Updates from richardmitnick Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:23 pm on March 27, 2015 Permalink | Reply
    Tags: China Academy of Engineering and Physics, European XFEL,   

    From XFEL: “Major Chinese research centre signs collaboration agreement” 

    XFEL bloc

    European XFEL

    1
    Officials at the signing ceremony at the Consulate of the People’s Republic of China in Hamburg. Front row, from left: European XFEL Administrative Director Claudia Burger, CAEP Vice Director Liu Cangli, European XFEL Managing Director Massimo Altarelli. Back row, from left: Consul-General of the People’s Republic of China Yang Huiqun, Counsellor Zhao Qinhua from the Embassy of the People’s Republic of China in Germany. European XFEL

    On 26 March, representatives of the China Academy of Engineering Physics (CAEP) signed a framework collaboration agreement with European XFEL at the Consulate of the People’s Republic of China in Hamburg.

    The agreement formalizes CAEP’s future involvement in the X-ray free-electron laser facility and is intended to provide the basis for future exchange of staff and students and the development of instrumentation for European XFEL. CAEP is a major research centre that operates 12 research institutes and 15 national laboratories across China. In many scientific institutes across China, there is a rising interest in doing research with X-ray free-electron lasers, and CAEP looks to spearhead Chinese involvement with these facilities.

    “As time goes by, I hope we will be able to estimate material properties with ever decreasing uncertainties. One of the significant issues here might be the poor understanding of the phenomena at meso-scale”, says CAEP Vice Director Liu Cangli. “We see a powerful XFEL, such as this one under construction in Hamburg, as being the most important tool in terms of taking on this very challenging task.”

    European XFEL Managing Director Massimo Altarelli says: “We are very happy about the involvement of the CAEP, and we greatly appreciate their interest in the European XFEL. Their expertise across many areas of physics and engineering will be of considerable value to the research at this facility.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    XFEL Campus

    The Hamburg area will soon boast a research facility of superlatives: The European XFEL will generate ultrashort X-ray flashes—27 000 times per second and with a brilliance that is a billion times higher than that of the best conventional X-ray radiation sources.

    The outstanding characteristics of the facility are unique worldwide. Starting in 2017, it will open up completely new research opportunities for scientists and industrial users.

     
  • richardmitnick 1:52 pm on March 27, 2015 Permalink | Reply
    Tags: Albuquerque Journal, , ,   

    From Albuquerque Journal via LANL: “LANL takes on deadly bugs” 

    LANL bloc

    LANL Sign
    Los Alamos National Laboratory

    1

    March 27, 2015
    D’Val Westphal

    2
    Team members who discovered a treatment for resistant infections are, from left, Aimee Newsham, Dixie State University student; Rico Del Sesto, Dixie State University professor; David Fox, Los Alamos National Laboratory; Andrew Koppisch, Northern Arizona University professor; and Mattie Jones, Dixie State University student. (Courtesy of David Fox)

    This column is for everyone who has ever had to deal with a horrible infection – from the Streptococcus sp. that rots teeth, to the Pseudomonas aeruginosa that attacks diabetic patients’ feet, to the Methicillin-resistant Staphylococcus aureus (MRSA, i.e. flesh-eating bacteria) that makes any original medical problem much worse. And it’s for everyone who ever will.

    Considering a surgeon recently told me MRSA is our generation’s staph, in that it’s everywhere and on everything, that could be everybody.

    Treating these infections, known in the scientific world as biofilms, is expensive, time consuming, sickening and often unsuccessful when it comes to killing them before they kill their host. That’s because while they are responsible for up to 80 percent of all bacterial infections, they have their own protection that makes them 50 to 1,000 times more resistant to antibiotics.

    And that’s why a discovery at Los Alamos National Laboratory – a treatment with what amounts to fancy water – is beyond exciting. It could be life-changing and life-saving.

    Full disclosure: My mother contracted a biofilm infection after having a back surgery and spent years unsuccessfully fighting it with stronger and stronger oral and intravenous antibiotics that ultimately caused a serious reaction of their own. The drugs simply could not penetrate the infection to kill it. Doctors finally decided to remove the hardware (and its virulent bacteria) rather than continue a fruitless and damaging battle.

    In David Fox’s world, my mother would have had an antibiotic delivered via ionized liquid that could penetrate her skin, the biofilm, and kill the bug.

    Fox is a staff scientist in LANL’s Bioscience Division. For several years he and a team of fellow chemists and microbiologists have been working with ionic liquids – known as molten salts. Originally their work was for forensic applications, like how to pull certain molecules out of fabrics. The team then figured out they could also use the ionic liquids to deliver molecules: like antibiotics to an until-then impenetrable bacteria.

    3

    So these scientists – Fox, Tari Kern, Katherine Lovejoy, Rico Del Sesto (now at Dixie State University), Rashi Iyer, Amber Nagy, Andrew Goumas, Tarryn Miller and Andrew Koppisch (now at Northern Arizona University) – started working with the University of California-Santa Barbara on using their ionized water for transdermal drug delivery.

    Instead of infection treatments that range from irritating to painful – organic solvents, injections and debridement – the team focused on using 12 ionic liquids “generally recognized as safe” (GRAS in science-speak). They grew opportunistic gram negative bacteria, then added individual ionic liquids and incubated, then rinsed.

    And what they found was a greater than 99.9999 percent bacteria cell death, with some of the ionic liquids “more effective than a 10 percent bleach solution.”

    And that was before adding antibiotics.

    The team then moved on to ensuring the liquids with dissolved antibiotics could penetrate pig skin and the bacteria’s protective layer – and got equally stunning results. “Ninety-five and 98 percent reduction in cell viability” with one of the ionic liquids and that liquid plus an antibiotic.

    By comparison, antibiotics alone had a 20 percent kill rate.

    So why should someone who’s never had a cavity or a diabetic ulcer or a MRSA infection care? Fox points out the “economic burden of skin disease is over $100 billion.” That MRSA-type infections acquired in hospitals account for an estimated “$10 billion in extra patient costs and over 10,000 deaths per year.” That “wounds from infected surgical incisions account for over 1 million additional hospital days.” And that 10 to 20 percent of diabetic ulcers – a function of the Pseudomonas aeruginosa infection – require amputation.

    In other words, we are all paying for it, in terms of money, health and life.

    The discovery is now moving into clinical studies with live subjects – mice – Fox says, and if those go as well, on to human clinical trials. Funding for the years of required additional research could come from energy companies that want to extract high-energy density molecules like biofuels from an organism (the research’s first application), from corporations that could use it to more efficiently deliver their drugs to patients, and/or from the military that wants to protect/treat its soldiers.

    “Thousands of people die from, and billions is spent on treating, these secondary infections,” Fox says. The LANL team could be “providing a new weapon to combat flesh-eating bacteria and other microbes. We hope we have found a new silver bullet to treat these infections. We hope that’s where we’re at.”

    And so does everyone who has had, or will get, one of these very nasty infections.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Los Alamos National Laboratory’s mission is to solve national security challenges through scientific excellence.

    LANL Campus

    Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear Security Administration.

    Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

    Operated by Los Alamos National Security, LLC for the U.S. Dept. of Energy’s NNSA

    DOE Main

    NNSA

     
  • richardmitnick 1:11 pm on March 27, 2015 Permalink | Reply
    Tags: , , , ,   

    From BNL: “Physicists Solve Low-Temperature Magnetic Mystery” 

    Brookhaven Lab

    March 27, 2015
    Chelsea Whyte, (631) 344-8671 or Peter Genzer, (631) 344-3174

    1
    Ignace Jarrige shown with the sample used in the experiment.

    Researchers have made an experimental breakthrough in explaining a rare property of an exotic magnetic material, potentially opening a path to a host of new technologies. From information storage to magnetic refrigeration, many of tomorrow’s most promising innovations rely on sophisticated magnetic materials, and this discovery opens the door to harnessing the physics that governs those materials.

    The work, led by Brookhaven National Laboratory physicist Ignace Jarrige, and University of Connecticut professor Jason Hancock, together with collaborators from Japan and Argonne National Laboratory, marks a major advance in the search for practical materials that will enable several types of next-generation technology. A paper describing the team’s results was published this week in the journal Physical Review Letters.

    The work is related to the Kondo Effect, a physical phenomenon that explains how magnetic impurities affect the electrical resistance of materials. The researchers were looking at a material called ytterbium-indium-copper-four (usually written using its chemical formula: YbInCu4).

    YbInCu4 has long been known to undergo a unique transition as a result of changing temperature. Below a certain temperature, the material’s magnetism disappears, while above that temperature, it is strongly magnetic. This transition, which has puzzled physicists for decades, has recently revealed its secret. “We detected a gap in the electronic spectrum, similar to that found in semiconductors like silicon, whose energy shift at the transition causes the Kondo Effect to strengthen sharply,” said Jarrige

    2
    From Left to Right: Jason Hancock, Diego Casa, and Jung-ho Kim, shown with one of the instruments used in the experiment.

    Electronic energy gaps define how electrons move (or don’t move) within the material, and are the critical component in understanding the electrical and magnetic properties of materials. “Our discovery goes to show that tailored semiconductor gaps can be used as a convenient knob to finely control the Kondo Effect and hence magnetism in technological materials,” said Jarrige.

    To uncover the energy gap, the team used a process called Resonant Inelastic X-Ray Scattering (RIXS), a new experimental technique that is made possible by an intense X-ray beam produced at a synchrotron operated by the Department of Energy and located at Argonne National Laboratory outside of Chicago. By placing materials in the focused X-ray beam and sensitively measuring and analyzing how the X-rays are scattered, the team was able to uncover elusive properties such as the energy gap and connect them to the enigmatic magnetic behavior.

    The new physics identified through this work suggest a roadmap to the development of materials with strong “magnetocaloric” properties, the tendency of a material to change temperature in the presence of a magnetic field. “The Kondo Effect in YbInCu4 turns on at a very low temperature of 42 Kelvin (-384F),” said Hancock, “but we now understand why it happens, which suggests that it could happen in other materials near room temperature.” If that material is discovered, according to Hancock, it would revolutionize cooling technology.

    3
    During the RIXS experiment, an X-ray beam is used to excite electrons inside the sample. The X-ray loses energy during the process and then is scattered out of the sample. A fine analysis of the scattered X-rays yields insight into the mechanism that controls the strength of the Kondo Effect.

    Household use of air conditioners in the US accounts for over $11 billion in energy costs and releases 100 million tons of carbon dioxide annually. Use of the magnetocaloric effect for magnetic refrigeration as an alternative to the mechanical fans and pumps in widespread use today could significantly reduce those numbers.

    In addition to its potential applications to technology, the work has advanced the state of the art in research. “The RIXS technique we have developed can be applied in other areas of basic energy science,” said Hancock, noting that the development is very timely, and that it may be useful in the search for “topological Kondo insulators,” materials which have been predicted in theory, but have yet to be discovered.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    BNL Campus

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world.Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.
    i1

     
  • richardmitnick 12:53 pm on March 27, 2015 Permalink | Reply
    Tags: , , , , ,   

    From CMS at CERN/LHC: “CMS is never idle” 

    CERN New Masthead

    2015-03-27
    André David and Dave Barney

    CERN CMS New II

    1
    Before proton collisions take place again at the LHC, the CMS detector has been looking at the result of collisions of cosmic particles high up in the atmosphere. This event display shows the track of a muon that reached the CMS detector 100 m underground and passed through the muon chambers (in red) and the silicon tracker (in yellow). Muons as this one are used to calibrate the detector in advance of proton collisions.

    CMS is eager to see the first collisions of the LHC Run2. The recent news that the LHC restart may be delayed because of a hardware issue gives us extra time to prepare for those collisions. Far from being idle waiting for collisions, CMS is busy taking advantage of other types of collision.

    CMS is never idle. Without beams, the data-taking does not stop: collisions of cosmic particles high up in the atmosphere produce showers of particles, including muons. Some of these muons have high enough energies to penetrate through the 100 m of ground over the CMS detector and traverse it, leaving behind a trail of dots in our detectors. By connecting the dots, we can learn where the different detector components are inside the huge volume (~3700m3) of CMS to better than a millimetre. This is very important because the whole detector was taken apart and put back together in preparation for Run2. With the cosmic ray muons, we can also synchronise the different detectors down to one hundred-millionth of a second, given that cosmic muons interact with many detectors as they cross the experiment. After a long shutdown, we are also coming back to operating the experiment 24 hours a day, 7 days a week. There is always a shift crew operating and monitoring the experiment, an larger crew of experts that stand ready to intervene in case issues arise, and an even larger community that checks the quality of the data collected. So we exploit this cosmic debris to understand out detectors to the needed precision to later find again the Higgs boson and possibly new, as-yet undiscovered, particles; the more cosmic muon signals we record and analyse, the better prepared we will be to tackle proton collisions at 13 TeV.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New
    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New

    LHC

    CERN LHC New
    CERN LHC Grand Tunnel

    LHC particles

    Quantum Diaries

     
  • richardmitnick 12:38 pm on March 27, 2015 Permalink | Reply
    Tags: , , Johns-Hopkins U,   

    From Hopkins: “New genetic variant that causes autism identified by Johns Hopkins-led team” 

    Johns Hopkins
    Johns Hopkins University

    Mar 25, 2015
    Shawna Williams

    Using a novel approach that focuses on rare families severely affected by autism, a Johns Hopkins-led team of researchers has identified a new genetic cause of the disease.

    The rare genetic variant offers important insights into the root causes of autism, the researchers say. And, they suggest, their unconventional method can be used to identify other genetic causes of autism and other complex genetic conditions.

    A report on the study was published today in the journal Nature.

    In recent years, falling costs for genetic testing, together with powerful new means of storing and analyzing massive amounts of data, have ushered in the era of the genome-wide association and sequencing studies. These studies typically compare genetic sequencing data from thousands of people with and without a given disease to map the locations of genetic variants that contribute to the disease. While genome-wide association studies have linked many genes to particular diseases, their results have so far failed to lead to predictive genetic tests for common conditions, such as Alzheimer’s, autism, or schizophrenia.

    “In genetics, we all believe that you have to sequence endlessly before you can find anything,” says Aravinda Chakravarti, a professor in the Johns Hopkins University School of Medicine’s McKusick-Nathans Institute of Genetic Medicine. “I think whom you sequence is as important—if not more so—than how many people are sequenced.”

    With that idea, Chakravarti and his collaborators identified families in which more than one female has autism spectrum disorder, a condition first described at Johns Hopkins in 1943. For reasons that are not understood, girls are far less likely than boys to have autism. When girls do have the condition, however, their symptoms tend to be severe. Chakravarti reasoned that females with autism, particularly those with a close female relative who is also affected, must carry very potent genetic variants for the disease, and he wanted to find out what those were.

    The research team compared the gene sequences of autistic members of 13 such families to the gene sequences of people from a public database. They found four potential culprit genes and focused on one, called CTNND2, because it fell in a region of the genome known to be associated with another intellectual disability. When they studied the gene’s effects in zebrafish, mice, and cadaveric human brains, the research group found that the protein it makes affects how many other genes are regulated. The CTNND2 protein was found at far higher levels in fetal brains than in adult brains or other tissues, Chakravarti says, so it likely plays a key role in brain development.

    While autism-causing variants in CTNND2 are very rare, Chakravarti says, the finding provides a window into the general biology of autism.

    “To devise new therapies, we need to have a good understanding of how the disease comes about in the first place,” he says. “Genetics is a crucial way of doing that.”

    Chakravarti’s research group is now working to find the functions of the other three genes identified as possibly associated with autism. They plan to use the same principle to look for disease genes in future studies of 100 similar autism-affected families, as well as other illnesses.

    “We’ve shown that even for genetically complicated diseases, families that have an extreme presentation are very informative in identifying culprit genes and their functions—or, as geneticists are taught, ‘treasure your exceptions.'” Chakravarti says.

    Other authors on the paper are Tychele N. Turner, Kamal Sharma, Maria X. Sosa, Dallas R. Auer, Stephan J. Sanders, Daniel Moreno-De-Luca, Vasyl Pihur, Christa Lese Martin, Matthew W. State, and Richard Huganir of The Johns Hopkins University; Edwin C. Oh, Yangfan P. Liu, and Nicholas Katsanis of Duke University; Ryan L. Collins, Harrison Brand, and Michael E. Talkowski of Massachusetts General Hospital and Harvard Medical School; Teri Plona, Kristen Pike, and Daniel R. Soppet of Leidos Biomedical Research; Michael W. Smith of the National Human Genome Research Institute; SauWai Cheung of Baylor College of Medicine; and Edwin Cook of the University of Illinois at Chicago.

    This work was funded by grants from the Simons Foundation, the National Institute of Mental Health, and an Autism Speaks Dennis Weatherstone Predoctoral Fellowship.

    See the full article here.

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 11:21 am on March 27, 2015 Permalink | Reply
    Tags: , , , Calar Alto Observatory   

    From Astronomy: “I ZW 18: The galaxy that reveals the universe’s history” 

    Astronomy magazine

    Astronomy Magazine

    March 26, 2015
    By Institute of Astrophysics of Andalusia, Granada, Spain

    1

    The first galaxies were formed some 13.3 billion years ago, mainly composed of hydrogen and helium, the primary elements that emerged from the Big Bang. Their study to date has been technically challenging due to their great distance from us, but the observation of analogous galaxies in our vicinity has turned out to be an excellent shortcut.

    “Dwarf galaxy I Zw 18 is the least abundant in metals — in astrophysics, elements heavier than hydrogen and helium — in the nearby universe and one of the most akin to the primeval galaxies. Its study therefore allows us to catch glimpses of the conditions that prevailed in the primordial universe,” said Carolina Kehrig from the Institute of Astrophysics of Andalusia.

    The study has found a large region in this small galaxy of ionized helium, which tends to be more frequent in distant galaxies with low presence of metals. The ionization of helium implies the presence of objects emitting a radiation intense enough to knock electrons off the helium atoms. “In this study, we propose a new interpretation of the origin of this radiation in galaxy I Zw 18, a subject that is still enigmatic,” Kehrig said.

    Using the PMAS integral field spectrograph of the 3.5-meter telescope at the Calar Alto Observatory (CAHA), researchers have obtained the first detailed map of this region of I Zw 18 and have analyzed possible ionizing sources.

    Calar Alto 3.5 meter Telescope
    Calar Alto 3.5 meter telescope interior with PMAS spectrograph
    Calar Alto 3.5 meter Telescope with PMAS Spectrograph

    Conventional sources of ionization, such as Wolf-Rayet stars — massive and with violent stellar winds — or shocks generated by remnants of supernovae, cannot provide the energy necessary to explain the halo of ionized helium present on I Zw 18, so researchers considered other possibilities.

    “Our data point to the fact that extremely hot stars, such as supermassive stars with low metal content or massive stars practically devoid of metals may hold the key to the enigma of the excitement of helium on I Zw 18, even though the existence of these stars has not yet been confirmed by observations on any galaxy,” said Carolina Kehrig from IAA-CSIC.

    We would be talking about hot stars analogous to first generation stars — known as Population III star — which according to theoretical models, would be composed only of hydrogen and helium and could be hundreds of times more massive than the Sun. These stars are believed to have played a decisive role in the “reionization” of the universe, during which period the first stars and galaxies became visible and which is still little known.

    This study shows how it is possible to extract information about the history of the universe within our own galactic vicinity.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 10:51 am on March 27, 2015 Permalink | Reply
    Tags: , , ,   

    From FNAL- “Frontier Science Result: CMS Rule of three 

    FNAL Home

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    March 27, 2015
    Jim Pivarski

    CERN CMS New
    CMS

    1
    The three-fold symmetry of electrons, muons and taus may be broken by Higgs decays. (Design adapted from a neolithic spiral and the flag of Sicily.)

    In Rendezvous with Rama, Arthur C. Clarke imagined an artifact built by aliens who have three arms with three fingers each, so everything about it has a three-fold symmetry. One could argue that our fondness for bilateral symmetries (in the design of cars, planes, cathedrals, etc.) comes from the ubiquity of this shape in life on Earth, and creatures from other worlds might have developed differently. However, it is more surprising to find such a pattern imprinted on the universe itself.

    All particles of matter appear in threes: three generations of leptons and three generations of quarks. The second generation is a complete copy of the first with heavier masses, and the third generation is yet another copy. For instance, a muon is a heavy version of an electron, and a tau is a heavy muon. No one knows why matter comes in triplicate like this.

    For quarks, the symmetry isn’t perfect because W bosons can turn quarks of one generation into quarks of another generation. Something else transforms generations of neutrinos. But charged leptons — electrons, muons and taus — appear to be rigidly distinct. Some physicists suspect that we simply haven’t found the particle that mixes them yet.

    Or perhaps we have: Theoretically, the Higgs boson could mix lepton generations the way that the W boson mixes quarks. The Higgs decay modes haven’t all been discovered yet, so it’s possible that a single Higgs could decay into two generations of leptons at once, such as one muon and one tau. CMS scientists searched for muon-tau pairs with the right amount of energy to have come from a Higgs boson, and the results were surprising.

    They saw an excess of events. That is, they considered all the ways that other processes could masquerade as Higgs to muon-tau decays, estimated how many of these spurious events they should expect to find, and found slightly more. The word “slightly” should be emphasized — it is on the border of statistical significance, and other would-be discoveries at this level of significance (and stronger) have been shown to be flukes. On the other hand, if the effect is real, it would start as a weak signal until enough data confirm it.

    Naturally, the physics community is eager to see how this develops. The LHC, which is scheduled to restart soon at twice the energy of the first run, has the potential to produce Higgs bosons at a much higher rate — perhaps enough to determine whether this three-fold symmetry of leptons is broken or not.

    CERN LHC Map
    CERN LHC Grand Tunnel
    CERN LHC particles
    LHC at CERN

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 8:30 am on March 27, 2015 Permalink | Reply
    Tags: , , , ,   

    From DESY: “Negotiations for CTA northern site to start” 

    DESY
    DESY

    2015/03/26
    No Writer Credit

    Cherenkov Telescope Array
    Proposed Cherenkov Telescope Array for hunting Gamma Rays

    On 26 March 2015, the partner countries of Cherenkov Telescope Array (CTA) have decided to start negotiations for the location of the telescope array in the northern hemisphere. At a meeting in Heidelberg representatives of ministries and funding agencies have decided to begin negotiations with Spain for a possible location on La Palma and Mexico for one in San Pedro Mártir. Another candidate site in Arizona (USA) is considered as a possible back-up site.

    “I appreciate that we have successfully chosen the northern candidate sites with whom we would like to start negotiations as soon as possible,” said Beatrix Vierkorn-Rudolph from the German Federal Ministry of Research and Education, chair of the CTA Resource Board, after the decision of the voting members representing Argentina, Austria, Brazil, Czech Republic, France, Germany, Italy, Japan, Poland, South Africa, Spain, Switzerland and the UK. After negotiations, the Board will select the final site in November 2015. In regards to the southern hemisphere site, negotiations with the candidates Namibia and Chile are progressing and are expected to end in August 2015. Christian Stegmann from DESY added: “I’m very much looking forward to the final site decisions later this year; scientists worldwide are eager to see CTA advancing towards implementation.”

    Currently in its pre-construction phase, determining the northern and southern hemisphere sites will be a critical step towards the realization of the Cherenkov Telescope Array. “I’m looking forward to converging on final designs for the telescope arrays now that negotiations will start with specific locations in mind,” said Christopher Townsley, CTA project manager. Following the site selection, the project will move forward with construction of the first telescopes on site planned for 2016.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    desi

    DESY is one of the world’s leading accelerator centres. Researchers use the large-scale facilities at DESY to explore the microcosm in all its variety – from the interactions of tiny elementary particles and the behaviour of new types of nanomaterials to biomolecular processes that are essential to life. The accelerators and detectors that DESY develops and builds are unique research tools. The facilities generate the world’s most intense X-ray light, accelerate particles to record energies and open completely new windows onto the universe. 
That makes DESY not only a magnet for more than 3000 guest researchers from over 40 countries every year, but also a coveted partner for national and international cooperations. Committed young researchers find an exciting interdisciplinary setting at DESY. The research centre offers specialized training for a large number of professions. DESY cooperates with industry and business to promote new technologies that will benefit society and encourage innovations. This also benefits the metropolitan regions of the two DESY locations, Hamburg and Zeuthen near Berlin.

     
  • richardmitnick 7:48 am on March 27, 2015 Permalink | Reply
    Tags: , , ,   

    From New Scientist: “Keeping warming to 2 °C is not enough to save species” 

    NewScientist

    New Scientist

    27 March 2015
    Fred Pearce

    1
    A warmer climate would raise sea levels and swamp islands (Image: Wolfgang Kaehler/Getty)

    Is the world’s target of limiting global warming to 2 °C too high, or too low? Does it even make scientific sense? The consensus around the target, which was agreed at climate talks in Copenhagen in 2009, seems to be coming unstuck.

    Back in October, US climate analysts David Victor and Charles Kennel called it scientifically meaningless and politically unachievable. We should get used to the idea of something warmer, they said.

    Now the target has been denounced as “utterly inadequate”, by Petra Tschakert of Penn State University in University Park, who has been involved in a UN review of the target. She wants a 1.5 °C target instead. Writing in the journal Climate Change Responses, she says this lower limit is necessary if we want sea levels to rise less than a metre, to protect half of all coral reefs, and to still have some ice during Arctic summers.

    Tschakert is not alone. There was a groundswell of support for a revised 1.5 °C target at an expert meeting during the climate conference in Lima, Peru, last December, as part of the UN’s target review. The review is set for publication in June and could be adopted at the Paris climate negotiations this December, where new emissions limits for after 2020 will be agreed.

    Knowledge gap

    In a summary of that meeting, Hans-Otto Pörtner ofthe Alfred Wegener Institute in Bremen, Germany, an author of the Intergovernmental Panel on Climate Change’s Fifth Assessment Report, warned that some species would struggle to cope with the speed of 2 °C warming, but that most organisms should be able to move to a different place under 1.5 °C.

    Tschakert, herself an author on the same IPCC report, says its officials have in the past vetoed discussion of a 1.5 °C target because they were mandated by the UN to look specifically at the effects of 2 °C.

    Nigel Arnell, another IPCC author and a climate scientist at Reading University, UK, says there is simply much less research into 1.5 °C. “The extra benefits are tricky to establish. The science isn’t there yet. Nobody says 2 °C is safe. It is an arbitrary threshold, but so too would be 1.5 °C.”

    Is a cap on warming at 1.5 °C achievable? Many think that, with the world already warmed by 0.85 °C, it is now all but impossible. But even so, it could shape the blame game, said Tschakert. The Paris agreement is likely to include a clause entitling the poorest countries to compensation for “loss and damage” resulting from climate change. If a 1.5 °C target were set – and then exceeded – their case for a payout in the event of climate disaster would be that much stronger. “The stakes,” she writes, “are enormous.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 7:39 am on March 27, 2015 Permalink | Reply
    Tags: , ,   

    From NatGeo: A Hundred Million Stars in Three Minutes 

    National Geographic

    National Geographics

    In January 2015, NASA released the largest image ever of the Andromeda galaxy, taken by the Hubble telescope.

    NASA Hubble Telescope
    NASA/ESA Hubble

    Totaling 1.5 billion pixels and requiring 4.3 gigabytes of disk space, this photo provides a detailed glimpse at the sheer scale of our nearest galactic neighbor. By zooming into the incredible shot, filmmaker Dave Achtemichuk creates an unforgettable interactive experience.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The National Geographic Society has been inspiring people to care about the planet since 1888. It is one of the largest nonprofit scientific and educational institutions in the world. Its interests include geography, archaeology and natural science, and the promotion of environmental and historical conservation.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 427 other followers

%d bloggers like this: