Updates from richardmitnick Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:46 pm on January 20, 2019 Permalink | Reply
    Tags: , , Developing New Technologies to Extend Care to All Families Affected by Autism Spectrum Disorder, , THE BIG IDEA,   

    From UC Davis: “Developing New Technologies to Extend Care to All Families Affected by Autism Spectrum Disorder” 

    UC Davis bloc

    From UC Davis

    January 14, 2019
    Katherine Lee

    UC Davis Has the Big Idea to Make It Happen

    The prevalence of Autism Spectrum Disorder (ASD) has almost tripled since 2000, affecting one in 59 children identified in the U.S., according to the Centers for Disease Control and Prevention (CDC).

    1

    “Everyone knows someone affected by autism. It’s time for us to take responsibility for the growing number of families in need of quality care,” said Leonard Abbeduto, director of the UC Davis Medical Investigation of Neurodevelopmental Disorders (MIND) Institute.

    The MIND Institute, which recently celebrated its 20th anniversary, was founded by families for families to advance scientific discovery and improve access to interdisciplinary, cutting-edge care. The Institute’s mission is “to use the best science we can to help as many families as we can.”

    Although ASD is a lifelong condition, effective treatments can reduce the disabilities associated with ASD and lead to happier, more fulfilling lives for families and individuals, but these treatments must be made more widely available. Currently, gaps in access to providers and affordable care make it especially hard for families who come from under-resourced populations or rural areas. Moreover, gaps in care delay early identification and intervention, affecting developmental outcomes.

    “Families in rural areas and other underserved communities may not be able to see experts without traveling long distances, which creates a financial burden and can delay treatment,” explained Abbeduto, who is also the champion of the Autism, Community and Technology Big Idea. “Technology can be used to overcome such barriers and get help to families in need everywhere.”

    3
    This Big Idea will harness the university’s unique strengths in health, neuroscience, engineering, education, community engagement, and social sciences, involving a variety of disciplines and perspectives to find innovative solutions for ASD.

    UC Davis’ Big Ideas are forward-thinking, interdisciplinary programs and projects that will build upon the strengths of the university to positively impact the world for generations to come. Researchers, scientists, clinicians and others are working on innovative and ambitious initiatives in the field of health, sustainability and more to solve both California’s and the world’s most pressing problems.

    The Autism, Community and Technology Big Idea will pioneer a first-of-its-kind lifespan approach for everyone living with autism. By building partnerships with communities, driving innovation in affordable and accessible technologies, and training doctors, nurses, teachers, employers, and family members, UC Davis will create new ways of advancing science and helping people with autism.

    “Every field of study will be relevant to adding its expertise and creativity to the solutions being proposed by this idea,” added Abbeduto. “However, without donor support, we won’t be able to help families in the way they deserve.”

    UC Davis poised to address urgent needs

    Home to more than 50 faculty and staff across five UC Davis schools and colleges, the MIND Institute will be a hub for the Big Idea, bringing together experts from various disciplines, as well as community groups, businesses, and families, to address autism on a grand scale. This expert knowledge will then be used to train doctors, nurses, teachers, employers and community leaders throughout the country. Such partnerships will address the needs of underserved populations and the unique challenges they face, using innovative technologies and solutions to help individuals living with autism and their families across communities.

    One such partner is Sergio Aguilar-Gaxiola, director of the UC Davis Center for Reducing Health Disparities. For more than 10 years, he has worked on projects with the MIND Institute to improve access to and utilization of services for families affected by autism, fragile X syndrome and other developmental disabilities.

    “When there is an urgent need such as this, we need big ideas to make real progress in advancing solutions,” Aguilar-Gaxiola said.

    Aguilar-Gaxiola and his team serve Solano County and other areas in California and focus on Latino, Filipino, LGBTQ and other diverse families as well as those who are low income or for whom English is not their first language. Children in these populations tend to be diagnosed with autism later than urban or white families – leading to delayed treatment and worse outcomes over time.

    “Some families live two to three hours away from providers, with more than one child with autism at home, so it is critically important for UC Davis to reach them where they are,” Aguilar-Gaxiola said.

    Telemedicine expands access to care

    Telehealth, which is remote access to health services and provider care, makes it possible for UC Davis to care for families affected by autism and other ASD conditions no matter where they live. The face-to-face interaction in their own home through video conferencing, and the use of other technology, allow parents to affordably receive direct feedback and input on how to improve interactions and build important skills in their child.

    The use of telemedicine more broadly and effectively can improve ASD screening and offer treatments in a variety of spoken languages and to families in all areas across California and the country.

    4
    Many children with ASD have challenging behaviors or problems with the change of routine associated with travel. Technology allows these families to overcome this access barrier, bringing care into their own home.

    Abbeduto recalls several patient families who were empowered through telemedicine. During a three- to four-month video conference training series with team members at the MIND Institute, these families learned how to become their child’s language therapist and were empowered to contribute to their child’s care. They were given strategies to support their child’s language development and to reduce the kinds of behaviors that impede social interaction.

    “Originally, family members were skeptical that they would be able to engage their child in play for longer periods of time by themselves,” Abbeduto said. “But at their exit interviews, without exception they each talked about how close they felt to their child and the unexpected positive changes in their life.”

    He concluded, “This kind of knowledge helps parents and caregivers overcome the need to depend on someone else to help their family. It allows them to feel more connected and competent and have more impact on their children.”

    Fostering independence and opportunity

    As part of the Big Idea, the MIND Institute is also developing interventions for adolescents and adults, a subgroup of individuals living with ASD who often experience a sudden lack of services after high school.

    Technology will allow interventions from the MIND Institute to better address the needs of these individuals. Virtual reality, apps, artificial intelligence and facial recognition software will be further developed and tested to support positive behaviors in communication and social skills needed for daily life.

    “We can use advances in technology to continue to monitor and support individuals living with autism so they can have fulfilling jobs and take part in a wider range of social activities throughout their lifespan,” explains Abbeduto.

    Furthermore, virtual support groups could connect individuals with autism or their families to additional social skills workshops, helping them move to independence and easing some of the burden on caregivers. Smart homes, for example, could be used to provide prompts for when it’s time to take medication or a bath, and give cues for getting ready for work or making a meal. Autism experts partnering with engineers could also utilize robotics to realize new ways of providing therapies and medications.

    The vision of this Big Idea will extend the reach of this technology, employing it in communities where experts in autism or specialized services are limited or non-existent. Through virtual conferences or workshops, UC Davis will be able to train the next generation of providers, teachers and administrators. This will empower and promote positive change at the individual level and create opportunities at a systems level.

    “Through this Big Idea, and with the help of donors, we will be able to create technologies that will take the expertise of the MIND Institute and extend its reach all over the world,” said Abbeduto. “It has the ability to make a positive impact on families everywhere.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC Davis Campus

    The University of California, Davis, is a major public research university located in Davis, California, just west of Sacramento. It encompasses 5,300 acres of land, making it the second largest UC campus in terms of land ownership, after UC Merced.

    Advertisements
     
  • richardmitnick 1:17 pm on January 20, 2019 Permalink | Reply
    Tags: , , , , Mantle Neon Illuminates Earth’s Formation, Neon is actually a stand-in for where gases such as water carbon dioxide and nitrogen came from, Neon keeps a memory of where it came from even after four and a half billion years,   

    From UC Davis: “Mantle Neon Illuminates Earth’s Formation” 

    UC Davis bloc

    From UC Davis

    December 5, 2018
    Andy Fell
    530-752-4533
    ahfell@ucdavis.edu

    1
    Artist’s impression of a young star surrounded by a protoplanetary disk in which planets are forming. Based on measures of neon isotopes, UC Davis researchers conclude that the Earth formed relatively quickly from this cloud of dust and gas, collecting water, carbon and nitrogen in the deep Earth. (European Southern Observatory)

    The Earth formed relatively quickly from the cloud of dust and gas around the sun, trapping water and gases in the planet’s mantle, according to research published Dec. 5 in the journal Nature. Apart from settling Earth’s origins, the work could help in identifying extrasolar systems that could support habitable planets.

    Drawing on data from the depths of the Earth to deep space, University of California, Davis, Professor Sujoy Mukhopadhyay and postdoctoral researcher Curtis Williams used neon isotopes to show how the planet formed.

    “We’re trying to understand where and how the neon in Earth’s mantle was acquired, which tells us how fast the planet formed and in what conditions,” Williams said.

    Neon is actually a stand-in for where gases such as water, carbon dioxide and nitrogen came from, Williams said. Unlike these compounds that are essential for life, neon is an inert noble gas, and it isn’t influenced by chemical and biological processes.

    “So neon keeps a memory of where it came from even after four and a half billion years,” Mukhopadhyay said.

    There are three competing ideas about how the Earth formed from a protoplanetary disk of dust and gas over 4 billion years ago and how water and other gases were delivered to the growing Earth. In the first, the planet grew relatively quickly over 2 to 5 million years and captured gas from the nebula, the swirling cloud of dust and gas surrounding the young sun. The second theory suggests dust particles formed and were irradiated by the sun for some time before condensing into miniature objects called planetesimals that were subsequently delivered to the growing planet. In the third option, the Earth formed relatively slowly, and gases were delivered by carbonaceous chondrite meteorites that are rich in water, carbon and nitrogen.

    These different models have consequences for what the early Earth was like, Mukhopadhyay said. If the Earth formed quickly out of the solar nebula, it would have had a lot of hydrogen gas at or near the surface. But if the Earth formed from carbonaceous chondrites, its hydrogen would have come in the more oxidized form, water.

    Neon from ocean floor to deep space

    To figure out which of the three competing ideas on planet formation and delivery of gases was correct, Williams and Mukhopadhyay accurately measured the ratios of neon isotopes that were trapped in the Earth’s mantle when the planet formed. Neon has three isotopes, neon-20, 21 and 22. All three are stable and nonradioactive, but neon-21 is formed by radioactive decay of uranium. So the amounts of neon-20 and 22 in the Earth have been stable since the planet formed and will remain so forever, but neon-21 slowly accumulates over time. The three scenarios for Earth’s formation are predicted to have different ratios of neon-20 to neon-22.

    The closest they could get to the mantle was to look at rocks called pillow basalts on the ocean floor. These glassy rocks are the remains of flows from deep in the Earth that spilled out and cooled in the ocean, later to be collected by a drilling expedition led by the University of Rhode Island, which makes its collection available to other scientists.

    The gases are found in tiny bubbles within the basalt. Using a press, Williams cracked basalt chips in a sealed chamber, allowing the gases to flow into a sensitive mass spectrometer.

    Now for the space part. Previous researchers established the neon isotope ratio for the “solar nebula” (early rapid formation) model with data from the Genesis mission, which captured particles of the solar wind. Data for the “irradiated particles” model came from analyses of lunar soils and of meteorites. Finally, carbonaceous chondrite meteorites provided data for the “late accretion” model.

    Minimum size for a habitable planet

    The isotope ratios they found were well above those for the “irradiated particles” or “late accretion” models, Williams said, and support rapid early formation.

    “This is a clear indication that there is nebular neon in the deep mantle,” Williams said.

    Neon, remember, is a marker for those other volatile compounds. Hydrogen, water, carbon dioxide and nitrogen would have been condensing into the Earth at the same time — all ingredients that, as far as we know, go into making up a habitable planet.

    The results imply that to absorb these vital compounds, a planet must reach a certain size — the size of Mars or a little larger — before the solar nebula dissipates. Observations of other solar systems show that this takes about 2 to 3 million years, Williams said.

    Does the same process happen around other stars? Observations from the Atacama Large Millimeter Array, or ALMA, observatory in Chile suggest that it does, the researchers said.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    ALMA uses an array of 66 radiotelescopes working as a single instrument to image dust and gas in the universe. It can see the planet-forming disks of dust and gas around some nearby stars. In some cases, there are dark bands in those disks where dust has been depleted.

    “There are a couple of ways dust could be depleted from the disk, and one of them is that they are forming planets,” Williams said.

    “We can observe planet formation in a gas disk in other solar systems, and there is a similar record of our own solar system preserved in Earth’s interior,” Mukhopadhyay said. “This might be a common way for planets to form elsewhere.”

    The work was funded by the National Science Foundation.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC Davis Campus

    The University of California, Davis, is a major public research university located in Davis, California, just west of Sacramento. It encompasses 5,300 acres of land, making it the second largest UC campus in terms of land ownership, after UC Merced.

     
  • richardmitnick 12:48 pm on January 20, 2019 Permalink | Reply
    Tags: ahu (shrine) monuments, Ahu are associated with freshwater sources in a way that they aren't associated with other resources, , Rapa Nui better known as Easter Island,   

    From University of Arizona: “Solving the Ancient Mysteries of Easter Island” 

    U Arizona bloc

    From University of Arizona

    Jan. 10, 2019

    1
    Terry Hunt is one of the world’s foremost experts on the Pacific Islands, which includes Rapa Nui, better known as Easter Island.

    New research PLoS One shows that Rapa Nui islanders built their iconic monuments close to freshwater sources.

    The ancient people of Rapa Nui, Chile, better known as Easter Island, built their famous ahu monuments near coastal freshwater sources, according to a team of researchers including faculty at the University of Arizona.

    The island of Rapa Nui is well-known for its elaborate ritual architecture, particularly its numerous statues, or moai, and ahu, the monumental platforms that supported them. Researchers have long wondered why ancient people built these monuments in their respective locations around the island, considering how much time and energy was required to construct them.

    A team of researchers led by Robert DiNapoli of the University of Oregon used quantitative spatial modeling to explore the potential relations between ahu construction locations and subsistence resources, namely, rock mulch agricultural gardens, marine resources and freshwater sources – the three most critical resources on Rapa Nui. Their results suggest that ahu locations are explained by their proximity to the island’s limited freshwater sources.

    “Many researchers, ourselves included, have long speculated associations between ahu, moai and different kinds of resources – water, agricultural land, areas with good marine resources, etc.,” said DiNapoli. “However, these associations had never been quantitatively tested or shown to be statistically significant. Our study presents quantitative spatial modeling clearly showing that ahu are associated with freshwater sources in a way that they aren’t associated with other resources.”

    2
    Locations of ahu with statues on Rapa Nui. Image via PLoS One.

    The proximity of the monuments to freshwater tells us a great deal about the ancient island society, said Terry Hunt, a professor of anthropology at the UA and Dean of the Honors College.

    “The monuments and statues are located in places with access to a resource critical to islanders on a daily basis – fresh water,” said Hunt, who has been researching the Pacific Islands for more than 30 years and has directed archaeological field research on Rapa Nui since 2001. “In this way, the monuments and statues of the islanders’ deified ancestors reflect generations of sharing, perhaps on a daily basis, centered on water, but also food, family and social ties, as well as cultural lore that reinforced knowledge of the island’s precarious sustainability.

    “The sharing points to a critical part of explaining the island’s paradox: despite limited resources, the islanders succeeded by sharing in activities, knowledge and resources for over 500 years until European contact disrupted life with foreign diseases, slave trading and other misfortunes of colonial interests,” Hunt added.

    The researchers currently only have comprehensive freshwater data for the western portion of the island and plan to do a complete survey of the island in order to continue to test their hypothesis of the relation between ahu and freshwater.

    “The issue of water availability, or the lack of it, has often been mentioned by researchers who work on Rapa Nui,” said Carl Lipo of Binghamton University in New York. “When we started to examine the details of the hydrology, we began to notice that freshwater access and statue location were tightly linked together. It wasn’t obvious when walking around – with the water emerging at the coast during low tide, one doesn’t necessarily see obvious indications of water – but as we started to look at areas around ahu, we found that those locations were exactly tied to spots where the fresh groundwater emerges, largely as a diffuse layer that flows out at the water’s edge. The more we looked, the more consistently we saw this pattern. This paper reflects our work to demonstrate that this pattern is statistically sound and not just our perception.”

    Also contributing to this research were Matthew Becker and Tanya Brosnan of California State University, Long Beach, Sean Hixon of Pennsylvania State University, and Alex E. Morrison of the University of Auckland.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Arizona campus

    The University of Arizona (UA) is a place without limits-where teaching, research, service and innovation merge to improve lives in Arizona and beyond. We aren’t afraid to ask big questions, and find even better answers.

    In 1885, establishing Arizona’s first university in the middle of the Sonoran Desert was a bold move. But our founders were fearless, and we have never lost that spirit. To this day, we’re revolutionizing the fields of space sciences, optics, biosciences, medicine, arts and humanities, business, technology transfer and many others. Since it was founded, the UA has grown to cover more than 380 acres in central Tucson, a rich breeding ground for discovery.

    Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

    U Arizona mirror lab


    An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why the UA is a university unlike any other.

     
  • richardmitnick 12:15 pm on January 20, 2019 Permalink | Reply
    Tags: , , , , , , , KAGRA,   

    From Science News: “A new gravitational wave detector is almost ready to join the search” 

    From Science News

    January 18, 2019
    Emily Conover

    Japan’s KAGRA experiment tests new techniques for spotting ripples in spacetime.

    KAGRA gravitational wave detector, Kamioka mine in Kamioka-cho, Hida-city, Gifu-prefecture, Japan

    KAGRA tunnel

    In the quest for better gravitational wave detectors, scientists are going cold.

    An up-and-coming detector called KAGRA aims to spot spacetime ripples by harnessing advanced technological twists: chilling key components to temperatures hovering just above absolute zero, and placing the ultrasensitive setup in an enormous underground cavern.

    Scientists with KAGRA, located in Kamioka, Japan, now have results from their first ultrafrigid tests. Those experiments suggest that the detector should be ready to start searching for gravitational waves later in 2019, the team reports January 14 at arXiv.org.

    The new detector will join similar observatories in the search for the minute cosmic undulations, which are stirred up by violent events like collisions of black holes. The Laser Interferometer Gravitational-Wave Observatory, LIGO, has two detectors located in Hanford, Wash., and Livingston, La. Another observatory, Virgo, is located near Pisa, Italy.


    VIRGO Gravitational Wave interferometer, near Pisa, Italy

    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger

    ESA/eLISA the future of gravitational wave research

    1
    Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

    Those detectors sit above ground, and don’t use the cooling technique, making KAGRA the first of its kind.

    KAGRA consists of two 3-kilometer-long arms, arranged in an “L” shape. Within each arm, laser light bounces back and forth between two mirrors located at both ends. The light acts like a giant measuring stick, capturing tiny changes in the length of each arm, which can be caused by a passing gravitational wave stretching and squeezing spacetime.

    2
    FREEZE UP KAGRA’s mirrors (one shown) are cooled to very low temperatures to prevent jiggling that could hamper the search for gravitational waves.

    Because gravitational wave detectors measure length changes tinier than the diameter of a proton, minuscule effects like the jiggling of molecules on the mirrors’ surfaces can interfere with the measurements. Cooling the mirrors to about 20 kelvins (–253° Celsius) limits that jiggling.

    In the new tests, performed in spring 2018, researchers cooled only one of KAGRA’s four mirrors, says KAGRA leader Takaaki Kajita of the University of Tokyo. When the detector starts up for real, the others will be chilled too.

    Having the detector underground also helps keep the mirrors from vibrating due to activity on Earth’s surface. LIGO is so sensitive that it can be affected by rumbling trucks, a stiff breeze or even mischievous wildlife (SN Online: 4/18/18). KAGRA’s underground lair should be significantly quieter.

    Building underground and going cold required years of effort from KAGRA’s researchers. “They’ve taken on these two great challenges, which are both important to the long-term future of the field,” says LIGO spokesperson David Shoemaker of MIT. In the future, even more advanced gravitational wave detectors could build on KAGRA’s techniques.

    For now, adding KAGRA to the existing observatories should help scientists improve their studies of where gravitational wiggles come from. Once scientists detect a gravitational wave signal, they alert astronomers, who search for light from the cataclysm that generated the waves in the hope of better understanding the event (SN: 11/11/17, p. 6). Having an additional gravitational wave detector in a different part of the world will help better triangulate wave sources. “This feature is very important,” Kajita says, “because telescopes can only see a small part of the sky at a time.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 2:38 pm on January 19, 2019 Permalink | Reply
    Tags: , , , , Disentangling starlight,   

    From ESOblog: “Disentangling starlight” 

    ESO 50 Large

    From ESOblog

    1

    Although they look like fuzzy patches of light, distant galaxies are actually made up of billions of stars and other astronomical intricacies. Telescopes are rarely powerful enough to study the individual stars in galaxies except for those closest to the Milky Way, but a team of scientists has now used the MUSE instrument on ESO’s Very Large Telescope to resolve the stars in the spiral galaxy NGC 300.

    ESO MUSE on the VLT on Yepun (UT4)

    By telling the story of how astronomy has reached this point, team member Martin M. Roth from the Leibniz Institute for Astrophysics Potsdam helps us understand why this result is so exciting.

    Four hundred years ago, Galileo Galilei became the first person to point a telescope at the sky and prove that the hazy band of the Milky Way is actually composed of billions of individual stars. Astronomy has come a long way since then, and nowadays astronomers do not merely look at the stars, but also analyse their chemical composition, measure their rotation and velocity in space, and determine many other physical parameters to find out more about the Universe — all using a technique called spectroscopy, which is the study of the interaction of matter and light.

    Stellar spectroscopy really started taking speed with the emergence of a technique called integral field spectroscopy, around the same time that I joined Leibniz Institute for Astrophysics Potsdam (AIP) as a young astronomer in the early 1990s. This technique allows astronomers to obtain a 3D view of a galaxy in just one shot. It uses an Integral Field Unit (IFU) to divide the field of view into many segments — or pixels — to obtain a more comprehensive overview of the whole. The signal from each pixel is fed into a spectrograph which generates a light spectrum for each one. The pixels in this case are rather lovingly named “spaxels”.

    Even all those years ago it occurred to me that such a device could be used to disentangle the stars in crowded fields, such as in star clusters and distant galaxies, where the light from stars blends together to become a blurry blob. So by 1996, our team at Potsdam had begun to develop our own integral field spectrograph. We called it PMAS — the Potsdam Multi-Aperture Spectrophotometer.

    1
    How integral field spectroscopy works. Credit: ESO

    Several research groups were developing integral field spectrographs at the same time, but the main drawback to all of them was the number of spaxels. PMAS, for example, hosted a mere 256 of them — compare this to your phone camera, which probably has something like 10–15 million pixels. This all changed dramatically with the arrival of MUSE, the Multi Unit Spectroscopic Explorer, on ESO’s Very Large Telescope (VLT). MUSE hosts an incredible 90 000 spaxels and boasts superb sensitivity.

    The primary raison d’etre of MUSE is to study the origin and development of the Universe as a whole, but when ESO invited proposals for MUSE pilot studies almost five years ago, I applied to use the new instrument to try to resolve stars in the nearby spiral galaxy NGC 300. This had already been done for very nearby galaxies in what is called the Local Group but never for galaxies further afield.

    Thankfully, my proposal to observe NGC 300 was chosen as one of the MUSE pilot studies, and we were given observing time! At a distance of six million light-years from the Milky Way, NGC 300 is just outside the Local Group and is what I would describe as a very “typical” spiral galaxy; finding out more about it should help us find out more about how spiral galaxies work in general.

    2
    The intricate network of pipes surrounding the 24 spectrographs of the MUSE instrument on the VLT. The instruments complexity is equaled by its power and productivity. Credit: A. Tudorica/ESO

    But it wasn’t enough just to observe the galaxy using MUSE, it was also necessary to develop some software that could help us visually separate the stars in the MUSE data. A talented doctoral student within our research group created a novel tool to do this. To test the tool, we used our old PMAS spectrograph on a telescope at the Calar Alto Observatory in Spain to measure the speed of some stars in Milky Way star clusters. The tool worked perfectly!

    Calar Alto Observatory located in Almería province in Spain on Calar Alto, a 2,168-meter-high (7,113 ft) mountain in Sierra de Los Filabres

    We then tried out the tool with MUSE images of a cluster of Milky Way stars before the real test — would it work on NGC 300, a galaxy 800 times further away than this star cluster?

    The results turned out to be better than we could have ever imagined! We could see individual stars with incredible clarity and gaseous regions, such as supernova remnants, planetary nebulae, and ionised hydrogen regions were revealed. Amazingly, we could even see dim background galaxies through NGC 300! MUSE is special because it can look at light with a wide range of wavelengths, making many different objects and colours visible.

    4
    This picture of the spectacular southern spiral galaxy NGC 300 was taken using the Wide Field Imager (WFI) at ESO’s La Silla Observatory in Chile.

    ESO WFI LaSilla 2.2-m MPG/ESO telescope at La Silla, 600 km north of Santiago de Chile at an altitude of 2400 metres

    It was assembled from many individual images through a large set of different filters over many observing nights, spanning several years. The main purpose of this extensive observational campaign was to get an unusually thorough census of the stars in the galaxy, counting both the number and varieties of stars and marking regions, or even individual stars, that warrant deeper and more focussed investigation. But such a rich data collection will also have many other uses for years to come.

    The images were mostly taken through filters that transmit red, green or blue light. These were supplemented by images through special filters that allow through only the light from ionised hydrogen or oxygen gas and highlight the glowing clouds in the galaxy’s spiral arms. The total exposure time amounted to around 50 hours.

    Credit: ESO

    5
    The new MUSE images of NGC 300 laid over the WFI image, with individual stars clearly visible. Credit: ESO

    After so many years of preparation, involving the hard work of so many individuals, it’s fair to say that we were overwhelmed when we received the NGC 300 data. But we have merely scratched the surface of a gold mine. We have so much more data to analyse that we have gathered a team of enthusiastic astronomers to go through it, all keen to discover what lies beyond what we once thought was impossible. And through it all, I keep reminding myself that this was a pilot study.

    Not only do we hope to use MUSE to look at even more galaxies, ESO is currently building an instrument called 4MOST that will be dedicated to disentangling starlight and imaging up to 2400 individual stars per single exposure in the Milky Way. The goal is to study millions of stars in the attempt to unravel our galaxy’s formation history and evolution, as part of a vibrant field of research called “galactic archaeology”.

    But MUSE is already enabling “extragalactic archaeology” for the first time ever. With its ability to collect huge amounts of light and create incredibly sharp images, ESO’s Extremely Large Telescope will be able to take extragalactic archaeology even further, investigating individual stars in other galaxies to help us find out more about the Universe.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre EEuropean Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo,

    ESO LaSilla
    ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT 4 lasers on Yepun


    ESO Vista Telescope
    ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level.

    ESO NTT
    ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT Survey telescope
    VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level.

    ALMA Array
    ALMA on the Chajnantor plateau at 5,000 metres.

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).


    ESO APEX
    APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert.

    Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    ESO Next Generation Transit Survey at Cerro Paranel, 2,635 metres (8,645 ft) above sea level

    SPECULOOS four 1m-diameter robotic telescopes 2016 in the ESO Paranal Observatory, 2,635 metres (8,645 ft) above sea level

    ESO TAROT telescope at Paranal, 2,635 metres (8,645 ft) above sea level

    ESO ExTrA telescopes at Cerro LaSilla at an altitude of 2400 metres

     
  • richardmitnick 1:54 pm on January 19, 2019 Permalink | Reply
    Tags: Active galaxies nuclei, , , , , Galaxy ESO 428-G14,   

    From Instituto de Astrofísica de Canarias – IAC: “A faint galaxy that outshines the others” 

    IAC

    From Instituto de Astrofísica de Canarias – IAC

    19.1.19
    Manu Astrónomus

    Contacts:
    Almudena Prieto: aprieto@iac.es
    Alberto Ardila Rodríguez: aardila@lna.br

    1
    Image of the active galaxy ESO little light LLAGN 428-G14.

    According to an international investigation which involved scientists from the Institute of Astrophysics of the Canary Islands (IAC) , luminous galaxies with active nuclei have little enough to expel gas quantities similar to those removed galaxies with bright nuclei much energy.

    The gas is essential in the process of formation of a galaxy. During the early stages, the amount of gas present determines the number of stars that will be in it. Active galaxies nucleus (AGN, for its acronym in English) they are those that have a higher brightness region in its center. This bright area is caused by the presence of a massive black hole, the effect of its gravity, accumulated material around a process known as accretion.

    Supermassive black holes heat the surrounding gas and pushing part of it to the outside Galaxy (feedback effect). It was thought that AGN lower luminosity did not have enough to expel large amounts of gas energy. But an international study, in which two researchers from the Institute of Astrophysics of the Canary Islands (IAC) involved, proves otherwise.

    2
    The red dots represent the spatial distribution and morphology due to high
    ionization of the gas cloud, due to the strong emission of the jets hole
    black of this active galaxy. Credit: D.May et al.

    In the article, recently published in the journal Monthly Notices of the Royal Astronomical Society, they analyzed the galaxy ESO 428-G14, which has a slightly luminous AGN. Thanks to the data obtained with integral field spectrograph SINFONI the Very Large Telescope (VLT) , the European Southern Observatory (ESO) detected that this galaxy has the strongest feedback effect seen in one of its class.

    ESO SINFONI

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo,

    “In this galaxy dim glow explains Daniel May, researcher at the Institute of Astronomy, Geophysics and Atmospheric Sciences at the University of Sao Paulo and first author of the publication-, the jet is responsible for carrying out the work of expulsion gas. However, in the most luminous active nuclei, this task is performed by the radiation emitted by the nucleus itself.”

    3
    a): Image HI Brγ λ21661 Å emission (total flow 24 ± 1 × 10-15 erg s-1 cm-2)
    the dashed ellipses highlight the ‘helix’ into two substructures, b1 and b2. (B): The line
    of [Si VI] of all cubes combined data (DS2), with a smaller FOV and
    greater signal / noise ratio. The contrast shows the fainter structures and b4 b3.
    The cross marks the position of the AGN. The flow bar is in units of
    10 -19 erg s-1 cm-2 A-1. Credit: D.May et al.

    Radio galaxies, which are AGN with powerful jets, expels the material at rates between 1 and 50 solar masses per year. ESO 428-G14, which has a modest jet, it is in the range of 3 to 8 solar masses per year. “With these data -comenta Almudena Prieto, IAC researcher and co-author of the study, is the least luminous galaxy with the strongest feedback observed to date.”

    “Our findings open a debate on the role of supermassive black holes as efficient in the heart of galaxies, regardless of its brightness engines,” says Alberto Ardila Rodríguez, a visiting researcher and co-author IAC.

    Through further studies, the team of scientists attempt to discover the nature of the process makes it possible as little light as ESO 428-G14, core so efficiently removing gaseous matter. “He’s probably related to own source of gas in the galaxy,” said May.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    The Instituto de Astrofísica de Canarias(IAC) is an international research centre in Spain which comprises:

    The Instituto de Astrofísica, the headquarters, which is in La Laguna (Tenerife).
    The Centro de Astrofísica en La Palma (CALP)
    The Observatorio del Teide (OT), in Izaña (Tenerife).

    These centres, with all the facilities they bring together, make up the European Northern Observatory(ENO).

    The IAC is constituted administratively as a Public Consortium, created by statute in 1982, with involvement from the Spanish Government, the Government of the Canary Islands, the University of La Laguna and Spain’s Science Research Council (CSIC).

    The International Scientific Committee (CCI) manages participation in the observatories by institutions from other countries. A Time Allocation Committee (CAT) allocates the observing time reserved for Spain at the telescopes in the IAC’s observatories.

    The exceptional quality of the sky over the Canaries for astronomical observations is protected by law. The IAC’s Sky Quality Protection Office (OTPC) regulates the application of the law and its Sky Quality Group continuously monitors the parameters that define observing quality at the IAC Observatories.

    The IAC’s research programme includes astrophysical research and technological development projects.

    The IAC is also involved in researcher training, university teaching and outreachactivities.

    The IAC has devoted much energy to developing technology for the design and construction of a large 10.4 metre diameter telescope, the ( Gran Telescopio CANARIAS, GTC), which is sited at the Observatorio del Roque de los Muchachos.



    Gran Telescopio Canarias at the Roque de los Muchachos Observatory on the island of La Palma, in the Canaries, SpainGran Telescopio CANARIAS, GTC

     
  • richardmitnick 5:47 pm on January 18, 2019 Permalink | Reply
    Tags: , , , , Can Blue Stragglers Be Used to Tell Time?, , Gyrochronology   

    From AAS NOVA: “Can Blue Stragglers Be Used to Tell Time?” 

    AASNOVA

    From AAS NOVA

    18 January 2019
    Kerry Hensley

    1
    This Hubble image of the center of globular cluster NGC 6362 shows an impressive spectrum of stellar colors. Particularly interesting are the bright blue stars in this image, which should have left the main sequence already. [ESA/Hubble & NASA]

    NASA/ESA Hubble Telescope

    As stars age, they gradually lose angular momentum and spin more slowly. This process occurs so predictably for normal, solar-type stars that we can treat them as cosmic clocks using a technique called gyrochronology. But could the same strategy be applied to an unusual type of main-sequence star called blue stragglers?

    2
    The blue stragglers in globular cluster M55 are easily identified in a color-magnitude diagram (cyan circle). [Adapted from B.J. Mochejska, J. Kaluzny (CAMK), 1-m Swope Telescope]


    Carnegie Institution Swope telescope at Las Campanas, Chile, 100 kilometres (62 mi) northeast of the city of La Serena. near the north end of a 7 km (4.3 mi) long mountain ridge. Cerro Las Campanas, near the southern end and over 2,500 m (8,200 ft) high, at Las Campanas, Chile

    Stars That Linger

    Based on their mass and age, we would expect blue-straggler stars to have exhausted their core hydrogen and evolved off the main sequence already. Instead, these oddball objects have managed to loiter long past their time by gaining mass — either by siphoning it from a binary companion star or by consuming another star altogether through a collision.

    Blue stragglers are easy to pick out in a star cluster, where they are bluer and brighter than the main-sequence turnoff point on a color–magnitude diagram. Post-mass-transfer stars like blue stragglers also exist outside of clusters, where they can be identified by abnormal chemical abundances or the presence of a white-dwarf companion.

    To better understand post-mass-transfer stars like blue stragglers, we would like to know how long ago they accreted mass from their companions. We know that these stars experience a jump in spin rate immediately after mass accretion — but what happens after that point? Do they undergo predictable spin-down like normal, solar-type stars, allowing us to use gyrochronology to determine their post-mass-transfer ages?

    Going for a Spin

    To explore this question, a team led by Emily Leiner (Northwestern University) studied the rotation-rate slowdown of blue-straggler and other post-mass-transfer stars. Leiner and collaborators compiled a sample of post-mass-transfer binaries of varying ages by selecting stars with spectral types F, G, and K with white-dwarf companions in close orbits. Here, age doesn’t refer to time since the star formed, but rather time since the mass transfer took place.

    The very young systems were selected by direct detection of the white-dwarf companion in the extreme ultraviolet. In older systems, the white-dwarf companion is too cool to be visible but can be detected by gravitational microlensing.

    Gravitational microlensing, S. Liebes, Physical Review B, 133 (1964): 835

    Leiner and collaborators combined the age estimates from white-dwarf cooling models with rotation periods derived from photometric or spectral measurements. The authors found that the stars spin faster after the mass transfer, then steadily slow down after about 100 million years since the mass transfer have passed.

    3
    Ages and rotation periods for this sample of post-mass-transfer systems. The purple and gold lines are single-star models, while the red and cyan lines are collisional-product models.

    A Model for Spin-down

    To understand the physics of post-mass-transfer star spin-down, the authors compared the observed spin-down to models for single solar-type stars and stellar collision products. They found that the models for the stellar collision products showed distinctly different behavior; the collision products maintained their rapid rotation rates far longer than the single stars or post-mass-transfer stars.

    Leiner and collaborators attributed this to the possibility that the collision products don’t form normal stellar magnetic fields and can’t lose angular momentum through magnetic braking the way single main-sequence stars do.

    On the other hand, the models for spin-down of single solar-type stars matched the blue-straggler observations well. This suggests that blue stragglers and other post-mass-transfer stars have a promising future as gyrochronometers!

    Citation

    “Observations of Spin-down in Post-mass-transfer Stars and the Possibility for Blue Straggler Gyrochronology,” Emily Leiner, Robert D. Mathieu, Natalie M. Gosnell, and Alison Sills 2018 ApJL 869 L29. http://iopscience.iop.org/article/10.3847/2041-8213/aaf4ed/meta

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    1

    AAS Mission and Vision Statement

    The mission of the American Astronomical Societyis to enhance and share humanity’s scientific understanding of the Universe.

    The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
    The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
    The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
    The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
    The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

    Adopted June 7, 2009

     
  • richardmitnick 5:21 pm on January 18, 2019 Permalink | Reply
    Tags: , , , , , , , The observation of a rare hypernova   

    From Instituto de Astrofísica de Canarias – IAC: “The observation of a rare hypernova, complete the story of the death of the most massive stars. 

    IAC

    From Instituto de Astrofísica de Canarias – IAC

    8/1/19
    Manu Astrónomus

    Contact:
    Institute of Astrophysics of Andalusia (IAA-CSIC)
    Dissemination and Communication Unit
    Silbia Lopez de Lacalle – sll@iaa.es – 958230676
    https://www.iaa.csic.es
    https://divulgacion.iaa.csic.es

    [I have done my best to correct the translation.]

    1
    Explosion image obtained by the Gran Telescopio Canarias in the period of maximum brightness of the event.

    A study led by the Institute of Astrophysics of Andalusia (IAA-CSIC) and published in Nature, studied in detail to the life of a star, which produces a gamma – ray burst (GRB) and a hypernovae.

    The end of the life of stars holds placid scenarios in the case of low-mass stars like the sun. Not so in the case of very massive stars, which undergo explosive events so intense that they can get to outshine all the galaxy that hosts. An international group of astronomers has studied in detail the end of a massive star that has been a gamma-ray burst (GRB) and hypernovae, which has detected a new component in this type of phenomena. The study, published in the journal Nature [above], provides the link to complete the story that links hypernovae with GRBs.

    “In 1998 the first hypernovae was detected, a version of the very energy supernovae, which followed a burst of gamma rays and which was the first evidence of the connection between the two phenomena” says Luca Izzo Institute investigator Andalusia Astrophysics (IAA-CSIC) headed the study.

    The proposed scenario to explain the phenomenon involved a star of more than twenty solar masses, to exhaust their fuel undergoes a process of core collapse. To collapse on itself, the core generates a black hole or neutron stars, while two polar jets of matter that cross the outer layers of the star and, emerging into the medium, produce gamma ray bursts occur ( GRBs). Hypernovae finally burst, which can be tens of times more intense than a supernova occurs.

    2
    Hypernovae artistic representation. The interaction of the jet
    with the outer layers of the star forms a sheath around
    the jet head and begins to spread laterally with respect
    to the jet direction. The jet is able to completely pierce the
    shell of the parent star, issue the issuance of a type of high – energy,
    responsible for GRB. Source: Anna Serena Esposito.

    But, even after twenty years of studying the relationship between GRBs and hypernovae seems clear, it is not met in the opposite direction, as they have detected several hypernovae not have associated gamma-ray bursts. “This work has allowed us to identify the missing link between these two subtypes hypernovae in the form of a new component: a kind of hot envelope is formed around the jet according propagates through the parent star -apunta Izzo (IAA CSIC) -. The jet transfers a significant part of its energy to the shell and, if it goes through the surface of the star will produce gamma ray emission we identify as GRB “.

    However, the jet may spoil within the star and not emerge to medium lacking sufficient energy, a circumstance occurs hypernovae but not a GRB. Thus, the casing detected in this investigation represents the link between the two subtypes hypernovae studied so far, and these “jets damped” (English choked-jets) naturally explain the differences.

    EVENT HISTORY

    On December 5 the GRB171205A outbreak was detected in a galaxy located just five hundred million light years from Earth, making it the fourth GRB nearest known. “Phenomena of this kind occur on average once every ten years, so immediately began an intense campaign observation with the Gran Telescopio Canarias to observe the emerging hypernovae from the early stages -apunta Christina Thöne, researcher at the Institute of Astrophysics of Andalusia ( IAA-CSIC) participating in the hallazgo-. In fact, it is the earliest detection of a hypernovae to date, less than a day after the collapse of the star. ”

    And indeed, once the first evidence of the presence of a hypernovae were observed. “This was possible because the luminosity of the jets was much weaker than normal because usually outshine the emission of the supernova He points during the first week Antonio de Ugarte Postigo, researcher at the Institute of Astrophysics of Andalusia (IAA-CSIC) participating in the hallazgo-. However, a peculiar hypernovae, was already showing very high growth rates and a different chemical abundances to those recorded in similar events “.

    This unique chemical composition and velocities associated fit the existence of a jet surrounded by an envelope that cuts on the surface of the star, which had been predicted earlier but had not yet observed. Sheath accompanying the jet during the first days drag material from the interior of the star, and in the case study allowed us to determine its chemical structure. After a few days, this comoponent disappeared and hypernovae evolved similarly to those observed previously.

    The total energy emitted by the envelope was higher than the GRB, which implies that the jet deposited much of its energy in it. But also it shows that the energy of GRB depends on the interaction of the jet with stellar material and this new component, the wrapper. And also highlights the need to review the model: “While the standard model supernovae core collapse leads to nearly spherical explosions, evidence of such energy emission produced by a sheath of this type suggests that the jet plays an important role in central collapse supernovae, and we need to take into account the role of the jet explosion models of supernovae, “says Izzo (IAA-CSIC).

    This study was coordinated by researchers from the group Phenomena Transients High Energy and Environment (High-Energy Transients and Their Hosts, HETH) of the IAA-CSIC. Christina headed by Thöne, studying the physics of transient astronomical phenomena, the environment in which they occur and the galaxies that host them.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    The Instituto de Astrofísica de Canarias(IAC) is an international research centre in Spain which comprises:

    The Instituto de Astrofísica, the headquarters, which is in La Laguna (Tenerife).
    The Centro de Astrofísica en La Palma (CALP)
    The Observatorio del Teide (OT), in Izaña (Tenerife).

    These centres, with all the facilities they bring together, make up the European Northern Observatory(ENO).

    The IAC is constituted administratively as a Public Consortium, created by statute in 1982, with involvement from the Spanish Government, the Government of the Canary Islands, the University of La Laguna and Spain’s Science Research Council (CSIC).

    The International Scientific Committee (CCI) manages participation in the observatories by institutions from other countries. A Time Allocation Committee (CAT) allocates the observing time reserved for Spain at the telescopes in the IAC’s observatories.

    The exceptional quality of the sky over the Canaries for astronomical observations is protected by law. The IAC’s Sky Quality Protection Office (OTPC) regulates the application of the law and its Sky Quality Group continuously monitors the parameters that define observing quality at the IAC Observatories.

    The IAC’s research programme includes astrophysical research and technological development projects.

    The IAC is also involved in researcher training, university teaching and outreachactivities.

    The IAC has devoted much energy to developing technology for the design and construction of a large 10.4 metre diameter telescope, the ( Gran Telescopio CANARIAS, GTC), which is sited at the Observatorio del Roque de los Muchachos.



    Gran Telescopio Canarias at the Roque de los Muchachos Observatory on the island of La Palma, in the Canaries, SpainGran Telescopio CANARIAS, GTC

     
  • richardmitnick 2:02 pm on January 18, 2019 Permalink | Reply
    Tags: , , Seismic swarm hits Hayward Fault: What does it portend?, ,   

    From temblor: “Seismic swarm hits Hayward Fault: What does it portend?” 

    1

    From temblor

    January 17, 2019
    Jason Patton, Ph.D.

    The San Francisco Bay area is earthquake country. Historic and prehistoric evidence for earthquakes here informs us about the possibility of future shakers. On the Hayward Fault, we have an idea about their upper limit on size, but we don’t know when they will occur. The swarm in progress, with an M=3.4 quake on January 16 and today’s M=3.5 quake near Piedmont and Berkeley, are but one way to peer into an uncertain future. Ultimately, they remind us to be prepared to confront potential disaster.

    Earthquake swarm highlights our earthquake history and our earthquake future

    People in northern California have been in the midst of an earthquake swarm along the Hayward fault. Over 6,000 people reported observations of an M=3.4 quake and so far, over 4,000 have reported to the USGS “Did You Feel It?” website for the M=3.5 morning quake today.

    One may think that these quakes are small, so why do they matter? Why should I care?

    Prior to the 1906 San Francisco earthquake, the 1868 event was called the Great San Francisco Earthquake as the damage was widespread across the entire region. According to the USGS, the Hayward fault has the highest chance of rupture for all faults in the bay area, which is why Temblor’s Earthquake Scores for homes near the fault are among the highest anywhere in the U.S.

    The USGS, California Geological Survey, and other stakeholders like the California Earthquake Authority (earthquake insurance) have teamed up to help people learn about a probable repeat of the 1868 earthquake. Learn more about the “HayWired Scenario” on this website.

    Below is a map that shows how the shaking intensity may be across the region in a scenario M=7 quake, similar to the 1868 event. (Hudnut et al., 2018).

    2
    Shaking severity from an hypothetical earthquake on the Hayward fault.

    Last year there was an M=4.4 earthquake in the Piedmont area, which is pretty close to the swarm of quakes that hit in the past 2 days, although unlike today’s quake, it was not on the main strand of the Hayward Fault. Along the Hayward fault, sometimes there is a series of earthquakes that all have similar magnitudes (a swarm) and sometimes there is an earthquake that is larger than the others (a sequence). According to Dr. Peggy Hellweg, Project Manager for the Berkeley Seismological Laboratory seismic network, “typically what we see on the Hayward fault are sequences” and that there is a sequence about every 2 to 5 years, over the past 20 years. Here is a blog post from the Berkeley Seismo Blog for a quake in 2017.

    Sadly, the USGS cannot respond to press inquiries due to the U.S. Government shutdown. However, we can use the USGS earthquake catalog to learn about the recent history of earthquakes along the Hayward fault (see map below). Within 2 km (1.2 mi) of the fault trace, on average, there are quakes a little less than once a year. Quakes right in the Hayward Fault trace are rarer, they strike about once every 3 years. One sees no obvious migration of these quakes with time, which makes it impossible to identify if the fault is getting ready for a “Big One.”
    3
    Hayward fault earthquake locations since 1985.

    For now, we don’t’ know if this swarm will lead to larger magnitude earthquakes. However, we do know that as time passes, the fault gradually stores more elastic energy and this leads to an increased chance of an earthquake.

    There is lots much we can learn about what happened in past earthquakes so we can prepare for future earthquakes. We recently reviewed what we learned over the past 25 since the 1994 M=6.7 Northridge earthquake here. Note the similar earthquake magnitude for the Hayward and Northridge earthquakes.

    The Hayward Fault is HayWired

    The Hayward Fault is unusual. Part of the Hayward fault is creeping aseismically (moving side by side without earthquakes) and part of the fault is locked (clamped together, storing energy that may be released during an earthquake). As the fault creeps, this places additional stress on the adjacent portions of the fault that are locked. The same is true for small earthquakes like the ongoing swarm, they add stress to the fault. A 100-km-long (60 mi) portion of the San Andreas also creeps, but the rest is locked. What makes the Hayward unique is that it exhibits both behaviors everywhere.

    Scientists have been studying how the fault stores this energy over time (e.g. Shirzaei et al., 2013), using satellite data and physical measurements of plate motion in the region. Shirzaei et al. (2013) found that both creep and these small earthquakes add to the stress on the fault and bring us closer to an earthquake.

    “We estimate that a slip-rate deficit equivalent to Mw 6.3–6.8 has accumulated on the fault, since the last event in 1868.” (Shirzaei and R. Bürgmann, 2013).

    Below is an updated plot provided by Dr. Roland Bürgmann, Professor of Earth and Planetary Science at U.C. Berkeley. This figure shows the fault surface at depth and the color represents how much of the fault is creeping (red = more creep). Drs. Bürgmann and Shirzaei have plotted the earthquake locations from the past decade or so, including from the current swarm.

    4

    Dr. Bürgmann wrote us this morning, “I’d like to point out that it was last year’s M=4.4 quake that made me sign up for earthquake insurance.”

    Ground Shaking, Building Collapse, Landslides, Liquefaction

    This is a short laundry list of potential damage that will probably face northern California residents during and following a future Hayward fault earthquake.

    Conclusions from the USGS HayWired Earthquake Scenario are sobering, however we can take action now to be more resilient in the face of this natural disaster.

    The mainshock will be damaging, but so will be the aftershocks. Building damage may exceed $82 billion (in 2016 dollars). As many as 152,000 households may be displaced, placing as many as 411,000 people on the streets (2000 census data). There may be 800 deaths and over 18,000 injuries. As many as 2,500 people may be trapped in buildings and more than 22,000 people could be stuck in elevators.

    As we mentioned in a report on the Sacramento-San Joaquin River Delta about potential levee failures, there may also be substantial damage to the water supply infrastructure as well. It may take as long as 30 to 210 days to restore water supplies for some of the counties in the bay area. Fires can be expected following a HayWired Scenario event. There may be over 400 fires, causing hundreds of additional deaths and contributing to an additional $30 billion in damages.

    There is a suite of natural hazards information available on the temblor app to help one learn the extent to which people are exposed to these hazards. Below is a map that shows the potential for liquefaction in the region. Learn more about landslides and liquefaction in our report from earlier this year here.

    5
    Liquefaction susceptibility from earthquakes in the SF Bay Area. The red dot is the M=3.5 earthquake felt this morning.

    Do you know where your home or workplace fits in earthquake country? Are you prepared? Check Your Risk in the Temblor app here.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 1:21 pm on January 18, 2019 Permalink | Reply
    Tags: , , , , , , When New Horizons Met Ultima Thule   

    From SETI Institute: “When New Horizons Met Ultima Thule” Video 

    SETI Logo new
    From SETI Institute


    43 minutes

    1
    Ultima Thule

    NASA New Horizons spacecraft

    Kuiper Belt. Minor Planet Center

    CEO Bill Diamond is joined by New Horizons Hazard team lead and SETI Institute Senior Scientist, Mark Showalter to discuss the spacecraft’s flyby of Ultima Thule, what it’s like working on the Hazards team, and even the naming of some of Pluto’s surface features.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: