Tagged: Biology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:54 am on August 17, 2019 Permalink | Reply
    Tags: "Wireless sensors that stick to the skin to track our health", , Biology, , Stanford engineers have developed a way to detect physiological signals emanating from the skin with sensors that stick like band-aids and beam wireless readings to a receiver clipped onto clothing., , The BodyNet sticker, The researchers had to create an antenna that could stretch and bend like skin.   

    From Stanford University: “Wireless sensors that stick to the skin to track our health” 

    Stanford University Name
    From Stanford University

    August 16, 2019
    Tom Abate
    (650) 736-2245
    tabate@stanford.edu

    1
    The rubber sticker attached to the wrist can bend and stretch as the person’s skin moves, beaming pulse readings to a receiver clipped to the person’s clothing. (Image credit: Bao Lab)

    We tend to take our skin’s protective function for granted, ignoring its other roles in signaling subtleties like a fluttering heart or a flush of embarrassment.

    2
    Using metallic ink, researchers screen-print an antenna and sensor onto a stretchable sticker designed to adhere to skin and track pulse and other health indicators, and beam these readings to a receiver on a person’s clothing. (Image credit: Bao Lab)

    Now, Stanford engineers have developed a way to detect physiological signals emanating from the skin with sensors that stick like band-aids and beam wireless readings to a receiver clipped onto clothing.

    To demonstrate this wearable technology, the researchers stuck sensors to the wrist and abdomen of one test subject to monitor the person’s pulse and respiration by detecting how their skin stretched and contracted with each heartbeat or breath. Likewise, stickers on the person’s elbows and knees tracked arm and leg motions by gauging the minute tightening or relaxation of the skin each time the corresponding muscle flexed.

    Zhenan Bao, the chemical engineering professor whose lab described the system in an Aug. 15 article in Nature Electronics, thinks this wearable technology, which they call BodyNet, will first be used in medical settings such as monitoring patients with sleep disorders or heart conditions. Her lab is already trying to develop new stickers to sense sweat and other secretions to track variables such as body temperature and stress. Her ultimate goal is to create an array of wireless sensors that stick to the skin and work in conjunction with smart clothing to more accurately track a wider variety of health indicators than the smart phones or watches consumers use today.

    “We think one day it will be possible to create a full-body skin-sensor array to collect physiological data without interfering with a person’s normal behavior,” said Bao, who is also the K.K. Lee Professor in the School of Engineering.

    Stretchable, comfortable, functional

    Postdoctoral scholars Simiao Niu and Naoji Matsuhisa led the 14-person team that spent three years designing the sensors. Their goal was to develop a technology that would be comfortable to wear and have no batteries or rigid circuits to prevent the stickers from stretching and contracting with the skin.

    Their eventual design met these parameters with a variation of the RFID – radiofrequency identification – technology used to control keyless entry to locked rooms. When a person holds an ID card up to an RFID receiver, an antenna in the ID card harvests a tiny bit of RFID energy from the receiver and uses this to generate a code that it then beams back to the receiver.

    The BodyNet sticker is similar to the ID card: It has an antenna that harvests a bit of the incoming RFID energy from a receiver on the clothing to power its sensors. It then takes readings from the skin and beams them back to the nearby receiver.

    But to make the wireless sticker work, the researchers had to create an antenna that could stretch and bend like skin. They did this by screen-printing metallic ink on a rubber sticker. However, whenever the antenna bent or stretched, those movements made its signal too weak and unstable to be useful.

    To get around this problem, the Stanford researchers developed a new type of RFID system that could beam strong and accurate signals to the receiver despite constant fluctuations. The battery-powered receiver then uses Bluetooth to periodically upload data from the stickers to a smartphone, computer or other permanent storage system.

    The initial version of the stickers relied on tiny motion sensors to take respiration and pulse readings. The researchers are now studying how to integrate sweat, temperature and other sensors into their antenna systems.

    To move their technology beyond clinical applications and into consumer-friendly devices, the researchers need to overcome another challenge – keeping the sensor and receiver close to each other. In their experiments, the researchers clipped a receiver on clothing just above each sensor. One-to-one pairings of sensors and receivers would be fine in medical monitoring, but to create a BodyNet that someone could wear while exercising, antennas would have to be woven into clothing to receive and transmit signals no matter where a person sticks a sensor.

    Bao is also a senior fellow of the Precourt Institute for Energy, a member of Stanford Bio-X, a faculty fellow of Stanford ChEM-H, an affiliate of the Stanford Woods Institute for the Environment and a member of the Wu Tsai Neurosciences Institute. Other Stanford co-authors are Jeffrey B.-H. Tok, research scientist; Ada Poon, associate professor of electrical engineering; William Burnett, adjunct professor of mechanical engineering; postdoctoral scholars Yuanwen Jiang and Jinxing Li; graduate student Jiechen Wang; and former visiting scholar Youngjun Yun and former postdoctoral scholars Sihong Wang, Xuzhou Yan and Levent Beker. Researchers from Singapore’s Nanyang Technological University also co-authored the study.

    This research was supported by Samsung Electronics; the Singapore Agency for Science, Technology and Research; the Japan Society for the Promotion of Science; and the Stanford Precision Health and Integrated Diagnosis Center.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus. No image credit

    Stanford University

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 7:54 am on August 14, 2019 Permalink | Reply
    Tags: "About last night: multiple coral spawning in the Great Barrier Reef", , Biology, Coral biology, Coral spawning- which is when corals release tiny egg and sperm bundles into the water., , Did you know that the Great Barrier Reef is made up of more than 3800 coral reefs?, , It generally happens only once a year after a full moon for a few hours over one to two nights., , Spawning over successive months helps corals synchronise their reproduction to the best environmental conditions., When coral colonies spawn more than once a year it can lead to better health for our coral reefs.   

    From CSIROscope: “About last night: multiple coral spawning in the Great Barrier Reef” 

    CSIRO bloc

    From CSIROscope

    14 August 2019
    Natalie Kikken

    1
    Did you know that the Great Barrier Reef is made up of more than 3,800 coral reefs? New research on coral spawning could help coral health, particularly in areas that have suffered coral disturbances. Credit: Shella Dee

    It’s been described as “the most spectacular events in our oceans.” And no, it’s not the gnarly waves you caught surfing on the weekend.

    It’s coral spawning, which is when corals release tiny egg and sperm bundles into the water. It generally happens only once a year, after a full moon, for a few hours, over one to two nights.

    But our scientists along with the University of Queensland have discovered something for the first time. When coral colonies spawn more than once a year, it can lead to better health for our coral reefs. The more larvae that set off into the water, the more chances they have to find new homes to help establish coral recovery. This even includes travelling to neighbouring reefs hundreds of kilometres away. This is good news for strengthening the resilience of the Great Barrier Reef.

    Multiple coral spawning: Larvae in numbers

    The corals that spawned over multiple months were successful in spreading their offspring across different parts of the Great Barrier Reef. This is exciting news for Dr Christopher Doropoulos, from our Oceans and Atmosphere team. He’s been studying coral spawning events, and what drives the successful recruitment of coral larvae, for the last 10 years.

    “Spawning over successive months helps corals synchronise their reproduction to the best environmental conditions,” he said.

    “Reproductive success during split spawning may be lower than usual, because it can lead to reduced fertilisation. But we found that the release of eggs in two separate smaller events gives the corals a second and improved chance of finding a new home reef. We call this ‘split spawning’ and it could help the coral communities of the Great Barrier Reef.”

    2
    Larvae larvae! Coral spawning is when coral release egg and sperm bundles into the water.

    Multi-skills for a mega-reef

    To understand the impacts of this spawning, we applied modelling, coral biology, ecology, and oceanography. This meant we could simulate the dispersal of coral larvae during these split spawning events across the whole of the Great Barrier Reef. That’s more than 3800 individual reefs!

    To do this we enlisted the expertise of our researchers Rebecca Gorton and Scott Condie, who have developed online tools such as eReefs and CONNIE. eReefs provides a picture of what is currently happening on the reef and what will likely happen in the future. CONNIE is used to calculate the movement and dispersal of almost any substance or planktonic organism in the ocean.

    The team looked at whether the split spawning events were more reliable at supplying larvae to the reefs. They also looked at whether connectivity (the ability to exchange larvae) among the reefs was improving.

    3
    About last night: corals release egg and sperm bundles into the water, at the same time! They can then be fertilised and will turn into larvae.

    Reef recovery and resilience

    The results showed an increase in diversity of larvae, and better reliability for the larvae to reach different areas of the Reef.

    These findings explain the higher chances of recovery for reefs in the region during split-spawning years. The extra spawning events provide a more robust supply of coral larvae to reefs. This is particularly important for areas of the reef that have suffered disturbances, such as coral bleaching and unpredictable environmental conditions.

    The Great Barrier Reef providing ecosystem services worth more than $6 billion per year in Australia alone. So, this research highlights the importance of coral recovery to sustainably manage the Reef.

    This research was published in Nature Communications and was a collaborative project with University of Queensland and the ARC Centre of Excellence for Coral Reef Studies.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    SKA/ASKAP radio telescope at the Murchison Radio-astronomy Observatory (MRO) in Mid West region of Western Australia

    So what can we expect these new radio projects to discover? We have no idea, but history tells us that they are almost certain to deliver some major surprises.

    Making these new discoveries may not be so simple. Gone are the days when astronomers could just notice something odd as they browse their tables and graphs.

    Nowadays, astronomers are more likely to be distilling their answers from carefully-posed queries to databases containing petabytes of data. Human brains are just not up to the job of making unexpected discoveries in these circumstances, and instead we will need to develop “learning machines” to help us discover the unexpected.

    With the right tools and careful insight, who knows what we might find.

    CSIRO campus

    CSIRO, the Commonwealth Scientific and Industrial Research Organisation, is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

     
  • richardmitnick 1:15 pm on August 13, 2019 Permalink | Reply
    Tags: , , Biology, , , , Microbiome studies, The National Microbiome Data Collaborative   

    From Lawrence Berkeley National Lab: “A Community-Driven Data Science System to Advance Microbiome Research” 

    Berkeley Logo

    From Lawrence Berkeley National Lab

    August 13, 2019

    The National Microbiome Data Collaborative will develop an open-access framework for harnessing microbiome data to accelerate discoveries.

    The National Microbiome Data Collaborative (NMDC), a new initiative aimed at empowering microbiome research, is gearing up its pilot phase after receiving $10 million from the U.S. Department of Energy (DOE) Office of Science.

    Spearheaded by Lawrence Berkeley National Laboratory (Berkeley Lab), in partnership with Los Alamos (LANL), Oak Ridge (ORNL), and Pacific Northwest (PNNL) national laboratories, the NMDC will leverage DOE’s existing data-science resources and high-performance computing systems to develop a framework that facilitates more efficient use of microbiome data for applications in energy, environment, health, and agriculture.

    Nearly every ecosystem and organism on Earth hosts a diverse community of microorganisms – its microbiome. Yet we know little about the functions of individual microbes, let alone how they interact with each other, their hosts, or their environments, and how their activity varies over time or in response to perturbations. The past decade has seen tremendous advances in genome and metagenome DNA-sequencing technologies, which has led to an unprecedented volume of microbiome data being generated. However, further progress in the field has been hindered by the lack of computational infrastructure for processing and performing integrative analyses of these and other microbiome-relevant data.

    The NMDC, led by the DOE Joint Genome Institute (JGI)’s Emiley Eloe-Fadrosh, will tackle this data integration challenge by developing a community-centric framework based on large-scale, collaborative partnerships that draw on the capabilities, expertise, and resources of four DOE national laboratories.

    3

    The guiding principles at the initiative’s core are: making data findable, accessible, interoperable, and reusable (FAIR); connecting data and compute resources; and community engagement that supports open science and shared ownership.

    “While this pilot project is led by DOE national labs, the data sets, resources, and community opportunities are open to all microbiome researchers, regardless of funding, institute, or domain,” said NMDC Deputy Lead and JGI Director Nigel Mouncey.

    Capabilities not currently available to the microbiome research community that NMDC will enable include:

    Aggregating and viewing both taxonomic and functional profiles of unassembled and assembled metagenome sequence data to gain new insights into microbiome composition and function.
    Accessing, analyzing, and integrating multi-omics data sets (metagenome, metatranscriptome, metaproteome, metabolome, and environmental data) to discover community dynamics, metabolic networks, and other microbe-microbe, microbe-host, and microbe-environment interactions.
    Accelerating search through linked data using existing and enhanced ways to describe microbiome data sets, diversifying the sample space and depth for new discoveries.

    2
    Kjiersten Fagnan (at podium) and Elisha Wood-Charlson (on right) at the NMDC town hall at ASM Microbe 2019 in San Francisco on June 22, 2019. (Credit: Berkeley Lab)

    Background

    In 2015, the White House Office of Science and Technology Policy (OSTP) solicited input from the microbiome research community on what the key challenges facing the field were and how best to address them. Berkeley Lab submitted a coordinated Lab-wide response and a number of related papers were published thereafter, including a Policy Forum article in Science, on which Berkeley Lab’s Paul Alivisatos, Eoin Brodie, and Mary Maxon were co-authors; and a Trends in Microbiology article by the JGI’s Nikos Kyrpides, Natalia Ivanova, and Eloe-Fadrosh that introduced the notion of the collaborative and cited DOE’s long history of jumpstarting innovative data projects.

    The next year, the OSTP, in collaboration with federal agencies and private-sector stakeholders, launched the National Microbiome Initiative focused on three main priorities: supporting interdisciplinary research, developing platform technologies, and expanding the microbiome workforce. This prompted the formation of the Microbiome Interagency Working Group (MIWG). Co-chaired by the DOE, this consortium of representatives from 20-plus National Science and Technology Council (NSTC) departments and agencies was tasked with developing a Federal Strategic Plan for microbiome research.

    The MIWG released its Interagency Strategic Plan for Microbiome Research in April 2018, outlining areas of focus for strategic investments over the next five years, which included the development of platform technologies that support open and transparent data through a user-friendly, robust, integrated system with expert curation.

    Following a series of workshops, professional society meetings, online conferences, and visits to Washington, D.C., the FY19 Energy and Water Appropriations Bill included $10 million to “begin establishment of a national microbiome database.” The NMDC was formally unveiled to the research community at a June 22 town hall held during the American Society for Microbiology’s 2019 meeting in San Francisco. Funding for NMDC commenced July 1.

    Phase One

    The first phase of the project, a 27-month pilot, will focus on four aims: designing metadata standards; designing and deploying data-processing workflows; facilitating data integration and access; and delivering multiple opportunities for community engagement. Berkeley Lab houses several key resources for this pilot phase, most notably two data analysis platforms (the Integrated Microbial Genomes & Microbiomes and DOE Systems Biology Knowledgebase), data provided by the JGI, and data standards through participation in the Gene Ontology Consortium. Importantly, Berkeley Lab will lead the first phase of NMDC with a strong commitment to execute all related activities according to our commitment to diversity, equity, inclusion, and accountability.

    Aim 1 leads Alison Boyer (ORNL), Lee Ann McCue (PNNL), and Chris Mungall (Berkeley Lab) will oversee the application of existing ontology mapping tools and curation resources to automate annotation of metadata to comply with FAIR principles. Aim 2 leads Patrick Chain (LANL) and Shane Canon (Berkeley Lab) will guide the design of workflows that leverage high-performance computing systems to generate integrated, interoperable, and reusable microbiome data. Aim 3 lead Kjiersten Fagnan (Berkeley Lab) will spearhead the development of a scalable infrastructure and web-based graphical user interface to enable scientists to explore and interact with the NMDC data.

    “The study of microbiomes is currently one of the most promising arenas for discoveries to advance human health and environmental science. We are just beginning to understand the implications of this new frontier,” said FAIR strategic team lead Stanton Martin (ORNL), who will provide guidance and support across Aims 1-3. “I am excited to be part of the NMDC project, which will serve as an integral public resource for data relating to microbiomes.”

    Aim 4 lead Elisha Wood-Charlson (Berkeley Lab) is responsible for the NMDC’s communication strategy for raising community awareness and engagement. Upcoming events include an October 2019 workshop on Merging Ontologies, a December 2019 American Geophysical Union (AGU) session on Creating Data Synchronicity Across Earth Microbiome Research (FAIR data), and a related session at the Ocean Sciences Meeting in February 2020.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LBNL campus

    Bringing Science Solutions to the World
    In the world of science, Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the National Academy of Sciences (NAS), one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the National Academy of Engineering, and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California (UC) and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the UC Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a UC Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    A U.S. Department of Energy National Laboratory Operated by the University of California.

    University of California Seal

     
  • richardmitnick 7:45 am on August 13, 2019 Permalink | Reply
    Tags: "Ebola Is Now Curable. Here’s How the New Treatments Work", , Biology, , ,   

    From WIRED: “Ebola Is Now Curable. Here’s How the New Treatments Work” 

    Wired logo

    From WIRED

    08.12.19
    Megan Molteni

    1
    A clinical trial in the Democratic Republic of Congo has been testing new Ebola drugs with dramatic results. For newly infected patients on one of the drugs, the mortality rate dropped to 6 percent.

    Amid unrelenting chaos and violence, scientists and doctors in the Democratic Republic of Congo have been running a clinical trial of new drugs to try to combat a year-long Ebola outbreak. On Monday, the trial’s cosponsors at the World Health Organization and the National Institutes of Health announced that two of the experimental treatments appear to dramatically boost survival rates.

    While an experimental vaccine previously had been shown to shield people from catching Ebola, the news marks a first for people who already have been infected. “From now on, we will no longer say that Ebola is incurable,” said Jean-Jacques Muyembe, director general of the Institut National de Recherche Biomedicale in the DRC, which has overseen the trial’s operations on the ground.

    Starting last November, patients in four treatment centers in the country’s east, where the outbreak is at its worst, were randomly assigned to receive one of four investigational therapies—either an antiviral drug called remdesivir or one of three drugs that use monoclonal antibodies. Scientists concocted these big, Y-shaped proteins to recognize the specific shapes of invading bacteria and viruses and then recruit immune cells to attack those pathogens. One of these, a drug called ZMapp, is currently considered the standard of care during Ebola outbreaks. It had been tested and used during the devastating Ebola epidemic in West Africa in 2014, and the goal was to see if those other drugs could outperform it. But preliminary data from the first 681 patients (out of a planned 725) showed such strong results that the trial has now been stopped.

    Patients receiving Zmapp in the four trial centers experienced an overall mortality rate of 49 percent, according to Anthony Fauci, director of the NIH’s National Institute of Allergy and Infectious Diseases. (Mortality rates are in excess of 75 percent for infected individuals who don’t seek any form of treatment.) The monoclonal antibody cocktail produced by a company called Regeneron Pharmaceuticals had the biggest impact on lowering death rates, down to 29 percent, while NIAID’s monoclonal antibody, called mAb114, had a mortality rate of 34 percent. The results were most striking for patients who received treatments soon after becoming sick, when their viral loads were still low—death rates dropped to 11 percent with mAb114 and just 6 percent with Regeneron’s drug, compared with 24 percent with ZMapp and 33 percent with Remdesivir.

    Drugs based on monoclonal antibodies have become a mainstay of modern medicine—fending off a variety of diseases from cancer to lupus. But it takes many years of painstaking reverse-engineering to make them. Zmapp, for instance, was developed by infecting mice with Ebola and then collecting the antibodies the mice produced against the virus. Those antibodies then had to be further engineered to look more like a human antibody, so as not to provoke an immune reaction. Ebola infiltrates its victims’ cells using spiky proteins on the virus’s outer shell, so researchers screened the antibodies for the ones that did the best job of binding to those proteins. Block access, and the virus can’t replicate and spread. But compared with other viruses, Ebola is large and has the ability to change shape, making it difficult for any one antibody to block its infection. That’s why a cocktail approach has become favored, like the Regeneron product—a combination of three monoclonal antibodies generated first in mice.

    An even better solution, some have posited, would be to mine the serum of Ebola survivors and harvest the DNA from the white blood cells that make antibodies. That would yield a set of genetic instructions for making antibodies with a proven track record against the Ebola virus. That’s what the NIH’s mAb114 is—an antibody isolated from the blood of a survivor of a 1995 outbreak in Kikwit, DRC. Scientists discovered it a few years ago—they had been circulating in his body for more than a decade.

    With the WHO’s announcement a new trial will now kick off, directly comparing Regeneron to mAb114, which is being produced by a Florida-based company called Ridgeback Biotherapeutics. And all Ebola treatment units in the outbreak zone will now only administer the two most effective monoclonal antibody drugs, according to the WHO’s director of health emergencies, Mike Ryan.

    “Today’s news puts us one more step to saving more lives,” said Ryan. “The success is clear. But there’s also a tragedy linked to the success. The tragedy is that not enough people are being treated. We are still seeing too many people staying away from treatment centers, people not being found in time to benefit from these therapies.”

    Since the ongoing outbreak began last August in DRC’s North Kivu province, more than 2,800 people have become infected, with 1,794 confirmed deaths. It is the second-largest Ebola outbreak ever recorded. On July 17, the WHO declared it a “public health emergency of international concern,” after a case showed up in Goma, a large city bordering Rwanda. The risk of transmission across international borders remains high.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 9:23 am on August 10, 2019 Permalink | Reply
    Tags: After sporadic outbreaks in 2017 and 2018 the DRC is now experiencing the world’s second-largest recorded outbreak., , Biology, , , , , Increased global travel also means there is a greater likelihood that infectious agents particularly airborne pathogens that can produce disease can rapidly spread among the human population., , Promising novel and repurposed drugs and treatments need to be evaluated in appropriate animal models in laboratories operating under the highest containment (‘Biosafety Level 4’)., Reports out of the region suggest that only half of the cases are being identified and reported., The World Health Organization has declared Ebola a ‘Public Health Emergency of International Concern’ (PHEIC), Vaccination alone cannot solve Ebola., We need to listen to the local leadership and ask them what they need for a community-led response., We need to take on board the valuable and transferable lessons from the last outbreak   

    From CSIROscope: “Combatting Ebola through more than just outbreak response” 

    CSIRO bloc

    From CSIROscope

    9 August 2019
    Professor S.S. Vasan

    1
    An artificially coloured electron microscope image of the Ebola virus

    The World Health Organization has declared Ebola a ‘Public Health Emergency of International Concern’ (PHEIC), for the second time in five years. So, how can the global public health community better support relief efforts in the Democratic Republic of Congo (DRC)?

    Current situation with Ebola in the Democratic Republic of Congo

    The last major African outbreak mainly affected Sierra Leone, Liberia and Guinea, with 28,646 cases and a 40 per cent mortality rate. This epidemic killed five times more people than all other known Ebola outbreaks combined. And a PHEIC was declared between 8 March 2014 and 29 March 2016.

    After sporadic outbreaks in 2017 and 2018, the DRC is now experiencing the world’s second-largest recorded outbreak. As of 5 August 2019, 3150 people have infected with a 59 per cent mortality rate. Reports out of the region suggest that only half of the cases are being identified and reported. Most of them in the region of Kivu.

    The disease has also spread to neighbouring Uganda and been reported in places close to the DRC’s border with Rwanda and South Sudan.

    The decision to declare a PHEIC is a complex one. It involves weighing potential effects on travel and trade that could impede support to affected regions and hinder outbreak control, as argued by the World Health Organisation (WHO).

    What can developed countries do?

    The outbreak cannot be solved just with more funding and medical expertise that will arrive thanks to the PHEIC declaration.

    First and foremost, we need to listen to the local leadership and ask them what they need for a community-led response. And not assume what they want.

    The DRC Ministry of Health had asked for “more cohesion, more harmonization between the different interventions, [and] more alignment with the strategic plan of the Ministry of Health.” Lot of us want to help but are unsure how. So, we need more coordination to ensure each of us is focusing on our core competencies to address needs on the ground.

    Secondly, we need to take on board the valuable and transferable lessons from the last outbreak. This includes dialogue and delicate compromise with the community to ensure safe burial practices.

    Similar to the sustainable Resilient Zero program in Sierra Leone, we should strengthen their district health capacity, laboratory network and disease surveillance systems. We can then detect and respond effectively to not just Ebola, but also other infectious diseases.

    Thirdly, vaccination alone cannot solve Ebola. This is due to a range of factors including lack of 100 per cent protection, adverse effects, clinical and other challenges around coverage, compliance and cost-effectiveness. That is why the global scientific community needs to accelerate the development of treatments that complement the two experimental Ebola vaccines currently in use.

    Promising novel and repurposed drugs and treatments need to be evaluated in appropriate animal models in laboratories operating under the highest containment (‘Biosafety Level 4’). But such high secure facilities, like our own Australian Animal Health Laboratory (AAHL), are very few in number. So, we need greater coordination to ensure there is no duplication of efforts. Some mechanisms are already in place, such as the BSL4ZNet, an international network of laboratories like AAHL to protect against animal to human disease. And the fast track model agreement for rapid collaboration, which shares results for a global coordinated response.

    2
    A CSIRO infectious disease researcher working in the CSIRO high containment lab

    Looking long-term beyond outbreak response

    Recently there has been a greater risk of infectious diseases being transmitted to people from wild and domesticated animals. This is due to growth and geographic expansion of human populations and the increase in agricultural practices. Increased global travel also means there is a greater likelihood that infectious agents, particularly airborne pathogens that can produce disease, can rapidly spread among the human population. Together, these factors have increased the risk of pandemics. It’s not so much a matter of if, but when. While the current list of known emerging infectious diseases is a major concern, it’s the unknown viruses, with a potential for efficient human-to-human transmission that pose the biggest threat.

    Ebola and other haemorrhagic fever viruses are likely to re-emerge and pose a great threat to health and biosecurity. Especially in Africa and other developing nations. These settings have a relatively low health expenditure, high likelihood of such outbreaks, and an urgent need for rapid, safe, cheap and effective treatment options. Therefore, the typical 17 years’ ‘implementation gap’ in the health research translation process is simply not an option for Ebola and similar diseases.

    Ebola has increased the ‘intersectionality’ of suffering among the 13 million people living in a complex humanitarian crisis in the DRC. This includes ongoing conflict and widening health, wealth and gender inequalities. To solve this, we need a strong and locally-led social science and humanitarian focus. This would help guide scientific research, development, evaluation and uptake of response strategies and promising medical countermeasures. For the long-term, we need to focus on planning, preparedness and resilience, not just outbreak response.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    SKA/ASKAP radio telescope at the Murchison Radio-astronomy Observatory (MRO) in Mid West region of Western Australia

    So what can we expect these new radio projects to discover? We have no idea, but history tells us that they are almost certain to deliver some major surprises.

    Making these new discoveries may not be so simple. Gone are the days when astronomers could just notice something odd as they browse their tables and graphs.

    Nowadays, astronomers are more likely to be distilling their answers from carefully-posed queries to databases containing petabytes of data. Human brains are just not up to the job of making unexpected discoveries in these circumstances, and instead we will need to develop “learning machines” to help us discover the unexpected.

    With the right tools and careful insight, who knows what we might find.

    CSIRO campus

    CSIRO, the Commonwealth Scientific and Industrial Research Organisation, is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

     
  • richardmitnick 8:49 am on August 9, 2019 Permalink | Reply
    Tags: A UCLA-led research team has identified dozens of genes- including 16 new genes that increase the risk of autism spectrum disorder., , , “These genes are talking to each other and those interactions appear to be an important link to autism spectrum disorder.”, “We show a substantial difference between the types of mutations that occur in different types of families ., ”, Biology, Families that have more than one affected child versus those having only one child with ASD., , Of the children in the study 960 have autism and 217 children do not. That enabled researchers to analyze the genetic differences between children with and without autism across different families., The families in the study are part of the Autism Genetic Resource Exchange- AGRE, The study further revealed several new biological pathways that had not previously been identified in studies of autism.,   

    From UCLA Newsroom: “Study identifies 69 genes that increase the risk for autism” 


    From UCLA Newsroom

    August 8, 2019
    Marrecca Fiore
    310-267-7095
    mfiore@mednet.ucla.edu

    1
    Dr. Daniel Geschwind. UCLA Health.

    UCLA-led team compared DNA of children with the disorder to that of their siblings and parents.

    A UCLA-led research team has identified dozens of genes, including 16 new genes, that increase the risk of autism spectrum disorder. The findings, published in the journal Cell, were based on a study of families with at least two children with autism.

    Researchers from UCLA, Stanford University and three other institutions used a technique called whole genome sequencing to map the DNA of 2,300 people from nearly 500 families. They found 69 genes that increase the risk for autism spectrum disorder, or ASD; 16 of those genes were not previously suspected to be associated with a risk for autism.

    Researchers also identified several hundred genes they suspect may increase the risk of autism based on their proximity to genes that were previously identified to carry an increased risk. The study further revealed several new biological pathways that had not previously been identified in studies of autism.

    The findings highlight the importance of learning how genetic variants or mutations — the differences that make each person’s genome unique — are passed from parents to children affected with autism, said the study’s co-lead author Elizabeth Ruzzo, a UCLA postdoctoral scholar. Former UCLA postdoctoral scholar Laura Pérez-Cano is the study’s other co-lead author.

    “When we look at parents of autistic children and compare them to individuals without autism, we find that those parents carry significantly more, rare and highly damaging gene variants,” Ruzzo said. “Interestingly, these variants are frequently passed from the parents to all of the affected children but none of the unaffected children, which tells us that they are significantly increasing the risk of autism.”

    Of the children in the study, 960 have autism and 217 children do not. That enabled researchers to analyze the genetic differences between children with and without autism across different families.

    “Studying families with multiple children affected with autism increased our ability to detect inherited mutations in autism spectrum disorder,” said Dr. Daniel Geschwind, a senior author of the study and the Gordon and Virginia MacDonald Distinguished Professor of Human Genetics, Neurology and Psychiatry at the David Geffen School of Medicine at UCLA.

    “We show a substantial difference between the types of mutations that occur in different types of families, such as those that have more than one affected child versus those having only one child with ASD,” said Geschwind, who also is director of the UCLA Center for Autism Research and Treatment and director of the Institute of Precision Health at UCLA.

    The research also found that the 16 genes newly determined to be associated with an increased risk for autism form a network with previously identified genes that are associated with a risk for autism spectrum disorder. The way they interact with one another further heightens the risk, said Dennis Wall, the study’s co-senior author, a Stanford University School of Medicine associate professor of pediatrics and of biomedical data science.

    “They associate with each other more tightly than we’d expect by chance,” he said. “These genes are talking to each other, and those interactions appear to be an important link to autism spectrum disorder.”

    The nearly 600 genes researchers suspect to carry an increased risk of autism were identified through “guilt by association,” meaning through their interactions with other genes that already had been shown to carry an increased autism risk, Ruzzo said. Although not all of those genes will be found to increase the risk for autism, the analysis indicated that future studies will provide support for many of these genes.

    The families in the study are part of the Autism Genetic Resource Exchange, or AGRE, which was developed nearly two decades ago by researchers and the National Institutes of Health in collaboration with Cure Autism Now, which is now a program of Autism Speaks.

    Autism is a spectrum of neurological disorders characterized by difficulties with communication and social interaction. Geschwind has been working to identify the genetic causes and biological mechanisms of the disorder for more than a decade, and in the late 1990s, he led the development of the AGRE resource used in the new study. In 2018, he and colleagues at UCLA received their second five-year grant from the NIH to further expand autism research by studying genetic causes of autism in African American families.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC LA Campus

    For nearly 100 years, UCLA has been a pioneer, persevering through impossibility, turning the futile into the attainable.

    We doubt the critics, reject the status quo and see opportunity in dissatisfaction. Our campus, faculty and students are driven by optimism. It is not naïve; it is essential. And it has fueled every accomplishment, allowing us to redefine what’s possible, time after time.

    This can-do perspective has brought us 12 Nobel Prizes, 12 Rhodes Scholarships, more NCAA titles than any university and more Olympic medals than most nations. Our faculty and alumni helped create the Internet and pioneered reverse osmosis. And more than 100 companies have been created based on technology developed at UCLA.

     
  • richardmitnick 10:53 am on August 6, 2019 Permalink | Reply
    Tags: , Biology, , , , , QUT University, The Great Barrier Reef   

    From COSMOS Magazine and QUT University: “Citizen scientists and the Great Barrier Reef” 

    Cosmos Magazine bloc

    From COSMOS Magazine

    and

    2

    QUT University

    06 August 2019

    QUT researchers are inviting you to help with vital work.

    2
    Researchers are seeking help to save one of the world’s great marine environments. Jeff Hunter/Getty Images

    If news bulletins explaining how climate change has devastated parts of Australia’s Great Barrier Reef leave you feeling impotent and depressed, maybe getting involved in one of several citizen science projects up there could help.

    Researchers from Brisbane-based university QUT run several programs that are turning everyone from secondary school kids to tourists into marine scientists.

    Statistician Erin Peterson, for example, designed the Virtual Reef Diver project to drive a new approach to monitoring and managing the Great Barrier Reef.

    Members of the public can log on to the website and work through the collection of photographs, classifying the images as they go.

    Less “virtual” divers and snorkellers can submit underwater images they have taken while out on the Reef for others to classify.

    This work is vital.

    “The main challenge that we were trying to address is that the Great Barrier Reef is huge,” says Peterson. “It costs a lot to monitor it all.”

    “But there are more than 65 different organisations out there collecting data on the reef – specifically images – all the time.

    “Plus we have all these citizens out snorkelling or scuba diving, and everybody has an underwater camera now.

    “And so the idea was, can we bring together these image-based data from all these different sources, and learn more about what’s going on to get an estimate of coral cover.”

    Once the data is in and classified, data scientists such as Peterson design statistical models to create a predictive map across the whole of the Great Barrier Reef. Thanks to ordinary lay people, the information is as up-to-date as possible.

    Meanwhile, reef researcher Brett Lewis, at QUT’s Science and Engineering Faculty, has his sights set not on the Great Barrier Reef but its smaller cousins in Moreton Bay, near Brisbane.

    His work focusses on reefs in inner Moreton Bay to see how they cope with climate stress, and what that can tell us about the larger ecosystem to the north.

    Apart from climate, the bay reefs face challenges from sediments spilling from the Brisbane River. This is where Lewis’s work holds relevance for studying the effects of dredging on the Great Barrier Reef.

    “One of the easiest things for us to do, and one of the most beneficial for the local area, is to understand how the corals are surviving sedimentation from the Brisbane River and this turbid environment,” he says. “And I have the techniques to be able to carry this out.”

    For much of his work, Lewis uses time-lapse videography and other visual media to capture, in detail, the changes in corals.

    When Iona College in the Brisbane bayside suburb of Wynnum reached out to see if he would help the students develop a marine science project, he said “yes” immediately.

    To start with, Lewis gave students in years 9, 10 and 11 a crash course in scientific observation. Then, after helping them set up aquariums with corals, he gave them a project: create time-lapse videos of how corals deal with different forms of sedimentation, coarse and fine.

    Not only did students get to run the experiments, they got to report on the results, learning to present at conferences.

    “I wanted them to see the impact that their research can have rather than me saying that their research is going to have impact,” says Lewis. “They can visualise it for themselves and see that, yeah, it’s important that we also communicate.”

    QUT’s Matthew Dunbabin and his team keep watch on the Great Barrier Reef – and other reefs around the world – using technology. He and his team last year launched RangerBot, an underwater drone that can monitor marine health and even take direct action – by identifying and destroying the devastating crown-of-thorns starfish.

    3

    RangerBot’s high-tech vision system allows it to “see” under water, a system that helped it win the 2016 Google Impact Challenge People’s Choice prize when it was still under development.

    Having “trained” the RangerBot to take on the crown-of-thorns, QUT researchers are teaching it new tricks. In April they took it to the Philippines to help in reseeding reefs destroyed by dynamite fishing.

    The project won Dunbabin and Southern Cross University’s Peter Harrison the Great Barrier Reef Foundation’s $300,000 Out of the Blue Box Reef Innovation Challenge.

    “We’re looking at a large-scale spreading of the coral spawn,” Dunbabin says.

    “At the moment it’s a manual task, but we attach different payloads that hold bags of concentrated coral spawn after they’ve [been] reared and fertilised.”

    Once that project has been assessed, Dunbabin will head back to the Great Barrier Reef for a similar project at the end of the year.

    And there’s room in RangerBot’s work for the citizen scientist, too.

    “We’ve set it up so that it can be used as a citizen science program,” he says. “We have a citizen science portal where we upload data that’s been collected and lay scientists can help identify crown-of-thorns starfish, helping to verify what the robot thought it saw.”

    They are also working on another project they call the “coral point count” to engage the public where they can upload their own data from their own observations in a similar way to the Virtual Reef project.

    “We’ve developed that with schools,” Dunbabin says. “We were lucky enough to get some money from the Lord Mayor’s Charitable Fund in Melbourne and the Dalio Foundation to engage high schools and other stakeholders.”

    “High schools where students studied marine science were asked to use the technology and give us feedback on what they liked and how we can make it a useful tool.

    “So they actually helped guide the development of the interface for the robot and got an understanding of the technology, and used it as part of that assessment,” he said.

    Professor Dunbabin says it is vital to keep people engaged so they don’t give up hope of keeping the reef vibrant.

    “I think everybody has a role that can help protect the Reef,” he says. “People can actually be part of the science, where they’re analysing the data that helps them contribute to the protection of the reef.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 8:15 am on July 19, 2019 Permalink | Reply
    Tags: "Bioengineers shed light on folding genomes", , “3D Epigenetics”, Biology, ,   

    From Penn Today: “Bioengineers shed light on folding genomes” 


    From Penn Today

    July 18, 2019

    A light-triggered technique that allows genomes to be folded into specific configurations at high speeds has potential to advance the field of 3D epigenetics.

    1

    The genome is identical in every cell of the body. However, this tightly-packed genetic material isn’t always folded into the same shape in each cell. The folding pattern can lead to variations in which genes are activated to make proteins.

    A genome can be thought of as a beaded string, with each bead representing a gene. Reporting in Nature Methods, Jennifer Phillips-Cremins, an assistant professor in Penn Engineering’s Department of Bioengineering, led a team in using light to force both ends of that string together, folding it into specific shapes so that certain genes are in direct physical contact with each other. By controlling which genes are touching, Phillips-Cremins and colleagues hope to determine how different configurations lead to different combinations of genes that are expressed in the body.

    This field of genomic shape manipulation is known as “3D Epigenetics,” and Phillips-Cremins is one of the researchers at its forefront. Her team’s light-triggered folding method, known as light-activated dynamic looping (LADL), can fold genomes into specific loops in a matter of hours. The loops are temporary and can be easily undone. Since prior research from the Phillips-Cremins lab indicates that these looping mechanisms may play a role in some neurodevelopmental diseases, this speedy new folding tool may one day be of use in further research or even treatments.

    “It is critical to understand the genome structure-function relationship on short timescales because the spatiotemporal regulation of gene expression is essential to faithful human development and because the mis-expression of genes often goes wrong in human disease,” Phillips-Cremins says. “The engineering of genome topology with light opens up new possibilities to understanding the cause-and-effect of this relationship. Moreover we anticipate that, over the long term, the use of light will allow us to target specific human tissues and even to control looping in specific neuron subtypes in the brain.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Penn campus

    Academic life at Penn is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

     
  • richardmitnick 1:12 pm on July 11, 2019 Permalink | Reply
    Tags: Biology, Coral on the move to escape sea heat, , , ,   

    From University of Washington and COSMOS: “Reefs on the move- Coral reefs shifting away from equator, new study finds” 

    U Washington

    From University of Washington

    AND

    Cosmos Magazine bloc

    From COSMOS Magazine

    July 9, 2019

    1
    Corals and kelp.Soyoka Muko/Nagasaki University

    Coral reefs are retreating from equatorial waters and establishing new reefs in more temperate regions, according to new research published July 4 in the journal Marine Ecology Progress Series. The researchers found that the number of young corals on tropical reefs has declined by 85% — and doubled on subtropical reefs — during the last four decades.

    “Climate change seems to be redistributing coral reefs, the same way it is shifting many other marine species,” said lead author Nichole Price, a senior research scientist at Bigelow Laboratory for Ocean Sciences in Maine. “The clarity in this trend is stunning, but we don’t yet know whether the new reefs can support the incredible diversity of tropical systems.”

    As climate change warms the ocean, subtropical environments are becoming more favorable for corals than the equatorial waters where they traditionally thrived. This is allowing drifting coral larvae to settle and grow in new regions. These subtropical reefs could provide refuge for other species challenged by climate change and new opportunities to protect these fledgling ecosystems.

    “This study is a great example of the importance of collaborating internationally to assess global trends associated with climate change and project future ecological interactions,” said co-author Jacqueline Padilla-Gamiño, an assistant professor at the University of Washington School of Aquatic and Fishery Sciences. “It also provides a nugget of hope for the resilience and survival of coral reefs.”

    The researchers believe that only certain types of coral are able to reach these new locations, based on how far the microscopic larvae can swim and drift on currents before they run out of their limited fat stores. The exact composition of most new reefs is currently unknown, due to the expense of collecting genetic and species diversity data.

    “We are seeing ecosystems transition to new blends of species that have never coexisted, and it’s not yet clear how long it takes for these systems to reach equilibrium,” said co-author Satoshi Mitarai, an associate professor at Okinawa Institute of Science and Technology Graduate University who earned his doctorate at the UW. “The lines are really starting to blur about what a native species is, and when ecosystems are functioning or falling apart.”

    2
    The study site on Palmyra Atoll, one of the Northern Line Islands that lies between Hawaii and American Samoa.
    Nichole Price/Bigelow Laboratory for Ocean Sciences

    This experiment in the Palmyra Atoll National Wildlife Refuge in the Pacific is allowing researchers to enumerate the number of baby corals settling on a reef.

    Recent studies show that corals are establishing new reefs in temperate regions as they retreat from increasingly warmer waters at the equator.

    Writing in the journal Marine Ecology Progress Series [above], researchers from 17 institutions in six countries report that the number of young corals has declined by 85% on tropical reefs during the last four decades, but -doubled on subtropical reefs.

    “Climate change seems to be redistributing coral reefs, the same way it is shifting many other marine species,” says lead author Nichole Price, from Bigelow Laboratory for Ocean Sciences, US.

    “The clarity in this trend is stunning, but we don’t yet know whether the new reefs can support the incredible diversity of tropical systems.”

    The research team has compiled a global database of studies dating back to 1974, when record-keeping began. They hope other scientists will add to it, making it increasingly comprehensive and useful to other research questions.

    See the full U Washington article here .
    See the full COSMOS article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    u-washington-campus
    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.
    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

     
  • richardmitnick 12:18 pm on July 9, 2019 Permalink | Reply
    Tags: , Atacama Desert-Chile-strange ice spire formations – called 'penitentes', Biology, , ,   

    From University of Colorado Boulder via Science Alert: “Eerie Ice ‘Spires’ Harbor Life Forms in One of The Harshest Environments on Earth” 

    U Colorado

    From University of Colorado Boulder

    via

    ScienceAlert

    Science Alert

    9 JUL 2019
    PETER DOCKRILL

    1
    Penitentes ice formations in Chajnantor, Chile. (ESO)

    They’re one of the weirdest, most incongruous-looking natural phenomena you could ever see on Earth’s surface: massive dagger-shaped blades of vertically aligned ice, assembled in mysterious flocks in the middle of the desert.

    These strange ice spire formations – called ‘penitentes’ due to their resemblance to penitent, praying folk – take shape at high altitudes in cold, dry environments, like the hyper-arid wilderness of the Atacama Desert in Chile.

    But their jagged frostiness in the parched land is not the same as lack of hospitality. As it happens, these eerie congregations – aka nieves penitentes – are actually a shelter for invisible life forms.

    In a new study, a team of scientists led by researchers from the University of Colorado Boulder trekked up the side of the world’s second-highest volcano, Chile’s Volcán Llullaillaco, and found microbes making a home amongst these silent shards.

    3
    Penitentes on Volcán Llullaillaco in Chile. (Steve Schmidt/CU Boulder)

    “Snow algae have been commonly found throughout the cryosphere on both ice and snow patches, but our finding demonstrated their presence for the first time at the extreme elevation of a hyper-arid site,” says microbial biology researcher Lara Vimercati.

    “Interestingly, most of the snow algae found at this site are closely related to other known snow algae from alpine and polar environments.”

    At an elevation of around 5,000 metres (16,000 ft) above sea level, Llullaillaco’s icy penitentes revealed patches of red colouration, which the team says is a pigment-based signature of microbial activity in snow and ice formations.

    Taking samples back to the lab, the researchers identified microbes dominated by the algal genera Chlamydomonas and Chloromonas – the first time, the team says, that scientists have reported microbial life inhabiting these strange ice structures.

    “Given the harshness of the environments where they are found, nieves penitentes may represent oases for life, because, along with fumaroles [gassy vent-like openings in Earth’s crust], they represent intermittent water sources in these very arid environments,” the authors explain in their paper [below].

    It’s not just a new discovery for life on Earth, either, as the implications of the research might extend even further, hypothetically speaking.

    4
    Penitentes on Volcán Llullaillaco in Chile. (Steve Schmidt/CU Boulder)

    Analogues for Earth’s own icy penitentes have been identified in towering shard-like structures on Pluto and on Jupiter’s Moon Europa – and if the icy shards act as a watery oasis for life in the dry Andes, it’s just possible that the same could hold elsewhere in the Solar System.

    “This first report of snow algae occurring in penitente ice opens the door to future work that will address the altitudinal limits of these communities,” the researchers conclude.

    There’s still much to learn about how these microbial populations got to their dagger-shaped homes, the team says – including figuring out whether they contribute to the formation of the shards somehow, or simply migrate there afterwards.

    While the answers may be hard to come by given the difficulty of travelling to the extreme, remote environments in which penitentes arise, future science beckons nonetheless.

    “We’re generally interested in the adaptations of organisms to extreme environments,” says one of the team, microbial ecologist Steve Schmidt.

    “This could be a good place to look for [the] upper limits of life.”

    The findings are reported in Arctic, Antarctic, and Alpine Research.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Colorado Campus

    As the flagship university of the state of Colorado, CU-Boulder is a dynamic community of scholars and learners situated on one of the most spectacular college campuses in the country. As one of 34 U.S. public institutions belonging to the prestigious Association of American Universities (AAU) – and the only member in the Rocky Mountain region – we have a proud tradition of academic excellence, with five Nobel laureates and more than 50 members of prestigious academic academies.

    CU-Boulder has blossomed in size and quality since we opened our doors in 1877 – attracting superb faculty, staff, and students and building strong programs in the sciences, engineering, business, law, arts, humanities, education, music, and many other disciplines.

    Today, with our sights set on becoming the standard for the great comprehensive public research universities of the new century, we strive to serve the people of Colorado and to engage with the world through excellence in our teaching, research, creative work, and service.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: