Tagged: Chemical engineering Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:50 am on January 27, 2023 Permalink | Reply
    Tags: "Protein scientists share Frontiers of Knowledge Award", A sophisticated machine-learning technique known as "deep learning", , An anti-coronavirus vaccine created with RoseTTAFold has been clinically tested and distributed in South Korea., , Artificial Intelligence in protein design, Baker co-founded 11 tech firms., Baker directs Rosetta Commons., Baker has authored more than 570 research papers., Baker holds more than 100 patents, , , , Chemical engineering, , , Genome Sciences, , , Protein molecules are the workhorses of biology and are involved in almost every cellular activity in all living things., , RoseTTAFold also supports the design of new proteins created to carry out specific functions., RoseTTAFold can accomplish in a just a few seconds what used to take years of laboratory work., RoseTTAFold: A deep learning system that can quickly and accurately decipher the three-dimensional structure of proteins, , , UW Medicine’s David Baker   

    From The School of Medicine At The University of Washington: “Protein scientists share Frontiers of Knowledge Award” 

    From The School of Medicine

    At

    The University of Washington

    1.25.23

    Leila Gray
    UW Medicine
    leilag@uw.edu

    BBVA Foundation honors UW Medicine’s David Baker and British scientists Demis Hassabis and John Jumper for artificial intelligence in protein design.

    UW Medicine biochemist David Baker is among three scientists named to receive The Frontiers of Knowledge Award in Biology and Biomedicine. The BBVA Foundation is honoring Baker and British scientists Demis Hassabis and John Jumper, both at AI company Deep Mind, for leading parallel efforts that are revolutionizing artificial intelligence for protein design.

    Protein molecules are the workhorses of biology and are involved in almost every cellular activity in all living things. The ability to analyze their structure, understand their functions and interactions, and engineer brand new, highly useful proteins not found in nature opens avenues to many medical and other advances.

    Baker, who directs the UW Medicine Institute for Protein Design, oversaw the development of RoseTTAFold.

    1
    Researchers used artificial intelligence to generate hundreds of new protein structures, including this 3D view of human interleukin-12 bound to its receptor. Credit: Ian Haydon.

    2
    Deep learning hallucinating a protein design. Image: Ian Haydon.

    It is a “deep learning” system that can quickly and accurately decipher the three-dimensional structure of proteins. It can accomplish in a just a few seconds what used to take years of laboratory work. This technology also supports the design of new proteins, created to carry out specific functions. This holds promise for the engineering of new therapies against a variety of diseases, including cancer and infectious illness, as well as applications in energy, environmental, nanotech and other fields.

    DeepMind’s CEO Hassabis and chief research scientist Jumper headed the creation of the AlphaFold2 tool, which brought artificial intelligence and deep learning to protein structure prediction and design, and which is powering protein research a variety of medical areas and other bioscientific fields.

    The BBVA Foundation promotes world-class scientific research and cultural creation, and the recognition of talent. It is assisted in evaluating nominees for the Frontiers Award in Biology and Biomedicine by the Spanish National Research Council, the country’s premier public research organization. They were joined by an international jury for this category.

    According to the selection committee, as reported in the BBVA Foundation news announcement on the work being honored by this year’s award, “Both computer methods rely on a sophisticated machine-learning technique known as deep learning to predict the shape of proteins with unprecedented accuracy, similar to that of experimentally determined structures, and with exceptional speed.”

    They added, “This breakthrough is revolutionizing our understanding of how the amino acid sequence of proteins leads to uniquely ordered three-dimensional structures. Scientists are now using these new methods.”

    This is an advance, the announcement noted, with huge potential for the development of new treatments against multiple conditions, from combatting the flu virus or COVID-19, cancer cell growth, or malaria parasites, as a few examples.

    Baker was born in Seattle. He earned his Ph.D. in biochemistry from the University of California-Berkeley. He is currently a Howard Hughes Medical Institute Investigator and the Henrietta and Aubrey Davis Endowed Professor in Biochemistry at the University of Washington School of Medicine, in addition to directing the Institute for Protein Design. He is also an adjunct professor of genome sciences, bioengineering, chemical engineering, computer science and physics at the UW. He has authored more than 570 research papers, holds more than 100 patents, co-founded 11 tech firms, and directs Rosetta Commons, a consortium of labs and researchers working on biomolecular structure predictions and design software. He and his colleagues are also know for their longstanding citizen scientist effort to involve people from a variety of backgrounds and locations in protein design through Rosetta@Home.

    In the BBVA Foundation award announcement, Baker described the revolution in purpose-designed proteins to advance the creation of new drugs and vaccines. He said that the latest RoseTTAFold version even allows for the design of proteins from simple descriptions, similar to the DALL-E system that generates images from text prompts.

    “So, for example, you can tell RoseTTAFold: design a protein which blocks this flu virus protein, or design a protein which will block these cancer cells,” he said in the BBVA Foundation news release. “RoseTTAFold will then make those proteins. We’ve made them in the lab, and we find that they have exactly those functions.”

    An anti-coronavirus vaccine created with RoseTTAFold has been clinically tested and distributed in South Korea. New purpose-designed anti-cancer medicines are being evaluated in human clinical trials. There are plans for a nasal spray that protects against COVID-19 and work underway on an RSV vaccine, a universal flu vaccine, and ideas for a vaccine against a family of viruses related to SARS-CoV-2.

    “We believe that almost all of medicine will be transformed by the protein design revolution,” said Baker. “Most medicines today are made by making small modifications to the proteins which already exist in nature. Now that we can design completely new proteins, we can develop much more improved, more sophisticated medicines that, for example, can treat cancer without the side effects, be made very quickly upon the outbreak of a new pandemic, and in general will be more precise and more robust.”

    RoseTTAFold and AlphaFold2 are freely available to the scientific community. Upgrades have practically equalized the computing times required by each.

    Although these AI tools have not entirely supplanted experimental methods, they are starting to transform both the field of protein design and biological research more generally.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Washington School of Medicine (UWSOM) is a large public medical school in the northwest United States, located in Seattle and affiliated with the University of Washington. According to U.S. News & World Report’s 2022 Best Graduate School rankings, University of Washington School of Medicine ranked #1 in the nation for primary care education, and #7 for research.

    UWSOM is the first public medical school in the states of Washington, Wyoming, Alaska, Montana, and Idaho. The school maintains a network of teaching facilities in more than 100 towns and cities across the five-state region. As part of this “WWAMI” partnership, medical students from Wyoming, Alaska, Montana, and Idaho spend their first year and a half at The University of Wyoming , The University of Alaska-Anchorage , Montana State University , or The University of Idaho , respectively. In addition, sixty first-year students and forty second-year students from Washington are based at Gonzaga University in Spokane. Preference is given to residents of the WWAMI states.
    u-washington-campus

    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.

    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

    The University of Washington is a public research university in Seattle, Washington, United States. Founded in 1861, University of Washington is one of the oldest universities on the West Coast; it was established in downtown Seattle approximately a decade after the city’s founding to aid its economic development. Today, the university’s 703-acre main Seattle campus is in the University District above the Montlake Cut, within the urban Puget Sound region of the Pacific Northwest. The university has additional campuses in Tacoma and Bothell. Overall, University of Washington encompasses over 500 buildings and over 20 million gross square footage of space, including one of the largest library systems in the world with more than 26 university libraries, as well as the UW Tower, lecture halls, art centers, museums, laboratories, stadiums, and conference centers. The university offers bachelor’s, master’s, and doctoral degrees through 140 departments in various colleges and schools, sees a total student enrollment of roughly 46,000 annually, and functions on a quarter system.

    University of Washington is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, UW spent $1.41 billion on research and development in 2018, ranking it 5th in the nation. As the flagship institution of the six public universities in Washington state, it is known for its medical, engineering and scientific research as well as its highly competitive computer science and engineering programs. Additionally, University of Washington continues to benefit from its deep historic ties and major collaborations with numerous technology giants in the region, such as Amazon, Boeing, Nintendo, and particularly Microsoft. Paul G. Allen, Bill Gates and others spent significant time at Washington computer labs for a startup venture before founding Microsoft and other ventures. The University of Washington’s 22 varsity sports teams are also highly competitive, competing as the Huskies in the Pac-12 Conference of the NCAA Division I, representing the United States at the Olympic Games, and other major competitions.

    The university has been affiliated with many notable alumni and faculty, including 21 Nobel Prize laureates and numerous Pulitzer Prize winners, Fulbright Scholars, Rhodes Scholars and Marshall Scholars.

    In 1854, territorial governor Isaac Stevens recommended the establishment of a university in the Washington Territory. Prominent Seattle-area residents, including Methodist preacher Daniel Bagley, saw this as a chance to add to the city’s potential and prestige. Bagley learned of a law that allowed United States territories to sell land to raise money in support of public schools. At the time, Arthur A. Denny, one of the founders of Seattle and a member of the territorial legislature, aimed to increase the city’s importance by moving the territory’s capital from Olympia to Seattle. However, Bagley eventually convinced Denny that the establishment of a university would assist more in the development of Seattle’s economy. Two universities were initially chartered, but later the decision was repealed in favor of a single university in Lewis County provided that locally donated land was available. When no site emerged, Denny successfully petitioned the legislature to reconsider Seattle as a location in 1858.

    In 1861, scouting began for an appropriate 10 acres (4 ha) site in Seattle to serve as a new university campus. Arthur and Mary Denny donated eight acres, while fellow pioneers Edward Lander, and Charlie and Mary Terry, donated two acres on Denny’s Knoll in downtown Seattle. More specifically, this tract was bounded by 4th Avenue to the west, 6th Avenue to the east, Union Street to the north, and Seneca Streets to the south.

    John Pike, for whom Pike Street is named, was the university’s architect and builder. It was opened on November 4, 1861, as the Territorial University of Washington. The legislature passed articles incorporating the University, and establishing its Board of Regents in 1862. The school initially struggled, closing three times: in 1863 for low enrollment, and again in 1867 and 1876 due to funds shortage. University of Washington awarded its first graduate Clara Antoinette McCarty Wilt in 1876, with a bachelor’s degree in science.

    19th century relocation

    By the time Washington state entered the Union in 1889, both Seattle and the University had grown substantially. University of Washington’s total undergraduate enrollment increased from 30 to nearly 300 students, and the campus’s relative isolation in downtown Seattle faced encroaching development. A special legislative committee, headed by University of Washington graduate Edmond Meany, was created to find a new campus to better serve the growing student population and faculty. The committee eventually selected a site on the northeast of downtown Seattle called Union Bay, which was the land of the Duwamish, and the legislature appropriated funds for its purchase and construction. In 1895, the University relocated to the new campus by moving into the newly built Denny Hall. The University Regents tried and failed to sell the old campus, eventually settling with leasing the area. This would later become one of the University’s most valuable pieces of real estate in modern-day Seattle, generating millions in annual revenue with what is now called the Metropolitan Tract. The original Territorial University building was torn down in 1908, and its former site now houses the Fairmont Olympic Hotel.

    The sole-surviving remnants of Washington’s first building are four 24-foot (7.3 m), white, hand-fluted cedar, Ionic columns. They were salvaged by Edmond S. Meany, one of the University’s first graduates and former head of its history department. Meany and his colleague, Dean Herbert T. Condon, dubbed the columns as “Loyalty,” “Industry,” “Faith”, and “Efficiency”, or “LIFE.” The columns now stand in the Sylvan Grove Theater.

    20th century expansion

    Organizers of the 1909 Alaska-Yukon-Pacific Exposition eyed the still largely undeveloped campus as a prime setting for their world’s fair. They came to an agreement with Washington’s Board of Regents that allowed them to use the campus grounds for the exposition, surrounding today’s Drumheller Fountain facing towards Mount Rainier. In exchange, organizers agreed Washington would take over the campus and its development after the fair’s conclusion. This arrangement led to a detailed site plan and several new buildings, prepared in part by John Charles Olmsted. The plan was later incorporated into the overall University of Washington campus master plan, permanently affecting the campus layout.

    Both World Wars brought the military to campus, with certain facilities temporarily lent to the federal government. In spite of this, subsequent post-war periods were times of dramatic growth for the University. The period between the wars saw a significant expansion of the upper campus. Construction of the Liberal Arts Quadrangle, known to students as “The Quad,” began in 1916 and continued to 1939. The University’s architectural centerpiece, Suzzallo Library, was built in 1926 and expanded in 1935.

    After World War II, further growth came with the G.I. Bill. Among the most important developments of this period was the opening of the School of Medicine in 1946, which is now consistently ranked as the top medical school in the United States. It would eventually lead to the University of Washington Medical Center, ranked by U.S. News and World Report as one of the top ten hospitals in the nation.

    In 1942, all persons of Japanese ancestry in the Seattle area were forced into inland internment camps as part of Executive Order 9066 following the attack on Pearl Harbor. During this difficult time, university president Lee Paul Sieg took an active and sympathetic leadership role in advocating for and facilitating the transfer of Japanese American students to universities and colleges away from the Pacific Coast to help them avoid the mass incarceration. Nevertheless, many Japanese American students and “soon-to-be” graduates were unable to transfer successfully in the short time window or receive diplomas before being incarcerated. It was only many years later that they would be recognized for their accomplishments during the University of Washington’s Long Journey Home ceremonial event that was held in May 2008.

    From 1958 to 1973, the University of Washington saw a tremendous growth in student enrollment, its faculties and operating budget, and also its prestige under the leadership of Charles Odegaard. University of Washington student enrollment had more than doubled to 34,000 as the baby boom generation came of age. However, this era was also marked by high levels of student activism, as was the case at many American universities. Much of the unrest focused around civil rights and opposition to the Vietnam War. In response to anti-Vietnam War protests by the late 1960s, the University Safety and Security Division became the University of Washington Police Department.

    Odegaard instituted a vision of building a “community of scholars”, convincing the Washington State legislatures to increase investment in the University. Washington senators, such as Henry M. Jackson and Warren G. Magnuson, also used their political clout to gather research funds for the University of Washington. The results included an increase in the operating budget from $37 million in 1958 to over $400 million in 1973, solidifying University of Washington as a top recipient of federal research funds in the United States. The establishment of technology giants such as Microsoft, Boeing and Amazon in the local area also proved to be highly influential in the University of Washington’s fortunes, not only improving graduate prospects but also helping to attract millions of dollars in university and research funding through its distinguished faculty and extensive alumni network.

    21st century

    In 1990, the University of Washington opened its additional campuses in Bothell and Tacoma. Although originally intended for students who have already completed two years of higher education, both schools have since become four-year universities with the authority to grant degrees. The first freshman classes at these campuses started in fall 2006. Today both Bothell and Tacoma also offer a selection of master’s degree programs.

    In 2012, the University began exploring plans and governmental approval to expand the main Seattle campus, including significant increases in student housing, teaching facilities for the growing student body and faculty, as well as expanded public transit options. The University of Washington light rail station was completed in March 2015, connecting Seattle’s Capitol Hill neighborhood to the University of Washington Husky Stadium within five minutes of rail travel time. It offers a previously unavailable option of transportation into and out of the campus, designed specifically to reduce dependence on private vehicles, bicycles and local King County buses.

    University of Washington has been listed as a “Public Ivy” in Greene’s Guides since 2001, and is an elected member of the American Association of Universities. Among the faculty by 2012, there have been 151 members of American Association for the Advancement of Science, 68 members of the National Academy of Sciences, 67 members of the American Academy of Arts and Sciences, 53 members of the National Academy of Medicine, 29 winners of the Presidential Early Career Award for Scientists and Engineers, 21 members of the National Academy of Engineering, 15 Howard Hughes Medical Institute Investigators, 15 MacArthur Fellows, 9 winners of the Gairdner Foundation International Award, 5 winners of the National Medal of Science, 7 Nobel Prize laureates, 5 winners of Albert Lasker Award for Clinical Medical Research, 4 members of the American Philosophical Society, 2 winners of the National Book Award, 2 winners of the National Medal of Arts, 2 Pulitzer Prize winners, 1 winner of the Fields Medal, and 1 member of the National Academy of Public Administration. Among UW students by 2012, there were 136 Fulbright Scholars, 35 Rhodes Scholars, 7 Marshall Scholars and 4 Gates Cambridge Scholars. UW is recognized as a top producer of Fulbright Scholars, ranking 2nd in the US in 2017.

    The Academic Ranking of World Universities has consistently ranked University of Washington as one of the top 20 universities worldwide every year since its first release. In 2019, University of Washington ranked 14th worldwide out of 500 by the ARWU, 26th worldwide out of 981 in the Times Higher Education World University Rankings, and 28th worldwide out of 101 in the Times World Reputation Rankings. Meanwhile, QS World University Rankings ranked it 68th worldwide, out of over 900.

    U.S. News & World Report ranked University of Washington 8th out of nearly 1,500 universities worldwide for 2021, with University of Washington’s undergraduate program tied for 58th among 389 national universities in the U.S. and tied for 19th among 209 public universities.

    In 2019, it ranked 10th among the universities around the world by SCImago Institutions Rankings. In 2017, the Leiden Ranking, which focuses on science and the impact of scientific publications among the world’s 500 major universities, ranked University of Washington 12th globally and 5th in the U.S.

    In 2019, Kiplinger Magazine’s review of “top college values” named University of Washington 5th for in-state students and 10th for out-of-state students among U.S. public colleges, and 84th overall out of 500 schools. In the Washington Monthly National University Rankings University of Washington was ranked 15th domestically in 2018, based on its contribution to the public good as measured by social mobility, research, and promoting public service.

     
  • richardmitnick 9:13 pm on January 20, 2023 Permalink | Reply
    Tags: "Elsa Olivetti and Rafael Gomez-Bombarelli Develop New Recipes for New Materials", , Assembling a suite of machine learning-based software tools, Bringing design tools to the field of material science and applying them at a broad scale., Chemical engineering, Directing efforts experimentally, Faculty lead a collaboration that pairs computational design techniques with machine learning to invent and improve materials., Informing design across its life cycle from manufacturing to recycling, , , Pairing cutting-edge computational design techniques with machine learning, ,   

    From “Spectrum” At The Massachusetts Institute of Technology: “Elsa Olivetti and Rafael Gomez-Bombarelli Develop New Recipes for New Materials” 

    From “Spectrum”

    At

    The Massachusetts Institute of Technology

    1
    Elsa Olivetti PhD ’07 and Rafael Gomez-Bombarelli pair computational design techniques and machine learning to assess materials and determine if they can be improved. Photo: Sarah Bastille.

    Faculty lead a collaboration that pairs computational design techniques with machine learning to invent and improve materials.

    What if we could improve the environmental impact of the products that run our world, from the catalysts that drive chemical reactions to the cement used in buildings and many things in between?

    Materials scientists at MIT are asking and answering this very question. Elsa Olivetti PhD ’07, the Esther and Harold E. Edgerton Associate Professor in materials science and engineering, and Rafael Gomez-Bombarelli, the Jeffrey Cheah Career Development Professor and assistant professor of materials science and engineering, are leading a collaboration that pairs cutting-edge computational design techniques with machine learning to assess the properties of materials and to determine how they can be redesigned and improved, or if entirely new materials could be synthesized to do a job better.

    “We aspire as people that work on matter and atoms to use computational tools in the same way as engineers in other specialties,” says Gomez-Bombarelli. Mechanical engineers, for example, use programs such as AutoCAD and Ansys to predict how various components will perform in different environments, and chemical engineers use Aspen to understand processes flows.

    Now, Olivetti and Gomez-Bombarelli are bringing similar design tools to the field of materials science and applying them at a broad scale. “We can think about what elements to include in a material and do so with a set of tools that inform design across its life cycle, from manufacturing to recycling,” says Olivetti. “That accelerates the screening of materials that might be more sustainable and directs efforts experimentally.”

    Olivetti, a MacVicar Faculty Fellow, and Gomez-Bombarelli have worked with their students to assemble a suite of machine learning-based software tools, ranging from natural language processing tools to custom neural networks adapted to use molecular structures as inputs. This suite of tools automatically collates information from published literature and uses volumes of data to develop algorithms for materials synthesis and optimized performance.

    The team has been using this process to build better zeolites, a class of materials commonly used in catalysts, chemical filters, and the catalytic converters used to clean vehicle emissions. “We use our tools to extract massive amounts of data from the literature around zeolites,” says Olivetti. “Then we use our predictive modeling algorithm to determine potential subsequent ingredients to add to make the final zeolite.”

    Using this system, the researchers were able to work with colleagues to design a new zeolite recipe optimized for removing nitrogen oxide, a major pollutant, from diesel engine exhaust. “We were able to use all this computation to support our collaborators in the lab and hit a narrow, really exciting piece of innovation that would have been really hard to find with traditional trial and error,” says Gomez-Bombarelli.

    More sustainable concrete

    Predictive synthesis works well in cases such as zeolites, in which there are far too many options to sift through experimentally. It’s also useful when optimizing a mixture of materials is needed to make a product more sustainable.

    Consider cement, an essential ingredient of concrete. Thirty billion tons of concrete is used every year, accounting for 8% of global carbon dioxide emissions due to the intense heat needed to create cement from raw materials such as lime, clay, and silica. Developing a more sustainable process requires a clear understanding of how possible replacement materials might mix.

    Because zeolites and cement have a similar chemistry, critical aspects of Olivetti and Gomez-Bombarelli’s predictive zeolite work could be applied to the world of cement. The researchers plan to use their techniques to predict how potential concrete ingredients will behave on a molecular level, with the aim of adjusting the recipe to employ, for example, industrial waste materials.

    “We use these computational tools to search the space for how to make the best mixture,” says Olivetti. “The way I think about it is, how early in the design of new materials can we think about their environmental implications from extraction to end of life?” Her answer? “The earlier, the better.”

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT “Spectrum” connects friends and supporters of the Massachusetts Institute of Technology to MIT’s vision, impact, and exceptional community.

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Seal

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind. Paths of discovery cross every day at MIT, propelling groundbreaking research and furthering personal development. Although it’s not always clear where a path will lead, MIT aims high, working to ensure that humanity’s collective trajectory is pointed toward a brighter future.

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute .

    Massachusettes Institute of Technology-Haystack Observatory Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities.

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst . In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, The Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, The Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period The Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However, six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 The Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from The California Institute of Technology , The Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 8:27 am on January 19, 2023 Permalink | Reply
    Tags: "Tackling plastic waste", A large fraction of plastic is made from polyolefins which are hard to recycle., , Biological degradation, , Chemical engineering, , Degrading non-recyclable plastics, Developing multiple types of microbial systems for degrading polyolefin plastics into smaller molecules and repurposed into commodity chemicals or upcycled into building blocks for biorenewable polyme, , , Engineering microbes to break down non-recyclable plastics., , One possible tool uniquely suited for addressing these hard-to-recycle plastics is the microbial community that lives in the gut of the yellow mealworm., Polyolefins include polyethylene and polypropylene.,   

    From The University of Delaware : “Tackling plastic waste” 

    U Delaware bloc

    From The University of Delaware

    1.18.23
    Karen B. Roberts
    Graphic illustration by Jeffrey C. Chase

    1
    University of Delaware chemical and biomolecular engineer Mark Blenner is leading a multi-institutional team of researchers exploring ways to engineer microbes from the gut of the yellow mealworm to degrade non-recyclable plastics. The work is supported with funding from the Department of Energy.

    Engineering microbes to break down non-recyclable plastics


    Mealworms digest plastics.

    Each year, more than 380 million tons of plastics are produced globally. Less than 10% of these plastics are reused or recycled, leading to significant accumulation and waste, not to mention the obvious environmental implications.

    A large fraction of plastic is made from polyolefins which are hard to recycle. Polyethylene, commonly used in disposable shopping bags, plastic wraps and food storage bags, falls into this category. So does polypropylene, which turns up in plastic containers, among other things.

    One possible tool for addressing these hard-to-recycle plastics is the microbial community that lives in the gut of the yellow mealworm. It turns out these microbes are uniquely suited for the work.

    University of Delaware’s Mark Blenner, associate professor of chemical and biomolecular engineering, is leading researchers from UD, the DOE’s Oak Ridge National Laboratory and Washington University in St. Louis to better understand and improve the ability to engineer these microbes to do the job.

    The five-year project is supported with $9 million in funding from the Department of Energy. The idea is to develop multiple types of microbial systems capable of degrading polyolefin plastics into smaller molecules that can be repurposed into commodity chemicals or upcycled into building blocks for biorenewable polymers.

    “We hope that within five years we’re going to be able to handle real post-consumer plastic waste using this microbial-community approach,” said Blenner.

    Complicating factors in the work

    Dealing with plastic wastes in the real world requires a huge diversity of chemistry. Some plastic waste, such as polyethylene terephthalate (PET), a form of polyester found in plastic bottles and other consumer products, is relatively receptive to biological degradation.

    Polyolefins, however, have a much more difficult structure to break down. It’s especially difficult when using biological methods. The challenge becomes even more complicated when considering that the everyday plastics contain more than the plastic polymer itself — there are additives, antioxidants and other things, too.

    “These sorts of molecules often confound the chemical processes that we’ve set up to try and deal with plastic waste,” said Blenner. “Even just a stream of low-density polyethylene, the kind found in plastic bags and wrappers that go around products, can take different forms, be different colors, have different mechanical properties.”

    Those variations derive from differences in the plastics’ chemical composition, so the additives will require different microbes and approaches for breaking them down.

    In previous research led at UD by Kevin Solomon, associate professor of chemical and biomolecular engineering, the researchers began to answer questions about which microbes in the mealworm’s gut eat and degrade plastics. The UD team developed approaches to identify which microbes were most important to the process by analyzing the genomic sequences of microbial communities found there to understand their genetic makeup. They also began cultivating some of these individual microbes outside of the worm and learned that while microbial communities are more efficient at degrading plastics, many of the individual microbes can do it alone.

    Now, researchers involved in the interinstitutional project plan to explore the molecular mechanisms that produce this “better-plastic-degrading capability.” For one thing, the researchers would like to see if there are ways to optimize the worm’s diet to further promote this ability, since evidence in the literature showed that when yellow mealworms are co-fed bran, an inexpensive food source, the mealworm’s gut microbes functioned in a way that bettered their plastic-eating performance.

    The idea isn’t to create healthier worms. Instead, the researchers are hoping to distinguish the microbes in the mealworm’s gut that are more important to the plastic-degrading process from all the other microbes that are present. They also want to determine what it is about the co-feed that optimizes the community and then try to replicate these features.

    “If we can determine the key factors that promote that right environment for eating plastics, then one of our goals is to engineer the microbes to do this on their own, without dietary additives — and without the worm,” said Blenner.

    Harnessing wild microbes

    A significant portion of the new project is dedicated to developing the genetic engineering capabilities to work with these microbes that are not typically found in research labs. Blenner calls them “wild microbes” because they derive from an environmental source, the yellow mealworm.

    “We hope to develop a general set of engineering tools to manipulate the genetics and metabolism of the microbes,” said Blenner. “Once we can do this kind of engineering in the individual microbes, next we must figure out how to put the engineered microbes back together into stable microbial communities with the capacity to convert plastic waste into new polymers.”

    To understand the pathways that will make this possible, collaborator Yinjie Tang’s team at Washington University will use mass spectrometry experiments to map out, through metabolism, the reactions that occur when the microbes degrade plastics. Specifically, Tang’s team wants to trace which reactions are using carbon that originates from the plastic itself to understand what the plastic molecules are degraded into and how the microbes use them. For instance, perhaps an individual microbe produces some substances that it finds useless, but that another microbe in the community needs.

    UD researchers involved in the work include Blenner, Solomon and LaShanda Korley, who directs the Center for Plastics Innovation, an Energy Frontier Research Center established at UD with support from the U.S. Department of Energy. Blenner noted that Solomon remains a key collaborator in the work and that his novel computational methods and genetic engineering techniques will help the team understand how plastics are being modified by individual microbes, the microbial community and the worms. Korley’s support will provide needed technical expertise to understand plastic analytics. All of this will enable Blenner to focus on ways to develop and deploy these genetic engineering tools in non-model systems.

    The research team also hopes to engineer microbes that don’t naturally degrade plastics to become capable of doing so, by giving them the tools and genes that are missing. To get there, Oak Ridge National Laboratory’s Carrie Eckert, synthetic biology group leader, Adam Guss, genetic and metabolic engineer, and William Alexander, associate research and development staff scientist, will contribute expertise in identifying bacterial defense systems that make it harder for organisms to be genetically modified and in developing workflows to help engineer around them.

    If successful, the team’s overall approach can help support a circular plastics economy, while reducing carbon dioxide emissions and dependency on petroleum.

    “We tried to focus on some of the harder plastics from a biological perspective to degrade, plastics that we don’t recycle very well right now … that mechanical recycling can’t feasibly handle and where chemical recycling hasn’t really gotten there yet,” said Blenner.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Delaware campus

    The University of Delaware is a public land-grant research university located in Newark, Delaware. University of Delaware (US) is the largest university in Delaware. It offers three associate’s programs, 148 bachelor’s programs, 121 master’s programs (with 13 joint degrees), and 55 doctoral programs across its eight colleges. The main campus is in Newark, with satellite campuses in Dover, the Wilmington area, Lewes, and Georgetown. It is considered a large institution with approximately 18,200 undergraduate and 4,200 graduate students. It is a privately governed university which receives public funding for being a land-grant, sea-grant, and space-grant state-supported research institution.

    The University of Delaware is classified among “R1: Doctoral Universities – Very high research activity”. According to The National Science Foundation, UD spent $186 million on research and development in 2018, ranking it 119th in the nation. It is recognized with the Community Engagement Classification by the Carnegie Foundation for the Advancement of Teaching.

    The University of Delaware is one of only four schools in North America with a major in art conservation. In 1923, it was the first American university to offer a study-abroad program.

    The University of Delaware traces its origins to a “Free School,” founded in New London, Pennsylvania in 1743. The school moved to Newark, Delaware by 1765, becoming the Newark Academy. The academy trustees secured a charter for Newark College in 1833 and the academy became part of the college, which changed its name to Delaware College in 1843. While it is not considered one of the colonial colleges because it was not a chartered institution of higher education during the colonial era, its original class of ten students included George Read, Thomas McKean, and James Smith, all three of whom went on to sign the Declaration of Independence. Read also later signed the United States Constitution.

    Science, Technology and Advanced Research (STAR) Campus

    On October 23, 2009, The University of Delaware signed an agreement with Chrysler to purchase a shuttered vehicle assembly plant adjacent to the university for $24.25 million as part of Chrysler’s bankruptcy restructuring plan. The university has developed the 272-acre (1.10 km^2) site into the Science, Technology and Advanced Research (STAR) Campus. The site is the new home of University of Delaware (US)’s College of Health Sciences, which includes teaching and research laboratories and several public health clinics. The STAR Campus also includes research facilities for University of Delaware (US)’s vehicle-to-grid technology, as well as Delaware Technology Park, SevOne, CareNow, Independent Prosthetics and Orthotics, and the East Coast headquarters of Bloom Energy. In 2020 [needs an update], University of Delaware expects to open the Ammon Pinozzotto Biopharmaceutical Innovation Center, which will become the new home of the UD-led National Institute for Innovation in Manufacturing Biopharmaceuticals. Also, Chemours recently opened its global research and development facility, known as the Discovery Hub, on the STAR Campus in 2020. The new Newark Regional Transportation Center on the STAR Campus will serve passengers of Amtrak and regional rail.

    Academics

    The university is organized into nine colleges:

    Alfred Lerner College of Business and Economics
    College of Agriculture and Natural Resources
    College of Arts and Sciences
    College of Earth, Ocean and Environment
    College of Education and Human Development
    College of Engineering
    College of Health Sciences
    Graduate College
    Honors College

    There are also five schools:

    Joseph R. Biden, Jr. School of Public Policy and Administration (part of the College of Arts & Sciences)
    School of Education (part of the College of Education & Human Development)
    School of Marine Science and Policy (part of the College of Earth, Ocean and Environment)
    School of Nursing (part of the College of Health Sciences)
    School of Music (part of the College of Arts & Sciences)

     
  • richardmitnick 9:32 pm on January 16, 2023 Permalink | Reply
    Tags: "Blocking Radio Waves and Electromagnetic Interference with the Flip of a Switch", A thin coating on a device or electrical components prevents them from both emitting electromagnetic waves., , Chemical engineering, , , Protecting electronic devices   

    From Drexel University: “Blocking Radio Waves and Electromagnetic Interference with the Flip of a Switch” 

    Drexel U bloc

    From Drexel University

    1.16.23

    Britt Faulstick
    215.895.2617
    britt.faulstick@drexel.edu

    1

    Researchers in Drexel University’s College of Engineering have developed a thin film device, fabricated by spray coating, that can block electromagnetic radiation with the flip of a switch. The breakthrough, enabled by versatile two-dimensional materials called MXenes, could adjust the performance of electronic devices, strengthen wireless connections and secure mobile communications against intrusion.

    The team, led by Yury Gogotsi, PhD, Distinguished University and Bach professor in Drexel’s College of Engineering, previously demonstrated that the two-dimensional layered MXene materials, discovered just over a decade ago, when combined with an electrolyte solution, can be turned into a potent active shield against electromagnetic waves. This latest MXene discovery, reported in Nature Nanotechnology [below], shows how this shielding can be tuned when a small voltage — less than that produced by an alkaline battery — is applied.

    “Dynamic control of electromagnetic wave jamming has been a significant technological challenge for protecting electronic devices working at gigahertz frequencies and a variety of other communications technologies,” Gogotsi said. “As the number of wireless devices being used in industrial and private sectors has increased by orders of magnitude over the past decade, the urgency of this challenge has grown accordingly. This is why our discovery – which would dynamically mitigate the effect of electromagnetic interference on these devices – could have a broad impact.”

    MXene is a unique material in that it is highly conductive – making it perfectly suited for reflecting microwave radiation that could cause static, feedback or diminish the performance of communications devices – but its internal chemical structure can also be temporarily altered to allow these electromagnetic waves to pass through.

    This means that a thin coating on a device or electrical components prevents them from both emitting electromagnetic waves, as well as being penetrated by those emitted by other electronics. Eliminating the possibility of interference from both internal and external sources can ensure the performance of the device, but some waves must be allowed to exit and enter when it is being used for communication.

    “Without being able to control the ebb and flow of electromagnetic waves within and around a device, it’s a bit like a leaky faucet – you’re not really turning off the water and that constant dripping is no good,” Gogotsi said. “Our shielding ensures the plumbing is tight – so-to-speak – no electromagnetic radiation is leaking out or getting in until we want to use the device.”

    The key to eliciting bidirectional tunability of MXene’s shielding property is using the flow and expulsion of ions to alternately expand and compress the space between material’s layers, like an accordion, as well as to change the surface chemistry of MXenes.

    With a small voltage applied to the film, ions enter – or intercalate – between the MXene layers altering the charge of their surface and inducing electrostatic attraction, which serves to change the layer spacing, the conductivity and shielding efficiency of the material. When the ions are deintercalated, as the current is switched off, the MXene layers return to their original state.

    The team tested 10 different MXene-electrolyte combinations, applying each via paint sprayer in a layer about 30 to 100 times thinner than a human hair. The materials consistently demonstrated the dynamic tunability of shielding efficiency in blocking microwave radiation, which is impossible for traditional metals like copper and steel. And the device sustained the performance through more than 500 charge-discharge cycles.

    “These results indicate that the MXene films can convert from electromagnetic interference shielding to quasi-electromagnetic wave transmission by electrochemical oxidation of MXenes,” Gogotsi and his co-authors wrote. “The MXene film can potentially serve as a dynamic EMI shielding switch.”

    For security applications, Gogotsi suggests that the MXene shielding could hide devices from detection by radar or other tracing systems. The team also tested the potential of a one-way shielding switch. This would allow a device to remain undetectable and protected from unauthorized access until it is deployed for use.

    “A one-way switch could open the protection and allow a signal to be sent or communication to be opened in an emergency or at the required moment,” Gogotsi said. “This means it could protect communications equipment from being influenced or tampered with until it is in use. For example, it could encase the device during transportation or storage and then activate only when it is ready to be used.”

    The next step for Gogotsi’s team is to explore additional MXene-electrolyte combinations and mechanisms to fine-tune the shielding to achieve a stronger modulation of electromagnetic wave transmission and dynamic adjustment to block radiation at a variety of bandwidths.

    In addition to Gogotsi, Meikang Han, Danzhen Zhang, Christopher E. Shuck, Bernard McBride, Teng Zhang, Ruocun Wang and Kateryna Shevchuk contributed to this research. The research was supported by the National Science Foundation.

    Science paper:
    Nature Nanotechnology

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Drexel campus

    Global Research University, Experiential Learning Leader

    Drexel University is a comprehensive global research university ranked among the top 100 in the nation. With approximately 26,000 students, Drexel is one of America’s 15 largest private universities.

    Drexel has built its global reputation on core achievements that include:

    Leadership in experiential learning through Drexel Co-op.
    A history of academic technology firsts.
    Recognition as a model of best practices in translational, use-inspired research.

    Founded in 1891 in Philadelphia, Drexel now engages with students and communities around the world via:

    Three Philadelphia campuses and other regional sites.
    The Academy of Natural Sciences of Drexel University, the nation’s oldest major natural science museum and research organization.
    International research partnerships including China and Israel.
    Drexel Online, one of the oldest and most successful providers of online degree programs.

    Drexel is one of Philadelphia’s top 10 private employers, and a major engine for economic development in the region. Drexel has committed to being the nation’s most civically engaged university, with community partnerships integrated into every aspect of service and academics.

     
  • richardmitnick 10:03 am on January 9, 2023 Permalink | Reply
    Tags: "GBPs": glycan-binding proteins, "New tool can assist with identifying carbohydrate-binding proteins", , , Biosynthesizing carbohydrates requires every link between individual sugar molecules to be made by a particular enzyme., , Chemical engineering, , Identifying carbohydrate-binding proteins, In cancer certain sugars are over-represented on cell surfaces., , Sugars are far more difficult targets and require the pipeline to be modified., The carbohydrate field lags terribly behind and is desperately seeking tools., The challenge with polymers of carbohydrates is that their biosynthesis is not template-driven., The limited array of tools available to decipher the role of sugars., , There is no ready way to decipher the structures and sequences of complex carbohydrates., This advance will allow researchers to go after a user-defined sugar target without being limited by what a lectin does or challenged by the abilities of generating antibodies., This discovery also stands to contribute significantly to improving cell imaging.   

    From The Massachusetts Institute of Technology: “New tool can assist with identifying carbohydrate-binding proteins” 

    From The Massachusetts Institute of Technology

    12.22.22 [Just today in social media.]
    Danielle Randall Doughty | Department of Chemistry

    1
    A new tool from the Imperiali Lab uses directed evolution to generate glycan-binding proteins (GBPs) from small, hyper-thermostable DNA-binding protein. Image courtesy of the researchers.

    One of the major obstacles that those conducting research on carbohydrates are constantly working to overcome is the limited array of tools available to decipher the role of sugars. As a workaround, most researchers utilize lectins (sugar-binding proteins) isolated from plants or fungi, but they are large, with weak binding, and they are limited in their specificity and in the scope of sugars that they detect. In a new study published in ACS Chemical Biology [below], researchers in Professor Barbara Imperiali’s group have developed a platform to address this shortcoming.

    “The challenge with polymers of carbohydrates is that their biosynthesis is not template-driven,” says Imperiali, the senior author of the study and a professor in the departments of Chemistry and Biology. “Biology, medicine, and biotechnology have been fueled by technological advancements for proteins and nucleic acids. The carbohydrate field lags terribly behind and is desperately seeking tools.”

    Identifying carbohydrate-binding proteins

    Biosynthesizing carbohydrates requires every link between individual sugar molecules to be made by a particular enzyme, and there is no ready way to decipher the structures and sequences of complex carbohydrates. Antibodies to carbohydrates can be generated, but doing so is challenging, expensive, and results in a molecule that is far larger than what is really needed for the research. An ideal resource for this field plagued with limited mechanisms would be discovery of binding proteins, of limited size, that recognize small chunks of carbohydrates to piece together a structure by using those binders, or methods to detect and identify particular carbohydrates within complicated structures.

    The authors of this study used directed evolution and clever screen design to identify carbohydrate-binding proteins from proteins that have absolutely no ability to bind carbohydrates at all. Their findings lay the groundwork for identifying carbohydrate-binding proteins with diverse and programmable specificity.

    Streamlining for collaboration

    This advance will allow researchers to go after a user-defined sugar target without being limited by what a lectin does, or challenged by the abilities of generating antibodies. These results could serve to inspire future collaborations with engineering communities to maximize the efficiency of glycobiology’s yeast surface display pipeline. As it is, this pipeline works well for proteins, but sugars are far more difficult targets and require the pipeline to be modified. 

    In terms of future applications, the potential for this innovation ranges from diagnostic to, in the longer term, therapeutic, and paves the way for collaborations with researchers at MIT and beyond. For example, chemistry Professor Laura Kiessling’s research group works with Mycobacterium tuberculosis (Mtb), which has an unusual cell wall composition with unique, distinct, and exclusive sugars. Using this method, a binder could potentially be evolved to that particular feature on Mtb. Chemical Engineering Professor Hadley Sikes develops paper-based diagnostic tools where the binding partner for a particular epitope or marker is laid down, and with the use of this discovery, in the longer term, a lateral flow assay device could be developed.

    Laying the groundwork for future solutions

    In cancer certain sugars are over-represented on cell surfaces, so theoretically, researchers can utilize this finding, which is also amenable to labeling, to develop a tool out of the evolved glycan binder for detection.

    This discovery also stands to contribute significantly to improving cell imaging. Researchers can modify binders with a fluorophore using a simple ligation strategy, and can then choose the best fluorophore for tissue or cell imaging. The Kiessling group, for example, could apply small protein binders labeled with fluorophore to detect bacterial sugars to initiate fluorescence-activated cell sorting to probe a complex mixture of microbes. This could in turn be used to determine how a patient’s microbiome has been disturbed. It also has the potential to screen the microbiome of a patient’s mouth or their upper or lower gastrointestinal tract to read out the imbalance within the community using these types of reagents. In the more distant future, the binders could potentially have therapeutic purposes like clearing the gastrointestinal tract or mouth of a particular bacterium based on the sugars that the bacterium displays.

    Science paper:
    ACS Chemical Biology

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

    Massachusettes Institute of Technology-Haystack Observatory Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    4

    The Computer Science and Artificial Intelligence Laboratory (CSAIL)

    From The Kavli Institute For Astrophysics and Space Research

    MIT’s Institute for Medical Engineering and Science is a research institute at the Massachusetts Institute of Technology

    The MIT Laboratory for Nuclear Science

    The MIT Media Lab

    The MIT School of Engineering

    The MIT Sloan School of Management

    Spectrum

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities.

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However, six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched “OpenCourseWare” to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 9:54 pm on January 4, 2023 Permalink | Reply
    Tags: "Berkeley Lab Scientists Develop a Cool New Method of Refrigeration", "GWP": global warming potential, , “Ionocaloric cooling”, Chemical engineering, , Energy Efficiency, Energy Systems, , , The new ionocaloric cycle joins several other kinds of “caloric” cooling in development., The researchers hope that the method could one day provide efficient heating and cooling which accounts for more than half of the energy used in homes.   

    From The DOE’s Lawrence Berkeley National Laboratory: “Berkeley Lab Scientists Develop a Cool New Method of Refrigeration” 

    From The DOE’s Lawrence Berkeley National Laboratory

    1.3.23
    Lauren Biron

    1
    Researchers hope that ionocaloric cooling could someday help replace refrigerants with high global warming potential and provide safe, efficient cooling and heating for homes (Credit: Jenny Nuss/Berkeley Lab)

    Adding salt to a road before a winter storm changes when ice will form. Researchers at the Department of Energy’s Lawrence Berkeley National Laboratory have applied this basic concept to develop a new method of heating and cooling. The technique, which they have named “ionocaloric cooling,” is described in a paper published Dec. 23 in the journal Science [below].

    Ionocaloric cooling takes advantage of how energy, or heat, is stored or released when a material changes phase – such as changing from solid ice to liquid water. Melting a material absorbs heat from the surroundings, while solidifying it releases heat. The ionocaloric cycle causes this phase and temperature change through the flow of ions (electrically charged atoms or molecules) which come from a salt.

    The researchers hope that the method could one day provide efficient heating and cooling which accounts for more than half of the energy used in homes, and help phase out current “vapor compression” systems, which use gases with high global warming potential as refrigerants. Ionocaloric refrigeration would eliminate the risk of such gases escaping into the atmosphere by replacing them with solid and liquid components.

    “The landscape of refrigerants is an unsolved problem: No one has successfully developed an alternative solution that makes stuff cold, works efficiently, is safe, and doesn’t hurt the environment,” said Drew Lilley, a graduate research assistant at Berkeley Lab and PhD candidate at The University of California-Berkeley who led the study. “We think the ionocaloric cycle has the potential to meet all those goals if realized appropriately.”

    Finding a solution that replaces current refrigerants is essential for countries to meet climate change goals, such as those in the Kigali Amendment (accepted by 145 parties, including the United States in October 2022). The agreement commits signatories to reduce production and consumption of hydrofluorocarbons (HFCs) by at least 80% over the next 25 years. HFCs are powerful greenhouse gases commonly found in refrigerators and air conditioning systems, and can trap heat thousands of times as effectively as carbon dioxide.

    The new ionocaloric cycle joins several other kinds of “caloric” cooling in development. Those techniques use different methods – including magnetism, pressure, stretching, and electric fields – to manipulate solid materials so that they absorb or release heat. Ionocaloric cooling differs by using ions to drive solid-to-liquid phase changes. Using a liquid has the added benefit of making the material pumpable, making it easier to get heat in or out of the system – something solid-state cooling has struggled with.

    2
    This animation shows the ionocaloric cycle in action. When a current is added, ions flow and change the material from solid to liquid, causing the material absorb heat from the surroundings. When the process is reversed and ions are removed, the material crystalizes into a solid, releasing heat. (Credit: Jenny Nuss/Berkeley Lab)

    Lilley and corresponding author Ravi Prasher, a research affiliate in Berkeley Lab’s Energy Technologies Area and adjunct professor in mechanical engineering at The University of California-Berkeley, laid out the theory underlying the ionocaloric cycle. They calculated that it has the potential to compete with or even exceed the efficiency of gaseous refrigerants found in the majority of systems today.

    They also demonstrated the technique experimentally. Lilley used a salt made with iodine and sodium, alongside ethylene carbonate, a common organic solvent used in lithium-ion batteries. 

    “There’s potential to have refrigerants that are not just GWP [global warming potential]-zero, but GWP-negative,” Lilley said. “Using a material like ethylene carbonate could actually be carbon-negative, because you produce it by using carbon dioxide as an input. This could give us a place to use CO2 from carbon capture.”

    Running current through the system moves the ions, changing the material’s melting point. When it melts, the material absorbs heat from the surroundings, and when the ions are removed and the material solidifies, it gives heat back. The first experiment showed a temperature change of 25 degrees Celsius using less than one volt, a greater temperature lift than demonstrated by other caloric technologies.

    “There are three things we’re trying to balance: the GWP of the refrigerant, energy efficiency, and the cost of the equipment itself,” Prasher said. “From the first try, our data looks very promising on all three of these aspects.”

    While caloric methods are often discussed in terms of their cooling power, the cycles can also be harnessed for applications such as water heating or industrial heating. The ionocaloric team is continuing work on prototypes to determine how the technique might scale to support large amounts of cooling, improve the amount of temperature change the system can support, and improve the efficiency. 

    “We have this brand-new thermodynamic cycle and framework that brings together elements from different fields, and we’ve shown that it can work,” Prasher said. “Now, it’s time for experimentation to test different combinations of materials and techniques to meet the engineering challenges.”

    Lilley and Prasher have received a provisional patent for the ionocaloric refrigeration cycle, and the technology is now available for licensing by contacting ipo@lbl.gov.

    This work was supported by the DOE’s Energy Efficiency and Renewable Energy Building Technologies Program.

    Science paper:
    Science

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LBNL campus

    Bringing Science Solutions to the World

    In the world of science, The Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the The National Academy of Sciences, one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the The National Academy of Engineering, and three of our scientists have been elected into The Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by The DOE through its Office of Science. It is managed by the University of California and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above The University of California-Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California-Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    History

    1931–1941

    The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California-Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

    LBNL 88 inch cyclotron.

    LBNL 88 inch cyclotron.

    Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded The DOE’s Los Alamos Laboratory, and Robert Wilson founded The DOE’s Fermi National Accelerator Laboratory.

    1942–1950

    Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.

    1951–2018

    After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now The Department of Energy . The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now The DOE’s Lawrence Livermore National Laboratory) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

    Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

    The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

    The lab remains owned by the Department of Energy , with management from the University of California. Companies such as Intel were funding the lab’s research into computing chips.

    Science mission

    From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

    The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

    Berkeley Lab operates five major National User Facilities for the DOE Office of Science:

    The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.

    The DOE’s Lawrence Berkeley National Laboratory Advanced Light Source.
    The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

    Berkeley Lab Laser Accelerator (BELLA) Center

    The DOE Joint Genome Institute supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, DOE’s Lawrence Livermore National Laboratory, DOE’s Oak Ridge National Laboratory (ORNL), DOE’s Pacific Northwest National Laboratory (PNNL), and the HudsonAlpha Institute for Biotechnology . The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

    LBNL Molecular Foundry

    The LBNL Molecular Foundry is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

    The DOE’s NERSC National Energy Research Scientific Computing Center is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

    DOE’s NERSC National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory.

    Cray Cori II supercomputer at National Energy Research Scientific Computing Center at DOE’s Lawrence Berkeley National Laboratory, named after Gerty Cori, the first American woman to win a Nobel Prize in science.

    NERSC Hopper Cray XE6 supercomputer.

    NERSC Cray XC30 Edison supercomputer.

    NERSC GPFS for Life Sciences.

    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    NERSC PDSF computer cluster in 2003.

    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    Cray Shasta Perlmutter SC18 AMD Epyc Nvidia pre-exascale supercomputer.

    NERSC is a DOE Office of Science User Facility.

    The DOE’s Energy Science Network is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

    Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory, the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science , and DOE’s Lawrence Livermore National Laboratory (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

    Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory leads JCESR and Berkeley Lab is a major partner.

     
  • richardmitnick 9:33 am on January 4, 2023 Permalink | Reply
    Tags: "A step towards solar fuels out of thin air", A device that can harvest water from the air and provide hydrogen fuel—entirely powered by solar energy—has been a dream for researchers for decades., , Chemical engineering, , , ,   

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “A step towards solar fuels out of thin air” 

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    1.4.23
    Hillary Sanctuary

    1
    EPFL chemical engineers have invented a solar-powered artificial leaf, built on a novel electrode which is transparent and porous, capable of harvesting water from the air for conversion into hydrogen fuel. The semiconductor-based technology is scalable and easy to prepare.


    A step towards solar fuels out of thin air.

    A device that can harvest water from the air and provide hydrogen fuel—entirely powered by solar energy—has been a dream for researchers for decades. Now, EPFL chemical engineer Kevin Sivula and his team have made a significant step towards bringing this vision closer to reality. They have developed an ingenious yet simple system that combines semiconductor-based technology with novel electrodes that have two key characteristics: they are porous, to maximize contact with water in the air; and transparent, to maximize sunlight exposure of the semiconductor coating. When the device is simply exposed to sunlight, it takes water from the air and produces hydrogen gas. The results are published on 4 January 2023 in Advanced Materials [below].

    What’s new? It’s their novel gas diffusion electrodes, which are transparent, porous and conductive, enabling this solar-powered technology for turning water – in its gas state from the air – into hydrogen fuel.

    2

    “To realize a sustainable society, we need ways to store renewable energy as chemicals that can be used as fuels and feedstocks in industry. Solar energy is the most abundant form of renewable energy, and we are striving to develop economically-competitive ways to produce solar fuels,” says Sivula of EPFL’s Laboratory for Molecular Engineering of Optoelectronic Nanomaterials and principal investigator of the study.

    Inspiration from a plant’s leaf

    In their research for renewable fossil-free fuels, the EPFL engineers in collaboration with Toyota Motor Europe, took inspiration from the way plants are able to convert sunlight into chemical energy using carbon dioxide from the air. A plant essentially harvests carbon dioxide and water from its environment, and with the extra boost of energy from sunlight, can transform these molecules into sugars and starches, a process known as photosynthesis. The sunlight’s energy is stored in the form of chemical bonds inside of the sugars and starches.

    The transparent gas diffusion electrodes developed by Sivula and his team, when coated with a light harvesting semiconductor material, indeed act like an artificial leaf, harvesting water from the air and sunlight to produce hydrogen gas. The sunlight’s energy is stored in the form of hydrogen bonds.

    3

    Instead of building electrodes with traditional layers that are opaque to sunlight, their substrate is actually a 3-dimensional mesh of felted glass fibers.

    Marina Caretti, lead author of the work, says, “Developing our prototype device was challenging since transparent gas-diffusion electrodes have not been previously demonstrated, and we had to develop new procedures for each step. However, since each step is relatively simple and scalable, I think that our approach will open new horizons for a wide range of applications starting from gas diffusion substrates for solar-driven hydrogen production.”

    From liquid water to humidity in the air

    Sivula and other research groups have previously shown that it is possible to perform artificial photosynthesis by generating hydrogen fuel from liquid water and sunlight using a device called a photoelectrochemical (PEC) cell. A PEC cell is generally known as a device that uses incident light to stimulate a photosensitive material, like a semiconductor, immersed in liquid solution to cause a chemical reaction. But for practical purposes, this process has its disadvantages e.g. it is complicated to make large-area PEC devices that use liquid.

    Sivula wanted to show that the PEC technology can be adapted for harvesting humidity from the air instead, leading to the development of their new gas diffusion electrode. Electrochemical cells (e.g. fuel cells) have already been shown to work with gases instead of liquids, but the gas diffusion electrodes used previously are opaque and incompatible with the solar-powered PEC technology.

    Now, the researchers are focusing their efforts into optimizing the system. What is the ideal fiber size? The ideal pore size? The ideal semiconductors and membrane materials? These are questions that are being pursued in the EU Project “Sun-to-X”, which is dedicated to advance this technology, and develop new ways to convert hydrogen into liquid fuels.

    _______________________________________________________
    Making transparent, gas-diffusion electrodes

    In order to make transparent gas diffusion electrodes, the researchers start with a type of glass wool, which is essentially quartz (also known as silicon oxide) fibers and process it into felt wafers by fusing the fibers together at high temperature. Next, the wafer is coated with a transparent thin film of fluorine-doped tin oxide, known for its excellent conductivity, robustness and ease to scale-up. These first steps result in a transparent, porous, and conducting wafer, essential for maximizing contact with the water molecules in the air and letting photons through. The wafer is then coated again, this time with a thin-film of sunlight-absorbing semiconductor materials. This second thin coating still lets light through, but appears opaque due to the large surface area of the porous substrate. As is, this coated wafer can already produce hydrogen fuel once exposed to sunlight.

    The scientists went on to build a small chamber containing the coated wafer, as well as a membrane for separating the produced hydrogen gas for measurement. When their chamber is exposed to sunlight under humid conditions, hydrogen gas is produced, achieving what the scientists set out to do, showing that the concept of a transparent gas- diffusion electrode for solar-powered hydrogen gas production can be achieved.

    While the scientists did not formally study the solar-to-hydrogen conversion efficiency in their demonstration, they acknowledge that it is modest for this prototype, and currently less than can be achieved in liquid-based PEC cells. Based on the materials used, the maximum theoretical solar-to-hydrogen conversion efficiency of the coated wafer is 12%, whereas liquid cells have been demonstrated up to 19% efficient.
    _______________________________________________________

    Science paper:
    Advanced Materials
    See the science paper for instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich] (CH). Associated with several specialized research institutes, the two universities form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles Polytechniques Fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École Polytechnique Fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École Spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices were located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganized and acquired the status of a university in 1890, the technical faculty changed its name to École d’Ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich (CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organized into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences
    Institute of Mathematics
    Institute of Chemical Sciences and Engineering
    Institute of Physics
    European Centre of Atomic and Molecular Computations
    Bernoulli Center
    Biomedical Imaging Research Center
    Interdisciplinary Center for Electron Microscopy
    MPG-EPFL Centre for Molecular Nanosciences and Technology
    Swiss Plasma Center
    Laboratory of Astrophysics

    School of Engineering

    Institute of Electrical Engineering
    Institute of Mechanical Engineering
    Institute of Materials
    Institute of Microengineering
    Institute of Bioengineering

    School of Architecture, Civil and Environmental Engineering

    Institute of Architecture
    Civil Engineering Institute
    Institute of Urban and Regional Sciences
    Environmental Engineering Institute

    School of Computer and Communication Sciences

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences

    Bachelor-Master Teaching Section in Life Sciences and Technologies
    Brain Mind Institute
    Institute of Bioengineering
    Swiss Institute for Experimental Cancer Research
    Global Health Institute
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics
    NCCR Synaptic Bases of Mental Diseases

    College of Management of Technology

    Swiss Finance Institute at EPFL
    Section of Management of Technology and Entrepreneurship
    Institute of Technology and Public Policy
    Institute of Management of Technology and Entrepreneurship
    Section of Financial Engineering

    College of Humanities

    Human and social sciences teaching program

    EPFL Middle East

    Section of Energy Management and Sustainability

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École Cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 11:12 am on December 21, 2022 Permalink | Reply
    Tags: "Simple machine may pave the way for more powerful cell phones and WIFI", A 3D-printed device in a tank of water braids nanowires and moves microparticles., , , Chemical engineering, , , Microstructure, Nanostructure, , The interior of the device is carved with channels that intersect., , The machine is a 3D-printed plastic rectangle about the size of an old Nintendo cartridge., The next generation of phones and wireless devices are going to need new antennae to access higher and higher frequency ranges.   

    From The John A Paulson School of Engineering and Applied Sciences At Harvard University: “Simple machine may pave the way for more powerful cell phones and WIFI” 

    From The John A Paulson School of Engineering and Applied Sciences

    At

    Harvard University

    10.26.22 [Just today in social media.]
    Leah Burrows

    A 3D-printed device in a tank of water braids nanowires and moves microparticles.

    1
    This simple machine that uses the surface tension of water to grab and manipulate microscopic objects. (Credit: Manoharan Lab/Harvard SEAS)

    The next generation of phones and wireless devices are going to need new antennae to access higher and higher frequency ranges. One way to make antennae that work at tens of gigahertz — the frequencies needed for 5G and higher devices — is to braid filaments about 1 micrometer in diameter. But today’s industrial fabrication techniques won’t work on fibers that small. 

    Now a team of researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) has developed a simple machine that uses the surface tension of water to grab and manipulate microscopic objects, offering a potentially powerful tool for nanoscopic manufacturing. 

    The research is published in Nature [below]. 

    “Our work offers a potentially inexpensive way to manufacture microstructured and possibly nanostructured materials,” said Vinothan Manoharan, the Wagner Family Professor of Chemical Engineering and Professor of Physics at SEAS and senior author of the paper. “Unlike other micromanipulation methods, like laser tweezers, our machines can be made easily. We use a tank of water and a 3D printer, like the ones found at many public libraries.”

    The machine is a 3D-printed plastic rectangle, about the size of an old Nintendo cartridge. The interior of the device is carved with channels that intersect. Each channel has wide and narrow sections, like a river that expands in some parts and narrows in others. The channel walls are hydrophilic, meaning they attract water. 

    Through a series of simulations and experiments, the researchers found that when they submerged the device in water and placed a millimeter-sized plastic float in the channel, the surface tension of the water caused the wall to repel the float. If the float was in a narrow section of the channel, it moved to a wide section, where it could float as far away from the walls as possible. 


    Simple machine may pave the way for more powerful cell phones and WIFI.

    Once in a wide section of the channel, the float would be trapped in the center, held in place by the repulsive forces between the walls and float. As the device is lifted out of the water, the repulsive forces change as the shape of the channel changes. If the float was in a wide channel to start, it may find itself in a narrow channel as the water level falls and need to move to the left or right to find a wider spot. 

    “The eureka moment came when we found we could move the objects by changing the cross-section of our trapping channels,” said Maya Faaborg, an associate at SEAS and co-first author of the paper. 

    The researchers then attached microscopic fibers to the floats. As the water level changed and the floats moved to the left or right within the channels, the fibers twisted around each other. 

    “It was a shout-out-loud-in-joy moment when — on our first try — we crossed two fibers using only a piece of plastic, a water tank, and a stage that moves up and down,” said Faaborg.

    The team then added a third float with a fiber and designed a series of channels to move the floats in a braiding pattern. They successfully braided micrometer-scale fibers of the synthetic material Kevlar. The braid was just like a traditional three-strand hair braid, except that each fiber was 10-times smaller than a single human hair.

    The researchers then showed that the floats themselves could be microscopic. They made machines that could trap and move colloidal particles 10 micrometers in size — even though the machines were a thousand times bigger.

    “We weren’t sure it would work, but our calculations showed that it was possible,” said Ahmed Sherif, a PhD student at SEAS and a co-author of the paper. “So we tried it, and it worked. The amazing thing about surface tension is that it produces forces that are gentle enough to grab tiny objects, even with a machine big enough to fit in your hand.”

    Next, the team aims to design devices that can simultaneously manipulate many fibers, with the goal of making high-frequency conductors. They also plan to design other machines for micromanufacturing applications, such as building materials for optical devices from microspheres.

    The research was co-authored by Cheng Zeng, Ahmed Sherif, Martin J. Falk, Rozhin Hajian, Ming Xiao, Kara Hartig, Yohai Bar-Sinai and Michael Brenner, the Michael F. Cronin Professor of Applied Mathematics and Applied Physics and Professor of Physics at SEAS. It was supported in part by the Defense Advanced Research Projects Agency (DARPA), under grant FA8650-15-C-7543; the National Science Foundation through the Harvard University Materials Research Science and Engineering Center, under grant DMR-2011754 and ECCS-1541959; and the Office of Naval Research under grant N00014-17-1-3029.

    Science paper:
    Nature

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    1

    Through research and scholarship, the The Harvard John A. Paulson School of Engineering and Applied Sciences will create collaborative bridges across Harvard and educate the next generation of global leaders. By harnessing the power of engineering and applied sciences we will address the greatest challenges facing our society.

    Specifically, that means that SEAS will provide to all Harvard College students an introduction to and familiarity with engineering and technology as this is essential knowledge in the 21st century.

    Moreover, our concentrators will be immersed in the liberal arts environment and be able to understand the societal context for their problem solving, capable of working seamlessly with others, including those in the arts, the sciences, and the professional schools. They will focus on the fundamental engineering and applied science disciplines for the 21st century; as we will not teach legacy 20th century engineering disciplines.

    Instead, our curriculum will be rigorous but inviting to students, and be infused with active learning, interdisciplinary research, entrepreneurship and engineering design experiences. For our concentrators and graduate students, we will educate “T-shaped” individuals – with depth in one discipline but capable of working seamlessly with others, including arts, humanities, natural science and social science.

    To address current and future societal challenges, knowledge from fundamental science, art, and the humanities must all be linked through the application of engineering principles with the professions of law, medicine, public policy, design and business practice.

    In other words, solving important issues requires a multidisciplinary approach.

    With the combined strengths of SEAS, the Faculty of Arts and Sciences, and the professional schools, Harvard is ideally positioned to both broadly educate the next generation of leaders who understand the complexities of technology and society and to use its intellectual resources and innovative thinking to meet the challenges of the 21st century.

    Ultimately, we will provide to our graduates a rigorous quantitative liberal arts education that is an excellent launching point for any career and profession.

    Harvard University campus

    Harvard University is the oldest institution of higher education in the United States, established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. It was named after the College’s first benefactor, the young minister John Harvard of Charlestown, who upon his death in 1638 left his library and half his estate to the institution. A statue of John Harvard stands today in front of University Hall in Harvard Yard, and is perhaps the University’s best-known landmark.

    Harvard University has 12 degree-granting Schools in addition to the Radcliffe Institute for Advanced Study. The University has grown from nine students with a single master to an enrollment of more than 20,000 degree candidates including undergraduate, graduate, and professional students. There are more than 360,000 living alumni in the U.S. and over 190 other countries.

    The Massachusetts colonial legislature, the General Court, authorized Harvard University’s founding. In its early years, Harvard College primarily trained Congregational and Unitarian clergy, although it has never been formally affiliated with any denomination. Its curriculum and student body were gradually secularized during the 18th century, and by the 19th century, Harvard University had emerged as the central cultural establishment among the Boston elite. Following the American Civil War, President Charles William Eliot’s long tenure (1869–1909) transformed the college and affiliated professional schools into a modern research university; Harvard became a founding member of the Association of American Universities in 1900. James B. Conant led the university through the Great Depression and World War II; he liberalized admissions after the war.

    The university is composed of ten academic faculties plus the Radcliffe Institute for Advanced Study. Arts and Sciences offers study in a wide range of academic disciplines for undergraduates and for graduates, while the other faculties offer only graduate degrees, mostly professional. Harvard has three main campuses: the 209-acre (85 ha) Cambridge campus centered on Harvard Yard; an adjoining campus immediately across the Charles River in the Allston neighborhood of Boston; and the medical campus in Boston’s Longwood Medical Area. Harvard University’s endowment is valued at $41.9 billion, making it the largest of any academic institution. Endowment income helps enable the undergraduate college to admit students regardless of financial need and provide generous financial aid with no loans The Harvard Library is the world’s largest academic library system, comprising 79 individual libraries holding about 20.4 million items.

    Harvard University has more alumni, faculty, and researchers who have won Nobel Prizes (161) and Fields Medals (18) than any other university in the world and more alumni who have been members of the U.S. Congress, MacArthur Fellows, Rhodes Scholars (375), and Marshall Scholars (255) than any other university in the United States. Its alumni also include eight U.S. presidents and 188 living billionaires, the most of any university. Fourteen Turing Award laureates have been Harvard affiliates. Students and alumni have also won 10 Academy Awards, 48 Pulitzer Prizes, and 108 Olympic medals (46 gold), and they have founded many notable companies.

    Colonial

    Harvard University was established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. In 1638, it acquired British North America’s first known printing press. In 1639, it was named Harvard College after deceased clergyman John Harvard, an alumnus of the University of Cambridge(UK) who had left the school £779 and his library of some 400 volumes. The charter creating the Harvard Corporation was granted in 1650.

    A 1643 publication gave the school’s purpose as “to advance learning and perpetuate it to posterity, dreading to leave an illiterate ministry to the churches when our present ministers shall lie in the dust.” It trained many Puritan ministers in its early years and offered a classic curriculum based on the English university model—many leaders in the colony had attended the University of Cambridge—but conformed to the tenets of Puritanism. Harvard University has never affiliated with any particular denomination, though many of its earliest graduates went on to become clergymen in Congregational and Unitarian churches.

    Increase Mather served as president from 1681 to 1701. In 1708, John Leverett became the first president who was not also a clergyman, marking a turning of the college away from Puritanism and toward intellectual independence.

    19th century

    In the 19th century, Enlightenment ideas of reason and free will were widespread among Congregational ministers, putting those ministers and their congregations in tension with more traditionalist, Calvinist parties. When Hollis Professor of Divinity David Tappan died in 1803 and President Joseph Willard died a year later, a struggle broke out over their replacements. Henry Ware was elected to the Hollis chair in 1805, and the liberal Samuel Webber was appointed to the presidency two years later, signalling the shift from the dominance of traditional ideas at Harvard to the dominance of liberal, Arminian ideas.

    Charles William Eliot, president 1869–1909, eliminated the favored position of Christianity from the curriculum while opening it to student self-direction. Though Eliot was the crucial figure in the secularization of American higher education, he was motivated not by a desire to secularize education but by Transcendentalist Unitarian convictions influenced by William Ellery Channing and Ralph Waldo Emerson.

    20th century

    In the 20th century, Harvard University’s reputation grew as a burgeoning endowment and prominent professors expanded the university’s scope. Rapid enrolment growth continued as new graduate schools were begun and the undergraduate college expanded. Radcliffe College, established in 1879 as the female counterpart of Harvard College, became one of the most prominent schools for women in the United States. Harvard University became a founding member of the Association of American Universities in 1900.

    The student body in the early decades of the century was predominantly “old-stock, high-status Protestants, especially Episcopalians, Congregationalists, and Presbyterians.” A 1923 proposal by President A. Lawrence Lowell that Jews be limited to 15% of undergraduates was rejected, but Lowell did ban blacks from freshman dormitories.

    President James B. Conant reinvigorated creative scholarship to guarantee Harvard University’s preeminence among research institutions. He saw higher education as a vehicle of opportunity for the talented rather than an entitlement for the wealthy, so Conant devised programs to identify, recruit, and support talented youth. In 1943, he asked the faculty to make a definitive statement about what general education ought to be, at the secondary as well as at the college level. The resulting Report, published in 1945, was one of the most influential manifestos in 20th century American education.

    Between 1945 and 1960, admissions were opened up to bring in a more diverse group of students. No longer drawing mostly from select New England prep schools, the undergraduate college became accessible to striving middle class students from public schools; many more Jews and Catholics were admitted, but few blacks, Hispanics, or Asians. Throughout the rest of the 20th century, Harvard became more diverse.

    Harvard University’s graduate schools began admitting women in small numbers in the late 19th century. During World War II, students at Radcliffe College (which since 1879 had been paying Harvard University professors to repeat their lectures for women) began attending Harvard University classes alongside men. Women were first admitted to the medical school in 1945. Since 1971, Harvard University has controlled essentially all aspects of undergraduate admission, instruction, and housing for Radcliffe women. In 1999, Radcliffe was formally merged into Harvard University.

    21st century

    Drew Gilpin Faust, previously the dean of the Radcliffe Institute for Advanced Study, became Harvard University’s first woman president on July 1, 2007. She was succeeded by Lawrence Bacow on July 1, 2018.

     
  • richardmitnick 11:44 am on December 19, 2022 Permalink | Reply
    Tags: "Hygroelectricity": humidity electricity, "Realizing a century-old dream to make electricity from air", , Chemical engineering, , , , European research is expanding clean-energy options bolstering the EU’s goal to become climate-neural by 2050., , , Perfecting the conversion of atmospheric humidity into electricity, , Water vapour can carry an electrical charge.   

    From “Horizon” The EU Research and Innovation Magazine : “Realizing a century-old dream to make electricity from air” 

    From “Horizon” The EU Research and Innovation Magazine

    12.17.22
    MICHAEL ALLEN

    1

    European research is expanding clean-energy options bolstering the EU’s goal to become climate-neural by 2050.

    As the European Union strives for climate neutrality by mid-century, a mother-and-son-team is helping to tackle a potential hurdle: the limited number of renewable-energy sources driving the EU’s shift away from fossil fuels.

    Andriy Lyubchyk is a partner in the CATCHER project, which aims to expand a clean-energy mix by perfecting the conversion of atmospheric humidity into electricity.

    Old dream

    The technique involves harvesting the tiny charges of static electricity contained in gaseous water molecules, which are ubiquitous in the atmosphere. The process is known as “hygroelectricity or humidity electricity.

    ‘With this new renewable-energy source, we believe we will drastically increase the efficiency and the possibilities of the green-energy transition,’ said Lyubchyk, chief executive officer of Portuguese start-up Cascatachuva Lda. He is also a chemical engineer at Lusophone University of Humanities and Technologies in Lisbon, Portugal.

    In the early 1900s, Serbian-American inventor Nikola Tesla dreamed of harnessing energy from the air. He ran a series of experiments trying to capture electrical charges from the atmosphere and transform them into an electric current.

    Since Tesla’s time, scientists have learned more about how electricity is formed and released in the atmosphere and discovered that water vapour can carry an electrical charge.

    The know-how could be a boost for the EU, which gets about 22% of its energy from renewables. It is on track to tighten an end-of-decade target for such sources, which also include hydropower, to as high as 45%.
    But, for Europe to become climate-neutral by 2050, renewables will have to play an even bigger role and “hygroelectricity” would give the EU more options as it seeks to abandon oil, natural gas and coal.

    New technology

    Funded by the European Innovation Council’s Pathfinder programme, CATCHER brings together eight partners from six countries in Europe to explore the possibility.

    While the general idea might be the same, the particular technology used by CATCHER is very different to Tesla’s. The project uses panel-like cells made from zirconium oxide – a hard crystalline material – to capture energy from atmospheric humidity.

    Zirconium oxide is a ceramic material widely used for such things as dental implants, advanced glass-like materials, electronics and cladding for nuclear fuel rods.

    When exploring the properties of nanomaterials made from zirconium oxide seven years ago, researchers started to see evidence of hygroelectricity, according to Svitlana Lyubchik, who coordinates CATCHER and is the mother of Andriy Lyubchyk.

    Like him, she is a chemical engineer at Lusophone University. They undertook various initiatives to try to exploit this potential.

    The researchers are now at the point where an 8-by-5-centimetre plate of their material can generate around 0.9 volt in a laboratory with a humidity of around 50%. This is comparable to the power output of half an AA battery.

    Working to make its “hygroelectricity” material more efficient, the team expects that, once perfected, the cells will be able to harvest the same amount of electricity as similar-sized photovoltaic cells.

    The researchers also believe that the cells will be deployed in a similar way to solar panels – either as large-scale electricity farms or as a power source for individual buildings.

    Steady states

    The cells are created by producing very small, uniform nanoparticles of zirconium oxide and then compressing them into a sheet of material with a similar structure throughout including a series of channels, or capillaries.

    The nanostructure generates electrical fields inside the capillaries that separate the charge from water molecules absorbed from the atmosphere, according to Andriy Lyubchyk.

    The result is a cascade of physicochemical, physical and electrophysical processes that capture the electrical energy.

    In one respect, the new technology will have an advantage over solar and wind energy. While panels and turbines have to be positioned to capture sunlight and wind, hygroelectricity cells need no particular placement because little variation exists in local humidity levels.

    That said, hygroelectricity cells won’t necessarily be an option everywhere because they require minimum levels of humidity to work.

    ‘For example, if it is minus-15 degrees outside, so everything is frozen, there will be no water in the air,’ said Andriy Lyubchyk.

    Ceiling solution

    He is also coordinator with his mother of the EU-funded SSHARE project, which is working on a real-world application by incorporating “hygroelectricity” cells into a heating and cooling system.

    ‘We combine both technologies and make them self-sufficient,’ said Andriy Lyubchyk.

    The heating and cooling system is based on an advanced radiant panel that can be mounted in the ceiling of a room.

    Perforated water pipes pass above the panel feeding it hot or cold water, depending on whether the aim is to heat or cool the room. The panel then radiates heat into – or absorbs heat from – the room via atmospheric humidity rather like way skin can emit heat via perspiration.

    The system should be able to power the pumps that circulate water using “hygroelectricity” generated from the passage of water vapor in and out of the panel.

    The self-sufficient heating system highlights how hydroelectricity can help spur the net-zero energy transition, the researchers say.

    ‘We can contribute to EU policy in terms of energy independence,’ said Svitlana Lyubchik.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition
    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.

     
  • richardmitnick 8:06 am on December 17, 2022 Permalink | Reply
    Tags: "Turning carbon emissions into rocks", , , Chemical engineering, , Earth and Environmental Science, , , In Penn’s Clean Energy Conversions Lab researcher Peter Psarras and colleagues are repurposing waste from industrial mines and storing carbon pulled from the atmosphere into newly formed rock.,   

    From “Penn Today” : “Turning carbon emissions into rocks” 

    From “Penn Today”

    at

    U Penn bloc

    The University of Pennsylvania

    12.15.22
    Michele W. Berger
    Scott Spitzer-Photographer
    David Lowe-Bianco-Videographer

    In Penn’s Clean Energy Conversions Lab, researcher Peter Psarras and colleagues are repurposing waste from industrial mines, storing carbon pulled from the atmosphere into newly formed rock.

    1
    Open-pit mines like the one seen here generate millions of tons of waste each year. Researchers in the Clean Energy Conversions Lab are working on technologies that could turn this waste into carbon-storing rocks, potentially keeping a substantial amount of CO2 out of the atmosphere. (Image: Peter Psarras)

    Chemist Peter Psarras has good reason to call himself a musical rock star—after all, he plays bass and keyboard semi-professionally—but he’s more likely to claim “rock” stardom of the geological bent. Pun most certainly intended. “We’re turning rocks into rocks here,” Psarras explains, holding up a vial containing a white powdery substance. 

    What he’s showing off in the lab that cold December day is magnesium carbonate, the result of a complicated yet inexpensive and mostly carbon-neutral process aimed at storing CO2 that had previously been in the air. In this case, it was done via waste from an industrial mine in the western United States, sent to the Clean Energy Conversions Lab (CECL) at the University of Pennsylvania for analysis and processing.

    The lab, funded by the Kleinman Center for Energy Policy in the Stuart Weitzman School of Design, and the School of Engineering and Applied Science, focuses on carbon management techniques like carbon capture and the technologies to expand such processes. Psarras is interim director while Jennifer Wilcox is on leave to work in the Biden Administration’s Department of Energy.

    2
    Master’s student Haarini Ramesh, research lab manager Daniel Nothaft, and Peter Psarras, interim director of the CECL, show the different stages these materials move through in the lab’s process to repurpose and store the mine waste.

    This team sees great environmental potential in mine tailings, the sand and sludge left behind after the sought-after ore gets removed. With samples in the lab, they’re trying to determine just how much calcium and magnesium each contains, how to best carbonate it with CO2, how and where they can store the result, and whether the process is scalable. So far, they’ve partnered with five mines, but there’s plenty more material out there; the United States generates enough mine tailings in a year to fill 38 million Olympic-size swimming pools.

    The vastness of the mines

    Without physically traveling to one of these open-pit mines, it’s hard to imagine their size. “They are absolutely huge, vast,” says Katherine Vaz Gomes, a third-year doctoral student in the CECL. “It’s really the place where industry meets the Earth, literally and figuratively.” Picture a hole in the ground 10 or 20 times larger than a football stadium, Psarras adds.

    He and Gomes say experiencing a mine in production engages the senses in unexpected ways. Perspective is skewed; rock-hauling trucks with wheels that tower over any person’s head appear as dots on the horizon. In the plant, the noise level only allows for communication by yelling. Everything smells like dust—even through the protective gear required at the mines, Gomes says. “You don’t think that dust has a smell but it’s actually pungent,” she says. “Your shoes get covered in it, too.”

    Though these mining operations have figured out how to simplify something quite complex, the process itself still produces a significant amount of leftover material, with large sections of rock formations ultimately being dubbed waste. Such mine tailings, also known as gangue material, are stored separately from the mining production, sometimes as far away as a mile. They can be mixed with water and turned into a mud slurry, then moved via a large pipe and stored in a giant pool, or they might get dumped onto and transported by a massive conveyer belt.

    “Imagine excavating a mountain, then building basically an entire new mountain of just waste nearby,” Psarras says. “We’re trying to tap into the moved mountain that’s been relocated.” Like the mines themselves, the scale here is immense, hundreds of feet deep to receive something like a million tons of waste each month for the lifetime of the mine.

    Psarras says it’s easy to feel both overwhelmed by the mines and awestruck at the people who run them. “They have everything so fine-tuned,” he says. “I always go back to the lab inspired, but also with the understanding that we can’t complicate their process when we introduce another element of complexity with our technology.”

    From trash to treasure

    In October of this year, the Clean Energy Conversions Lab moved into the Pennovation Lab Building, a relatively new space at Pennovation Works. Less than six weeks later, several drawers in the back room were already filled with dozens of vials of varying sizes containing a class of minerals called silicates, as well as calcium carbonate and magnesium carbonate outputs. Two buckets each holding five gallons of mine tailings sit on the floor nearby, awaiting processing.

    A handful of boxes remain packed in the room next door, scattered among five rows of lab benches that hold beakers and flasks and other equipment ready for use. Psarras, along with Haarini Ramesh, a master’s student in Chemical and Biomolecular Engineering, and CECL research lab manager Daniel Nothaft, describe the science happening there and the technology they’re creating.

    At the highest level, these researchers are shepherding the material from its starting point—rock at the mine—to a sand-like substance, then into a solution, and back to rock. Many intricate steps in between begin by scrutinizing the original material.

    “When we receive the tailings, we first test for a couple things. We look for inorganic carbon, so are the tailings taking CO2 out of the air naturally? We don’t expect that to happen, but we want a baseline of what carbon was already in there,” Psarras explains. They also check the rock’s size, to determine whether they’ll have to grind it down to the tiny particles they need, and analyze its chemical composition, looking for calcium and magnesium, most importantly, but also other scarcer metals like lithium, cobalt, and nickel.

    Here, calcium and magnesium matter most because the process requires alkalinity, which neutralizes the acidic carbon in a reaction that stores CO2 in mineral form. Because the mineral diversity of tailings changes by site, this is a crucial set of steps in the process. “After we answer the composition and extraction questions,” Gomes says, “we need to figure out how to carbonate it.”

    Most people understand carbonation as it relates to fizzy drinks; add carbon dioxide to water and it becomes seltzer. In this process, Psarras’ team adds CO2 to a pressurized vessel that contains the calcium- or magnesium-rich liquid they created in the previous step. That vessel then goes into a machine that heats and mixes what’s within. Gomes describes it simply: “The middle product is a solution. You pump in CO2. When you add the gas to the solution, you get a solid.” Beyond keeping carbon out of the atmosphere, that newly formed carbon-storing rock has many potential applications.

    Benefits of mineral carbonation

    Psarras has always disliked the argument in energy circles that the solution to the carbon problem must involve either reusing CO2 or storing it. He and his Penn colleagues think this mine tailings work represents a third option—one that both repurposes and stores carbon in an economical and nearly carbon-neutral way.

    “We’re creating minerals that have a lot of use today,” Psarras says. For instance, carbonate can go into paper as a filler material or into building materials by replacing gravel in concrete. “Another benefit of mineral carbonation reactions is that they release energy,” adds Daniel Nothaft, who earned a Ph.D. in geology before joining CECL in January 2021. “While in practice, some energy input is needed to speed up the reactions, the energetics are more favorable than other CO2 utilization pathways such as CO2-to-fuels.”

    4
    3
    5
    Often, industrial mine waste starts as rock, which the researchers then turn into a sand-like substance (top). After analyzing its chemical composition, they extract calcium and magnesium, creating a solution (center) then put into a pressurized vessel injected with CO2. Finally, the vessel goes into a machine that heats and mixes what’s within (bottom).

    Finding a second life for this waste can also help the mines, which often must figure out how to restore previous dump sites. “This process has a lot of potential because it’s about using waste to remediate another waste,” Gomes says. And given that this problem isn’t unique to the United States, she adds, it could be a way to treat mine tailings globally.

    Plus, it’s an almost carbon-free process. Of course, the steps to do it require energy, but for the most part, the overall carbon footprint is assigned to the mining itself, not the waste it creates. “It comes with next to no carbon, outside of the incremental work to process it, which would be pennies on the dollar to what you’d encounter trying to mine it fresh,” Psarras says. None of this accounts for the added benefit of material that unintentionally comes along for the ride during extraction, high-value metals like nickel that can be repurposed and resold.

    Can it be scaled?

    The outstanding question now is how to scale this up to make it what Psarras describes as a “disruptive force” in the industry. After all, it does shorten something that would naturally take thousands of years down to hours, and the mines already involved in the project seem game to having their samples analyzed and to showing the CECL team around. But Psarras admits the technology is still a few steps away from the ability to use it everywhere.

    One Nevada mine is acting as a test case to help the researchers better understand the true cost of this process and what a business model might entail. Based on the mine tailings analysis they’ve done, the researchers are also creating a database to track how well their technology works for different materials, an attempt at greater standardization.

    “These technologies will eventually be able to address the critical mineral needs and the carbon management needs that are two of the most pressing environmental and technological challenges of our time,” Nothaft says. “That’s definitely what motivates me to work on this.”

    It’s an exciting time to work in the carbon capture space, adds Psarras. He guesses their technology could be ready to scale within the next two years, and with the right partners, says this work could eventually remove millions of tons of CO2 from the atmosphere. Should that come to pass, these carbon-storing rocks will indeed be stars in the fight against a warming planet, bolstered by the research team that created them.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Penn campus

    Academic life at University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: