Tagged: Biology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:32 pm on October 7, 2022 Permalink | Reply
    Tags: "New route to evolution - how DNA from our mitochondria gets into our genomes", , Biology, Each mitochondrion has its own DNA distinct to the rest of the human genome which is comprised of nuclear DNA., , , It is not clear exactly how the mitochondrial DNA inserts itself., Mitochondrial DNA also appears in some cancer DNA suggesting that it acts as a sticking plaster to try and repair damage to our genetic code., Mitochondrial DNA is passed down the maternal line., Scientists have shown that in one in every 4000 births some of the genetic code from our mitochondria – the ‘batteries’ that power our cells – inserts itself into our DNA.,   

    From The University of Cambridge (UK): “New route to evolution – how DNA from our mitochondria gets into our genomes” 

    U Cambridge bloc

    From The University of Cambridge (UK)

    10.5.22
    Craig Brierley

    1
    Mitochondria surrounded by cytoplasm. Credit: Dr David Furness.

    Scientists have shown that in one in every 4,000 births, some of the genetic code from our mitochondria – the ‘batteries’ that power our cells – inserts itself into our DNA, revealing a surprising new insight into how humans evolve.

    In a study published today in Nature [below], researchers at the University of Cambridge and Queen Mary University of London show that mitochondrial DNA also appears in some cancer DNA suggesting that it acts as a sticking plaster to try and repair damage to our genetic code.

    Mitochondria are tiny ‘organelles’ that sit within our cells, where they act like batteries, providing energy in the form of the molecule ATP to power the cells. Each mitochondrion has its own DNA – mitochondrial DNA – that is distinct to the rest of the human genome which is comprised of nuclear DNA.

    Mitochondrial DNA is passed down the maternal line – that is, we inherit it from our mothers, not our fathers. However, a study published in PNAS [below] in 2018 from researchers at the Cincinnati Children’s Hospital Medical Center in the USA reported evidence that suggested some mitochondrial DNA had been passed down the paternal line.

    To investigate these claims, the Cambridge team looked at the DNA from over 11,000 families recruited to Genomics England’s 100,000 Genomes Project, searching for patterns that looked like paternal inheritance. The Cambridge team found mitochondrial DNA ‘inserts’ in the nuclear DNA of some children that were not present in that of their parents. This meant that the US team had probably reached the wrong conclusions: what they had observed were not paternally-inherited mitochondrial DNA, but rather these inserts.

    Now, extending this work to over 66,000 people, the team showed that the new inserts are actually happening all the time, showing a new way our genome evolves.

    Professor Patrick Chinnery, from the Medical Research Council Mitochondrial Biology Unit and Department of Clinical Neurosciences at the University of Cambridge, explained: “Billions of years ago, a primitive animal cell took in a bacterium that became what we now call mitochondria. These supply energy to the cell to allow it to function normally, while removing oxygen, which is toxic at high levels. Over time, bits of these primitive mitochondria have passed into the cell nucleus, allowing their genomes to talk to each other.

    “This was all thought to have happened a very long time ago, mostly before we had even formed as a species, but what we’ve discovered is that that’s not true. We can see this happening right now, with bits of our mitochondrial genetic code transferring into the nuclear genome in a measurable way.”

    The team estimate that mitochondrial DNA transfers to nuclear DNA in around one in every 4,000 births. If that individual has children of their own, they will pass these inserts on – the team found that most of us carry five of the new inserts, and one in seven of us (14%) carry very recent ones. Once in place, the inserts can occasionally lead to very rare diseases, including a rare genetic form of cancer.

    It is not clear exactly how the mitochondrial DNA inserts itself – whether it does so directly or via an intermediary, such as RNA – but Professor Chinnery says it is likely to occur within the mother’s egg cells.

    When the team looked at sequences taken from 12,500 tumour samples, they found that mitochondrial DNA was even more common in tumour DNA, arising in around one in 1,000 cancers, and in some cases, the mitochondrial DNA inserts actually causes the cancer.

    “Our nuclear genetic code is breaking and being repaired all the time,” said Professor Chinnery. “Mitochondrial DNA appears to act almost like a Band-Aid, a sticking plaster to help the nuclear genetic code repair itself. And sometimes this works, but on rare occasions if might make things worse or even trigger the development of tumours.”

    More than half (58%) of the insertions were in regions of the genome that code for proteins. In the majority of cases, the body recognizes the invading mitochondrial DNA and silences it in a process known as methylation, whereby a molecule attaches itself to the insert and switches it off. A similar process occurs when viruses manage to insert themselves into our DNA. However, this method of silencing is not perfect, as some of the mitochondrial DNA inserts go on to be copied and move around the nucleus itself.

    The team looked for evidence that the reverse might happen – that mitochondrial DNA absorbs parts of our nuclear DNA – but found none. There are likely to be several reasons why this should be the case.

    Firstly, cells only have two copies of nuclear DNA, but thousands of copies of mitochondrial DNA, so the chances of mitochondrial DNA being broken and passing into the nucleus are much greater than the other way around.

    Secondly, the DNA in mitochondria is packaged inside two membranes and there are no holes in the membrane, so it would be difficult for nuclear DNA to get in. By contrast, if mitochondrial DNA manages to get out, holes in the membrane surrounding nuclear DNA would allow it pass through with relative ease.

    Professor Sir Mark Caulfield, Vice Principal for Health at Queen Mary University of London, said: “I am so delighted that the 100,000 Genomes Project has unlocked the dynamic interplay between mitochondrial DNA and our genome in the cell’s nucleus. This defines a new role in DNA repair, but also one that could occasionally trigger rare disease, or even malignancy.”

    The research was mainly funded by the Medical Research Council, Wellcome, and the National Institute for Health Research.

    Science papers:
    Nature
    PNAS 2018
    See the science papers for instructive material.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Cambridge Campus

    The University of Cambridge (UK) [legally The Chancellor, Masters, and Scholars of the University of Cambridge] is a collegiate public research university in Cambridge, England. Founded in 1209 Cambridge is the second-oldest university in the English-speaking world and the world’s fourth-oldest surviving university. It grew out of an association of scholars who left the University of Oxford (UK) after a dispute with townsfolk. The two ancient universities share many common features and are often jointly referred to as “Oxbridge”.

    Cambridge is formed from a variety of institutions which include 31 semi-autonomous constituent colleges and over 150 academic departments, faculties and other institutions organized into six schools. All the colleges are self-governing institutions within the university, each controlling its own membership and with its own internal structure and activities. All students are members of a college. Cambridge does not have a main campus and its colleges and central facilities are scattered throughout the city. Undergraduate teaching at Cambridge is organized around weekly small-group supervisions in the colleges – a feature unique to the Oxbridge system. These are complemented by classes, lectures, seminars, laboratory work and occasionally further supervisions provided by the central university faculties and departments. Postgraduate teaching is provided predominantly centrally.

    Cambridge University Press a department of the university is the oldest university press in the world and currently the second largest university press in the world. Cambridge Assessment also a department of the university is one of the world’s leading examining bodies and provides assessment to over eight million learners globally every year. The university also operates eight cultural and scientific museums, including the Fitzwilliam Museum, as well as a botanic garden. Cambridge’s libraries – of which there are 116 – hold a total of around 16 million books, around nine million of which are in Cambridge University Library, a legal deposit library. The university is home to – but independent of – the Cambridge Union – the world’s oldest debating society. The university is closely linked to the development of the high-tech business cluster known as “Silicon Fe”. It is the central member of Cambridge University Health Partners, an academic health science centre based around the Cambridge Biomedical Campus.

    By both endowment size and consolidated assets Cambridge is the wealthiest university in the United Kingdom. In the fiscal year ending 31 July 2019, the central university – excluding colleges – had a total income of £2.192 billion of which £592.4 million was from research grants and contracts. At the end of the same financial year the central university and colleges together possessed a combined endowment of over £7.1 billion and overall consolidated net assets (excluding “immaterial” historical assets) of over £12.5 billion. It is a member of numerous associations and forms part of the ‘golden triangle’ of English universities.

    Cambridge has educated many notable alumni including eminent mathematicians; scientists; politicians; lawyers; philosophers; writers; actors; monarchs and other heads of state. As of October 2020, 121 Nobel laureates; 11 Fields Medalists; 7 Turing Award winners; and 14 British prime ministers have been affiliated with Cambridge as students; alumni; faculty or research staff. University alumni have won 194 Olympic medals.

    History

    By the late 12th century, the Cambridge area already had a scholarly and ecclesiastical reputation due to monks from the nearby bishopric church of Ely. However, it was an incident at Oxford which is most likely to have led to the establishment of the university: three Oxford scholars were hanged by the town authorities for the death of a woman without consulting the ecclesiastical authorities who would normally take precedence (and pardon the scholars) in such a case; but were at that time in conflict with King John. Fearing more violence from the townsfolk scholars from the University of Oxford started to move away to cities such as Paris; Reading; and Cambridge. Subsequently enough scholars remained in Cambridge to form the nucleus of a new university when it had become safe enough for academia to resume at Oxford. In order to claim precedence, it is common for Cambridge to trace its founding to the 1231 charter from Henry III granting it the right to discipline its own members (ius non-trahi extra) and an exemption from some taxes; Oxford was not granted similar rights until 1248.

    A bull in 1233 from Pope Gregory IX gave graduates from Cambridge the right to teach “everywhere in Christendom”. After Cambridge was described as a studium generale in a letter from Pope Nicholas IV in 1290 and confirmed as such in a bull by Pope John XXII in 1318 it became common for researchers from other European medieval universities to visit Cambridge to study or to give lecture courses.

    Foundation of the colleges

    The colleges at the University of Cambridge were originally an incidental feature of the system. No college is as old as the university itself. The colleges were endowed fellowships of scholars. There were also institutions without endowments called hostels. The hostels were gradually absorbed by the colleges over the centuries; but they have left some traces, such as the name of Garret Hostel Lane.

    Hugh Balsham, Bishop of Ely, founded Peterhouse – Cambridge’s first college in 1284. Many colleges were founded during the 14th and 15th centuries but colleges continued to be established until modern times. There was a gap of 204 years between the founding of Sidney Sussex in 1596 and that of Downing in 1800. The most recently established college is Robinson built in the late 1970s. However, Homerton College only achieved full university college status in March 2010 making it the newest full college (it was previously an “Approved Society” affiliated with the university).

    In medieval times many colleges were founded so that their members would pray for the souls of the founders and were often associated with chapels or abbeys. The colleges’ focus changed in 1536 with the Dissolution of the Monasteries. Henry VIII ordered the university to disband its Faculty of Canon Law and to stop teaching “scholastic philosophy”. In response, colleges changed their curricula away from canon law and towards the classics; the Bible; and mathematics.

    Nearly a century later the university was at the centre of a Protestant schism. Many nobles, intellectuals and even commoners saw the ways of the Church of England as too similar to the Catholic Church and felt that it was used by the Crown to usurp the rightful powers of the counties. East Anglia was the centre of what became the Puritan movement. In Cambridge the movement was particularly strong at Emmanuel; St Catharine’s Hall; Sidney Sussex; and Christ’s College. They produced many “non-conformist” graduates who, greatly influenced by social position or preaching left for New England and especially the Massachusetts Bay Colony during the Great Migration decade of the 1630s. Oliver Cromwell, Parliamentary commander during the English Civil War and head of the English Commonwealth (1649–1660), attended Sidney Sussex.

    Modern period

    After the Cambridge University Act formalized the organizational structure of the university the study of many new subjects was introduced e.g. theology, history and modern languages. Resources necessary for new courses in the arts architecture and archaeology were donated by Viscount Fitzwilliam of Trinity College who also founded the Fitzwilliam Museum. In 1847 Prince Albert was elected Chancellor of the University of Cambridge after a close contest with the Earl of Powis. Albert used his position as Chancellor to campaign successfully for reformed and more modern university curricula, expanding the subjects taught beyond the traditional mathematics and classics to include modern history and the natural sciences. Between 1896 and 1902 Downing College sold part of its land to build the Downing Site with new scientific laboratories for anatomy, genetics, and Earth sciences. During the same period the New Museums Site was erected including the Cavendish Laboratory which has since moved to the West Cambridge Site and other departments for chemistry and medicine.

    The University of Cambridge began to award PhD degrees in the first third of the 20th century. The first Cambridge PhD in mathematics was awarded in 1924.

    In the First World War 13,878 members of the university served and 2,470 were killed. Teaching and the fees it earned came almost to a stop and severe financial difficulties followed. As a consequence, the university first received systematic state support in 1919 and a Royal Commission appointed in 1920 recommended that the university (but not the colleges) should receive an annual grant. Following the Second World War the university saw a rapid expansion of student numbers and available places; this was partly due to the success and popularity gained by many Cambridge scientists.

     
  • richardmitnick 11:28 am on October 7, 2022 Permalink | Reply
    Tags: "Mapping human brain development", , Biology, , Researchers at ETH Zürich are growing human brain-​like tissue from stem cells and are then mapping the cell types.,   

    From The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “Mapping human brain development” 

    From The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    10.7.22
    Peter Rüegg

    Researchers at ETH Zürich are growing human brain-​like tissue from stem cells and are then mapping the cell types that occur in different brain regions and the genes that regulate their development.

    1
    Brain organoid from human stem cells under the fluorescence microscope: the protein GLI3 is stained purple and marks neuronal precursor cells in forebrain regions of the organoid. Neurons are stained green. (Photograph: F. Sanchís Calleja, A. Jain, P. Wahle / ETH Zürich)

    The human brain is probably the most complex organ in the entire living world and has long been an object of fascination for researchers. However, studying the brain, and especially the genes and molecular switches that regulate and direct its development, is no easy task.

    To date, scientists have proceeded using animal models, primarily mice, but their findings cannot be transferred directly to humans. A mouse’s brain is structured differently and lacks the furrowed surface typical of the human brain. Cell cultures have thus far been of limited value in this field, as cells tend to spread over a large area when grown on a culture dish; this does not correspond to the natural three-dimensional structure of the brain.

    Mapping molecular fingerprints

    A group of researchers led by Barbara Treutlein, ETH Professor at the Department of Biosystems Science and Engineering in Basel, has now taken a new approach to studying the development of the human brain: they are growing and using organoids – millimetre-sized three-dimensional tissues that can be grown from what are known as pluripotent stem cells.

    Provided these stem cells receive the right stimulus, researchers can program them to become any kind of cell present in the body, including neurons. When the stem cells are aggregated into a small ball of tissue and then exposed to the appropriate stimulus, they can even self-organize and form a three-dimensional brain organoid with a complex tissue architecture.

    In a new study just published in Nature [below], Treutlein and her colleagues have now studied thousands of individual cells within a brain organoid at various points in time and in great detail. Their goal was to characterise the cells in molecular-genetic terms: in other words, the totality of all gene transcripts (transcriptome) as a measure of gene expression, but also the accessibility of the genome as a measure of regulatory activity. They have managed to represent this data as a kind of map showing the molecular fingerprint of each cell within the organoid.

    However, this procedure generates immense data sets: each cell in the organoid has 20,000 genes, and each organoid in turn consists of many thousands of cells. “This results in a gigantic matrix, and the only way we can solve it is with the help of suitable programs and machine learning,” explains Jonas Fleck, a doctoral student in Treutlein’s group and one of the study’s co-lead authors. To analyse all this data and predict gene regulation mechanisms, the researchers developed their own program. “We can use it to generate an entire interaction network for each individual gene and predict what will happen in real cells when that gene fails,” Fleck says.

    Identifying genetic switches

    The aim of this study was to systematically identify those genetic switches that have a significant impact on the development of neurons in the different regions of brain organoids.

    With the help of a CRISPR-Cas9 system, the ETH researchers selectively switched off one gene in each cell, altogether about two dozen genes simultaneously in the entire organoid. This enabled them to find out what role the respective genes played in the development of the brain organoid.

    “This technique can be used to screen genes involved in disease. In addition, we can look at the effect these genes have on how different cells within the organoid develop,” explains Sophie Jansen, also a doctoral student in Treutlein’s group and the second co-lead author of the study.

    2
    Map of a brain organoid: The colours of the cells shown as circles indicate different cell types. Right: Regulatory network of transcription factor genes that controls the development of a brain organoid. (Graphics: Barbara Treutlein / ETH Zürich)

    Checking pattern formation in the forebrain

    To test their theory, the researchers chose the GLI3 gene as an example. This gene is the blueprint for the transcription factor of the same name, a protein that docks onto certain sites on DNA in order to regulate another gene. When GLI3 is switched off, the cellular machinery is prevented from reading this gene and transcribing it into an RNA molecule.

    In mice, mutations in the GLI3 gene can lead to malformations in the central nervous system. Its role in human neuronal development was previously unexplored, but it is known that mutations in the gene lead to diseases such as Greig cephalopolysyndactyly and Pallister Hall Syndromes.

    Silencing this GLI3 gene enabled the researchers both to verify their theoretical predictions and to determine directly in the cell culture how the loss of this gene affected the brain organoid’s further development. “We have shown for the first time that the GLI3 gene is involved in the formation of forebrain patterns in humans. This had previously been shown only in mice,” Treutlein says.

    Model systems reflect developmental biology

    “The exciting thing about this research is that it lets you use genome-wide data from so many individual cells to postulate what roles individual genes play,” she explains. “What’s equally exciting in my opinion is that these model systems made in a Petri dish really do reflect developmental biology as we know it from mice.”

    Treutlein also finds it fascinating how the culture medium can give rise to self-organized tissue with structures comparable to those of the human brain – not only at the morphological level but also (as the researchers have shown in their latest study) at the level of gene regulation and pattern formation. “Organoids like this are truly an excellent way to study human developmental biology,” she points out.

    Versatile brain organoids

    Research on organoids made up of human cell material has the advantage that the findings are transferable to humans. They can be used to study not only basic developmental biology but also the role of genes in diseases or developmental brain disorders. For example, Treutlein and her colleagues are working with organoids of this type to investigate the genetic cause of autism and of heterotopia; in the latter, neurons appear outside their usual anatomical location in the cerebral cortex.

    Organoids may also be used for testing drugs, and possibly for culturing transplantable organs or organ parts. Treutlein confirms that the pharmaceutical industry is very interested in these cell cultures.

    However, growing organoids takes both time and effort. Moreover, each clump of cells develops individually rather than in a standardised way. That is why Treutlein and her team are working to improve the organoids and automate their manufacturing process.
    __________________________________________________
    Human Cell Atlas

    The research and mapping of brain organoids is embedded in the Human Developmental Cell Atlas; this, in turn, is part of the Human Cell Atlas. The Human Cell Atlas is an attempt by researchers worldwide both to map all cell types in the human body and to compile data on which genes are active in which cells at which times as well as on which genes might be involved in diseases. The head of the Human Cell Atlas project is Aviv Regev, a biology professor at MIT; she received an honorary doctorate from ETH Zürich in 2021. ETH Professor Barbara Treutlein is co-coordinating the Organoid Cell Atlas subsection, which aims to map all the cell stages that can be produced in cell culture and then to compare them with the original cells of the human body.
    __________________________________________________

    Science paper:
    Nature
    See the science paper for instructive material.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus

    The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of The Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the The Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas The University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology, Stanford University and University of Cambridge (UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology, Stanford University, California Institute of Technology, Princeton University, University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE Excellence Ranking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London (UK) and the University of Cambridge (UK), respectively.

     
  • richardmitnick 10:17 am on October 7, 2022 Permalink | Reply
    Tags: "DOE Funds Pilot Study Focused on Biosecurity for Bioenergy Crops", , , , Biology, , , , , Research into threats from pathogens and pests would speed short-term response and spark long-term mitigation strategies.,   

    From The DOE’s Brookhaven National Laboratory: “DOE Funds Pilot Study Focused on Biosecurity for Bioenergy Crops” 

    From The DOE’s Brookhaven National Laboratory

    10.6.22

    Karen McNulty Walsh
    kmcnulty@bnl.gov
    (631) 344-8350

    Peter Genzer
    genzer@bnl.gov
    (631) 344-3174

    Research into threats from pathogens and pests would speed short-term response and spark long-term mitigation strategies.

    1
    Pilot study on an important disease in sorghum (above) will develop understanding of threats to bioenergy crops, potentially speeding the development of short-term responses and long-term mitigation strategies. (Credit: U.S. Department of Energy Genomic Science program)

    The U.S. Department of Energy’s (DOE) Office of Science has selected Brookhaven National Laboratory to lead a new research effort focused on potential threats to crops grown for bioenergy production. Understanding how such bioenergy crops could be harmed by known or new pests or pathogens could help speed the development of rapid responses to mitigate damage and longer-term strategies for preventing such harm. The pilot project could evolve into a broader basic science capability to help ensure the development of resilient and sustainable bioenergy crops as part of a transition to a net-zero carbon economy.

    The idea is modeled on the way DOE’s National Virtual Biotechnology Laboratory (NVBL) pooled basic science capabilities to address the COVID-19 pandemic. With $5 Million in initial funding, allocated over the next two years, Brookhaven Lab and its partners will develop a coordinated approach for addressing biosecurity challenges. This pilot study will lead to a roadmap for building out a DOE-wide capability known as the National Virtual Biosecurity for Bioenergy Crops Center (NVBBCC).

    “A robust biosecurity capability optimized to respond rapidly to biological threats to bioenergy crops requires an integrated and versatile platform,” said Martin Schoonen, Brookhaven Lab’s Associate Laboratory Director for Environment, Biology, Nuclear Science & Nonproliferation, who will serve as principal investigator for the pilot project. “With this initial funding, we’ll develop a bio-preparedness platform for sampling and detecting threats, predicting how they might propagate, and understanding how pests or pathogens interact with bioenergy crops at the molecular level—all of which are essential for developing short-term control measures and long-term solutions.”

    The team will invest in new research tools—including experimental equipment and an integrating computing environment for data sharing, data analysis, and predictive modeling. Experiments on an important disease of energy sorghum, a leading target for bioengineering as an oil-producing crop, will serve as a model to help the team establish optimized protocols for studying plant-pathogen interactions.

    In addition, a series of workshops will bring together experts from a range of perspectives and institutions to identify partnerships within and outside DOE, as well as any future investments needed, to establish the full capabilities of an end-to-end biosecurity platform.

    “NVBBCC is envisioned to be a distributed, virtual center with multiple DOE-labs at its core to maximize the use of unique facilities and expertise across the DOE complex,” Schoonen said. “The center will support plant pathology research driven by the interests of the bioenergy crop community, as well as broader plant biology research that could impact crop health.”

    Building the platform

    2
    The pilot study experiments and workshops will be organized around four main themes: detection and sampling, biomolecular characterization, assessment, and mitigation.

    In this initial phase, the research will focus on energy sorghum. This crop’s potential oil yield per acre far exceeds than that of soybeans, currently the world’s primary source of biodiesel.

    “Sorghum is susceptible to a devastating fungal disease, caused by Colletotrichum sublineola, which can result in yield losses of up to 67 percent,” said John Shanklin, chair of Brookhaven Lab’s Biology Department and co-lead of the assessment theme. “Finding ways to thwart this pathogen is a high priority for the bioenergy crop community.”

    The NVBBCC team will use a range of tools—including advanced remote-sensing technologies, COVID-19-like rapid test strips, and in-field sampling—to detect C. sublineola. Additional experiments will assess airborne propagation of fungal spores, drawing on Brookhaven Lab’s expertise in modeling the dispersal of aerosol particles.

    The team will also use state-of-the-art biomolecular characterization tools—including cryo-electron microscopes in Brookhaven’s Laboratory for BioMolecular Structure (LBMS) and x-ray crystallography beamlines at the National Synchrotron Light Source-II (NSLS-II)—to explore details of how pathogen proteins and plant proteins interact. In addition, they’ll add a new tool—a cryogenic-focused ion beam—to produce samples for high-resolution three-dimensional cellular imaging and other advanced imaging modalities.

    Together, these experiments will reveal mechanistic details that provide insight into how plants respond to infections, including how some strains of sorghum develop resistance to C. sublineola. The team will also draw on extensive information about the genetic makeup of sorghum and C. sublineola to identify factors that control expression of the various plant and pathogen proteins.

    The program will be supported by an integrating computing infrastructure with access to sophisticated computational tools across the DOE complex and at partner institutions, enabling integrated data analysis and collaboration using community data standards and tools. The infrastructure will also provide capabilities to develop, train, and verify new analytical and predictive computer models, including novel artificial intelligence (AI) solutions.

    “NVBBCC will build on the Johns Hopkins University-developed SciServer environment, which has been used successfully in large data-sharing and analysis projects in cosmology and soil ecology,” said Kerstin Kleese van Dam, head of Brookhaven Lab’s Computational Science Initiative. “NVBBCC’s computational infrastructure will allow members to easily coordinate research across different domains and sites, accelerating discovery and response times through integrated knowledge sharing.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Brookhaven Campus

    One of ten national laboratories overseen and primarily funded by the The DOE Office of Science, The DOE’s Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University and Battelle Memorial Institute. From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology to have a facility near Boston, Massachusetts. Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University, Cornell University, Harvard University, Johns Hopkins University, Massachusetts Institute of Technology, Princeton University, University of Pennsylvania, University of Rochester, and Yale University.

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.

    BNL Cosmotron 1952-1966.

    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    BNL Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II. [below].

    BNL National Synchrotron Light Source.

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider (CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, it was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.

    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.

    BNL National Synchrotron Light Source II, Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years. NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.

    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.

    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University-SUNY.

    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to the ATLAS experiment, one of the four detectors located at the The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] Large Hadron Collider(LHC).

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] map.

    Iconic view of the European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear] [Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH) [CERN] ATLAS detector.

    It is currently operating at The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH) [CERN] near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the Spallation Neutron Source at DOE’s Oak Ridge National Laboratory, Tennessee.

    DOE’s Oak Ridge National Laboratory Spallation Neutron Source annotated.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China .


    BNL Center for Functional Nanomaterials.

    BNL National Synchrotron Light Source II.

    BNL NSLS II.

    BNL Relative Heavy Ion Collider Campus.

    BNL/RHIC Phenix detector.


     
  • richardmitnick 10:24 am on October 6, 2022 Permalink | Reply
    Tags: "An Essential Step in The Evolution of Life on Earth Could Have Taken Place in The Air", A unique reactivity of free amino acids at the air–water interface of micron-sized water droplets that leads to the formation of peptide isomers on the millisecond timescale., Amide bonds are actually hindered by water., Amide bonds are the links in the chains of amino acids that form the foundation of so many crucial components of life including peptides (short strings of amino acids) and proteins., , Biology, , Microdroplets may have been produced in the form of sea spray whipped up from the ocean and creating the essential chemical bonds for life to develop., , , The boundary between water and air could be where life got started., The reaction is performed under ambient conditions and does not require additional reagents; acid; catalysts or radiation.   

    From Purdue University Via “Science Alert (AU)” : “An Essential Step in The Evolution of Life on Earth Could Have Taken Place in The Air” 

    From Purdue University

    Via

    ScienceAlert

    “Science Alert (AU)”

    10.6.22
    David Nield

    1
    The boundary between water and air could be where life got started. (Yaorusheng/Moment/Getty Images)

    Life’s emergence in a ‘warm little pond’ some 4.5 billion years ago is a relatively solid foundation of modern biology.

    In spite of water’s vital role in facilitating early organic reactions on Earth, one of the most basic ingredients won’t form in aqueous surrounds, raising the question of how life initially acquired them.

    A new experiment reveals how these critical chemical reactions might have taken place.

    Amide bonds are the links in the chains of amino acids that form the foundation of so many crucial components of life, including peptides (short strings of amino acids) and proteins (longer strings of amino acids that can do work in the form of enzymes).

    The problem is that amide bonds are actually hindered by water, which is something of a problem on an oceanic world like ancient Earth. Something else must have come into play, scientists think, and the new study suggests it was at the boundary of water and air that the magic happened.

    “Here, we report a unique reactivity of free amino acids at the air–water interface of micron-sized water droplets that leads to the formation of peptide isomers on the millisecond timescale,” write Purdue University chemist Dylan Holdena and colleagues in their published paper [PNAS (below)].

    “This reaction is performed under ambient conditions and does not require additional reagents, acid, catalysts, or radiation.”

    The team sprayed microdroplets of water containing two amino acids, glycine and L-alanine, towards a mass spectrometer device for detailed chemical analysis. A chain of two amino acids, a dipeptide, was shown to form in the droplets.

    Since dipeptides are able to build further amino acid chains, the results are taken to imply airborne microdroplets could have sped up the early construction of peptide chains by exposing dissolved amino acids to the air.

    Billions of years ago, such microdroplets may have been produced in the form of sea spray was whipped up from the ocean, creating the essential chemical bonds for life to develop.

    What’s more, the reaction observed in these experiments happened without the addition of any other chemical agents, catalysts, or radiation sources, making it more likely that it could have been happening billions of years ago on Earth.

    “The observed generation of peptides from free amino acids at the air–water interface of pure water droplets, the simplest of all prebiotic systems, suggests that settings such as atmospheric aerosols or sea spray may have provided a unique and ubiquitous environment to overcome the energetic hurdles associated with condensation and polymerization of biomolecules in water,” write the researchers.

    If the team is right, where microdroplets of water hit the air, at the smallest scales the environment might be dry rather than wet – which means it would be providing conditions where dipeptides can be synthesized.

    Scientists have been busy looking at all kinds of explanations for how amino acid chains could have been formed in ocean environments. Hydrothermal vents may have played a role, for instance, or perhaps a visiting asteroid. Now, there’s a new option.

    It’s still a hypothesis for now though, and future studies will be required to work out just how these amino acid chains are being put together – and how these basic chemical building blocks led to the life on Earth that we know today.

    “This reactivity provides a plausible route for the formation of the first biopolymers in aqueous environments,” write the researchers.

    Science paper:
    PNAS

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Purdue University is a public land-grant research university in West Lafayette, Indiana, and the flagship campus of the Purdue University system. The university was founded in 1869 after Lafayette businessman John Purdue donated land and money to establish a college of science, technology, and agriculture in his name. The first classes were held on September 16, 1874, with six instructors and 39 students.

    The main campus in West Lafayette offers more than 200 majors for undergraduates, over 69 masters and doctoral programs, and professional degrees in pharmacy and veterinary medicine. In addition, Purdue has 18 intercollegiate sports teams and more than 900 student organizations. Purdue is a member of the Big Ten Conference and enrolls the second largest student body of any university in Indiana, as well as the fourth largest foreign student population of any university in the United States.

    Purdue University is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. Purdue has 25 American astronauts as alumni and as of April 2019, the university has been associated with 13 Nobel Prizes.

    In 1865, the Indiana General Assembly voted to take advantage of the Morrill Land-Grant Colleges Act of 1862 and began plans to establish an institution with a focus on agriculture and engineering. Communities throughout the state offered facilities and funding in bids for the location of the new college. Popular proposals included the addition of an agriculture department at Indiana State University, at what is now Butler University. By 1869, Tippecanoe County’s offer included $150,000 (equivalent to $2.9 million in 2019) from Lafayette business leader and philanthropist John Purdue; $50,000 from the county; and 100 acres (0.4 km^2) of land from local residents.

    On May 6, 1869, the General Assembly established the institution in Tippecanoe County as Purdue University, in the name of the principal benefactor. Classes began at Purdue on September 16, 1874, with six instructors and 39 students. Professor John S. Hougham was Purdue’s first faculty member and served as acting president between the administrations of presidents Shortridge and White. A campus of five buildings was completed by the end of 1874. In 1875, Sarah A. Oren, the State Librarian of Indiana, was appointed Professor of Botany.

    Purdue issued its first degree, a Bachelor of Science in chemistry, in 1875, and admitted its first female students that autumn.

    Emerson E. White, the university’s president, from 1876 to 1883, followed a strict interpretation of the Morrill Act. Rather than emulate the classical universities, White believed Purdue should be an “industrial college” and devote its resources toward providing a broad, liberal education with an emphasis on science, technology, and agriculture. He intended not only to prepare students for industrial work, but also to prepare them to be good citizens and family members.

    Part of White’s plan to distinguish Purdue from classical universities included a controversial attempt to ban fraternities, which was ultimately overturned by the Indiana Supreme Court, leading to White’s resignation. The next president, James H. Smart, is remembered for his call in 1894 to rebuild the original Heavilon Hall “one brick higher” after it had been destroyed by a fire.

    By the end of the nineteenth century, the university was organized into schools of agriculture, engineering (mechanical, civil, and electrical), and pharmacy; former U.S. President Benjamin Harrison served on the board of trustees. Purdue’s engineering laboratories included testing facilities for a locomotive, and for a Corliss steam engine—one of the most efficient engines of the time. The School of Agriculture shared its research with farmers throughout the state, with its cooperative extension services, and would undergo a period of growth over the following two decades. Programs in education and home economics were soon established, as well as a short-lived school of medicine. By 1925, Purdue had the largest undergraduate engineering enrollment in the country, a status it would keep for half a century.

    President Edward C. Elliott oversaw a campus building program between the world wars. Inventor, alumnus, and trustee David E. Ross coordinated several fundraisers, donated lands to the university, and was instrumental in establishing the Purdue Research Foundation. Ross’s gifts and fundraisers supported such projects as Ross–Ade Stadium, the Memorial Union, a civil engineering surveying camp, and Purdue University Airport. Purdue Airport was the country’s first university-owned airport and the site of the country’s first college-credit flight training courses.

    Amelia Earhart joined the Purdue faculty in 1935 as a consultant for these flight courses and as a counselor on women’s careers. In 1937, the Purdue Research Foundation provided the funds for the Lockheed Electra 10-E Earhart flew on her attempted round-the-world flight.

    Every school and department at the university was involved in some type of military research or training during World War II. During a project on radar receivers, Purdue physicists discovered properties of germanium that led to the making of the first transistor. The Army and the Navy conducted training programs at Purdue and more than 17,500 students, staff, and alumni served in the armed forces. Purdue set up about a hundred centers throughout Indiana to train skilled workers for defense industries. As veterans returned to the university under the G.I. Bill, first-year classes were taught at some of these sites to alleviate the demand for campus space. Four of these sites are now degree-granting regional campuses of the Purdue University system. On-campus housing became racially desegregated in 1947, following pressure from Purdue President Frederick L. Hovde and Indiana Governor Ralph F. Gates.

    After the war, Hovde worked to expand the academic opportunities at the university. A decade-long construction program emphasized science and research. In the late 1950s and early 1960s the university established programs in veterinary medicine, industrial management, and nursing, as well as the first computer science department in the United States. Undergraduate humanities courses were strengthened, although Hovde only reluctantly approved of graduate-level study in these areas. Purdue awarded its first Bachelor of Arts degrees in 1960. The programs in liberal arts and education, formerly administered by the School of Science, were soon split into an independent school.

    The official seal of Purdue was officially inaugurated during the university’s centennial in 1969.

    1

    Consisting of elements from emblems that had been used unofficially for 73 years, the current seal depicts a griffin, symbolizing strength, and a three-part shield, representing education, research, and service.

    In recent years, Purdue’s leaders have continued to support high-tech research and international programs. In 1987, U.S. President Ronald Reagan visited the West Lafayette campus to give a speech about the influence of technological progress on job creation.

    In the 1990s, the university added more opportunities to study abroad and expanded its course offerings in world languages and cultures. The first buildings of the Discovery Park interdisciplinary research center were dedicated in 2004.

    Purdue launched a Global Policy Research Institute in 2010 to explore the potential impact of technical knowledge on public policy decisions.

    On April 27, 2017, Purdue University announced plans to acquire for-profit college Kaplan University and convert it to a public university in the state of Indiana, subject to multiple levels of approval. That school now operates as Purdue University Global, and aims to serve adult learners.

    Campuses

    Purdue’s campus is situated in the small city of West Lafayette, near the western bank of the Wabash River, across which sits the larger city of Lafayette. State Street, which is concurrent with State Road 26, divides the northern and southern portions of campus. Academic buildings are mostly concentrated on the eastern and southern parts of campus, with residence halls and intramural fields to the west, and athletic facilities to the north. The Greater Lafayette Public Transportation Corporation (CityBus) operates eight campus loop bus routes on which students, faculty, and staff can ride free of charge with Purdue Identification.

    Organization and administration

    The university president, appointed by the board of trustees, is the chief administrative officer of the university. The office of the president oversees admission and registration, student conduct and counseling, the administration and scheduling of classes and space, the administration of student athletics and organized extracurricular activities, the libraries, the appointment of the faculty and conditions of their employment, the appointment of all non-faculty employees and the conditions of employment, the general organization of the university, and the planning and administration of the university budget.

    The Board of Trustees directly appoints other major officers of the university including a provost who serves as the chief academic officer for the university, several vice presidents with oversight over specific university operations, and the regional campus chancellors.

    Academic divisions

    Purdue is organized into thirteen major academic divisions.

    College of Agriculture

    The university’s College of Agriculture supports the university’s agricultural, food, life, and natural resource science programs. The college also supports the university’s charge as a land-grant university to support agriculture throughout the state; its agricultural extension program plays a key role in this.

    College of Education

    The College of Education offers undergraduate degrees in elementary education, social studies education, and special education, and graduate degrees in these and many other specialty areas of education. It has two departments: (a) Curriculum and Instruction and (b) Educational Studies.

    College of Engineering

    The Purdue University College of Engineering was established in 1874 with programs in Civil and Mechanical Engineering. The college now offers B.S., M.S., and Ph.D. degrees in more than a dozen disciplines. Purdue’s engineering program has also educated 24 of America’s astronauts, including Neil Armstrong and Eugene Cernan who were the first and last astronauts to have walked on the Moon, respectively. Many of Purdue’s engineering disciplines are recognized as top-ten programs in the U.S. The college as a whole is currently ranked 7th in the U.S. of all doctorate-granting engineering schools by U.S. News & World Report.

    Exploratory Studies

    The university’s Exploratory Studies program supports undergraduate students who enter the university without having a declared major. It was founded as a pilot program in 1995 and made a permanent program in 1999.

    College of Health and Human Sciences

    The College of Health and Human Sciences was established in 2010 and is the newest college. It offers B.S., M.S. and Ph.D. degrees in all 10 of its academic units.

    College of Liberal Arts

    Purdue’s College of Liberal Arts contains the arts, social sciences and humanities programs at the university. Liberal arts courses have been taught at Purdue since its founding in 1874. The School of Science, Education, and Humanities was formed in 1953. In 1963, the School of Humanities, Social Sciences, and Education was established, although Bachelor of Arts degrees had begun to be conferred as early as 1959. In 1989, the School of Liberal Arts was created to encompass Purdue’s arts, humanities, and social sciences programs, while education programs were split off into the newly formed School of Education. The School of Liberal Arts was renamed the College of Liberal Arts in 2005.

    Krannert School of Management

    The Krannert School of Management offers management courses and programs at the undergraduate, master’s, and doctoral levels.

    College of Pharmacy

    The university’s College of Pharmacy was established in 1884 and is the 3rd oldest state-funded school of pharmacy in the United States. The school offers two undergraduate programs leading to the B.S. in Pharmaceutical Sciences (BSPS) and the Doctor of Pharmacy (Pharm.D.) professional degree. Graduate programs leading to M.S. and Ph.D. degrees are offered in three departments (Industrial and Physical Pharmacy, Medicinal Chemistry and Molecular Pharmacology, and Pharmacy Practice). Additionally, the school offers several non-degree certificate programs and post-graduate continuing education activities.

    Purdue Polytechnic Institute

    The Purdue Polytechnic Institute offers bachelor’s, master’s and Ph.D. degrees in a wide range of technology-related disciplines. With over 30,000 living alumni, it is one of the largest technology schools in the United States.

    College of Science

    The university’s College of Science houses the university’s science departments: Biological Sciences; Chemistry; Computer Science; Earth, Atmospheric, & Planetary Sciences; Mathematics; Physics & Astronomy; and Statistics. The science courses offered by the college account for about one-fourth of Purdue’s one million student credit hours.

    College of Veterinary Medicine

    The College of Veterinary Medicine is accredited by the AVMA to offer the Doctor of Veterinary Medicine degree, associate’s and bachelor’s degrees in veterinary technology, master’s and Ph.D. degrees, and residency programs leading to specialty board certification. Within the state of Indiana, the Purdue University College of Veterinary Medicine is the only veterinary school, while the Indiana University School of Medicine is one of only two medical schools (the other being Marian University College of Osteopathic Medicine). The two schools frequently collaborate on medical research projects.

    Honors College

    Purdue’s Honors College supports an honors program for undergraduate students at the university.

    The Graduate School

    The university’s Graduate School supports graduate students at the university.

    Research

    The university expended $622.814 million in support of research system-wide in 2017, using funds received from the state and federal governments, industry, foundations, and individual donors. The faculty and more than 400 research laboratories put Purdue University among the leading research institutions. Purdue University is considered by the Carnegie Classification of Institutions of Higher Education to have “very high research activity”. Purdue also was rated the nation’s fourth best place to work in academia, according to rankings released in November 2007 by The Scientist magazine. Purdue’s researchers provide insight, knowledge, assistance, and solutions in many crucial areas. These include, but are not limited to Agriculture; Business and Economy; Education; Engineering; Environment; Healthcare; Individuals, Society, Culture; Manufacturing; Science; Technology; Veterinary Medicine. The Global Trade Analysis Project (GTAP), a global research consortium focused on global economic governance challenges (trade, climate, resource use) is also coordinated by the University. Purdue University generated a record $438 million in sponsored research funding during the 2009–10 fiscal year with participation from National Science Foundation, National Aeronautics and Space Administration, and the Department of Agriculture, Department of Defense, Department of Energy, and Department of Health and Human Services. Purdue University was ranked fourth in Engineering research expenditures amongst all the colleges in the United States in 2017, with a research expenditure budget of 244.8 million. Purdue University established the Discovery Park to bring innovation through multidisciplinary action. In all of the eleven centers of Discovery Park, ranging from entrepreneurship to energy and advanced manufacturing, research projects reflect a large economic impact and address global challenges. Purdue University’s nanotechnology research program, built around the new Birck Nanotechnology Center in Discovery Park, ranks among the best in the nation.

    The Purdue Research Park which opened in 1961 was developed by Purdue Research Foundation which is a private, nonprofit foundation created to assist Purdue. The park is focused on companies operating in the arenas of life sciences, homeland security, engineering, advanced manufacturing and information technology. It provides an interactive environment for experienced Purdue researchers and for private business and high-tech industry. It currently employs more than 3,000 people in 155 companies, including 90 technology-based firms. The Purdue Research Park was ranked first by the Association of University Research Parks in 2004.

    Purdue’s library system consists of fifteen locations throughout the campus, including an archives and special collections research center, an undergraduate library, and several subject-specific libraries. More than three million volumes, including one million electronic books, are held at these locations. The Library houses the Amelia Earhart Collection, a collection of notes and letters belonging to Earhart and her husband George Putnam along with records related to her disappearance and subsequent search efforts. An administrative unit of Purdue University Libraries, Purdue University Press has its roots in the 1960 founding of Purdue University Studies by President Frederick Hovde on a $12,000 grant from the Purdue Research Foundation. This was the result of a committee appointed by President Hovde after the Department of English lamented the lack of publishing venues in the humanities. Since the 1990s, the range of books published by the Press has grown to reflect the work from other colleges at Purdue University especially in the areas of agriculture, health, and engineering. Purdue University Press publishes print and ebook monograph series in a range of subject areas from literary and cultural studies to the study of the human-animal bond. In 1993 Purdue University Press was admitted to membership of the Association of American University Presses. Purdue University Press publishes around 25 books a year and 20 learned journals in print, in print & online, and online-only formats in collaboration with Purdue University Libraries.

    Sustainability

    Purdue’s Sustainability Council, composed of University administrators and professors, meets monthly to discuss environmental issues and sustainability initiatives at Purdue. The University’s first LEED Certified building was an addition to the Mechanical Engineering Building, which was completed in Fall 2011. The school is also in the process of developing an arboretum on campus. In addition, a system has been set up to display live data detailing current energy production at the campus utility plant. The school holds an annual “Green Week” each fall, an effort to engage the Purdue community with issues relating to environmental sustainability.

    Rankings

    In its 2021 edition, U.S. News & World Report ranked Purdue University the 5th most innovative national university, tied for the 17th best public university in the United States, tied for 53rd overall, and 114th best globally. U.S. News & World Report also rated Purdue tied for 36th in “Best Undergraduate Teaching, 83rd in “Best Value Schools”, tied for 284th in “Top Performers on Social Mobility”, and the undergraduate engineering program tied for 9th at schools whose highest degree is a doctorate.

     
  • richardmitnick 9:58 am on October 6, 2022 Permalink | Reply
    Tags: " ATP": Adenosine Triphosphate, "ADP": Adenosine Diphosphate, "Every Life Form on Earth Uses The Same Chemical For Energy. This Could Explain Why", A phosphate molecule is added to ADP through a reaction called phosphorylation – resulting in ATP., , , Biology, , Reactions that release that same phosphate provide chemical energy that our cells use for countless processes., ,   

    From University College London (UK) Via “Science Alert (AU)” : “Every Life Form on Earth Uses The Same Chemical For Energy. This Could Explain Why” 

    UCL bloc

    From University College London (UK)

    Via

    ScienceAlert

    “Science Alert (AU)”

    10.6.22
    Tessa Koumoundouros

    1
    TEM of a mitochondria (believed to be of bacteria origin), where ATP production takes place in animal cells. (Callista Images/Image Source/Getty Images)

    All life as we know it uses the exact same energy-carrying molecule as a kind of ‘universal cellular fuel’. Now, ancient chemistry may explain how that all-important molecule ended up being ATP (adenosine triphosphate) a new study [PLOS Biology (below)] reports.

    ATP is an organic molecule, charged up by photosynthesis or by cellular respiration (the way organisms break down food) and used in every single cell. Every day, we recycle our own body weight in ATP.

    In both the above systems, a phosphate molecule is added to ADP (adenosine diphosphate) through a reaction called phosphorylation – resulting in ATP.

    Reactions that release that same phosphate (in another process called hydrolysis) provide chemical energy that our cells use for countless processes, from brain signaling to movement and reproduction.

    How ATP ascended to metabolic dominance, in place of many possible equivalents, has been a long-standing mystery in biology and the focus of the research.

    “Our results suggest… that the emergence of ATP as the universal energy currency of the cell was not the result of a ‘frozen accident’,” but arose from unique interactions of phosphorylation molecules, explains evolutionary biochemist Nick Lane from University College London.

    The fact that ATP is used by all living things suggests it has been around since life’s very beginning and even before, during the prebiotic conditions that preceded all us animate matter.

    But researchers are puzzled as to how this could be the case when ATP has such a complicated structure that involves six different phosphorylation reactions and a whole lot of energy to create it from scratch.

    “There is nothing particularly special about the ‘high-energy’ [phosphorus] bonds in ATP,” says biochemist Silvana Pinna who was with UCL at the time, and colleagues in their paper.

    But as ATP also helps build our cells’ genetic information, it may have been roped in for energy use through this other pathway, they note.

    Pinna and team suspect some other molecules must have been involved initially in the complicated phosphorylation process. So they took a close look at another phosphorylating molecule, AcP, that’s still used by bacteria and archaea in their metabolism of chemicals, including phosphate and thioester – a chemical thought to have been abundant at the beginning of life.

    In the presence of iron ions (Fe3+), AcP can phosphorylate ADP to ATP in water. Upon testing the ability of other ions and minerals to catalyze ATP formation in water, the researchers could not replicate this with other substitute metals or phosphorylating molecules.

    “It was very surprising to discover the reaction is so selective – in the metal ion, phosphate donor, and substrate – with molecules that life still uses,” says Pinna.

    “The fact that this happens best in water under mild, life-compatible conditions is really quite significant for the origin of life.”

    This suggests that with AcP, these energy-storing reactions could take place in prebiotic conditions, before biological life was there to hoard and spur the now self-perpetuating cycle of ATP production.

    Furthermore, the experiments suggest that the creation of prebiotic ATP was most likely to take place in freshwater, where photochemical reactions and volcanic eruptions, for instance, could provide the right mix of ingredients, the team explains.

    While this doesn’t completely preclude its occurrence in the sea, it does hint that the birth of life may have required a strong link to land, they note.

    “Our results suggest that ATP became established as the universal energy currency in a prebiotic, monomeric world, on the basis of its unusual chemistry in water,” Pinna and colleagues write.

    What’s more, pH gradients in hydrothermal systems could have created an uneven ratio of ATP to ADP, enabling ATP to drive work even in the prebiotic world of small molecules.

    “Over time, with the emergence of suitable catalysts, ATP could eventually displace AcP as a ubiquitous phosphate donor, and promote the polymerization of amino acids and nucleotides to form RNA, DNA, and proteins,” explains Lane.

    Science paper:
    PLOS Biology
    See the science paper for instructive material.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UCL campus

    Established in 1826, as London University by founders inspired by the radical ideas of Jeremy Bentham, University College London (UK) was the first university institution to be established in London, and the first in England to be entirely secular and to admit students regardless of their religion. University College London also makes contested claims to being the third-oldest university in England and the first to admit women. In 1836, University College London became one of the two founding colleges of the University of London, which was granted a royal charter in the same year. It has grown through mergers, including with the Institute of Ophthalmology (in 1995); the Institute of Neurology (in 1997); the Royal Free Hospital Medical School (in 1998); the Eastman Dental Institute (in 1999); the School of Slavonic and East European Studies (in 1999); the School of Pharmacy (in 2012) and the Institute of Education (in 2014).

    University College London has its main campus in the Bloomsbury area of central London, with a number of institutes and teaching hospitals elsewhere in central London and satellite campuses in Queen Elizabeth Olympic Park in Stratford, east London and in Doha, Qatar. University College London is organised into 11 constituent faculties, within which there are over 100 departments, institutes and research centres. University College London operates several museums and collections in a wide range of fields, including the Petrie Museum of Egyptian Archaeology and the Grant Museum of Zoology and Comparative Anatomy, and administers the annual Orwell Prize in political writing. In 2019/20, UCL had around 43,840 students and 16,400 staff (including around 7,100 academic staff and 840 professors) and had a total income of £1.54 billion, of which £468 million was from research grants and contracts.

    University College London is a member of numerous academic organisations, including the Russell Group(UK) and the League of European Research Universities, and is part of UCL Partners, the world’s largest academic health science centre, and is considered part of the “golden triangle” of elite, research-intensive universities in England.

    University College London has many notable alumni, including the respective “Fathers of the Nation” of India; Kenya and Mauritius; the founders of Ghana; modern Japan; Nigeria; the inventor of the telephone; and one of the co-discoverers of the structure of DNA. UCL academics discovered five of the naturally occurring noble gases; discovered hormones; invented the vacuum tube; and made several foundational advances in modern statistics. As of 2020, 34 Nobel Prize winners and 3 Fields medalists have been affiliated with UCL as alumni, faculty or researchers.

    History

    University College London was founded on 11 February 1826 under the name London University, as an alternative to the Anglican universities of the University of Oxford(UK) and University of Cambridge(UK). London University’s first Warden was Leonard Horner, who was the first scientist to head a British university.

    Despite the commonly held belief that the philosopher Jeremy Bentham was the founder of University College London, his direct involvement was limited to the purchase of share No. 633, at a cost of £100 paid in nine installments between December 1826 and January 1830. In 1828 he did nominate a friend to sit on the council, and in 1827 attempted to have his disciple John Bowring appointed as the first professor of English or History, but on both occasions his candidates were unsuccessful. This suggests that while his ideas may have been influential, he himself was less so. However, Bentham is today commonly regarded as the “spiritual father” of University College London, as his radical ideas on education and society were the inspiration to the institution’s founders, particularly the Scotsmen James Mill (1773–1836) and Henry Brougham (1778–1868).

    In 1827, the Chair of Political Economy at London University was created, with John Ramsay McCulloch as the first incumbent, establishing one of the first departments of economics in England. In 1828 the university became the first in England to offer English as a subject and the teaching of Classics and medicine began. In 1830, London University founded the London University School, which would later become University College School. In 1833, the university appointed Alexander Maconochie, Secretary to the Royal Geographical Society, as the first professor of geography in the British Isles. In 1834, University College Hospital (originally North London Hospital) opened as a teaching hospital for the university’s medical school.

    1836 to 1900 – University College, London

    In 1836, London University was incorporated by royal charter under the name University College, London. On the same day, the University of London was created by royal charter as a degree-awarding examining board for students from affiliated schools and colleges, with University College and King’s College, London being named in the charter as the first two affiliates.

    The Slade School of Fine Art was founded as part of University College in 1871, following a bequest from Felix Slade.

    In 1878, the University College London gained a supplemental charter making it the first British university to be allowed to award degrees to women. The same year University College London admitted women to the faculties of Arts and Law and of Science, although women remained barred from the faculties of Engineering and of Medicine (with the exception of courses on public health and hygiene). While University College London claims to have been the first university in England to admit women on equal terms to men, from 1878, the University of Bristol(UK) also makes this claim, having admitted women from its foundation (as a college) in 1876. Armstrong College, a predecessor institution of Newcastle University (UK), also allowed women to enter from its foundation in 1871, although none actually enrolled until 1881. Women were finally admitted to medical studies during the First World War in 1917, although limitations were placed on their numbers after the war ended.

    In 1898, Sir William Ramsay discovered the elements krypton; neon; and xenon whilst professor of chemistry at University College London.

    1900 to 1976 – University of London, University College

    In 1900, the University College London was reconstituted as a federal university with new statutes drawn up under the University of London Act 1898. UCL, along with a number of other colleges in London, became a school of the University of London. While most of the constituent institutions retained their autonomy, University College London was merged into the University in 1907 under the University College London (Transfer) Act 1905 and lost its legal independence. Its formal name became University College London, University College, although for most informal and external purposes the name “University College, London” (or the initialism UCL) was still used.

    1900 also saw the decision to appoint a salaried head of the college. The first incumbent was Carey Foster, who served as Principal (as the post was originally titled) from 1900 to 1904. He was succeeded by Gregory Foster (no relation), and in 1906 the title was changed to Provost to avoid confusion with the Principal of the University of London. Gregory Foster remained in post until 1929. In 1906, the Cruciform Building was opened as the new home for University College Hospital.

    As it acknowledged and apologized for in 2021, University College London played “a fundamental role in the development, propagation and legitimisation of eugenics” during the first half of the 20th century. Among the prominent eugenicists who taught at University College London were Francis Galton, who coined the term “eugenics”, and Karl Pearson, and eugenics conferences were held at UCL until 2017.

    University College London sustained considerable bomb damage during the Second World War, including the complete destruction of the Great Hall and the Carey Foster Physics Laboratory. Fires gutted the library and destroyed much of the main building, including the dome. The departments were dispersed across the country to Aberystwyth; Bangor; Gwynedd; University of Cambridge; University of Oxford; Rothamsted near Harpenden; Hertfordshire; and Sheffield, with the administration at Stanstead Bury near Ware, Hertfordshire. The first UCL student magazine, Pi, was published for the first time on 21 February 1946. The Institute of Jewish Studies relocated to UCL in 1959.

    The Mullard Space Science Laboratory (UK) was established in 1967. In 1973, UCL became the first international node to the precursor of the internet, the ARPANET.

    ARPANET schematic

    Although University College London was among the first universities to admit women on the same terms as men, in 1878, the college’s senior common room, the Housman Room, remained men-only until 1969. After two unsuccessful attempts, a motion was passed that ended segregation by sex at University College London. This was achieved by Brian Woledge (Fielden Professor of French at University College London from 1939 to 1971) and David Colquhoun, at that time a young lecturer in pharmacology.

    1976 to 2005 – University College London (UK)

    In 1976, a new charter restored University College London’s legal independence, although still without the power to award its own degrees. Under this charter the college became formally known as University College London. This name abandoned the comma used in its earlier name of “University College, London”.

    In 1986, University College London merged with the Institute of Archaeology. In 1988, University College London merged with the Institute of Laryngology & Otology; the Institute of Orthopaedics; the Institute of Urology & Nephrology; and Middlesex Hospital Medical School.

    In 1993, a reorganization of the University of London meant that University College London and other colleges gained direct access to government funding and the right to confer University of London degrees themselves. This led to University College London being regarded as a de facto university in its own right.

    In 1994, the University College London Hospitals NHS Trust was established. University College London merged with the College of Speech Sciences and the Institute of Ophthalmology in 1995; the Institute of Child Health and the School of Podiatry in 1996; and the Institute of Neurology in 1997. In 1998, UCL merged with the Royal Free Hospital Medical School to create the Royal Free and University College Medical School (renamed the University College London Medical School in October 2008). In 1999, UCL merged with the School of Slavonic and East European Studies and the Eastman Dental Institute.

    The University College London Jill Dando Institute of Crime Science, the first university department in the world devoted specifically to reducing crime, was founded in 2001.

    Proposals for a merger between University College London and Imperial College London(UK) were announced in 2002. The proposal provoked strong opposition from University College London teaching staff and students and the AUT union, which criticized “the indecent haste and lack of consultation”, leading to its abandonment by University College London provost Sir Derek Roberts. The blogs that helped to stop the merger are preserved, though some of the links are now broken: see David Colquhoun’s blog and the Save University College London blog, which was run by David Conway, a postgraduate student in the department of Hebrew and Jewish studies.

    The London Centre for Nanotechnology was established in 2003 as a joint venture between University College London and Imperial College London (UK). They were later joined by King’s College London(UK) in 2018.

    Since 2003, when University College London professor David Latchman became master of the neighboring Birkbeck, he has forged closer relations between these two University of London colleges, and personally maintains departments at both. Joint research centres include the UCL/Birkbeck Institute for Earth and Planetary Sciences; the University College London /Birkbeck/IoE Centre for Educational Neuroscience; the University College London /Birkbeck Institute of Structural and Molecular Biology; and the Birkbeck- University College London Centre for Neuroimaging.

    2005 to 2010

    In 2005, University College London was finally granted its own taught and research degree awarding powers and all University College London students registered from 2007/08 qualified with University College London degrees. Also in 2005, University College London adopted a new corporate branding under which the name University College London was replaced by the initialism UCL in all external communications. In the same year, a major new £422 million building was opened for University College Hospital on Euston Road, the University College London Ear Institute was established and a new building for the University College London School of Slavonic and East European Studies was opened.

    In 2007, the University College London Cancer Institute was opened in the newly constructed Paul O’Gorman Building. In August 2008, University College London formed UCL Partners, an academic health science centre, with Great Ormond Street Hospital for Children NHS Trust; Moorfields Eye Hospital NHS Foundation Trust; Royal Free London NHS Foundation Trust; and University College London Hospitals NHS Foundation Trust. In 2008, University College London established the University College London School of Energy & Resources in Adelaide, Australia, the first campus of a British university in the country. The School was based in the historic Torrens Building in Victoria Square and its creation followed negotiations between University College London Vice Provost Michael Worton and South Australian Premier Mike Rann.

    In 2009, the Yale UCL Collaborative was established between University College London; UCL Partners; Yale University; Yale School of Medicine; and Yale – New Haven Hospital. It is the largest collaboration in the history of either university, and its scope has subsequently been extended to the humanities and social sciences.

    2010 to 2015

    In June 2011, the mining company BHP Billiton agreed to donate AU$10 million to University College London to fund the establishment of two energy institutes – the Energy Policy Institute; based in Adelaide, and the Institute for Sustainable Resources, based in London.

    In November 2011, University College London announced plans for a £500 million investment in its main Bloomsbury campus over 10 years, as well as the establishment of a new 23-acre campus next to the Olympic Park in Stratford in the East End of London. It revised its plans of expansion in East London and in December 2014 announced to build a campus (UCL East) covering 11 acres and provide up to 125,000m^2 of space on Queen Elizabeth Olympic Park. UCL East will be part of plans to transform the Olympic Park into a cultural and innovation hub, where University College London will open its first school of design, a centre of experimental engineering and a museum of the future, along with a living space for students.

    The School of Pharmacy, University of London merged with University College London on 1 January 2012, becoming the University College London School of Pharmacy within the Faculty of Life Sciences. In May 2012, University College London , Imperial College London (UK) and the semiconductor company Intel announced the establishment of the Intel Collaborative Research Institute for Sustainable Connected Cities, a London-based institute for research into the future of cities.

    In August 2012, University College London received criticism for advertising an unpaid research position; it subsequently withdrew the advert.

    University College London and the Institute of Education formed a strategic alliance in October 2012, including co-operation in teaching, research and the development of the London schools system. In February 2014, the two institutions announced their intention to merge, and the merger was completed in December 2014.

    In September 2013, a new Department of Science, Technology, Engineering and Public Policy (STEaPP) was established within the Faculty of Engineering, one of several initiatives within the university to increase and reflect upon the links between research and public sector decision-making.

    In October 2013, it was announced that the Translation Studies Unit of Imperial College London would move to University College London, becoming part of the University College London School of European Languages, Culture and Society. In December 2013, it was announced that University College London and the academic publishing company Elsevier would collaborate to establish the UCL Big Data Institute. In January 2015, it was announced that University College London had been selected by the UK government as one of the five founding members of the Alan Turing Institute(UK) (together with the universities of Cambridge, University of Edinburgh(SCL), Oxford and University of Warwick(UK)), an institute to be established at the British Library to promote the development and use of advanced mathematics, computer science, algorithms and big data.

    2015 to 2020

    In August 2015, the Department of Management Science and Innovation was renamed as the School of Management and plans were announced to greatly expand University College London’s activities in the area of business-related teaching and research. The school moved from the Bloomsbury campus to One Canada Square in Canary Wharf in 2016.

    University College London established the Institute of Advanced Studies (IAS) in 2015 to promote interdisciplinary research in humanities and social sciences. The prestigious annual Orwell Prize for political writing moved to the IAS in 2016.

    In June 2016 it was reported in Times Higher Education that as a result of administrative errors hundreds of students who studied at the UCL Eastman Dental Institute between 2005–06 and 2013–14 had been given the wrong marks, leading to an unknown number of students being attributed with the wrong qualifications and, in some cases, being failed when they should have passed their degrees. A report by University College London’s Academic Committee Review Panel noted that, according to the institute’s own review findings, senior members of University College London staff had been aware of issues affecting students’ results but had not taken action to address them. The Review Panel concluded that there had been an apparent lack of ownership of these matters amongst the institute’s senior staff.

    In December 2016 it was announced that University College London would be the hub institution for a new £250 million national dementia research institute, to be funded with £150 million from the Medical Research Council and £50 million each from Alzheimer’s Research UK and the Alzheimer’s Society.

    In May 2017 it was reported that staff morale was at “an all time low”, with 68% of members of the academic board who responded to a survey disagreeing with the statement ” University College London is well managed” and 86% with “the teaching facilities are adequate for the number of students”. Michael Arthur, the Provost and President, linked the results to the “major change programme” at University College London. He admitted that facilities were under pressure following growth over the past decade, but said that the issues were being addressed through the development of UCL East and rental of other additional space.

    In October 2017 University College London’s council voted to apply for university status while remaining part of the University of London. University College London’s application to become a university was subject to Parliament passing a bill to amend the statutes of the University of London, which received royal assent on 20 December 2018.

    The University College London Adelaide satellite campus closed in December 2017, with academic staff and student transferring to the University of South Australia (AU). As of 2019 UniSA and University College London are offering a joint master’s qualification in Science in Data Science (international).

    In 2018, University College London opened UCL at Here East, at the Queen Elizabeth Olympic Park, offering courses jointly between the Bartlett Faculty of the Built Environment and the Faculty of Engineering Sciences. The campus offers a variety of undergraduate and postgraduate master’s degrees, with the first undergraduate students, on a new Engineering and Architectural Design MEng, starting in September 2018. It was announced in August 2018 that a £215 million contract for construction of the largest building in the UCL East development, Marshgate 1, had been awarded to Mace, with building to begin in 2019 and be completed by 2022.

    In 2017 University College London disciplined an IT administrator who was also the University and College Union (UCU) branch secretary for refusing to take down an unmoderated staff mailing list. An employment tribunal subsequently ruled that he was engaged in union activities and thus this disciplinary action was unlawful. As of June 2019 University College London is appealing this ruling and the UCU congress has declared this to be a “dispute of national significance”.

    2020 to present

    In 2021 University College London formed a strategic partnership with Facebook AI Research (FAIR), including the creation of a new PhD programme.

    Research

    University College London has made cross-disciplinary research a priority and orientates its research around four “Grand Challenges”, Global Health, Sustainable Cities, Intercultural Interaction and Human Wellbeing.

    In 2014/15, University College London had a total research income of £427.5 million, the third-highest of any British university (after the University of Oxford (UK) and Imperial College London (UK)). Key sources of research income in that year were BIS research councils (£148.3 million); UK-based charities (£106.5 million); UK central government; local/health authorities and hospitals (£61.5 million); EU government bodies (£45.5 million); and UK industry, commerce and public corporations (£16.2 million). In 2015/16, University College London was awarded a total of £85.8 million in grants by UK research councils, the second-largest amount of any British university (after the University of Oxford (UK)), having achieved a 28% success rate. For the period to June 2015, University College London was the fifth-largest recipient of Horizon 2020 EU research funding and the largest recipient of any university, with €49.93 million of grants received. University College London also had the fifth-largest number of projects funded of any organization, with 94.

    According to a ranking of universities produced by SCImago Research Group University College London is ranked 12th in the world (and 1st in Europe) in terms of total research output. According to data released in July 2008 by ISI Web of Knowledge, University College London is the 13th most-cited university in the world (and most-cited in Europe). The analysis covered citations from 1 January 1998 to 30 April 2008, during which 46,166 UCL research papers attracted 803,566 citations. The report covered citations in 21 subject areas and the results revealed some of University College London’s key strengths, including: Clinical Medicine (1st outside North America); Immunology (2nd in Europe); Neuroscience & Behavior (1st outside North America and 2nd in the world); Pharmacology & Toxicology (1st outside North America and 4th in the world); Psychiatry & Psychology (2nd outside North America); and Social Sciences, General (1st outside North America).

    University College London submitted a total of 2,566 staff across 36 units of assessment to the 2014 Research Excellence Framework assessment, in each case the highest number of any UK university (compared with 1,793 UCL staff submitted to the 2008 Research Assessment Exercise (RAE 2008)). In the REF results 43% of University College London’s submitted research was classified as 4* (world-leading); 39% as 3* (internationally excellent); 15% as 2* (recognised internationally) and 2% as 1* (recognised nationally), giving an overall GPA of 3.22 (RAE 2008: 4* – 27%, 3* – 39%, 2* – 27% and 1* – 6%). In rankings produced by Times Higher Education based upon the REF results, University College London was ranked 1st overall for “research power” and joint 8th for GPA (compared to 4th and 7th respectively in equivalent rankings for the RAE 2008).

     
  • richardmitnick 7:28 pm on October 4, 2022 Permalink | Reply
    Tags: "DNA reference library a game-changer for environmental monitoring", , , Biology, , , ,   

    From CSIRO (AU)-Commonwealth Scientific and Industrial Research Organization: “DNA reference library a game-changer for environmental monitoring” 

    CSIRO bloc

    From CSIRO (AU)-Commonwealth Scientific and Industrial Research Organization

    10.5.22
    Ms Andrea Wild
    Communication Advisor, National Research Collections Australia
    +61415199434

    CSIRO is building a National Biodiversity DNA Library which aims to deliver a complete collection of DNA reference sequences for all known Australian animal and plant species.

    A new DNA reference library which is set to transform how Australia monitors biodiversity was announced today by CSIRO, Australia’s national science agency, along with the library’s first campaign which is supported by founding partner, Minderoo Foundation.

    The National Biodiversity DNA Library (NBDL) aims to create a complete collection of DNA reference sequences for all known Australian animal and plant species. Just like COVID wastewater testing, it will enable DNA detected in the environment to be assigned to the species to which it belongs.

    CSIRO Director of the NBDL Jenny Giles said environmental DNA (eDNA) analysis has the potential to create a revolution in biodiversity monitoring.

    “Monitoring biodiversity and detecting pests is extremely important, but it’s hard to do and is expensive in a country as large as Australia. eDNA surveys could change that by allowing us to detect animals, plants and other organisms from traces of DNA left behind in the environment, but only if we can reliably assign this DNA to species,” Dr Giles said.

    “People may be surprised to realize that there are tiny pieces of DNA shed by animals, plants, and other life forms left in the air, soil, and water around us.

    “eDNA surveys are increasingly being used to detect and monitor species, but only a tiny fraction of Australian species have sufficient reference data available to support this approach. This means most eDNA we collect can’t currently be assigned to a species.

    “Our National Biodiversity DNA Library aims to provide this missing data through an open access online portal, that will allow Australian state and federal governments, industry, researchers and citizen scientists to take full advantage of this powerful technique to describe and detect changes in our environment,” she said.

    Minderoo Foundation is partnering with CSIRO to fund the first part of this DNA reference library, focusing on all species of Australian marine vertebrates, including fishes, whales, dolphins, seals, turtles, sea snakes and inshore sea and aquatic birds.

    Minderoo Foundation Director of the OceanOmics program Steve Burnell said eDNA approaches will transform how we monitor marine biodiversity and help manage and conserve marine species.

    “The NBDL will help our program and other researchers to detect and map marine vertebrate species around Australia, improving the speed, scale and precision at which we can provide information to resource managers,” Dr Burnell said.

    “We’re proud to support this powerful conservation tool – the surveillance of marine ecosystems using eDNA provides an exciting and non-invasive means to measure biodiversity and monitor the health of our oceans.”

    Dr Giles said the library will be built using unique laboratory techniques developed by CSIRO.

    “This technology enables the large-scale generation of DNA reference sequences from preserved specimens of any organism. This miniaturized, high-throughput approach can unlock genetic information from the millions of scientific specimens preserved in Australian research collections,” she said.

    CSIRO will work with Bioplatforms Australia, enabled by the Commonwealth Government National Collaborative Research Infrastructure Strategy, and Australian natural history collections to rapidly increase the DNA reference sequences available for Australian marine vertebrates. These data will be generated from expertly identified specimens held in collections including CSIRO’s Australian National Fish Collection and Australian National Wildlife Collection.

    The NBDL collaboration between CSIRO, its partners, and our nation’s vast research collections will result in greater understanding of Australia’s animal and plant species and will support industries across fisheries, agriculture, environmental management and tourism.

    The library’s first online data release is expected to occur by early 2024.

    1
    Stag and Plate coral. PHOTO: Minderoo OceanOmics Centre

    2
    Sea lion (Neophoca cinerea). PHOTO: Minderoo OceanOmics Centre

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    CSIRO campus

    CSIRO (AU)-Commonwealth Scientific and Industrial Research Organization, is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

    CSIRO works with leading organizations around the world. From its headquarters in Canberra, CSIRO maintains more than 50 sites across Australia and in France, Chile and the United States, employing about 5,500 people.

    Federally funded scientific research began in Australia 104 years ago. The Advisory Council of Science and Industry was established in 1916 but was hampered by insufficient available finance. In 1926 the research effort was reinvigorated by establishment of the Council for Scientific and Industrial Research (CSIR), which strengthened national science leadership and increased research funding. CSIR grew rapidly and achieved significant early successes. In 1949 further legislated changes included renaming the organization as CSIRO.

    Notable developments by CSIRO have included the invention of atomic absorption spectroscopy; essential components of Wi-Fi technology; development of the first commercially successful polymer banknote; the invention of the insect repellent in Aerogard and the introduction of a series of biological controls into Australia, such as the introduction of myxomatosis and rabbit calicivirus for the control of rabbit populations.

    Research and focus areas

    Research Business Units

    As at 2019, CSIRO’s research areas are identified as “Impact science” and organized into the following Business Units:

    Agriculture and Food
    Health and Biosecurity
    Data 61
    Energy
    Land and Water
    Manufacturing
    Mineral Resources
    Oceans and Atmosphere

    National Facilities
    CSIRO manages national research facilities and scientific infrastructure on behalf of the nation to assist with the delivery of research. The national facilities and specialized laboratories are available to both international and Australian users from industry and research. As at 2019, the following National Facilities are listed:

    Australian Animal Health Laboratory (AAHL)
    Australia Telescope National Facility – radio telescopes included in the Facility include the Australia Telescope Compact Array, the Parkes Observatory, Mopra Radio Telescope Observatory and the Australian Square Kilometre Array Pathfinder.

    STCA CSIRO Australia Compact Array (AU), six radio telescopes at the Paul Wild Observatory, is an array of six 22-m antennas located about twenty five kilometres (16 mi) west of the town of Narrabri in Australia.

    CSIRO-Commonwealth Scientific and Industrial Research Organization (AU) Parkes Observatory [Murriyang, the traditional Indigenous name], located 20 kilometres north of the town of Parkes, New South Wales, Australia, 414.80m above sea level.

    NASA Canberra Deep Space Communication Complex, AU, Deep Space Network. Credit: NASA.

    CSIRO Canberra campus.

    ESA DSA 1, hosts a 35-metre deep-space antenna with transmission and reception in both S- and X-band and is located 140 kilometres north of Perth, Western Australia, near the town of New Norcia.

    CSIRO-Commonwealth Scientific and Industrial Research Organisation (AU) CSIRO R/V Investigator.

    UK Space NovaSAR-1 satellite (UK) synthetic aperture radar satellite.

    CSIRO Pawsey Supercomputing Centre AU)

    Magnus Cray XC40 supercomputer at Pawsey Supercomputer Centre Perth Australia.

    Galaxy Cray XC30 Series Supercomputer at at Pawsey Supercomputer Centre Perth Australia.

    Pausey Supercomputer CSIRO Zeus SGI Linux cluster.

    Others not shown

    SKA

    SKA- Square Kilometer Array.

    SKA Square Kilometre Array low frequency at Murchison Widefield Array, Boolardy station in outback Western Australia on the traditional lands of the Wajarri peoples.

    EDGES telescope in a radio quiet zone at the Murchison Radio-astronomy Observatory in Western Australia, on the traditional lands of the Wajarri peoples.

     
  • richardmitnick 9:30 pm on October 3, 2022 Permalink | Reply
    Tags: "The fountain of life:: Water droplets hold the secret ingredient for building life", , Biology, , Chemists discover key to early Earth chemistry which could unlock ways to speed up chemical synthesis for drug discovery., Primordial molecules-simple amino acids-spontaneously form peptides-the building blocks of life in droplets of pure water., , Purdue University chemists have uncovered a mechanism for peptide-forming reactions to occur in water., The essential chemistry behind the origin of life, These discoveries could lead to the faster development of drugs to treat humanity’s most debilitating diseases.   

    From Purdue University: “The fountain of life:: Water droplets hold the secret ingredient for building life” 

    From Purdue University

    10.3.22
    Writer:
    Brittany Steff
    bsteff@purdue.edu

    Source:
    Graham Cooks
    cooks@purdue.edu

    1
    Graham Cooks has studied the chemistry of water droplets for decades, discovering insights into cancer detection, drug discovery and early Earth chemistry. (Purdue University file photo/Andrew Hancock)

    Chemists discover key to early Earth chemistry which could unlock ways to speed up chemical synthesis for drug discovery.

    Purdue University chemists have uncovered a mechanism for peptide-forming reactions to occur in water — something that has puzzled scientists for decades.

    “This is essentially the chemistry behind the origin of life,” said Graham Cooks, the Henry Bohn Hass Distinguished Professor of Analytical Chemistry in Purdue’s College of Science. “This is the first demonstration that primordial molecules-simple amino acids-spontaneously form peptides-the building blocks of life in droplets of pure water. This is a dramatic discovery.”

    This water-based chemistry, which leads to proteins and so to life on Earth, could also lead to the faster development of drugs to treat humanity’s most debilitating diseases. The team’s discovery was published in the journal PNAS [below].

    For decades scientists have theorized that life on Earth began in the oceans. The chemistry, however, remained an enigma. Raw amino acids — something that meteorites delivered to early Earth daily — can react and latch together to form peptides, the building blocks of proteins and, eventually, life. Puzzlingly, the process requires the loss of a water molecule, which seems highly unlikely in a wet, aqueous or oceanic environment. For life to form, it needed water. But it also needed space away from the water.

    Cooks, an expert in mass spectrometry and early Earth chemistry, and his team have uncovered the answer to the riddle: “Water isn’t wet everywhere.” On the margins, where the water droplet meets the atmosphere, incredibly rapid reactions can take place, transforming abiotic amino acids into the building blocks of life. Places where sea spray flies into the air and waves pound the land, or where fresh water burbles down a slope, were fertile landscapes for life’s potential evolution.

    The chemists have spent more than 10 years using mass spectrometers to study chemical reactions in water droplets.

    “The rates of reactions in droplets are anywhere from a hundred to a million times faster than the same chemicals reacting in bulk solution,” Cooks said.

    The rates of these reactions make catalysts unnecessary, speeding up the reactions and, in the case of early Earth chemistry, making the evolution of life possible. Understanding how this process works has been the goal of decades of scientific research. The secret of how life arose on Earth can help scientists understand why it happened and inform the search for life on other planets, or even moons.

    Understanding how amino acids built themselves up into proteins and, eventually, life-forms revolutionizes scientists’ understanding of chemical synthesis. That same chemistry could now aid synthetic chemists in speeding the reactions critical to discovering and developing new drugs and therapeutic treatments for diseases.

    “If you walk through an academic campus at night, the buildings with the lights on are where synthetic chemists are working,” Cooks said. “Their experiments are so slow that they run for days or weeks at a time. This isn’t necessary, and using droplet chemistry, we have built an apparatus, which is being used at Purdue now, to speed up the synthesis of novel chemicals and potential new drugs.”

    Science paper:
    PNAS

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Purdue University is a public land-grant research university in West Lafayette, Indiana, and the flagship campus of the Purdue University system. The university was founded in 1869 after Lafayette businessman John Purdue donated land and money to establish a college of science, technology, and agriculture in his name. The first classes were held on September 16, 1874, with six instructors and 39 students.

    The main campus in West Lafayette offers more than 200 majors for undergraduates, over 69 masters and doctoral programs, and professional degrees in pharmacy and veterinary medicine. In addition, Purdue has 18 intercollegiate sports teams and more than 900 student organizations. Purdue is a member of the Big Ten Conference and enrolls the second largest student body of any university in Indiana, as well as the fourth largest foreign student population of any university in the United States.

    Purdue University is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. Purdue has 25 American astronauts as alumni and as of April 2019, the university has been associated with 13 Nobel Prizes.

    In 1865, the Indiana General Assembly voted to take advantage of the Morrill Land-Grant Colleges Act of 1862 and began plans to establish an institution with a focus on agriculture and engineering. Communities throughout the state offered facilities and funding in bids for the location of the new college. Popular proposals included the addition of an agriculture department at Indiana State University, at what is now Butler University. By 1869, Tippecanoe County’s offer included $150,000 (equivalent to $2.9 million in 2019) from Lafayette business leader and philanthropist John Purdue; $50,000 from the county; and 100 acres (0.4 km^2) of land from local residents.

    On May 6, 1869, the General Assembly established the institution in Tippecanoe County as Purdue University, in the name of the principal benefactor. Classes began at Purdue on September 16, 1874, with six instructors and 39 students. Professor John S. Hougham was Purdue’s first faculty member and served as acting president between the administrations of presidents Shortridge and White. A campus of five buildings was completed by the end of 1874. In 1875, Sarah A. Oren, the State Librarian of Indiana, was appointed Professor of Botany.

    Purdue issued its first degree, a Bachelor of Science in chemistry, in 1875, and admitted its first female students that autumn.

    Emerson E. White, the university’s president, from 1876 to 1883, followed a strict interpretation of the Morrill Act. Rather than emulate the classical universities, White believed Purdue should be an “industrial college” and devote its resources toward providing a broad, liberal education with an emphasis on science, technology, and agriculture. He intended not only to prepare students for industrial work, but also to prepare them to be good citizens and family members.

    Part of White’s plan to distinguish Purdue from classical universities included a controversial attempt to ban fraternities, which was ultimately overturned by the Indiana Supreme Court, leading to White’s resignation. The next president, James H. Smart, is remembered for his call in 1894 to rebuild the original Heavilon Hall “one brick higher” after it had been destroyed by a fire.

    By the end of the nineteenth century, the university was organized into schools of agriculture, engineering (mechanical, civil, and electrical), and pharmacy; former U.S. President Benjamin Harrison served on the board of trustees. Purdue’s engineering laboratories included testing facilities for a locomotive, and for a Corliss steam engine—one of the most efficient engines of the time. The School of Agriculture shared its research with farmers throughout the state, with its cooperative extension services, and would undergo a period of growth over the following two decades. Programs in education and home economics were soon established, as well as a short-lived school of medicine. By 1925, Purdue had the largest undergraduate engineering enrollment in the country, a status it would keep for half a century.

    President Edward C. Elliott oversaw a campus building program between the world wars. Inventor, alumnus, and trustee David E. Ross coordinated several fundraisers, donated lands to the university, and was instrumental in establishing the Purdue Research Foundation. Ross’s gifts and fundraisers supported such projects as Ross–Ade Stadium, the Memorial Union, a civil engineering surveying camp, and Purdue University Airport. Purdue Airport was the country’s first university-owned airport and the site of the country’s first college-credit flight training courses.

    Amelia Earhart joined the Purdue faculty in 1935 as a consultant for these flight courses and as a counselor on women’s careers. In 1937, the Purdue Research Foundation provided the funds for the Lockheed Electra 10-E Earhart flew on her attempted round-the-world flight.

    Every school and department at the university was involved in some type of military research or training during World War II. During a project on radar receivers, Purdue physicists discovered properties of germanium that led to the making of the first transistor. The Army and the Navy conducted training programs at Purdue and more than 17,500 students, staff, and alumni served in the armed forces. Purdue set up about a hundred centers throughout Indiana to train skilled workers for defense industries. As veterans returned to the university under the G.I. Bill, first-year classes were taught at some of these sites to alleviate the demand for campus space. Four of these sites are now degree-granting regional campuses of the Purdue University system. On-campus housing became racially desegregated in 1947, following pressure from Purdue President Frederick L. Hovde and Indiana Governor Ralph F. Gates.

    After the war, Hovde worked to expand the academic opportunities at the university. A decade-long construction program emphasized science and research. In the late 1950s and early 1960s the university established programs in veterinary medicine, industrial management, and nursing, as well as the first computer science department in the United States. Undergraduate humanities courses were strengthened, although Hovde only reluctantly approved of graduate-level study in these areas. Purdue awarded its first Bachelor of Arts degrees in 1960. The programs in liberal arts and education, formerly administered by the School of Science, were soon split into an independent school.

    The official seal of Purdue was officially inaugurated during the university’s centennial in 1969.

    1

    Consisting of elements from emblems that had been used unofficially for 73 years, the current seal depicts a griffin, symbolizing strength, and a three-part shield, representing education, research, and service.

    In recent years, Purdue’s leaders have continued to support high-tech research and international programs. In 1987, U.S. President Ronald Reagan visited the West Lafayette campus to give a speech about the influence of technological progress on job creation.

    In the 1990s, the university added more opportunities to study abroad and expanded its course offerings in world languages and cultures. The first buildings of the Discovery Park interdisciplinary research center were dedicated in 2004.

    Purdue launched a Global Policy Research Institute in 2010 to explore the potential impact of technical knowledge on public policy decisions.

    On April 27, 2017, Purdue University announced plans to acquire for-profit college Kaplan University and convert it to a public university in the state of Indiana, subject to multiple levels of approval. That school now operates as Purdue University Global, and aims to serve adult learners.

    Campuses

    Purdue’s campus is situated in the small city of West Lafayette, near the western bank of the Wabash River, across which sits the larger city of Lafayette. State Street, which is concurrent with State Road 26, divides the northern and southern portions of campus. Academic buildings are mostly concentrated on the eastern and southern parts of campus, with residence halls and intramural fields to the west, and athletic facilities to the north. The Greater Lafayette Public Transportation Corporation (CityBus) operates eight campus loop bus routes on which students, faculty, and staff can ride free of charge with Purdue Identification.

    Organization and administration

    The university president, appointed by the board of trustees, is the chief administrative officer of the university. The office of the president oversees admission and registration, student conduct and counseling, the administration and scheduling of classes and space, the administration of student athletics and organized extracurricular activities, the libraries, the appointment of the faculty and conditions of their employment, the appointment of all non-faculty employees and the conditions of employment, the general organization of the university, and the planning and administration of the university budget.

    The Board of Trustees directly appoints other major officers of the university including a provost who serves as the chief academic officer for the university, several vice presidents with oversight over specific university operations, and the regional campus chancellors.

    Academic divisions

    Purdue is organized into thirteen major academic divisions.

    College of Agriculture

    The university’s College of Agriculture supports the university’s agricultural, food, life, and natural resource science programs. The college also supports the university’s charge as a land-grant university to support agriculture throughout the state; its agricultural extension program plays a key role in this.

    College of Education

    The College of Education offers undergraduate degrees in elementary education, social studies education, and special education, and graduate degrees in these and many other specialty areas of education. It has two departments: (a) Curriculum and Instruction and (b) Educational Studies.

    College of Engineering

    The Purdue University College of Engineering was established in 1874 with programs in Civil and Mechanical Engineering. The college now offers B.S., M.S., and Ph.D. degrees in more than a dozen disciplines. Purdue’s engineering program has also educated 24 of America’s astronauts, including Neil Armstrong and Eugene Cernan who were the first and last astronauts to have walked on the Moon, respectively. Many of Purdue’s engineering disciplines are recognized as top-ten programs in the U.S. The college as a whole is currently ranked 7th in the U.S. of all doctorate-granting engineering schools by U.S. News & World Report.

    Exploratory Studies

    The university’s Exploratory Studies program supports undergraduate students who enter the university without having a declared major. It was founded as a pilot program in 1995 and made a permanent program in 1999.

    College of Health and Human Sciences

    The College of Health and Human Sciences was established in 2010 and is the newest college. It offers B.S., M.S. and Ph.D. degrees in all 10 of its academic units.

    College of Liberal Arts

    Purdue’s College of Liberal Arts contains the arts, social sciences and humanities programs at the university. Liberal arts courses have been taught at Purdue since its founding in 1874. The School of Science, Education, and Humanities was formed in 1953. In 1963, the School of Humanities, Social Sciences, and Education was established, although Bachelor of Arts degrees had begun to be conferred as early as 1959. In 1989, the School of Liberal Arts was created to encompass Purdue’s arts, humanities, and social sciences programs, while education programs were split off into the newly formed School of Education. The School of Liberal Arts was renamed the College of Liberal Arts in 2005.

    Krannert School of Management

    The Krannert School of Management offers management courses and programs at the undergraduate, master’s, and doctoral levels.

    College of Pharmacy

    The university’s College of Pharmacy was established in 1884 and is the 3rd oldest state-funded school of pharmacy in the United States. The school offers two undergraduate programs leading to the B.S. in Pharmaceutical Sciences (BSPS) and the Doctor of Pharmacy (Pharm.D.) professional degree. Graduate programs leading to M.S. and Ph.D. degrees are offered in three departments (Industrial and Physical Pharmacy, Medicinal Chemistry and Molecular Pharmacology, and Pharmacy Practice). Additionally, the school offers several non-degree certificate programs and post-graduate continuing education activities.

    Purdue Polytechnic Institute

    The Purdue Polytechnic Institute offers bachelor’s, master’s and Ph.D. degrees in a wide range of technology-related disciplines. With over 30,000 living alumni, it is one of the largest technology schools in the United States.

    College of Science

    The university’s College of Science houses the university’s science departments: Biological Sciences; Chemistry; Computer Science; Earth, Atmospheric, & Planetary Sciences; Mathematics; Physics & Astronomy; and Statistics. The science courses offered by the college account for about one-fourth of Purdue’s one million student credit hours.

    College of Veterinary Medicine

    The College of Veterinary Medicine is accredited by the AVMA to offer the Doctor of Veterinary Medicine degree, associate’s and bachelor’s degrees in veterinary technology, master’s and Ph.D. degrees, and residency programs leading to specialty board certification. Within the state of Indiana, the Purdue University College of Veterinary Medicine is the only veterinary school, while the Indiana University School of Medicine is one of only two medical schools (the other being Marian University College of Osteopathic Medicine). The two schools frequently collaborate on medical research projects.

    Honors College

    Purdue’s Honors College supports an honors program for undergraduate students at the university.

    The Graduate School

    The university’s Graduate School supports graduate students at the university.

    Research

    The university expended $622.814 million in support of research system-wide in 2017, using funds received from the state and federal governments, industry, foundations, and individual donors. The faculty and more than 400 research laboratories put Purdue University among the leading research institutions. Purdue University is considered by the Carnegie Classification of Institutions of Higher Education to have “very high research activity”. Purdue also was rated the nation’s fourth best place to work in academia, according to rankings released in November 2007 by The Scientist magazine. Purdue’s researchers provide insight, knowledge, assistance, and solutions in many crucial areas. These include, but are not limited to Agriculture; Business and Economy; Education; Engineering; Environment; Healthcare; Individuals, Society, Culture; Manufacturing; Science; Technology; Veterinary Medicine. The Global Trade Analysis Project (GTAP), a global research consortium focused on global economic governance challenges (trade, climate, resource use) is also coordinated by the University. Purdue University generated a record $438 million in sponsored research funding during the 2009–10 fiscal year with participation from National Science Foundation, National Aeronautics and Space Administration, and the Department of Agriculture, Department of Defense, Department of Energy, and Department of Health and Human Services. Purdue University was ranked fourth in Engineering research expenditures amongst all the colleges in the United States in 2017, with a research expenditure budget of 244.8 million. Purdue University established the Discovery Park to bring innovation through multidisciplinary action. In all of the eleven centers of Discovery Park, ranging from entrepreneurship to energy and advanced manufacturing, research projects reflect a large economic impact and address global challenges. Purdue University’s nanotechnology research program, built around the new Birck Nanotechnology Center in Discovery Park, ranks among the best in the nation.

    The Purdue Research Park which opened in 1961 was developed by Purdue Research Foundation which is a private, nonprofit foundation created to assist Purdue. The park is focused on companies operating in the arenas of life sciences, homeland security, engineering, advanced manufacturing and information technology. It provides an interactive environment for experienced Purdue researchers and for private business and high-tech industry. It currently employs more than 3,000 people in 155 companies, including 90 technology-based firms. The Purdue Research Park was ranked first by the Association of University Research Parks in 2004.

    Purdue’s library system consists of fifteen locations throughout the campus, including an archives and special collections research center, an undergraduate library, and several subject-specific libraries. More than three million volumes, including one million electronic books, are held at these locations. The Library houses the Amelia Earhart Collection, a collection of notes and letters belonging to Earhart and her husband George Putnam along with records related to her disappearance and subsequent search efforts. An administrative unit of Purdue University Libraries, Purdue University Press has its roots in the 1960 founding of Purdue University Studies by President Frederick Hovde on a $12,000 grant from the Purdue Research Foundation. This was the result of a committee appointed by President Hovde after the Department of English lamented the lack of publishing venues in the humanities. Since the 1990s, the range of books published by the Press has grown to reflect the work from other colleges at Purdue University especially in the areas of agriculture, health, and engineering. Purdue University Press publishes print and ebook monograph series in a range of subject areas from literary and cultural studies to the study of the human-animal bond. In 1993 Purdue University Press was admitted to membership of the Association of American University Presses. Purdue University Press publishes around 25 books a year and 20 learned journals in print, in print & online, and online-only formats in collaboration with Purdue University Libraries.

    Sustainability

    Purdue’s Sustainability Council, composed of University administrators and professors, meets monthly to discuss environmental issues and sustainability initiatives at Purdue. The University’s first LEED Certified building was an addition to the Mechanical Engineering Building, which was completed in Fall 2011. The school is also in the process of developing an arboretum on campus. In addition, a system has been set up to display live data detailing current energy production at the campus utility plant. The school holds an annual “Green Week” each fall, an effort to engage the Purdue community with issues relating to environmental sustainability.

    Rankings

    In its 2021 edition, U.S. News & World Report ranked Purdue University the 5th most innovative national university, tied for the 17th best public university in the United States, tied for 53rd overall, and 114th best globally. U.S. News & World Report also rated Purdue tied for 36th in “Best Undergraduate Teaching, 83rd in “Best Value Schools”, tied for 284th in “Top Performers on Social Mobility”, and the undergraduate engineering program tied for 9th at schools whose highest degree is a doctorate.

     
  • richardmitnick 11:42 am on October 3, 2022 Permalink | Reply
    Tags: "What a reptile’s bones can teach us about Earth’s perilous past", , Biology, New research centered on the 250-million-year-old reptile known as “Palacrodon”, , , The Department of Earth & Planetary Sciences,   

    From The Department of Earth & Planetary Sciences At Yale University: “What a reptile’s bones can teach us about Earth’s perilous past” 

    From The Department of Earth & Planetary Sciences

    At

    Yale University

    9.30.22
    Jim Shelton

    Media Contact
    Fred Mamoun
    fred.mamoun@yale.edu
    203-436-2643

    1
    An illustration of how Palacrodon may have looked. (Credit: K.M. Jenkins)

    An extinct reptile’s oddly shaped chompers, fingers, and ear bones may tell us quite a bit about the resilience of life on Earth, according to a new study.

    In fact, paleontologists at Yale, Sam Houston State University, and the University of the Witwatersrand say the 250-million-year-old reptile, known as Palacrodon, fills in an important gap in our understanding of reptile evolution. It’s also a signal that reptiles, plants, and ecosystems may have fared better or recovered more quickly than previously thought after a mass extinction event wiped out most of the plant and animal species on the planet.

    2
    The lower jaw of Palacrodon provided researchers with information about the reptile’s teeth.

    “We now know that Palacrodon comes from one of the last lineages to branch off the reptile tree of life before the evolution of modern reptiles,” said Kelsey Jenkins, a doctoral student in Yale’s Department of Earth and Planetary Sciences in the Faculty of Arts and Sciences and first author of the study, which appears in the Journal of Anatomy [below]. “We also know that Palacrodon lived in the wake of the most devastating mass extinction in Earth’s history.”

    That would be the Permian-Triassic extinction event, which occurred 252 million years ago. Known as “the Great Dying,” it killed off 70% of terrestrial species and 95% of marine species.

    Although a large number of reptile species eventually bounced back from this extinction event, the details of how that happened are murky. Researchers have spent decades trying to fill in the gaps in our understanding of key adaptations that enabled reptiles to flourish after the Permian-Triassic extinction — and what those adaptations may reveal about the ecosystems where they lived.

    Palacrodon may help answer some of those questions, Jenkins said.

    But first, she and her colleagues had to get a better look at the little reptile.

    Until recently, what was known about Palacrodon came from examinations of cranial fragments from fossils found in South Africa and Arizona. The information gleaned from those fossils was so limited, however, that Palacrodon was left out of most scientific analyses of reptilian evolution.

    For the new study, Jenkins and her colleagues — including co-corresponding author Bhart-Anjan S. Bhullar, assistant professor of Earth & planetary science at Yale and an assistant curator at the Yale Peabody Museum of Natural History — brought a new analytical approach to bear in examining Palacrodon.

    Specifically, they used computed tomographic (CT) scanning and microscopy to analyze the most complete Palacrodon specimen, a fossil from Antarctica. Bhullar’s lab at Yale is particularly known for its innovative use of CT scanning and microscopy to create 3D images of fossils. (Jenkins and Bhullar also did field work in South Africa and the southwestern U.S. relating to Palacrodon.)

    3
    A specimen of Palacrodon (top) from Antarctica and a CT scan (bottom) of the specimen.

    Using the technology for this study, the researchers were able to obtain characteristics of the reptile’s teeth, as well as other physical features. It revealed that Palacrodon’s teeth were best suited for grinding plant material and that the reptile was likely capable of occasionally climbing or clinging onto vegetation, they said.

    Palacrodon’s unusual teeth, and a few other specialized features of its anatomy, indicate it was likely herbivorous or interacting with plant life in some way,” Jenkins said. “This signals the early rebound of plants, and more broadly the rebound of ecosystems following this mass extinction.”

    Jenkins said the study points to a need for further examination of fossils from the time period just after the Permian-Triassic extinction event.

    Co-authors of the study are Dalton Meyer, a graduate student in the Department of Earth and Planetary Sciences at Yale; Patrick Lewis of Sam Houston State University; and Jonah Choiniere of the University of the Witwatersrand, in South Africa.

    Science paper:
    Journal of Anatomy

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Yale University is a private Ivy League research university in New Haven, Connecticut. Founded in 1701 as the Collegiate School, it is the third-oldest institution of higher education in the United States and one of the nine Colonial Colleges chartered before the American Revolution. The Collegiate School was renamed Yale College in 1718 to honor the school’s largest private benefactor for the first century of its existence, Elihu Yale. Yale University is consistently ranked as one of the top universities and is considered one of the most prestigious in the nation.

    Chartered by Connecticut Colony, the Collegiate School was established in 1701 by clergy to educate Congregational ministers before moving to New Haven in 1716. Originally restricted to theology and sacred languages, the curriculum began to incorporate humanities and sciences by the time of the American Revolution. In the 19th century, the college expanded into graduate and professional instruction, awarding the first PhD in the United States in 1861 and organizing as a university in 1887. Yale’s faculty and student populations grew after 1890 with rapid expansion of the physical campus and scientific research.

    Yale is organized into fourteen constituent schools: the original undergraduate college, the Yale Graduate School of Arts and Sciences and twelve professional schools. While the university is governed by the Yale Corporation, each school’s faculty oversees its curriculum and degree programs. In addition to a central campus in downtown New Haven, the university owns athletic facilities in western New Haven, a campus in West Haven, Connecticut, and forests and nature preserves throughout New England. As of June 2020, the university’s endowment was valued at $31.1 billion, the second largest of any educational institution. The Yale University Library, serving all constituent schools, holds more than 15 million volumes and is the third-largest academic library in the United States. Students compete in intercollegiate sports as the Yale Bulldogs in the NCAA Division I – Ivy League.

    As of October 2020, 65 Nobel laureates, five Fields Medalists, four Abel Prize laureates, and three Turing award winners have been affiliated with Yale University. In addition, Yale has graduated many notable alumni, including five U.S. Presidents, 19 U.S. Supreme Court Justices, 31 living billionaires, and many heads of state. Hundreds of members of Congress and many U.S. diplomats, 78 MacArthur Fellows, 252 Rhodes Scholars, 123 Marshall Scholars, and nine Mitchell Scholars have been affiliated with the university.

    Research

    Yale is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation , Yale spent $990 million on research and development in 2018, ranking it 15th in the nation.

    Yale’s faculty include 61 members of the National Academy of Sciences , 7 members of the National Academy of Engineering and 49 members of the American Academy of Arts and Sciences . The college is, after normalization for institution size, the tenth-largest baccalaureate source of doctoral degree recipients in the United States, and the largest such source within the Ivy League.

    Yale’s English and Comparative Literature departments were part of the New Criticism movement. Of the New Critics, Robert Penn Warren, W.K. Wimsatt, and Cleanth Brooks were all Yale faculty. Later, the Yale Comparative literature department became a center of American deconstruction. Jacques Derrida, the father of deconstruction, taught at the Department of Comparative Literature from the late seventies to mid-1980s. Several other Yale faculty members were also associated with deconstruction, forming the so-called “Yale School”. These included Paul de Man who taught in the Departments of Comparative Literature and French, J. Hillis Miller, Geoffrey Hartman (both taught in the Departments of English and Comparative Literature), and Harold Bloom (English), whose theoretical position was always somewhat specific, and who ultimately took a very different path from the rest of this group. Yale’s history department has also originated important intellectual trends. Historians C. Vann Woodward and David Brion Davis are credited with beginning in the 1960s and 1970s an important stream of southern historians; likewise, David Montgomery, a labor historian, advised many of the current generation of labor historians in the country. Yale’s Music School and Department fostered the growth of Music Theory in the latter half of the 20th century. The Journal of Music Theory was founded there in 1957; Allen Forte and David Lewin were influential teachers and scholars.

    In addition to eminent faculty members, Yale research relies heavily on the presence of roughly 1200 Postdocs from various national and international origin working in the multiple laboratories in the sciences, social sciences, humanities, and professional schools of the university. The university progressively recognized this working force with the recent creation of the Office for Postdoctoral Affairs and the Yale Postdoctoral Association.

    Notable alumni

    Over its history, Yale has produced many distinguished alumni in a variety of fields, ranging from the public to private sector. According to 2020 data, around 71% of undergraduates join the workforce, while the next largest majority of 16.6% go on to attend graduate or professional schools. Yale graduates have been recipients of 252 Rhodes Scholarships, 123 Marshall Scholarships, 67 Truman Scholarships, 21 Churchill Scholarships, and 9 Mitchell Scholarships. The university is also the second largest producer of Fulbright Scholars, with a total of 1,199 in its history and has produced 89 MacArthur Fellows. The U.S. Department of State Bureau of Educational and Cultural Affairs ranked Yale fifth among research institutions producing the most 2020–2021 Fulbright Scholars. Additionally, 31 living billionaires are Yale alumni.

    At Yale, one of the most popular undergraduate majors among Juniors and Seniors is political science, with many students going on to serve careers in government and politics. Former presidents who attended Yale for undergrad include William Howard Taft, George H. W. Bush, and George W. Bush while former presidents Gerald Ford and Bill Clinton attended Yale Law School. Former vice-president and influential antebellum era politician John C. Calhoun also graduated from Yale. Former world leaders include Italian prime minister Mario Monti, Turkish prime minister Tansu Çiller, Mexican president Ernesto Zedillo, German president Karl Carstens, Philippine president José Paciano Laurel, Latvian president Valdis Zatlers, Taiwanese premier Jiang Yi-huah, and Malawian president Peter Mutharika, among others. Prominent royals who graduated are Crown Princess Victoria of Sweden, and Olympia Bonaparte, Princess Napoléon.

    Yale alumni have had considerable presence in U.S. government in all three branches. On the U.S. Supreme Court, 19 justices have been Yale alumni, including current Associate Justices Sonia Sotomayor, Samuel Alito, Clarence Thomas, and Brett Kavanaugh. Numerous Yale alumni have been U.S. Senators, including current Senators Michael Bennet, Richard Blumenthal, Cory Booker, Sherrod Brown, Chris Coons, Amy Klobuchar, Ben Sasse, and Sheldon Whitehouse. Current and former cabinet members include Secretaries of State John Kerry, Hillary Clinton, Cyrus Vance, and Dean Acheson; U.S. Secretaries of the Treasury Oliver Wolcott, Robert Rubin, Nicholas F. Brady, Steven Mnuchin, and Janet Yellen; U.S. Attorneys General Nicholas Katzenbach, John Ashcroft, and Edward H. Levi; and many others. Peace Corps founder and American diplomat Sargent Shriver and public official and urban planner Robert Moses are Yale alumni.

    Yale has produced numerous award-winning authors and influential writers, like Nobel Prize in Literature laureate Sinclair Lewis and Pulitzer Prize winners Stephen Vincent Benét, Thornton Wilder, Doug Wright, and David McCullough. Academy Award winning actors, actresses, and directors include Jodie Foster, Paul Newman, Meryl Streep, Elia Kazan, George Roy Hill, Lupita Nyong’o, Oliver Stone, and Frances McDormand. Alumni from Yale have also made notable contributions to both music and the arts. Leading American composer from the 20th century Charles Ives, Broadway composer Cole Porter, Grammy award winner David Lang, and award-winning jazz pianist and composer Vijay Iyer all hail from Yale. Hugo Boss Prize winner Matthew Barney, famed American sculptor Richard Serra, President Barack Obama presidential portrait painter Kehinde Wiley, MacArthur Fellow and contemporary artist Sarah Sze, Pulitzer Prize winning cartoonist Garry Trudeau, and National Medal of Arts photorealist painter Chuck Close all graduated from Yale. Additional alumni include architect and Presidential Medal of Freedom winner Maya Lin, Pritzker Prize winner Norman Foster, and Gateway Arch designer Eero Saarinen. Journalists and pundits include Dick Cavett, Chris Cuomo, Anderson Cooper, William F. Buckley, Jr., and Fareed Zakaria.

    In business, Yale has had numerous alumni and former students go on to become founders of influential business, like William Boeing (Boeing, United Airlines), Briton Hadden and Henry Luce (Time Magazine), Stephen A. Schwarzman (Blackstone Group), Frederick W. Smith (FedEx), Juan Trippe (Pan Am), Harold Stanley (Morgan Stanley), Bing Gordon (Electronic Arts), and Ben Silbermann (Pinterest). Other business people from Yale include former chairman and CEO of Sears Holdings Edward Lampert, former Time Warner president Jeffrey Bewkes, former PepsiCo chairperson and CEO Indra Nooyi, sports agent Donald Dell, and investor/philanthropist Sir John Templeton,

    Yale alumni distinguished in academia include literary critic and historian Henry Louis Gates, economists Irving Fischer, Mahbub ul Haq, and Nobel Prize laureate Paul Krugman; Nobel Prize in Physics laureates Ernest Lawrence and Murray Gell-Mann; Fields Medalist John G. Thompson; Human Genome Project leader and National Institutes of Health director Francis S. Collins; brain surgery pioneer Harvey Cushing; pioneering computer scientist Grace Hopper; influential mathematician and chemist Josiah Willard Gibbs; National Women’s Hall of Fame inductee and biochemist Florence B. Seibert; Turing Award recipient Ron Rivest; inventors Samuel F.B. Morse and Eli Whitney; Nobel Prize in Chemistry laureate John B. Goodenough; lexicographer Noah Webster; and theologians Jonathan Edwards and Reinhold Niebuhr.

    In the sporting arena, Yale alumni include baseball players Ron Darling and Craig Breslow and baseball executives Theo Epstein and George Weiss; football players Calvin Hill, Gary Fenick, Amos Alonzo Stagg, and “the Father of American Football” Walter Camp; ice hockey players Chris Higgins and Olympian Helen Resor; Olympic figure skaters Sarah Hughes and Nathan Chen; nine-time U.S. Squash men’s champion Julian Illingworth; Olympic swimmer Don Schollander; Olympic rowers Josh West and Rusty Wailes; Olympic sailor Stuart McNay; Olympic runner Frank Shorter; and others.

     
  • richardmitnick 9:03 am on October 3, 2022 Permalink | Reply
    Tags: "What it takes for plants to survive drought", , , Biology, , , , Michigan State University researchers are studying plants that can survive extreme drought and what they can teach us about life without water., Most biology across all life occurs within a narrow window of water content and most things need to be fully hydrated for them to function, The College of Natural Science   

    From The College of Natural Science At Michigan State University: “What it takes for plants to survive drought” 

    From The College of Natural Science

    At

    Michigan State Bloc

    Michigan State University

    9.21.22
    Emilie Lorditch

    Michigan State University researchers are studying plants that can survive extreme drought and what they can teach us about life without water.

    1
    Rose Marks rappelling and researching drought-resistant plants. Image courtesy of Rose Marks.

    As climate change causes more frequent drought conditions, Michigan State University researchers are learning more about the biology of plants, fungi and microscopic animals that survive on very little water in a drought or desiccation state. This research is part of a $12.5 million multi-institution and cross-disciplinary National Science Foundation grant as part of the NSF Biology Integration Institutes.

    “Most biology across all life occurs within a narrow window of water content and most things need to be fully hydrated for them to function,” said Robert “Bob” VanBuren, an assistant professor in MSU’s Plant Resilience Institute and the colleges of Natural Science and Agriculture and Natural Resources. “If we can understand the ways that these extreme plants can survive without water, we could use those to engineer more drought tolerance into some of our staple crops.”

    The grant, led by Seung Yon “Sue” Rhee at the Carnegie Institution for Science, will create the virtual Water and Life Interface Institute — WALII, pronounced “Wally” — to explore the evolutionary history of drought-resistant plants and organisms, genetic and physical factors that make them able to survive long periods of time without water, how plants and organisms rehydrate when they are exposed to water again and the connection between protein structures and how they tolerate drought conditions.

    One of the research teams at MSU is focused on resurrection plants, which can survive without 90% of the water in their cells.

    2
    Resurrection plants go from dehydrated on the left to hydrated on the right. Image courtesy of Rose Marks.

    “Resurrection plants are amazing,” said Rose Marks, a postdoctoral researcher in the Plant Resilience Institute and the colleges of Natural Science and Agriculture and Natural Resources, and a postdoctoral fellow in the NSF Plant Genome Research Program.

    “These plants go from looking completely dead and dormant to springing back to life in just a few hours. The first time I saw this in the field, I was like a child jumping up and down — it’s just one of those exciting things in the natural world.”

    VanBuren and Marks will be looking at the genetic makeup of resurrection plants to identify the genes that are essential for protecting these plants when water is lost or regained.

    In addition to MSU researchers and the Carnegie Institution for Science, scientists from Baylor College of Medicine, California State University Channel Islands, the USDA Agricultural Research Service National Laboratory for Genetic Resources Preservation, the University of California Merced, the University of Wisconsin-Madison, the University of Wyoming and Washington University in St. Louis are also participating in the grant.

    “It’s a relatively large program,” VanBuren said. “You get the chance to work with people that you maybe wouldn’t have traditionally worked with, and it really pushes you to think beyond the boundaries of your current research.”

    By branching out its research, the team is excited about future possibilities. “We could develop drought tolerance or climate resilience in plants,” Marks said. “We can look toward nature for inspiration and find that plants have naturally evolved to survive extreme stress.”

    Another part of a plant that experiences desiccation and rehydration is its seeds. Seeds are all around us and are dry too.

    “You can dry anything,” said Margaret Fleming, an assistant professor in the College of Agriculture and Natural Resources. “But the question is, does it revive when it gets wet?”

    Fleming and her team are drying and rehydrating seeds under various conditions and imaging them using an MRI scanner to track the path the water takes as it rehydrates the seed.

    3
    MRI image of a soybean as it is being rehydrated. The water is white. Image courtesy of Margaret Fleming.

    4
    Mullein seeds and fruits collected to study. Image courtesy of Margaret Fleming.

    The grant also has an extensive outreach component. One outreach program geared toward middle school students is modeled after MSU’s famous, long-running Beal buried seed experiment, which began in 1879 when Professor William J. Beal buried 20 bottles filled with sand and seeds from weed species to see how long the seeds could remain viable. Seeds keep best in dry, cool, unchanging environments, but these buried seeds have gone through many cycles of wetting and drying. And in 2021 — 142 years later — 20 seeds from a common weed called mullein did germinate.

    “We plan to bury bottles filled with seeds each year so that students can have something new to test every year,” said Margaret Fleming, an assistant professor in the College of Agriculture and Natural Resources. “There are endless possibilities for ways to inspire students.”

    5
    Margaret Fleming nurturing mullein plants. Image courtesy of Margaret Fleming.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition


    About The College of Natural Science

    The College of Natural Science at Michigan State University is home to 27 departments and programs in the biological, physical and mathematical sciences.

    The college averages $57M in research expenditures annually while providing world-class educational opportunities to more than 5,500 undergraduate majors and 1,200 graduate and postdoc students. There are 800+ faculty and academic staff associated with NatSci and more than 63,000 living alumni worldwide.

    College of Natural Science Vision, Mission, Values

    The Michigan State University College of Natural Science is committed to creating a safe, collaborative and supportive environment in which differences are valued and all members of the NatSci community are empowered to grow and succeed.

    The following is the college’s vision, mission and values, as co-created and affirmed by the College of Natural Science community:

    Vision:

    A thriving planet and healthy communities through scientific discovery.

    Mission:

    To use discovery, innovation and our collective ingenuity to advance knowledge across the natural sciences. Through equitable, inclusive practices in research, education and service, we empower our students, staff and faculty to solve challenges in a complex and rapidly changing world.

    Core Values:

    Inclusiveness-

    Foster a safe, supportive, welcoming community that values diversity, respects difference and promotes belonging. We commit to providing equitable opportunity for all.

    Innovation-

    Cultivate creativity and imagination in the quest for new knowledge and insights. Through individual and collaborative endeavors, we seek novel solutions to current and emergent challenges in the natural sciences.

    Openness-

    Commit to honesty and transparency. By listening and being open to other perspectives, we create an environment of trust where ideas are freely shared and discussed.

    Professionalism-

    Strive for excellence, integrity and high ethical standards. We hold ourselves and each other accountable to these expectations in a respectful and constructive manner.

    Michigan State Campus

    Michigan State University is a public research university located in East Lansing, Michigan, United States. Michigan State University was founded in 1855 and became the nation’s first land-grant institution under the Morrill Act of 1862, serving as a model for future land-grant universities.

    The university was founded as the Agricultural College of the State of Michigan, one of the country’s first institutions of higher education to teach scientific agriculture. After the introduction of the Morrill Act, the college became coeducational and expanded its curriculum beyond agriculture. Today, Michigan State University is one of the largest universities in the United States (in terms of enrollment) and has approximately 634,300 living alumni worldwide.

    U.S. News & World Report ranks its graduate programs the best in the U.S. in elementary teacher’s education, secondary teacher’s education, industrial and organizational psychology, rehabilitation counseling, African history (tied), supply chain logistics and nuclear physics in 2019. Michigan State University pioneered the studies of packaging, hospitality business, supply chain management, and communication sciences. Michigan State University is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. The university’s campus houses the National Superconducting Cyclotron Laboratory, the W. J. Beal Botanical Garden, the Abrams Planetarium, the Wharton Center for Performing Arts, the Eli and Edythe Broad Art Museum, the the Facility for Rare Isotope Beams, and the country’s largest residence hall system.

    Research

    The university has a long history of academic research and innovation. In 1877, botany professor William J. Beal performed the first documented genetic crosses to produce hybrid corn, which led to increased yields. Michigan State University dairy professor G. Malcolm Trout improved the process for the homogenization of milk in the 1930s, making it more commercially viable. In the 1960s, Michigan State University scientists developed cisplatin, a leading cancer fighting drug, and followed that work with the derivative, carboplatin. Albert Fert, an Adjunct professor at Michigan State University, was awarded the 2007 Nobel Prize in Physics together with Peter Grünberg.

    Today Michigan State University continues its research with facilities such as the Department of Energy -sponsored Plant Research Laboratory and a particle accelerator called the National Superconducting Cyclotron Laboratory [below]. The Department of Energy Office of Science named Michigan State University as the site for the Facility for Rare Isotope Beams (FRIB). The $730 million facility will attract top researchers from around the world to conduct experiments in basic nuclear science, astrophysics, and applications of isotopes to other fields.

    Michigan State University FRIB [Facility for Rare Isotope Beams] .

    In 2004, scientists at the Cyclotron produced and observed a new isotope of the element germanium, called Ge-60 In that same year, Michigan State University, in consortium with the University of North Carolina at Chapel Hill and the government of Brazil, broke ground on the 4.1-meter Southern Astrophysical Research Telescope (SOAR) in the Andes Mountains of Chile.

    The consortium telescope will allow the Physics & Astronomy department to study galaxy formation and origins. Since 1999, MSU has been part of a consortium called the Michigan Life Sciences Corridor, which aims to develop biotechnology research in the State of Michigan. Finally, the College of Communication Arts and Sciences’ Quello Center researches issues of information and communication management.


    The Michigan State University Spartans compete in the NCAA Division I Big Ten Conference. Michigan State Spartans football won the Rose Bowl Game in 1954, 1956, 1988 and 2014, and the university claims a total of six national football championships. Spartans men’s basketball won the NCAA National Championship in 1979 and 2000 and has attained the Final Four eight times since the 1998–1999 season. Spartans ice hockey won NCAA national titles in 1966, 1986 and 2007. The women’s cross country team was named Big Ten champions in 2019. In the fall of 2019, MSU student-athletes posted all-time highs for graduation success rates and federal graduation rates, according to NCAA statistics.

     
  • richardmitnick 10:15 am on October 2, 2022 Permalink | Reply
    Tags: "Ancient New York:: Research gives a snapshot of the oldest forest in the world", , Binghampton University-SUNY, Biology, , ,   

    From Binghampton University-SUNY: “Ancient New York:: Research gives a snapshot of the oldest forest in the world” 

    From Binghampton University-SUNY

    10.2.22
    Jennifer Micale

    1
    Archaeopteris root system at the Cairo fossil forest site at first discovery. Image Credit: Charles Ver Straeten.

    Under the gray stone of a municipal highway department quarry, the oldest trees in the world left traces of their roots beneath a ridge and forest pool 385 million years ago.

    Khudadad, a Binghamton University doctoral candidate in biological sciences, reconstructed this primeval world in a recent paper, published in the journal PLOS One [below]. (Khudadad uses a single name.)

    Khudadad’s research centered on an ancient ecosystem in what is today the Town of Cairo in Greene County. New York state was home to some of the oldest forests in the world; a similar site in Gilboa in Schoharie County, N.Y., first made headlines a century ago. Emeritus Professor of Biological Sciences William Stein has also published several academic papers about the ancient trees, which have received renewed interest since a root system was discovered at the Gilboa site in 2012.

    New York looked far different during the Middle Devonian period, when trees first began colonizing the land. Located in the Southern Hemisphere, it had a semi-arid climate, although most of the landscape was still barren. Even the skies were different in character: the atmosphere had three to five times the level of carbon dioxide that it does today.

    So what did those early forests look like? Illustrators typically draw on the example of the Gilboa forest, which was dominated by the fern-like trees known as Eospermatopteris; the trees’ bulbous bases and roots were preserved in a sand cast, which gave the impression of trees adapted to river deltas, similar to mangroves. As a result, drawings depicting the Middle Devonian often show environments similar to modern rainforests, Khudadad explained.

    When he researched the Cairo site, however, he found something different. This ancient forest, even older than the one in Gilboa, lay along an abandoned river-channel and low spot that filled seasonally with water, creating a vernal pool in an otherwise arid climate. And unlike Gilboa, it had a mix of trees: Eospermatopteris and the conifer-like Archaeopteris together, and even a possible lycopsid tree, related to today’s club moss.

    “This finding suggested that the earliest trees could colonize a range of environments and weren’t limited to the wet environments,” Khudadad said. “Not only could trees tolerate drier environments, but also the harsh environments of the expansive clays that dominated Catskill plains.”

    Mountains and rivers

    Over the course of hundreds of millions of years, New York’s Catskill mountain range has eroded, and it lacks the lofty heights of the Himalayas. But 385 million years ago, the range was still young and growing taller.

    Those ancient mountains were the source of the Catskill river and associated delta systems that once irrigated New York’s plains during the Middle Devonian period. In much the same way, today’s Himalayas are the source of the Indus, Ganges and Brahmaputra river systems that irrigate the plains of Pakistan, India and Bangladesh.

    The Catskill river system played an important role in establishing early forests such as the ones in Gilboa and Cairo. As it snaked along the plains and eventually widened, it formed deltaic environments that supported Eospermatopteris, Khudadad said.

    These early fern-like trees weren’t much like the oaks and willows of today. They lacked the branched roots of modern trees and had relatively small amounts of wood in their structure. Because they reproduced by spores rather than seeds, scholars believe they were unable to move out of the wet delta areas into drier environments.

    Enter the Archaeopteris, which are similar to today’s conifers with woody roots that reached deep into the ground and branched out. Because of its advanced features, researchers believed that Archaeopteris trees colonized the drier upper sections of river systems, while Eospermatopteris dominated the wetter deltas. But ancient ecosystems were more diverse than previously thought.

    In Cairo, the young Catskill mountains provided minerals that created clay soils, which expanded and shrank in the vernal pool during seasonal wet and dry cycles. The soil churned and developed permanent hardened surfaces that tree roots had to navigate around. Researchers also theorize that the evolution of early trees changed river systems by stabilizing their banks.

    “While there were young opportunistic forests, the mature forest was established on stable landscapes such as distal floodplains. By learning about the roles of abandoned channels and seasonal pools in distal floodplains, we now have a better understanding of how rivers played a key role in shaping the forest ecosystems,” Khudadad said.

    The diverse, early forests that grew up around ancient river systems in places such as the Catskills played a major role in greening the Earth. Just as the roots of more complex trees branch off in different directions, the current findings may also inspire new avenues of research on the sedimentary, pedological and ecological processes connected with this period.

    “Since the earliest trees had diverse morphologies, there is a need for better understanding of the selective pressures that drove the evolution of such morphologies,” Khudadad said.

    Science paper:
    PLOS One

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The State University of New York at Binghamton (Binghamton University or SUNY- Binghamton) is a public research university with campuses in Binghamton, Vestal, and Johnson City, New York. It is one of the four university centers in the State University of New York (SUNY) system.

    As of Fall 2020, 18,128 undergraduate and graduate students attend the university. The 4-year graduation rate is 72%.

    Since its establishment in 1946, the school has evolved from a small liberal arts college to a large research university. It is classified among “R1: Doctoral Universities – Very high research activity”.

    Binghamton’s athletic teams are the Bearcats and they compete in Division I of the National Collegiate Athletic Association (NCAA). The Bearcats are members of the America East Conference.

    Binghamton University was established in 1946 in Endicott, New York, as Triple Cities College to serve the needs of local veterans returning from World War II. Thomas J. Watson, a founding member of IBM in Broome County, viewed the Triple Cities region as an area of great potential. In the early 1940s he collaborated with local leaders to begin establishing Triple Cities College as a two-year junior college operating as a satellite of private Syracuse University. Watson also donated land that would become the school’s early home.

    Originally, Triple Cities College students finished their bachelor’s degrees at Syracuse. By the 1948–1949 academic year, the degrees could be completed entirely in Binghamton. In 1950, it split from Syracuse and became incorporated into the public State University of New York-SUNY (National Science Foundation) system as Harpur College, named in honor of Robert Harpur, a colonial teacher and pioneer who settled in the Binghamton area. At that time, Harpur and Champlain College in Plattsburgh were the only two liberal arts schools in the New York state system. When Champlain closed in 1952 to make way for the Plattsburgh Air Force Base, the records and some students and faculty were transferred to Harpur College in Binghamton. Harpur also received 16,000 non-duplicate volumes and the complete contents of the Champlain College library.

    In 1955, Harpur began to plan its current location in Vestal, a town next to Binghamton. A site large enough to anticipate future growth was purchased, with the school’s move to its new 387-acre (1.57 km^2) campus being completed by 1961. Colonial Hall, Triple Cities College’s original building in Endicott, stands today as the village’s Visitor’s Center.

    In 1965, Harpur College was selected to join New York state schools at SUNY Stony Brook University, Albany, and Buffalo as one of the four new SUNY university centers. Redesignated the State University of New York at Binghamton, the school’s new name reflected its status as an advanced degree granting institution. In a nod to tradition, its undergraduate college of arts and sciences remained “Harpur College”. With more than 60% of undergraduate and graduate students enrolled in Harpur’s degree programs, it is the largest of Binghamton’s constituent schools. In 1967, the School of Advanced Technology was established, the precursor to the Thomas J. Watson School of Engineering and Applied Science, which was founded in 1983. In 2020, the school became the Thomas J. Watson College of Engineering and Applied Science.

    Since 1992, the school has made an effort to distinguish itself from the SUNY system, rebranding itself as “Binghamton University,” or “Binghamton University-SUNY”. Both names are accepted as first reference in news stories. While the school’s legal and official name, “The State University of New York at Binghamton”, still appears on official documents such as diplomas, the administration discourages using the full name unless absolutely necessary.

    Colleges and schools

    Binghamton is composed of the following colleges and schools:

    Harpur College of Arts and Sciences is the oldest and largest of Binghamton’s schools. It has more than 9,400 undergraduates and more than 1,100 graduate students in 26 departments and 14 interdisciplinary degree programs in the fine arts, humanities, natural and social sciences, and mathematics.
    The College of Community and Public Affairs offers an undergraduate major in human development as well as graduate programs in social work; public administration; student affairs administration; human rights; and teaching, learning and educational leadership. It was formed in July 2006, after a reorganization of its predecessor, the School of Education and Human Development, when it was split off along with the Graduate School of Education. In 2017, the Graduate School of Education merged back into the College of Community and Public Affairs as the Department of Teaching, Learning and Educational Leadership. The department continues to offer master’s of science and doctoral degrees.
    The Decker College of Nursing and Health Sciences was established in 1969. The school offers undergraduate, master’s and doctoral degrees in nursing. The school is accredited by the Commission of Collegiate Nursing Education (CCNE).
    The School of Management was established in 1970. It offers bachelor’s, master’s and doctoral degrees in management, finance, information science, marketing, accounting, and operations and business analytics. It is accredited by the American Assembly of Collegiate Schools of Business (AACSB).
    The Thomas J. Watson College of Engineering and Applied Science offers undergraduate and graduate degrees in mechanical engineering, electrical engineering, computer engineering, biomedical engineering, systems science and industrial engineering, materials science and engineering, and computer science. All of the school’s departments have been accredited by the Accreditation Board for Engineering and Technology.
    The Graduate School administers advanced-degree programs and awards degrees through the seven component colleges above. Graduate students will find almost 70 areas of study. Undergraduate and graduate students are taught and advised by a single faculty.

    Rankings and reputation

    Binghamton is ranked tied for 83rd among national universities, tied for 33rd among public schools, ranked as the best SUNY school, and tied for 877th among global universities for 2022 by U.S. News & World Report.
    In 2021, Forbes magazine rated Binghamton No. 77 out of the 600 best private and public colleges, universities and service academies in America.
    Money magazine ranked Binghamton 73rd in the country out of 739 schools evaluated for its 2020 Best Colleges for Your Money edition, and 48th in its list of the 50 best public schools in the U.S.
    The university is ranked 653rd in the world, 162nd in the nation in the 2021-22 Center for University World Rankings.
    Binghamton University is ranked the 18th best public college in the U.S. by The Business Journals in 2015.
    In 2016 Binghamton was ranked as the 10th best public college in the United States by Business Insider.
    In 2018, the university was ranked 401-500 by Times Higher Education World Ranking.
    In its inaugural college rankings, based upon “… the economic value of a university…,” The Economist ranked Binghamton University 74th overall in the nation.
    The university was called a Public Ivy by Howard and Matthew Greene in a book titled The Public Ivies: America’s Flagship Public Universities (2001). It was a runner-up for the original Public Ivy list in 1985.
    Binghamton was ranked 93rd in the 2020 National Universities category of the Washington Monthly college rankings in the U.S., based on its contribution to the public good, as measured by social mobility, research, and promoting public service.
    According to the 2014 BusinessWeek rankings, the undergraduate business school was ranked 57th among Public Schools in the nation. In 2010 it was ranked as having the second-best accounting program.
    Binghamton’s QS World University Rankings have decreased annually from 501 in 2008, to 601 in 2012 and 701+ in 2013 with higher numbers reflecting worse performance.

    Research

    The university is designated as an advanced research institution, with a division of research, an independent research foundation, several research centers including a New York State Center of Excellence, and partnerships with other institutions. Binghamton University was ranked 163rd nationally in research and development expenditures by the National Science Foundation. In fiscal year 2013, the university had research expenditures of $76 million.

    Division of Research

    The office of the vice president for research is in charge of the university’s Division of Research. The Office of Sponsored Programs supports the Binghamton University community in its efforts to seek and obtain external awards to support research, training, and other scholarly and creative activities. It provides support to faculty and staff in all aspects of proposal preparation, submission and grant administration. The Office of Research Compliance ensures the protection of human subjects, the welfare of animals, safe use of select agents pathogens and toxins, and to enhance the ethical conduct in research programs. The Office of Research Advancement facilitates the growth of research and scholarship, and helps build awareness of the work being done on campus. The Office of Entrepreneurship and Innovation Partnerships supports entrepreneurship, commercialization of technologies, start-ups and business incubation, and facilitates partnerships with the community and industry.

    SUNY Research Foundation

    The Research Foundation for the State University of New York is a private, nonprofit educational corporation that administers externally funded contracts and grants for and on behalf of SUNY. The foundation carries out its responsibilities pursuant to a 1977 agreement with the university. It is separate from the university and does not receive services provided to New York State agencies or state appropriation to support corporate functions. Sponsored program functions delegated to the campuses are conducted under the supervision of foundation operations managers. The Office of Sponsored Funds Administration, often referred to as “post-award administration,” is the fiscal and operational office for the foundation. It provides sponsored project personnel with comprehensive financial, project accounting, human resources, procurement, accounts payable and reporting services, as well as support for projects administered through the Research Foundation.

    Centers and institutes

    33 organized research centers and institutes for advanced studies facilitate interdisciplinary and specialized research at the university. The university is home to the New York State Center of Excellence in Small Scale Systems Integration and Packaging (S3IP). S3IP conducts research in areas such as microelectronics manufacturing and packaging, data center energy management, and solar energy. Other research centers and institutes include the Center for Development and Behavioural Neuroscience (CDBN), Center for Interdisciplinary Studies in Philosophy, Interpretation, and Culture (CPIC), Institute for Materials Research (IMR), and the Fernand Braudel Center for the Study of Economies, Historical Systems, and Civilizations (FBC).[81]
    Partnerships

    The university’s Office of Entrepreneurship and Innovation Partnerships can connect people to resources available through programs such as STARTUP NY, the Small Business Development Center, the region’s Trade Adjustment Assistance Center, campus Start-Up Suites and the Koffman Southern Tier Incubator.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: