bertozzi added to the mixture an alkyne that had a fluorescent molecule attached to it. The alkyne underwent a click reaction with the modified sugar and attached the fluorescent molecule to it. With that simple reaction, the glycans glowed green, and that allowed Bertozzi to track their movements across cell membranes under a microscope.

    Today, Bertozzi, who is now a professor at Stanford University, tracks glycans found on the surface of tumor cells. This work enabled her to discover that certain glycans protect tumor cells from the body’s immune system. Her findings have opened up avenues for cancer immune therapy, with many researchers working to find “clickable” antibodies to target different types of tumors. Bertozzi and her team are also working on this problem and have created a new drug that’s in clinical trials, which targets and destroys glycans on the surface of tumor cells.

    What are other applications for click chemistry and bioorthogonal chemistry?

    Making it possible to track the movements of molecules through and across cells is just one of many types of applications for click chemistry and bioorthogonal chemistry.

    A major advantage of the techniques is that they don’t introduce unwanted byproducts into reaction mixtures — a clean efficiency that allows scientists to carefully craft complex molecules for a variety of purposes.

    Click chemistry has made possible massive strides in drug development, DNA sequencing, the synthesis of “smart” materials and almost any other application in which chemists need to simply connect pairs of building blocks, Ramström said. Researchers can now easily add functionality to a wide range of materials, for example by clicking in chemical extensions that can conduct electricity or capture sunlight.

    Bioorthogonal reactions are used widely to investigate vital processes in cells, and those applications have had an enormous impact throughout the fields of biology and biochemistry. Researchers can probe how biomolecules interact within cells, and they can image living cells without disturbing them. In studies of disease, bioorthogonal reactions are useful for studying not just the cells of patients but also those of pathogens: The proteins in bacterial cell walls can be labeled to follow their movements through the body. Researchers are also starting to develop engineered antibodies that can click onto their tumor targets to deliver cancer-killing therapeutics more precisely.

    “These very important accomplishment and these really fantastic discoveries from our three laureates have really made an enormous impact on chemistry and on science in general,” Ramström said. “For that, it’s really been to the greatest benefit of humankind.”

    Science papers:
    PNAS
    National Library of Medicine
    American Chemical Society
    Angewandte Chemie
    Angewandte Chemie
    See the science papers for instructive imagery.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Formerly known as Simons Science News, Quanta Magazine is an editorially independent online publication launched by The Simons Foundation to enhance public understanding of science. Why Quanta? Albert Einstein called photons “quanta of light.” Our goal is to “illuminate science.” At Quanta Magazine, scientific accuracy is every bit as important as telling a good story. All of our articles are meticulously researched, reported, edited, copy-edited and fact-checked.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: