Updates from richardmitnick Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 4:44 pm on July 23, 2019 Permalink | Reply
    Tags: ,   

    From Spaceflight Insider: “Conference keeps focus on Pluto following New Horizons flyby” 

    From Spaceflight Insider

    July 23rd, 2019
    Laurel Kornfeld

    Image Credit: Johns Hopkins Applied Physics Laboratory

    Three years after NASA’s New Horizons spacecraft gave humankind our first close-up views of Pluto and its largest moon, Charon, scientists are still revealing the wonders of these incredible worlds in the outer Solar System. Marking the anniversary of New Horizons’ historic flight through the Pluto system on July 14, 2015, mission scientists released the highest-resolution color images of Pluto and Charon. This image was taken as New Horizons zipped toward Pluto and its moons on July 14, 2015, from a range of 22,025 miles (35,445) kilometers. This single color MVIC scan includes no data from other New Horizons imagers or instruments added. The striking features on Pluto are clearly visible, including the bright expanse of Pluto’s icy, nitrogen-and-methane rich “heart,” Sputnik Planitia.
    These natural-color images result from refined calibration of data gathered by New Horizons’ color Multispectral Visible Imaging Camera (MVIC). The processing creates images that would approximate the colors that the human eye would perceive, bringing them closer to “true color” than the images released near the encounter.
    This image was taken as New Horizons zipped toward Pluto and its moons on July 14, 2015, from a range of 22,025 miles (35,445) kilometers. This single color MVIC scan includes no data from other New Horizons imagers or instruments added. The striking features on Pluto are clearly visible, including the bright expanse of Pluto’s icy, nitrogen-and-methane rich “heart,” Sputnik Planitia.
    Date 18 July 2018
    NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex Parker

    A four-day science conference organized by the Lunar and Planetary Institute (LPI), Universities Space Research Association (USRA), and Johns Hopkins University Applied Physics Laboratory (JHUAPL) held July 14-18 focused on findings obtained by the New Horizons spacecraft as it flew by the Pluto system in 2015 and Kuiper Belt Object Ultima Thule in 2019.

    NASA/New Horizons spacecraft

    Titled The Pluto System after New Horizons, the conference, which featured presentations by many planetary scientists, addressed Pluto’s geology, atmosphere, orbital dynamics, and system origin as well as the nature of the double-lobed Ultima Thule (2014 MU69) and the radiation environment in the Kuiper Belt as measured by the spacecraft.

    It included poster sessions on topics such as the topography of Pluto and Charon, stellar occultations by Pluto in 2017 and 2018, composition of the early solar nebula based on the findings at Ultima Thule, computer simulations based on data returned by New Horizons‘ seven science instruments, and numerous related topics.

    Held at JHUAPL‘s Kossiakoff Center Kossiakoff Center, the conference also included discussions of followup observations from the ground as well as a possible return to the Pluto system with an orbiter. According to New Horizons Principal Investigator Alan Stern of the Southwest Research Institute in Boulder, Colorado (SwRI), if an orbiter is sent, it is likely to launch in the 2030s and arrive at Pluto during the 2040s.

    The conference was a followup to a similar Pluto Science Conference held in July 2013, at which time planetary scientists used both data collected during ground-based observations and via computer models to anticipate what New Horizons would find during its 2015 Pluto flyby. That conference concluded with the announcement of a post-flyby conference then planned for the summer of 2017. A subsequent two-year delay enabled participants to incorporate data from the Ultima Thule flyby as well as data about the Kuiper Belt environment collected by the probe.

    Noting the recent 50th anniversary of the Apollo 11 Moon landing, Kevin Schindler of the Lowell Observatory used the example of the Moon to describe the sequential stages of exploration required to learn about a celestial object. While the Moon has been observed since ancient times, Pluto is not visible to the naked eye and therefore has been studied for less than a century, he stated.

    The conference’s topics detailed continued study of Pluto and its family of natural satellites. Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Steve Gribben

    “If we are to comprehensively characterize Pluto, and by extension, any other planetary body, we must continue the quest for knowledge with continued multi-stage exploration.”

    Stern pointed out that due to Pluto’s 6.38-day-long rotation, New Horizons was able to image only one of its hemispheres, the “near” or “encounter” side, in high resolution. Pluto’s far side could be imaged only in low resolution because it was photographed at a greater distance, so scientists are uncertain as to whether that side is as heterogeneous as the near side is.

    Pluto’s diverse geology is most evident on the near side, which features a variety of terrains including dunes, cryovolcanoes, mountains of water ice, bladed terrain, and the young, geologically active left side of its heart feature, known as Sputnik Planitia. Its surface hosts volatile ices and complex organics known as tholins, produced by the interaction of sunlight with surface methane.

    The European Southern Observatory‘s (ESO) European Extremely Large Telescope, scheduled for construction during the 2020s, will be able to image Pluto at about the same resolution as New Horizons did at the far side.

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).

    While ground-based observations can and will be used to monitor changes in the planet’s color and composition, ultimately, “We need to go back with an orbiter,” Stern emphasized.

    At the 2013 conference, many scientists predicted Pluto would resemble Neptune’s large moon Triton, which likely orbited the Sun directly before being captured into the giant planet’s orbit. Yet ground-based observations of both worlds with the Atacama Large Millimeter/Submillimeter Array (ALMA) telescope revealed Pluto’s atmosphere may be more like that of Saturn’s moon Titan.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    While Pluto’s upper atmosphere contains high levels of hydrogen cyanide (HCN), Triton’s atmosphere shows only a weak HCN signal. Pluto’s atmosphere also has abundant methane while Triton’s does not.

    Kirby Runyon of Johns Hopkins University‘s Department of Earth and Planetary Sciences noted that New Horizons‘ findings, along with the discovery of nearly 4,000 exoplanets over the last 20 plus years, indicate pedagogy of the solar system needs to change from memorization of a short list of planet names to a focus on a larger, more complex solar system with inner, middle, and outer zones.

    Links to abstracts of all the presentations are available for reading on the conference’s Program and Abstracts website. Conference presentations and discussions will be the subject of a book, also titled The Pluto System After New Horizons, scheduled to be published in 2020 as part of the University of Arizona Space Science Series.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    SpaceFlight Insider reports on events taking place within the aerospace industry. With our team of writers and photographers, we provide an “insider’s” view of all aspects of space exploration efforts. We go so far as to take their questions directly to those officials within NASA and other space-related organizations. At SpaceFlight Insider, the “insider” is not anyone on our team, but our readers.

    Our team has decades of experience covering the space program and we are focused on providing you with the absolute latest on all things space. SpaceFlight Insider is comprised of individuals located in the United States, Europe, South America and Canada. Most of them are volunteers, hard-working space enthusiasts who freely give their time to share the thrill of space exploration with the world.

  • richardmitnick 3:27 pm on July 23, 2019 Permalink | Reply
    Tags: , , , , ,   

    From NASA Chandra Blog: “Exploring New Paths of Study with Chandra” 

    NASA Chandra Banner

    NASA/Chandra Telescope

    From NASA Chandra Blog

    Peter Edmonds, CXC

    We make progress in astrophysics in a variety of ways. There is the sort that starts along a defined path, driven by meticulous proposals for telescope time or detailed science justifications for new missions. The plan is to advance knowledge by traveling further than others, or clearing a broader path. And then there are others.

    A big mission like NASA’s Chandra X-ray Observatory begins with plans for investigation along a slew of different directions and lines of study. At the time of Chandra’s launch on July 23rd, 1999, scientists thought these paths would mainly follow studies of galaxy clusters, dark matter, black holes, supernovas, and young stars. Indeed, in the last 20 years we’ve learned about black holes ripping stars apart (reported eg in 2004, 2011 and 2017), about a black hole generating the deepest known note in the universe, about dark matter being wrenched apart from normal matter in the famous Bullet Cluster and similar objects, about the discovery of the youngest supernova remnant in our galaxy, and much more.

    Bullet Cluster NASA Chandra NASA ESA Hubble

    NASA/ESA Hubble Telescope

    Progress in astrophysics can also be made when new paths of study suddenly open up. Three outstanding examples for Chandra are studies of gravitational wave events, dark energy and exoplanets. None of these fields existed before Chandra was conceived or built, but have now delivered some of our most exciting results.

    Release: NASA Missions Catch FirstLight from a Gravitational-Wave Event

    The newest example is the study of X-rays produced by the aftermath of gravitational wave events. In 1999 the detection of gravitational waves seemed like a distant or even impossible goal for many astronomers. But the LIGO scientists kept improving their remarkably sensitive observatory until September 2015, when they detected a burst of gravitational waves from the merger of two black holes. Two black holes that merge are not expected to produce electromagnetic radiation, but the mergers of two neutron stars are. That is exactly what was as observed for the first time in August 2017 with LIGO and a slew of telescopes.

    VIRGO Gravitational Wave interferometer, near Pisa, Italy

    Caltech/MIT Advanced aLigo Hanford, WA, USA installation

    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger

    Gravity is talking. Lisa will listen. Dialogos of Eide

    ESA/eLISA the future of gravitational wave research

    Localizations of gravitational-wave signals detected by LIGO in 2015 (GW150914, LVT151012, GW151226, GW170104), more recently, by the LIGO-Virgo network (GW170814, GW170817). After Virgo came online in August 2018

    Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

    UC Santa Cruz

    UC Santa Cruz

    UCSC All the Gold in the Universe

    A UC Santa Cruz special report

    Tim Stephens

    Astronomer Ryan Foley says “observing the explosion of two colliding neutron stars” –the first visible event ever linked to gravitational waves–is probably the biggest discovery he’ll make in his lifetime. That’s saying a lot for a young assistant professor who presumably has a long career still ahead of him.

    The first optical image of a gravitational wave source was taken by a team led by Ryan Foley of UC Santa Cruz using the Swope Telescope at the Carnegie Institution’s Las Campanas Observatory in Chile. This image of Swope Supernova Survey 2017a (SSS17a, indicated by arrow) shows the light emitted from the cataclysmic merger of two neutron stars. (Image credit: 1M2H Team/UC Santa Cruz & Carnegie Observatories/Ryan Foley)

    Carnegie Institution Swope telescope at Las Campanas, Chile, 100 kilometres (62 mi) northeast of the city of La Serena. near the north end of a 7 km (4.3 mi) long mountain ridge. Cerro Las Campanas, near the southern end and over 2,500 m (8,200 ft) high, at Las Campanas, Chile

    A neutron star forms when a massive star runs out of fuel and explodes as a supernova, throwing off its outer layers and leaving behind a collapsed core composed almost entirely of neutrons. Neutrons are the uncharged particles in the nucleus of an atom, where they are bound together with positively charged protons. In a neutron star, they are packed together just as densely as in the nucleus of an atom, resulting in an object with one to three times the mass of our sun but only about 12 miles wide.

    “Basically, a neutron star is a gigantic atom with the mass of the sun and the size of a city like San Francisco or Manhattan,” said Foley, an assistant professor of astronomy and astrophysics at UC Santa Cruz.

    These objects are so dense, a cup of neutron star material would weigh as much as Mount Everest, and a teaspoon would weigh a billion tons. It’s as dense as matter can get without collapsing into a black hole.


    Like other stars, neutron stars sometimes occur in pairs, orbiting each other and gradually spiraling inward. Eventually, they come together in a catastrophic merger that distorts space and time (creating gravitational waves) and emits a brilliant flare of electromagnetic radiation, including visible, infrared, and ultraviolet light, x-rays, gamma rays, and radio waves. Merging black holes also create gravitational waves, but there’s nothing to be seen because no light can escape from a black hole.

    Foley’s team was the first to observe the light from a neutron star merger that took place on August 17, 2017, and was detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO).


    It turns out that the origins of the heaviest elements, such as gold, platinum, uranium—pretty much everything heavier than iron—has been an enduring conundrum. All the lighter elements have well-explained origins in the nuclear fusion reactions that make stars shine or in the explosions of stars (supernovae). Initially, astrophysicists thought supernovae could account for the heavy elements, too, but there have always been problems with that theory, says Enrico Ramirez-Ruiz, professor and chair of astronomy and astrophysics at UC Santa Cruz.

    The violent merger of two neutron stars is thought to involve three main energy-transfer processes, shown in this diagram, that give rise to the different types of radiation seen by astronomers, including a gamma-ray burst and a kilonova explosion seen in visible light. (Image credit: Murguia-Berthier et al., Science)

    A theoretical astrophysicist, Ramirez-Ruiz has been a leading proponent of the idea that neutron star mergers are the source of the heavy elements. Building a heavy atomic nucleus means adding a lot of neutrons to it. This process is called rapid neutron capture, or the r-process, and it requires some of the most extreme conditions in the universe: extreme temperatures, extreme densities, and a massive flow of neutrons. A neutron star merger fits the bill.

    Ramirez-Ruiz and other theoretical astrophysicists use supercomputers to simulate the physics of extreme events like supernovae and neutron star mergers. This work always goes hand in hand with observational astronomy. Theoretical predictions tell observers what signatures to look for to identify these events, and observations tell theorists if they got the physics right or if they need to tweak their models. The observations by Foley and others of the neutron star merger now known as SSS17a are giving theorists, for the first time, a full set of observational data to compare with their theoretical models.

    According to Ramirez-Ruiz, the observations support the theory that neutron star mergers can account for all the gold in the universe, as well as about half of all the other elements heavier than iron.


    Einstein predicted the existence of gravitational waves in 1916 in his general theory of relativity, but until recently they were impossible to observe. LIGO’s extraordinarily sensitive detectors achieved the first direct detection of gravitational waves, from the collision of two black holes, in 2015. Gravitational waves are created by any massive accelerating object, but the strongest waves (and the only ones we have any chance of detecting) are produced by the most extreme phenomena.

    Two massive compact objects—such as black holes, neutron stars, or white dwarfs—orbiting around each other faster and faster as they draw closer together are just the kind of system that should radiate strong gravitational waves. Like ripples spreading in a pond, the waves get smaller as they spread outward from the source. By the time they reached Earth, the ripples detected by LIGO caused distortions of space-time thousands of times smaller than the nucleus of an atom.

    The rarefied signals recorded by LIGO’s detectors not only prove the existence of gravitational waves, they also provide crucial information about the events that produced them. Combined with the telescope observations of the neutron star merger, it’s an incredibly rich set of data.

    LIGO can tell scientists the masses of the merging objects and the mass of the new object created in the merger, which reveals whether the merger produced another neutron star or a more massive object that collapsed into a black hole. To calculate how much mass was ejected in the explosion, and how much mass was converted to energy, scientists also need the optical observations from telescopes. That’s especially important for quantifying the nucleosynthesis of heavy elements during the merger.

    LIGO can also provide a measure of the distance to the merging neutron stars, which can now be compared with the distance measurement based on the light from the merger. That’s important to cosmologists studying the expansion of the universe, because the two measurements are based on different fundamental forces (gravity and electromagnetism), giving completely independent results.

    “This is a huge step forward in astronomy,” Foley said. “Having done it once, we now know we can do it again, and it opens up a whole new world of what we call ‘multi-messenger’ astronomy, viewing the universe through different fundamental forces.”


    Neutron stars
    A team from UC Santa Cruz was the first to observe the light from a neutron star merger that took place on August 17, 2017 and was detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)

    Graduate students and post-doctoral scholars at UC Santa Cruz played key roles in the dramatic discovery and analysis of colliding neutron stars.Astronomer Ryan Foley leads a team of young graduate students and postdoctoral scholars who have pulled off an extraordinary coup. Following up on the detection of gravitational waves from the violent merger of two neutron stars, Foley’s team was the first to find the source with a telescope and take images of the light from this cataclysmic event. In so doing, they beat much larger and more senior teams with much more powerful telescopes at their disposal.

    “We’re sort of the scrappy young upstarts who worked hard and got the job done,” said Foley, an untenured assistant professor of astronomy and astrophysics at UC Santa Cruz.

    David Coulter, graduate student

    The discovery on August 17, 2017, has been a scientific bonanza, yielding over 100 scientific papers from numerous teams investigating the new observations. Foley’s team is publishing seven papers, each of which has a graduate student or postdoc as the first author.

    “I think it speaks to Ryan’s generosity and how seriously he takes his role as a mentor that he is not putting himself front and center, but has gone out of his way to highlight the roles played by his students and postdocs,” said Enrico Ramirez-Ruiz, professor and chair of astronomy and astrophysics at UC Santa Cruz and the most senior member of Foley’s team.

    “Our team is by far the youngest and most diverse of all of the teams involved in the follow-up observations of this neutron star merger,” Ramirez-Ruiz added.

    Charles Kilpatrick, postdoctoral scholar

    Charles Kilpatrick, a 29-year-old postdoctoral scholar, was the first person in the world to see an image of the light from colliding neutron stars. He was sitting in an office at UC Santa Cruz, working with first-year graduate student Cesar Rojas-Bravo to process image data as it came in from the Swope Telescope in Chile. To see if the Swope images showed anything new, he had also downloaded “template” images taken in the past of the same galaxies the team was searching.

    Ariadna Murguia-Berthier, graduate student

    “In one image I saw something there that was not in the template image,” Kilpatrick said. “It took me a while to realize the ramifications of what I was seeing. This opens up so much new science, it really marks the beginning of something that will continue to be studied for years down the road.”

    At the time, Foley and most of the others in his team were at a meeting in Copenhagen. When they found out about the gravitational wave detection, they quickly got together to plan their search strategy. From Copenhagen, the team sent instructions to the telescope operators in Chile telling them where to point the telescope. Graduate student David Coulter played a key role in prioritizing the galaxies they would search to find the source, and he is the first author of the discovery paper published in Science.

    Matthew Siebert, graduate student

    “It’s still a little unreal when I think about what we’ve accomplished,” Coulter said. “For me, despite the euphoria of recognizing what we were seeing at the moment, we were all incredibly focused on the task at hand. Only afterward did the significance really sink in.”

    Just as Coulter finished writing his paper about the discovery, his wife went into labor, giving birth to a baby girl on September 30. “I was doing revisions to the paper at the hospital,” he said.

    It’s been a wild ride for the whole team, first in the rush to find the source, and then under pressure to quickly analyze the data and write up their findings for publication. “It was really an all-hands-on-deck moment when we all had to pull together and work quickly to exploit this opportunity,” said Kilpatrick, who is first author of a paper comparing the observations with theoretical models.

    César Rojas Bravo, graduate student

    Graduate student Matthew Siebert led a paper analyzing the unusual properties of the light emitted by the merger. Astronomers have observed thousands of supernovae (exploding stars) and other “transients” that appear suddenly in the sky and then fade away, but never before have they observed anything that looks like this neutron star merger. Siebert’s paper concluded that there is only a one in 100,000 chance that the transient they observed is not related to the gravitational waves.

    Ariadna Murguia-Berthier, a graduate student working with Ramirez-Ruiz, is first author of a paper synthesizing data from a range of sources to provide a coherent theoretical framework for understanding the observations.

    Another aspect of the discovery of great interest to astronomers is the nature of the galaxy and the galactic environment in which the merger occurred. Postdoctoral scholar Yen-Chen Pan led a paper analyzing the properties of the host galaxy. Enia Xhakaj, a new graduate student who had just joined the group in August, got the opportunity to help with the analysis and be a coauthor on the paper.

    Yen-Chen Pan, postdoctoral scholar

    “There are so many interesting things to learn from this,” Foley said. “It’s a great experience for all of us to be part of such an important discovery.”

    Enia Xhakaj, graduate student


    Scientific Papers from the 1M2H Collaboration

    Coulter et al., Science, Swope Supernova Survey 2017a (SSS17a), the Optical Counterpart to a Gravitational Wave Source

    Drout et al., Science, Light Curves of the Neutron Star Merger GW170817/SSS17a: Implications for R-Process Nucleosynthesis

    Shappee et al., Science, Early Spectra of the Gravitational Wave Source GW170817: Evolution of a Neutron Star Merger

    Kilpatrick et al., Science, Electromagnetic Evidence that SSS17a is the Result of a Binary Neutron Star Merger

    Siebert et al., ApJL, The Unprecedented Properties of the First Electromagnetic Counterpart to a Gravitational-wave Source

    Pan et al., ApJL, The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source

    Murguia-Berthier et al., ApJL, A Neutron Star Binary Merger Model for GW170817/GRB170817a/SSS17a

    Kasen et al., Nature, Origin of the heavy elements in binary neutron star mergers from a gravitational wave event

    Abbott et al., Nature, A gravitational-wave standard siren measurement of the Hubble constant (The LIGO Scientific Collaboration and The Virgo Collaboration, The 1M2H Collaboration, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, The Las Cumbres Observatory Collaboration, The VINROUGE Collaboration & The MASTER Collaboration)

    Abbott et al., ApJL, Multi-messenger Observations of a Binary Neutron Star Merger


    Watch Ryan Foley tell the story of how his team found the neutron star merger in the video below. 2.5 HOURS.

    Press releases:

    UC Santa Cruz Press Release

    UC Berkeley Press Release

    Carnegie Institution of Science Press Release

    LIGO Collaboration Press Release

    National Science Foundation Press Release

    Media coverage:

    The Atlantic – The Slack Chat That Changed Astronomy

    Washington Post – Scientists detect gravitational waves from a new kind of nova, sparking a new era in astronomy

    New York Times – LIGO Detects Fierce Collision of Neutron Stars for the First Time

    Science – Merging neutron stars generate gravitational waves and a celestial light show

    CBS News – Gravitational waves – and light – seen in neutron star collision

    CBC News – Astronomers see source of gravitational waves for 1st time

    San Jose Mercury News – A bright light seen across the universe, proving Einstein right

    Popular Science – Gravitational waves just showed us something even cooler than black holes

    Scientific American – Gravitational Wave Astronomers Hit Mother Lode

    Nature – Colliding stars spark rush to solve cosmic mysteries

    National Geographic – In a First, Gravitational Waves Linked to Neutron Star Crash

    Associated Press – Astronomers witness huge cosmic crash, find origins of gold

    Science News – Neutron star collision showers the universe with a wealth of discoveries

    UCSC press release
    First observations of merging neutron stars mark a new era in astronomy


    Writing: Tim Stephens
    Video: Nick Gonzales
    Photos: Carolyn Lagattuta
    Header image: Illustration by Robin Dienel courtesy of the Carnegie Institution for Science
    Design and development: Rob Knight
    Project managers: Sherry Main, Scott Hernandez-Jason, Tim Stephens

    Dark Energy Survey

    Dark Energy Camera [DECam], built at FNAL

    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet

    Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile, at an altitude of 7200 feet

    Noted in the video but not in the article:

    NASA/Chandra Telescope

    NASA/SWIFT Telescope

    NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

    Prompt telescope CTIO Chile

    NASA NuSTAR X-ray telescope

    See the full article here

    A Chandra observation two days after the merger failed to make a detection, but about a week later a source was discovered. These and additional observations taught us about the behavior and orientation of the jet that the neutron star merger produced.

    The interest in this X-ray detection was so intense that there was a race between three different teams to publish the early Chandra observations first. This was accompanied by a rush to publicly announce the full set of results from LIGO and telescopes across the electromagnetic spectrum, before too many smart science writers dug out the news from Twitter and other publicly available information.

    Release: All in the Family: Kin ofGravitational-Wave Source Discovered

    Chandra detections of two likely neutron star mergers have been reported since August 2017 (in 2018 and 2019). These did not involve a detection of GWs, both because Advanced LIGO wasn’t yet operating, and because the events were likely too distant to be detectable even if it was. When Advanced LIGO and Virgo detect other neutron star mergers, and optical telescopes track them down, Chandra “Target of Opportunity” programs will kick in to study them. (TOOs, as they are called, are special cases made by scientists to interrupt the regularly scheduled observations in favor of one that is time sensitive and/or extremely important.) One is a large proposal and collaboration between three different teams, one aims to take a spectrum, another aims to observe a relatively nearby event, and a fourth involves joint observations with the VLA.

    Those who work on Chandra and many in the wider science community were very excited about this detection because it marked the first time that gravitational waves and electromagnetic radiation were observed together, as a new type of “multi-messenger” astrophysics. (Multi-messenger astrophysics involves at least two of the following messengers: electromagnetic radiation, gravitational waves, neutrinos and cosmic rays.) However, it did not represent the first instance of multi-messenger astrophysics, because both electromagnetic radiation and neutrinos had already been observed from the Sun and from Supernova 1987A. Chandra may have already got into the act with the observation of a flare from material very close to the supermassive black hole in the center of our Galaxy, as reported in 2014. An energetic neutrino observed with the IceCube detector may have originated from this flare.

    Another exciting new line of study has come from the discovery that the expansion of the universe is accelerating. The two key papers providing the first evidence for this surprising result were published in 1998 and 1999, just before Chandra launched. Both papers used distance measurements to supernova explosions over the last 5 billion or so years to follow the expansion. Since then a set of different techniques have been used to independently confirm and extend these results, including two involving Chandra observations of galaxy clusters. In one of them the distances to galaxy clusters were used to probe the expansion rate of the universe and another involved measuring the effects of accelerating expansion in slowing down the growth rate of galaxy clusters, in a type of cosmic arrested development. As explained in this article, if it wasn’t for accelerating expansion the universe would look very different from how it looks today.

    The work measuring the growth rate of galaxy clusters has led to independent tests of Einstein’s General Theory of Relativity over distances that are much greater than those of Earth-orbiting satellites. The confirmation of GR has added to the evidence that a mysterious force called “dark energy” is causing cosmic acceleration.

    Release: Astronomers Find Dark EnergyMay Vary Over Time

    More recently, Chandra is being used with a new technique to probe cosmic expansion out to greater distances than are possible with supernova data. Astronomers have found tentative evidence that dark energy might be strengthening with time, but this result needs to be confirmed with more extensive use of Chandra data, a study that is currently underway, and independent work.

    The recently-launched European mission eROSITA will be taking a sensitive X-ray survey of the complete sky and will discover a huge number of galaxy clusters for follow-up studies of both dark energy and dark matter with Chandra.

    eRosita DLR MPG

    Release: NASA’s Chandra Sees Eclipsing Planetin X-rays for First Time

    Many think the field of exoplanets studies started in 1995 with the detection of a hot Jupiter around the star 51 Pegasus, acclaimed as the first exoplanet discovered around a Sun-like star. (This was about the time that the grinding and polishing of Chandra’s grazing-incidence mirrors was completed.) Chandra observations have shown cases of the tail wagging the dog, where a planet is affecting the star it is orbiting, in one case by making the star appear unusually old, and in others causing it to behave like a much younger star, as reported in 2011 and 2013.

    Chandra observations have uncovered multiple examples of planets under assault by outside forces. They’ve found cases where radiation from the host star is evaporating the atmosphere of a close-in planet (from 2011 and 2013), where the powerful gravity of a white dwarf may have ripped a planet apart, a case of possible stellar or planetary cannibalism, and a case where a star may be devouring a young planet. Chandra data was also used to show that young stars much less massive than the Sun can unleash a torrent of X-ray radiation that may significantly shorten the lifetime of planet-forming disks surrounding these stars.

    We look forward to reporting more results in these three new fields, along with discoveries from X-ray astronomy’s traditional specialities. We also hope to see new fields appear, for fresh exploration with NASA’s premier X-ray mission.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

  • richardmitnick 2:15 pm on July 23, 2019 Permalink | Reply
    Tags: Apollo 11 experiment 50th anniversary, At the time our Shane Telescope was the second largest in the world, August 1 part of the IEEE Milestones Program- honors significant technical achievements and innovations in electronics and computing. (The event is by invitation only.), Bronze plaque in the lobby of the Shane Telescope Dome at Lick Observatory dedicated on Thursday, UCO Lick C. Donald Shane 3.0-meter reflecting telescope,   

    From UC Santa Cruz: “Lick Observatory commemorates Apollo 11 experiment on 50th anniversary” 

    UC Santa Cruz

    From UC Santa Cruz

    July 22, 2019
    Tim Stephens

    The retro-reflector array can be seen in this NASA photo in front of the lunar module, between the flag and the astronaut, who is placing a seismograph on the lunar surface.

    The first precise measurement of the distance from Earth to the moon was achieved on August 1, 1969, in a landmark experiment involving Lick Observatory astronomers and the Apollo 11 astronauts.

    To commemorate this achievement on its 50th anniversary, a bronze plaque in the lobby of the Shane Telescope Dome at Lick Observatory will be dedicated on Thursday, August 1, as part of the IEEE Milestones Program, which honors significant technical achievements and innovations in electronics and computing. (The event is by invitation only due to space limitations.)

    Researchers used Lick’s 120-inch Shane Telescope [below] to fire a powerful laser at the moon and detect the light that bounced back from a retro-reflector array placed on the lunar surface by the Apollo 11 astronauts. By precisely timing the delay between short pulses of light from the laser and the return signals from the moon, the researchers were able calculate the distance with unprecedented accuracy.

    The Shane Telescope at Lick Observatory was used to fire a powerful laser at the moon and detect the signal returned from the retro-reflector array placed on the lunar surface by the Apollo 11 astronauts. (Photo by Laurie Hatch)

    By the time a laser pulse reached the moon, its light was spread out over an area about 2 miles in diameter, so the amount of light that came back to the telescope from the small (18 by 18 inches) reflector array was just a few photons.

    “It was a big technological feat to detect such a small signal,” said Elinor Gates, staff astronomer at Lick Observatory. “At the time, our Shane Telescope was the second largest in the world, and that gave Lick an advantage for detecting the signal.”

    Joseph Wampler, now a professor emeritus of astronomy and astrophysics at UC Santa Cruz, coordinated the experiment for Lick Observatory. The team at Lick overcame numerous technological challenges to get the Lunar Laser Ranging Experiment (LURE) to work. Wampler recalled that the agreement with NASA to use the Lick facilities happened in February 1969, leaving little time to prepare before the Apollo 11 mission in July.

    “The optical system coupling the telescope to the lasers had to be designed and built, a system for guiding the telescope using a TV camera was also needed, optical benches for the lasers had to be cleared through the Defense Department before they could be purchased, and finally, the dome housing the Shane Telescope required substantial modification,” he said.

    To accommodate the lasers, their optical benches, and the telescope guiding system, a pit was dug below the Shane Telescope and lined with tile. The tiled pit is still there, known to Lick astronomers as “the swimming pool.” Parts of the mirror system for directing the laser beams are also still installed on the telescope.

    Multiple teams

    According to Wampler, NASA was worried that when the Apollo astronauts left the moon, their rocket exhaust would leave the retro-reflector array covered with dust. Therefore, several teams were funded to try to detect it during the few hours that the astronauts remained on the moon after deploying the array. Two teams using different laser systems were working at Lick Observatory, and other teams were working at the McDonald Observatory in Texas and the Mount Haleakala Observatory in Hawaii. It soon became apparent that Soviet scientists were also trying to hit the LURE target with their own laser.

    The initial attempts were frustrated by a number of problems, including the moon’s position low on the horizon. Also, the high-powered ruby-crystal laser systems were prone to catastrophic equipment failures, complete with explosions and fried electronics. The first successful signal detection was achieved on August 1 using a KORAD laser system. Just a few days earlier, an equipment failure had sent Hal Walker, KORAD’s field operations manager for the project, driving 350 miles from Mt. Hamilton to KORAD’s labs in Santa Monica to get replacement parts.

    Gates, who will lead a tour of the Shane Telescope after the dedication of the plaque, said the LURE experiment was one of the first pieces of history she learned about when she started working at Lick Observatory 20 years ago. “Lick’s successful part in the Apollo 11 mission is a point of pride, even for those of us who are too young to remember the moon landing,” she said.

    At Lick, the laser ranging activities ended in August 1969, but observations have continued at other observatories, and subsequent Apollo missions (14 and 15) deployed additional retro-reflector arrays on the moon. LURE is the only Apollo experiment that is still returning data from the moon.

    In addition to the first precise measurements of the distance to the moon, these experiments have provided important information about the moon’s orbit and variations in its rotation, as well as improving our knowledge of continental drift, changes in the Earth’s rotation rate, and the precession of its spin axis.

    After the plaque dedication, a reception and talks will be held in Santa Clara, where Michael Bolte, professor of astronomy and astrophysics at UC Santa Cruz and former director of UC Observatories, will discuss Lick Observatory’s role. Hal Walker will talk about his role in the experiment in a conversation with Seth Shostak of the SETI Institute.

    The Institute of Electrical and Electronics Engineers (IEEE) History Center administers the IEEE Milestones Program. In addition to the plaque at Lick Observatory, the program will install a pedestal-mounted plaque in Santa Monica at the site where KORAD Lasers developed the ruby-crystal laser that was successfully used at Lick.

    For additional information about the August 1 events, contact Brian Berg, the IEEE Region 6 History Chair and Milestone Coordinator, at b.berg@ieee.org.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    UCSC Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)


    UC Observatories Lick Autmated Planet Finder, fully robotic 2.4-meter optical telescope at Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

  • richardmitnick 1:23 pm on July 23, 2019 Permalink | Reply
    Tags: , , , ,   

    From NASA Chandra (2): “NASA’s Chandra X-ray Observatory Celebrates Its 20th Anniversary” 

    NASA Chandra Banner

    NASA/Chandra Telescope

    From NASA Chandra

    July 23, 2019
    Media contacts:
    Megan Watzke
    Chandra X-ray Center, Cambridge, Mass.

    Molly Porter
    Marshall Space Flight Center, Huntsville, Alabama

    Credit: NASA/CXC/SAO

    On July 23, 1999, the Space Shuttle Columbia blasted into space carrying NASA’s Chandra X-ray Observatory.

    Twenty years later, a collection of new images has been released to commemorate this milestone.

    Chandra observes many different types of astrophysical objects with the sharpest vision of any X-ray telescope.

    Along with the Hubble Space Telescope, Spitzer Space Telescope, and Compton Gamma Ray Observatory, Chandra is one of NASA’s “Great Observatories”.

    NASA/ESA Hubble Telescope

    NASA/Spitzer Infrared Telescope

    NASA Compton Gamma Ray Observatory

    To commemorate the 20th anniversary of NASA’s Chandra X-ray Observatory, an assembly of new images is being released. These images represent the breadth of Chandra’s exploration, demonstrating the variety of objects it studies as well as how X-rays complement the data collected in other types of light. Some of these images contain Chandra data exclusively and the rest show how X-rays fit with the different types of light that other telescopes collect.

    See the full article for images and descriptions here.

    “In this year of exceptional anniversaries — 50 years after Apollo 11 and 100 years after the solar eclipse that proved Einstein’s General Theory of Relativity — we should not lose sight of one more,” said Paul Hertz, Director of Astrophysics at NASA. “Chandra was launched 20 years ago, and it continues to deliver amazing science discoveries year after year.”

    Chandra is one of NASA’s “Great Observatories” (along with the Hubble Space Telescope, Spitzer Space Telescope, and Compton Gamma Ray Observatory), and has the sharpest vision of any X-ray telescope ever built. It is often used in conjunction with telescopes like Hubble and Spitzer that observe in different parts of the electromagnetic spectrum, and with other high-energy missions like the European Space Agency’s XMM-Newton and NASA’s NuSTAR.

    Chandra’s discoveries have impacted virtually every aspect of astrophysics. For example, Chandra was involved in a direct proof of dark matter’s existence. It has witnessed powerful eruptions from supermassive black holes. Astronomers have also used Chandra to map how the elements essential to life are spread from supernova explosions.

    Many of the phenomena Chandra now investigates were not even known when the telescope was being developed and built. For example, astronomers now use Chandra to study the effects of dark energy, test the impact of stellar radiation on exoplanets, and observe the outcomes of gravitational wave events.

    “Chandra remains peerless in its ability to find and study X-ray sources,” said Chandra X-ray Center Director Belinda Wilkes. “Since virtually every astronomical source emits X-rays, we need a telescope like Chandra to fully view and understand our Universe.”

    Chandra was originally proposed to NASA in 1976 by Riccardo Giacconi, recipient of the 2002 Nobel Prize for Physics based on his contributions to X-ray astronomy, and Harvey Tananbaum, who would become the first director of the Chandra X-ray Center. It took decades of collaboration — between scientists and engineers, private companies and government agencies, and more — to make Chandra a reality.

    “The building and operation of Chandra has always been and continues to be a team effort,” said Martin Weisskopf, Chandra Project Scientist of NASA’s Marshall Space Flight Center. “It’s been an honor and a privilege to be involved with this scientific powerhouse.”

    In 2018, NASA awarded a contract extension to continue operation and science support of Chandra through 2024, with the possibility of two three-year options.

    The Chandra X-ray Observatory was named in honor of the late Nobel laureate Subrahmanyan Chandrasekhar. NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science and flight operations from Cambridge, Mass.

    Other materials are available at:

    For more Chandra images, multimedia and related materials, visit:

    See the full article by Megan Watzke and Molly Porter here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

  • richardmitnick 12:57 pm on July 23, 2019 Permalink | Reply
    Tags: "NASA Delivers Hardware for ESA Dark Energy Mission", , , , , , , , , , Near Infrared Spectrometer and Photometer (NISP) instrument, Thales Alenia Space   

    From European Space Agency and From NASA : “NASA Delivers Hardware for ESA Dark Energy Mission” 

    ESA Space For Europe Banner

    From European Space Agency


    NASA image

    July 23, 2019

    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.

    The cryogenic (cold) portion of the Euclid space telescope’s Near Infrared Spectrometer and Photometer (NISP) instrument. NASA led the procurement and delivery of the detectors for the NISP instrument. The gold-coated hardware is the 16 sensor-chip electronics integrated with the infrared sensors.
    Credits: NASA/JPL-CaltechEuclid Consortium/CPPM/LAM

    ESA/Euclid spacecraft

    Technicians with the manufacturer Thales Alenia Space work with the structural and thermal model of the Euclid telescope at their facility in Cannes, France.
    Credits: NASA/JPL-Caltech ESA/Thales Alenia Space/Airbus Defence and Space

    The European Space Agency’s Euclid mission, set to launch in 2022, will investigate two of the biggest mysteries in modern astronomy: dark matter and dark energy. A team of NASA engineers recently delivered critical hardware for one of the instruments that will fly on Euclid and probe these cosmic puzzles.

    Based at NASA’s Jet Propulsion Laboratory in Pasadena, California, and the Goddard Space Flight Center in Greenbelt, Maryland, the engineers designed, fabricated and tested 20 pieces of sensor-chip electronics (SCEs) hardware for Euclid (16 for the flight instrument and four backups).

    NASA JPL-Caltech Campus

    NASA Goddard Campus

    Airbus Defence and Space

    These parts, which operate at minus 213 degrees Fahrenheit (minus 136 degrees Celsius), are responsible for precisely amplifying and digitizing the tiny signals from the light detectors in Euclid’s Near Infrared Spectrometer and Photometer (NISP) instrument. The Euclid observatory will also carry a visible-light imaging instrument.

    The image, taken in May 2019, above shows the detectors and sensor-chip electronics on a flight model of the NISP instrument in the Laboratory of Astrophysics of Marseille in France. Eighteen SCEs have been delivered to the European Space Agency (ESA), and two more will soon be on their way. The detector system will undergo extensive testing ahead of launch.

    “Even under the best of circumstances, it is extremely challenging to design and build very sensitive and complex electronics that function reliably at very cold operating temperatures,” said Moshe Pniel, the U.S. project manager for Euclid at JPL, who led the team that delivered the sensor-chip electronics. “This truly remarkable team, spread across two NASA centers, accomplished this task under intense schedule pressure and international attention.”

    Euclid will conduct a survey of billions of distant galaxies, which are moving away from us at a faster and faster rate as the expansion of space itself accelerates. Scientists don’t know what causes this accelerating expansion but have named the source of this phenomenon dark energy. By observing the effect of dark energy on the distribution of a large population of galaxies, scientists will try to narrow down what could possibly be driving this mysterious phenomenon.

    In addition, Euclid will provide insights into the mystery of dark matter. While we can’t see dark matter, it’s five times more prevalent in the universe than the “regular” matter that makes up planets, stars and everything else we can see in the universe.

    To detect dark matter, scientists look for the effects of its gravity. Euclid’s census of distant galaxies will reveal how the large-scale structure of the universe is shaped by the interplay of regular matter, dark matter and dark energy. This in turn will allow scientists to learn more about the properties and effects of both dark matter and dark energy in the universe, and to get closer to understanding their fundamental nature.

    The NISP instrument is led by the Laboratory of Astrophysics of Marseille, with contributions from 15 countries, including the United States, through an agreement between ESA and NASA.

    Three NASA-supported science groups contribute to the Euclid mission. In addition to designing and fabricating the NISP sensor-chip electronics, JPL led the procurement and delivery of the NISP detectors. Those detectors were tested at NASA’s Goddard Space Flight Center. The Euclid NASA Science Center at IPAC (ENSCI), at Caltech, will support U.S.-based investigations using Euclid data.

    For more information about Euclid go to:


    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

  • richardmitnick 12:01 pm on July 23, 2019 Permalink | Reply
    Tags: "First-ever visualizations of electrical gating effects on electronic structure could lead to longer-lasting devices", ARPES-angle resolved photoemission spectroscopy, Spectromicroscopy beamline at the ELETTRA synchrotron in Italy, Two dimensional semiconductors are seen as potential components for the next generation of electronics with applications in flexible electronics; photovoltaics; and spintronics., ,   

    From University of Warwick and U Washington: “First-ever visualizations of electrical gating effects on electronic structure could lead to longer-lasting devices” 

    U Washington

    University of Washington

    University of Warwick

    From University of Warwick

    Peter Thorley
    Media Relations Manager
    (Warwick Medical School and Department of Physics)
    Email: peter.thorley@warwick.ac.uk
    Tel: +44 (0)24 761 50868
    Mob: +44 (0) 7824 540863

    Electrons ejected by a beam of light focused on a two-dimensional semiconductor device are collected and analyzed to determine how the electronic structure in the material changes as a voltage is applied between the electrodes.Nelson Yeung/Nick Hine/Paul Nguyen/David Cobden

    -Electronic structure of a semiconductor device – how it behaves when voltage is applied – visualised for the first time
    -Insights from the technique will help development of high performance electronics with low power consumption
    -University of Warwick and University of Washington led study uses focused light to ‘knock’ electrons out of atoms
    -Helps to pave the way for two dimensional semiconductors in future electronics

    Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

    Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in operating microelectronic devices made of atomically thin, so-called two-dimensional, materials.

    Using this information, they can create visual representations of the electrical and optical properties of the materials to guide engineers in maximising their potential in electronic components.

    The experimentally-led study is published in Nature* today (17 July) and could also help pave the way for the two dimensional semiconductors that are likely to play a role in the next generation of electronics, in applications such as photovoltaics, mobile devices and quantum computers.

    The electronic structure of a material describes how electrons behave within that material, and therefore the nature of the current flowing through it. That behaviour can vary depending upon the voltage – the amount of ‘pressure’ on its electrons – applied to the material, and so changes to the electronic structure with voltage determine the efficiency of microelectronic circuits.

    These changes in electronic structure in operating devices are what underpin all of modern electronics. Until now, however, there has been no way to directly see these changes to help us understand how they affect the behaviour of electrons.

    By applying this technique scientists will have the information they need to develop ‘fine-tuned’ electronic components that work more efficiently and operate at high performance with lower power consumption. It will also help in the development of two dimensional semiconductors that are seen as potential components for the next generation of electronics, with applications in flexible electronics, photovoltaics, and spintronics. Unlike today’s three dimensional semiconductors, two dimensional semiconductors consist of just a few layers of atoms.

    Dr Neil Wilson from the University of Warwick’s Department of Physics said: “How the electronic structure changes with voltage is what determines how a transistor in your computer or television works. For the first time we are directly visualising those changes. Not being able to see how that changes with voltages was a big missing link. This work is at the fundamental level and is a big step in understanding materials and the science behind them.

    “The new insight into the materials has helped us to understand the band gaps of these semiconductors, which is the most important parameter that affects their behaviour, from what wavelength of light they emit, to how they switch current in a transistor.”

    The technique uses angle resolved photoemission spectroscopy (ARPES) to ‘excite’ electrons in the chosen material. By focusing a beam of ultra-violet or x-ray light on atoms in a localised area, the excited electrons are knocked out of their atoms. Scientists can then measure the energy and direction of travel of the electrons, from which they can work out the energy and momentum they had within the material (using the laws of the conservation of energy and momentum). That determines the electronic structure of the material, which can then be compared against theoretical predictions based on state-of-the-art electronic structure calculations performed in this case by the research group of co-author Dr Nicholas Hine.

    The team first tested the technique using graphene before applying it to two dimensional transition metal dichalcogenide (TMD) semiconductors. The measurements were taken at the Spectromicroscopy beamline at the ELETTRA synchrotron in Italy, in collaboration with Dr Alexei Barinov and his group there.

    Dr David Cobden, professor in the Department of Physics at the University of Washington, said: “It used to be that the only way to learn about what the electrons are doing in an operating semiconductor device was to compare its current-voltage characteristics with complicated models. Now, thanks to recent advances which allow the ARPES technique to be applied to tiny spots, combined with the advent of two-dimensional materials where the electronic action can be right on the very surface, we can directly measure the electronic spectrum in detail and see how it changes in real time. This changes the game.”

    Dr Xiaodong Xu, from the Department of Physics and the Department of Materials Science & Engineering at the University of Washington, said: “This powerful spectroscopy technique will open new opportunities to study fundamental phenomena, such as visualisation of electrically tunable topological phase transition and doping effects on correlated electronic phases, which are otherwise challenging.”

    The research was supported by the Engineering and Physical Sciences Research Council, part of UK Research and Innovation, and the U.S. Department of Energy and the National Science Foundation.

    See the full U Warwick article here .
    See the full U Washington article here .

    *Citation from U Washington


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The establishment of the The University of Warwick was given approval by the government in 1961 and received its Royal Charter of Incorporation in 1965.

    The idea for a university in Coventry was mooted shortly after the conclusion of the Second World War but it was a bold and imaginative partnership of the City and the County which brought the University into being on a 400-acre site jointly granted by the two authorities. Since then, the University has incorporated the former Coventry College of Education in 1978 and has extended its land holdings by the purchase of adjoining farm land.

    The University initially admitted a small intake of graduate students in 1964 and took its first 450 undergraduates in October 1965. In October 2013, the student population was over 23,000 of which 9,775 are postgraduates. Around a third of the student body comes from overseas and over 120 countries are represented on the campus.

    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.
    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

  • richardmitnick 10:44 am on July 23, 2019 Permalink | Reply
    Tags: "A case study in happy extremophiles", “When two organisms exist together and provide benefits to each other it’s difficult to make them survive without each other.”, Christopher Abin, Gas chromatography, Methanotrophic microorganisms, Microbe-hunters, Montana State University, , NSF BuG ReMeDEE project (Building Genome-to-Phenome Infrastructure for Regulating Methane in Deep and Extreme Environments), South Dakota School of Mines & Technology (SD Mines), , University of Oklahoma   

    From Sanford Underground Research Facility: “A case study in happy extremophiles” 

    SURF logo
    Sanford Underground levels

    From Sanford Underground Research Facility

    July 19, 2019
    Erin Broberg

    Petri plate with colonies of a methanotrophic microorganism. Photo courtesy Christopher Abin

    If asked to describe your ideal environment, the odds are you wouldn’t opt for somewhere exceedingly salty, with an acidic pH or a dense supply of methane. However, some organisms (with fewer cells and vastly different standards than you and me) would say that sounds just about perfect.

    Researchers recently visited Sanford Underground Research Facility (Sanford Lab) to collect samples of organisms that prefer the damp, dark environment of the deep subsurface. Now, they are trying to replicate those seemingly abysmal conditions back in their laboratory. By providing the perfect conditions, researchers can selectively grow the bacteria they want to study.

    BuG ReMeDee researchers before their descent to the 4850 Level of Sanford Lab. Left to right: Roland Hatzenpichler, professor at Montana State University; Mackenzie Lynes, graduate student at Montana State University; Christopher Abin, postdoc at the University of Oklahoma; Christopher Garner, graduate student at OU; and Rosie Moon-Escamilla, graduate student at OU.

    This research is part of the National Science Foundation’s (NSF) BuG ReMeDee project (Building Genome-to-Phenome Infrastructure for Regulating Methane in Deep and Extreme Environments). This collaborative group of researchers from three universities is seeking to understand curious life forms called methanotrophs—organisms that survive by consuming methane.

    “Much of the general public looks at bacteria like germs, like something harmful,” said Christopher Abin, postdoctoral researcher at the University of Oklahoma. “But what we see is that the vast majority of bacteria are incredibly important—without them, the earth wouldn’t really function properly. In fact, life on earth would cease to exist without bacteria.”

    In the effort to understand and utilize the creatures that feast on a greenhouse gas more potent than carbon dioxide, each collaborating university has their niche.

    At South Dakota School of Mines & Technology (SD Mines), principal investigator Rajesh Sani’s team focuses on genetically engineering and improving methane-consuming microbes to create useable products and materials, such as biofuels, biodegradable plastics or electricity. At Montana State University (MSU), Robin Gerlach’s team is developing models that show how microbes consume methane and create energy. This helps scientists better understand how methane generated under such places as Yellowstone National Park and other geothermal environments and fossil fuel beds impacts our climate.

    But before models can be made and genes engineered, researchers need a solid understanding of how these organisms function. To study them in detail, researchers from the University of Oklahoma (OU) and under the lead of Lee Krumholz, collect and cultivate samples, isolating pure cultures of methanotrophs in the lab. There’s just one small setback: the organisms of interest come from some of our planet’s most extreme environments—environments that are quite difficult to replicate in a laboratory.

    As the microbe-hunters of the group, OU researchers go to various extreme environments—hot springs, lakes ten times saltier than the ocean, sulfur springs with no measurable oxygen content and locations in the deep subsurface, miles below the earth—in search of methanotrophs.

    “We don’t fully understand the flux of methane in these extreme environments,” said Abin. “These locations could be either a sink or a source of methane to the atmosphere. Little research has been devoted to understanding the microbes that inhabit these areas, so any samples we collect can be novel.”

    At Sanford Lab, researchers traveled deep underground to collect samples from biofilms and groundwater from boreholes on the 4850 Level and sediments from the 1700 Level.

    Christopher Abin sampling groundwater from a borehole on the 4850 Level of Sanford Lab. Photo courtesy Christopher Abin.

    “We also collected a sample from an exotic fungus growing on a wooden beam,” Abin said. “You don’t really know going in what you’re going to find, so you sample everything you think might be interesting. You might discover something really cool when you analyze it back in the lab.”

    During each excursion, the team takes two sets of samples. The first is dedicated to a DNA roll-call that identifies the hundreds—perhaps thousands—of species naturally present in that environment. The second set is dedicated to an advanced cultivation process in the lab, where researchers try to single out one or a few specific species through a process called enrichment.

    “In the lab, we put our samples in bottles that can be sealed completely then add concentrations of gases like methane and oxygen at precise concentrations. As the methanotrophs consume methane, the concentration slowly decreases,” explained Abin.

    Glass bottles containing s​​​​ediment samples incubating with methane and oxygen. Photo courtesy Christopher Abin.

    Called a gas chromatograph, this instrument is used to measure methane in the glass bottles. Photo courtesy Christopher Abin.

    “Once it is mostly depleted, we dilute the cultures to get rid of the background microbes we don’t want, achieving a higher proportion of just the methanotrophs,” said Abin. “We take a small amount of that liquid and place it onto a petri plate containing a semisolid material called agar to provide a substrate for the bacteria to grow on. As the bacteria grow, they produce visible colonies that we can purify further through a process called streaking.”

    A petri plate with colonies of a methanotrophic microorganism growing on agar. Photo courtesy Christopher Abin.

    At the end of the streaking process, researchers hope to isolate the single species from the multitudes present. Sometimes, however, organisms resist, preferring a more social environment.

    “Species don’t grow in pure cultures in their natural environment,” said Rosie Moon-Escamilla, a graduate student at OU. “When two organisms exist together and provide benefits to each other, it’s difficult to make them survive without each other.”

    If the methanotroph is growing in co-culture with another organism that is providing some sort of benefit to them, such as removing toxic substances or suppling a certain vitamin, the isolation process can get complicated.

    “You do a lot of work to get the organism isolated, always knowing in the back of your mind that they are happier in co-culture,” said Moon-Escamilla. “Sometimes, it may not be impractical to isolate them into distinct pure cultures, it may be impossible.”

    At the end of multiple rounds of streaking, if researchers have achieved a pure culture, they can begin to characterize them—What temperatures do they enjoy? Which solidities do they fancy?—to better understand the microbial preferences.

    “The challenge of microbiology cultivation in general is how to replicate the environment you sample from,” said Christopher Garner, an OU graduate student. “We estimate that 90 percent of all microorganisms out there haven’t been cultivated in the lab, because it’s just something that’s really hard to do. When your samples are from an extreme environment, that adds additional challenges that makes it more difficult to cultivate.”

    Collected from vastly differing locations, the physiology of these organisms varies—each suited to its own extreme environment—and each must be assessed and studied individually. The binding commonality, however, is that these organisms use methane as their energy source and have enormous potential in bioengineering applications.

    Assorted methanotroph cultures in OU laboratory. Photo courtesy Christopher Abin.

    “We’ve done a lot of work with media manipulation,” Moon-Escamilla said. “If you tailor the media to the specific location, being mindful of the salt and pH levels or different minerals present at each collection site, you have a better chance of increasing the number of microbes that will grow in the lab.”

    A microscope and image of a methane-consuming microbial consortium from one of an enrichment culture in the OU lab. Photo courtesy Christopher Abin.

    Much of the work involves experimentation, testing the conditions and letting the organism’s response inform the process.

    “There is immense value in traditional microbiology work—cultivating microbes from the environment and learning about their metabolisms,” Garner said. “We’ve only begun to understand really how many different kinds of microbes there are out there.”

    “The overarching goals of the BuG ReMeDEE consortium are to investigate methane cycling in deep and extreme environments and develop new biological routes for converting methane into value-added products,” said principal investigator Rajesh Sani. “Using ‘genome-to-phenome’ approaches, the consortium and will address critical regional, national and global issues of methane cycling, global warming, renewable energy and carbon neutrality.”

    “This collaboration will allow our groups to synergistically solve problems that could not be dealt with alone. I feel strongly that our work on isolating and better understanding methanotrophs at SURF and other locations will allow us to better understand the fate of methane and its role as a greenhouse gas,” said Lee Krumholz, who leads the work being done at OU.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.

    LBNL LZ project at SURF, Lead, SD, USA, will replace LUX at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    LUX’s mission was to scour the universe for WIMPs, vetoing all other signatures. It would continue to do just that for another three years before it was decommissioned in 2016.

    In the midst of the excitement over first results, the LUX collaboration was already casting its gaze forward. Planning for a next-generation dark matter experiment at Sanford Lab was already under way. Named LUX-ZEPLIN (LZ), the next-generation experiment would increase the sensitivity of LUX 100 times.

    SLAC physicist Tom Shutt, a previous co-spokesperson for LUX, said one goal of the experiment was to figure out how to build an even larger detector.
    “LZ will be a thousand times more sensitive than the LUX detector,” Shutt said. “It will just begin to see an irreducible background of neutrinos that may ultimately set the limit to our ability to measure dark matter.”
    We celebrate five years of LUX, and look into the steps being taken toward the much larger and far more sensitive experiment.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    FNAL LBNE/DUNE from FNAL to SURF, Lead, South Dakota, USA


    U Washington Majorana Demonstrator Experiment at SURF

    The MAJORANA DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment in the Sanford Underground Research Facility (SURF) in Lead, SD. The goal of the DEMONSTRATOR is to determine whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76Ge 0νββ Q-value at 2039 keV. MAJORANA plans to collaborate with GERDA for a future tonne-scale 76Ge 0νββ search.

    LBNL LZ project at SURF, Lead, SD, USA


    CASPAR is a low-energy particle accelerator that allows researchers to study processes that take place inside collapsing stars.

    The scientists are using space in the Sanford Underground Research Facility (SURF) in Lead, South Dakota, to work on a project called the Compact Accelerator System for Performing Astrophysical Research (CASPAR). CASPAR uses a low-energy particle accelerator that will allow researchers to mimic nuclear fusion reactions in stars. If successful, their findings could help complete our picture of how the elements in our universe are built. “Nuclear astrophysics is about what goes on inside the star, not outside of it,” said Dan Robertson, a Notre Dame assistant research professor of astrophysics working on CASPAR. “It is not observational, but experimental. The idea is to reproduce the stellar environment, to reproduce the reactions within a star.”

  • richardmitnick 8:44 am on July 23, 2019 Permalink | Reply
    Tags: "10 million star puzzle", , , , , , ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.,   

    From European Space Agency: “10 million star puzzle” 

    ESA Space For Europe Banner

    From European Space Agency

    ESA/CESAR/Wouter van Reeven, CC BY-SA 3.0 IGO

    When observed with the unaided eye, Omega Centauri, the object in this image, appears as a fuzzy, faint star. But the blue orb we see here is, in fact, a collection of stars – 10 million of them. You cannot count them all, but in this sharp, beautiful image you can see a few of the numerous pinpoints of bright light that make up this unique cluster.

    The image was taken by Wouter van Reeven, a software engineer at ESA’s European Space Astronomy Centre near Madrid, Spain, during his recent visit to Chile to observe the July total solar eclipse. From his home base in Spain the cluster only grazes the horizon, making it near-impossible to image, but from the ESO/Cerro LaSilla Observatory in Chile it was high in the sky, presenting the ideal opportunity to photograph it.

    ESO/Cerro LaSilla, 600 km north of Santiago de Chile at an altitude of 2400 metres.

    Omega Centauri is a picture-perfect example of a globular cluster: tightly bound by gravity, it has a very high density of stars at its centre and a nearly perfect spherical shape (the name ‘globular cluster’ comes from the latin word for small sphere, globulus). It lives in the halo of the Milky Way, at a distance of about 15 800 light years from Earth.

    As other globular clusters, Omega Centauri is made up of very old stars and it is almost devoid of gas and dust, indicating star formation in the cluster has long ceased. Its stars have a low proportion of elements heavier than hydrogen and helium, signaling they were formed earlier in the history of the Universe than stars like our Sun. Unlike in many other globular clusters, however, the stars in Omega Centauri don’t all have the same age and chemical abundances, making astronomers puzzle over the formation and evolution of this cluster. Some scientists have even suggested that Omega Centauri may not be a true cluster at all, but rather the leftovers of a dwarf galaxy that collided with the Milky Way.

    Omega Centauri is also special in many other ways, not least because of the sheer number of stars it contains. It is the largest globular cluster in our galaxy, at about 150 light years in diameter, and is also the brightest and most massive of its type, its stars having a combined mass of about four million solar masses.

    Omega Centauri can be seen with the naked eye under dark skies and imaging it doesn’t require long exposure times. To create the composition we see here, Wouter combined eight images taken with an exposure time of 10 seconds, seven images of 30 seconds each and another seven images of 60 seconds each. He used a SkyWatcher Esprit 80 ED telescope and a Canon EOS 200D camera.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

  • richardmitnick 7:58 am on July 23, 2019 Permalink | Reply
    Tags: "NVIDIA Launches U.K. Technology Center to Advance AI Research", EPCC, , NVIDIA AI Technology Center   

    From insideHPC: “NVIDIA Launches U.K. Technology Center to Advance AI Research” 

    From insideHPC

    July 22, 2019


    NVIDIA just launched a new technology center in the UK designed to support groundbreaking research in AI and data science — and foster engagement across the country’s higher education and research community.

    EPCC, Hartree Centre, and the University of Reading are the first to join the NVIDIA AI Technology Center, which provides a collaborative community for world-class talent driving AI adoption and excellence across the UK.

    STFC Hartree Centre

    “We want to be able to leverage the rapid advances of large-scale machine learning to help traditional supercomputing applications,” said Mark Parsons, EPCC director and associate dean of e-research. “One area where this has been shown to be very promising is in the preconditioning of iterative solvers, which is where we will start targeting our efforts and exploit the capabilities of GPUs.”

    Center members receive access to NVIDIA expertise and resources to support their projects. Initial research projects at EPCC will explore applying AI and trans-precision calculations to the modeling and simulation of complex multi-scale structures.

    The project’s goal is to accelerate large-scale mechanical, structural and fluid dynamic simulations that can be applied to gas turbine modeling. Building on recent work by EPCC, the researchers will use a machine learning and trans-precision computing approach to improve the convergence and performance of iterative solvers for linear systems of equations.

    The Hartree Centre’s collaboration with NVIDIA will focus on digital twinning — the detailed virtual representation of physical assets. This work will enable U.K. industry to develop new products and optimize their processes, boosting productivity and reducing time to market.

    “Becoming part of the NVIDIA AI Technology Center will help us to work with our industry and academic networks on more projects supporting the co-creation and adoption of AI solutions,” said Alison Kennedy, director of the Science and Technology Facilities Council at Hartree Centre. “With our internationally recognized expertise in data analytics, leading high performance computing platforms, and focus on innovation and industry impact, we’re ideally situated to help businesses realize benefits in productivity from novel technologies like AI.”

    As a member of the NVIDIA technology center, University of Reading will investigate machine learning methods to enhance simulation workflows in weather and climate. Its first project applies deep learning techniques in data-intensive simulations to identify important data structures for subsequent storage.

    Such techniques will be necessary to avoid the data deluge arising from better, more complex models. The approach taken in this project will minimize the volume of data that needs to be stored and processed — saving time, energy and hardware costs.

    “AI methods are on the brink of revolutionizing computational science in many respects,” said Julian Kunkel, lecturer in the Department of Computer Science at the university. “A distinctive benefit for data-intensive science is that AI will empower scientists to analyze data generated by large-scale simulations effectively reducing the time for scientific breakthroughs. The NVAITC is a crystallization point for industry and academic collaboration. It will accelerate and increase the impact of our research.”

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Founded on December 28, 2006, insideHPC is a blog that distills news and events in the world of HPC and presents them in bite-sized nuggets of helpfulness as a resource for supercomputing professionals. As one reader said, we’re sifting through all the news so you don’t have to!

    If you would like to contact me with suggestions, comments, corrections, errors or new company announcements, please send me an email at rich@insidehpc.com. Or you can send me mail at:

    2825 NW Upshur
    Suite G
    Portland, OR 97239

    Phone: (503) 877-5048

  • richardmitnick 10:16 pm on July 22, 2019 Permalink | Reply
    Tags: "10 billion years ago the Milky Way ate a smaller galaxy dubbed Gaia-Enceladus", , , , , , ,   

    From COSMOS Magazine: “10 billion years ago, the Milky Way ate a smaller galaxy dubbed Gaia-Enceladus” 

    Cosmos Magazine bloc

    From COSMOS Magazine

    23 July 2019
    Barry Keily

    Artist’s impression of the merger between the Gaia-Enceladus galaxy and the Milky Way. NASA/ESA/Hubble, CC BY-SA 3.0 IGO

    NASA/ESA Hubble Telescope

    The Milky Way achieved its present form about 10 billion years ago when it merged with a smaller, neighbouring galaxy, new observations and modelling show.

    Researchers led by astrophysicist Carme Gallar of the Universidad de La Laguna in Spain took advantage of measurements taken by the European Space Agency’s Gaia space observatory, which was launched in 2013 for the dedicated purpose of mapping the positions of stars with unprecedented accuracy.

    ESA/GAIA satellite

    They took the new data and subjected it to the two most commonly used techniques for estimating the age of stars – comparison with existing stellar models and what is known as colour-magnitude diagram fitting.

    The approach was applied to Gaia measurements for the galaxy’s two outer rings of stars – known as the blue and red haloes – and what astronomers call its thick central disc.

    The results showed that the stars in the haloes were all more ancient than those in the disc, with those in the former category all exceeding 10 billion years old.

    MIlky Way Galaxy NASA/JPL-Caltech /ESO R. Hurt

    The sharp age difference, the researchers say, confirms and, for the first time, accurately dates a titanic encounter between the progenitor of the Milky Way and a neighbouring, smaller galaxy, dubbed Gaia-Enceladus.

    The different colours of the two haloes are an indication of the iron content of their respective stars. Red stars contain more of it than blue ones. Colour also often indicates great age. Until now, thus, astronomers assumed that the Milky Way’s blue halo was younger than its red one.

    Gallar and colleagues used Gaia data to show that this is not the case. Their modelling reveals that the red and blue haloes contain stars of identical age, and that each region started and ceased star production at about the same time.

    The difference in iron content, the researchers say, is a function of a galaxy size – more massive galaxies contain larger amounts of metal than smaller ones. Thus, they write, the result “means that the stars in the red sequence of the halo, being more metal-rich, must have formed in a galaxy that was more massive than the one where the stars in the blue sequence were formed.”

    The blue halo, they say, represents the remnants of Gaia-Enceladus – a galaxy they estimate to have been around a quarter of the size of the proto Milky Way.

    The research is published in the journal Nature Astronomy.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: