Updates from richardmitnick Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:40 pm on November 22, 2017 Permalink | Reply
    Tags: , , , , Sangeeta Bhatia,   

    From Brown: Women in STEM- “Building a Better Way” Sangeeta Bhatia 

    Brown University
    Brown University

    November/December 2017
    Louise Sloan

    1
    Sangeeta Bhatia. Geordie Wood

    ____________________________________________________________________________________________

    Be Recognized for Who You Are

    Sangeeta Bhatia ’90 may not have had many role models to look up to as a woman engineer, but that doesn’t mean she didn’t learn a lot of lessons along the way. Here’s some of her advice for people from any group that has been historically underrepresented in the field.

    STAY CONFIDENT. Being one of the only women or people of color in your field is difficult. Keep focused on your strengths. Bhatia says she struggled with “imposter syndrome.” “There’s this feeling that you don’t belong, and you’re always second guessing yourself. That does diminish with time.”

    TAKE THAT MEETING. With famous scientists or engineers, Bhatia learned to ask questions or strike up a conversation about the person’s most recent paper. The collaboration that led to one of her most important breakthroughs was a result of following up on a colleague’s offer of an introduction. Worst case, making connections can make a dull meeting more interesting. “Okay, I’m at a conference,” she’d tell herself; “Who are the people I want to meet? What the heck? Let’s meet them.”

    SPEAK UP EARLY ON. In business meetings, Bhatia says, often “I was the only woman, only engineer, only person of color.” And she looked young. “One thing I quickly realized was that I needed to make a comment or ask an insightful question pretty early in the convening of a group.” It wasn’t her personal style to do this, but, she realized, “there are times where you’ve got a group of really high-powered people together, and you’re there for an hour, and nobody knows who you are. You have something important to add. You have to make it clear early in the conversation why you’re at the table.”

    IDENTIFY MENTORS. When Bhatia and Theresia Gouw ’90 were seniors and looked into what made some women stay in engineering while so many others left, they found that what the women who’d stayed all had in common was mentors—whether that was a professor, parents, or a family friend. Bhatia concedes it’s hard to force these relationships. It’s clear that her mentors came not just through luck but also through her own efforts in cultivating relationships with key people around her and following up on any advice and opportunities.

    STUDY SUCCESS. Identify your weaknesses and look around at who is doing that thing well. Bhatia says she was comfortable expressing her ideas one-on-one, and as a professor she also became comfortable speaking to a lecture hall. But groups of between 10 and 30 people in faculty meetings or on advisory boards felt awkward to her. “I started studying it and looking at who is really effective in this setting. How have they managed to be effective? At what points are they choosing to speak up? What offline work have they done to grease this conversation so that by the time they speak up, they’re able to carry the room? I made kind of a project of it, trying to figure it out, because I realized I wasn’t actually naturally good at that.”

    BE YOUR OWN BOSS. “This is something Theresia has taught me, which is that one of the answers to diversity is to create your own organization, put yourself at the top, make the culture that you want it to be.
    ____________________________________________________________________________________________
    3
    Lego characters designed by Maia Weinstock ’99, Photo by Erik Gould
    Lego minifigures, like engineers, are disproportionately
 male. But Sangeeta Bhatia ’90 has her own, custom-made in 2015 by Maia Weinstock ’99. It’s a fitting tribute to the engineer, physician, biotech entrepreneur, and mom who takes tiny pieces and puts them together in unexpected ways.

    Bhatia is literally a soccer mom when she’s not coming up with incredible scientific breakthroughs. Her husband, Jagesh Shah, coaches their daughters’ teams. But take heart, mere mortals. “My car is a mess; it smells like a dead animal right now,” she has admitted. “I don’t cook. At all.”

    Bhatia does a lot of things a little differently. She has used microfabrication, the technology behind microchips, to grow human liver cells outside the body. This has allowed drug companies to test toxicity on these “micro livers” in the lab and to hope that they can someday manufacture whole human livers for transplant patients. She is a senior scientist at a top institution, but instead of spending nights and weekends at the lab, she insists on balance so that, for example, Wednesdays are “Mommy Day” spent with her kids.

    Her very presence in the field of bioengineering as an engaging, stylish woman of color is de facto doing things differently. “Many people still have this image of an engineer as a kind of nerdy guy, interested in taking things apart,” Bhatia said in an October 2015 speech at Brown celebrating the groundbreaking of the new engineering building (it just opened this fall). “Someone who stays up all night playing video games and eating Doritos, with very few social skills. Right?”

    Bhatia, a petite figure in a sleeveless top and capri pants, her toenails a chic shade of blue, is not that guy. She took a gap year after Brown in which she backpacked and taught aerobics. She does classical Indian dance to relax—she thinks that’s what caught the attention of Brown’s admission office—and, with husband Jagesh Shah, a professor at Harvard, she runs her kids’ elementary school science fair. She’s literally a soccer mom—Shah coaches their daughters’ teams. But take heart, mere mortals. “My car is a mess; it smells like a dead animal right now,” she admitted to Nova ScienceNOW when they profiled her in 2009. “I don’t cook. At all.”

    What she does do, with the team she’s assembled at her lab at MIT, is figure out which sequences of amino acids can get into a tumor, then put them on synthetic materials that are way smaller than the diameter of a human hair, and use that to detect cancer. They’ve managed to grow the dormant version of malaria in a dish so drugs can be tested in vitro before being tested in humans. They’ve also prototyped breathalyzer and urine tests for cancer.

    Bhatia has been elected to the National Academy of Sciences and the National Academy of Inventors, and she was one of the youngest women ever elected to the National Academy of Engineering. She’s won prestigious national prizes and awards, including the Lemelson-MIT Prize, known as the “Oscar for inventors.” In addition to having her own lab, the Laboratory for Multiscale Regenerative Technologies, she recently launched The Marble Center for Cancer Nanomedicine at MIT. The prize for cleanest car in the Boston area can probably wait.

    The door to her future was in the Biomed Center

    Bhatia, who was born and raised in Boston, got interested in bioengineering at Brown when, in order to get to her human physiology lab, she had to walk past a door in the Biomed Center that was labeled “artificial organs.” That sounded cool to her, so one day she knocked on the door. “I begged them to let me intern,” she says. She spent the summer working on using electricity-producing plastics (piezoelectrics) to enhance nerve regeneration and became hooked on the field that is now called tissue engineering. After Brown and that post-undergrad gap year, in which she also worked for a pharmaceutical company pressing pills (“it was really boring”), she started grad school at MIT.

    Her parents approved. Bhatia’s father was an engineer, and her mother was one of the first women in India to earn an MBA. They considered three careers acceptable: doctor, engineer, or entrepreneur. So when Bhatia said she wanted to pursue a PhD because bioengineering bosses seemed to have them, her father, who felt PhDs are often impractical, asked, “When are you going to start a company?”

    It took a few years. In 2008 she launched Hepregen to bring the artificial liver technology to the commercial market, and she started Glympse Bio in 2015 to commercialize the urine-test diagnostics, with investment from her Brown roommate, longtime friend, and venture capitalist Theresia Gouw ’90. “We are scheduled to start, we hope, our first clinical trials next year,” Bhatia says, “It’s like having another child.”

    Bhatia’s work producing artificial livers started in her second year at MIT, when she joined the lab of Mehmet Toner, a biomedical engineer who was trying to develop a device that would use human liver cells to process the blood of patients with liver failure. Bhatia set out to figure out how to get liver cells to grow outside the body. She tried and failed for two years. Then she had a breakthrough.

    In the body, liver cells don’t just grow on their own, Bhatia explains. They grow in a particular structure—a community, she calls it—with connective tissue cells. But just throwing both types of cells into a petri dish didn’t work. Instead, Bhatia hit on the idea of creating the right structure for these cells by using microfabrication techniques designed to create computer chips. Instead of putting tiny circuits on a chip, she etched a glass culture dish with the geometric configuration in which liver cells grow in the body. Success: the liver cells, organized in the right way and supported by connective tissue cells, could live for several weeks outside the body. Today, pharmaceutical companies around the world use Bhatia’s micro livers, grown from human liver cells, to test whether or not their drugs are toxic to humans before they try them on actual people.

    While Bhatia worked in Toner’s lab, she started taking the year’s worth of medical school classes at Harvard that her biomedical engineering program required. Fascinated, she added even more med school classes. Then after she finished up her bioengineering PhD, she transferred into Harvard Medical School as a third-year med student—a foray into one of her other parentally approved career paths. But she still threw her hat in the ring for academic gigs and later that year accepted a junior professor position at UC San Diego. So in 1999, her fourth year of medical school, she multitasked, working at both a hospital (“for inspiration”) and a research lab (“where my heart is”). The combination remains crucial for her work, Bhatia says. “Over my career, I have always looked to the clinic to recognize what the real unmet medical needs are,” she explains.

    In 2005, after six years in San Diego, Bhatia returned with Shah and their first daughter to Boston to accept a professorship at MIT.

    How to build a kinder, gentler top academic lab

    When Bhatia was in grad school she looked “up the pipeline” to the lives of research scientists and engineers, and she didn’t like what she saw. When she popped into the lab one Saturday night at 3 am, her colleagues were still working. When she thought about her future, she says, “I realized I didn’t want to be there every Saturday night.” So when she set up her own lab at MIT, she prioritized excellence but she had other key concerns.

    As with the liver cells she studies, she feels people thrive best in a community and with support. For her own sake and to enhance the success of her lab, Bhatia makes it a priority to hire people who aren’t just great at what they do but can also get along well with others. Like some high-tech entrepreneurs, she encourages them to both work hard and live a balanced life—and to spend 20 percent of their work time “tinkering” on creative projects that may or may not pan out. (The breathalyzer test for cancer came out of one of these “submarine” projects, so called because they’re hidden from Bhatia unless they succeed.) Bhatia’s lab manager, Lian-Ee Ch’ng, says the lab, a warren-like series of rooms on the fourth floor of MIT’s Koch Institute for Integrative Cancer Research, feels very different from others she has worked in. “Sangeeta has a very personal touch,” Ch’ng says.

    Thirty people work in Bhatia’s lab, including a research director, scientists, and the grad students. It looks like any top facility, with row after row of workstations and separate rooms for incubators, specialized microscopes, ultra-low-temperature freezers, and massive tanks of liquid nitrogen. They have a 3-D printer and, perhaps the most high-tech piece of equipment in the lab, Ch’ng says, the Pannoramic 250, a high-speed, five-color slide scanner that produces beautiful digital images of the cells on a microscope slide.

    It looks like a place built for workaholics, where it would be easy to keep your head down and your focus on yourself. But Bhatia doesn’t allow it. She sets a tone of collegiality, Ch’ng says, which really makes a difference: “People talk to each other.”

    There’s an inherent tension, Bhatia admits, in bringing together excellent, ambitious people and also prioritizing work-life balance, community, and citizenship. “They’re not all exactly the same thing,” she says. But this combination of priorities may be an important reason why the Bhatia lab has a staff that’s about half female. “I have an orientation that attracts young moms,” she says. Her male staff members who have kids are probably able to be better dads, too.

    “I think Sangeeta’s a wonderful role model for women,” then-grad student Geoffrey Von Maltzahn told Nova. “But she’s a terrific role model for anybody. One of the hardest things in life is to make a clear distinction between how much time you’re going to dedicate to your work and how much time you’re going to dedicate to your family and your friends. She’s able to manage that with a sense of ease that I think is inspirational, independent of whether you’re a man or a woman.”

    However, when Bhatia started working from home on Wednesdays so that she could pick up her daughters from school, she felt it was professionally risky. So at first she called it “working off campus.” Now, everyone knows it’s “Mommy Wednesday.” She makes a point of modeling work-life balance to show that it can be done without sacrificing success.

    She’s also purposely using her visibility as a top scientist to be a role model for women in engineering. “There are not a lot of engineers that look like me, still.” Yet when she first got to Brown, she didn’t see what all the “diversity” fuss was about. “I looked around the classroom and thought that there were plenty of women.”

    Then, when she was a senior, she and her friend Theresia Gouw looked around again, and there were many fewer women—only seven in a class of 100. “We realized that we had just witnessed the so-called disproportionate attrition, the leaky pipeline.”

    Bhatia started reading about the subtle bias and the feeling of “not belonging” that discourages many women from pursuing the field. She and Gouw surveyed the other women who stayed in engineering and found that “every one of them had had mentors or parents who encouraged them.”

    As a newcomer to MIT, and as one of the few women engineering graduate students, Bhatia got a clear taste of that “not belonging” feeling when a thermodynamics professor asked her, on the first day, if she was in the right class. At first, Bhatia says she did what she could to downplay her femininity, wearing pants and not much makeup, trying to disappear. But later, she realized she had to be visible to make a difference and help patch up that leaky pipeline. So she makes a point of speaking openly and specifically about being a woman engineer.

    Bhatia thinks her attitude stems from the orientation towards public service she got in college. “I think that’s very Brown,” she says. “Not just noticing, but taking action.” But she says that her commitment to gender and other types of diversity also happens to be good business. “Just look at the metrics,” she points out. “Quality of ideas, return on investment, time to profitability, every objective metric has shown to be improved with diversity.”

    Though living a balanced life was important to Bhatia, she feared the consequences on her career. “I said to myself, ‘This is a tradeoff I’m willing to make. If it means I’m not at the top of my field, that’s absolutely a decision I’m making with my eyes open.’”

    Instead, she found that her choice to have a life outside the lab had the opposite effect: it helped her excel. “You have to find a way to sustain your energy and your creative spirit,” she says. As many workplace productivity studies have shown, having downtime increases productivity, and Bhatia is no exception to this rule. “I feel like if I worked the way that I thought I was supposed to, I actually think I wouldn’t be as productive. For me it’s helpful to come in and out of those worlds.”

    The tiniest tools 
on earth

    Bhatia’s still working with livers, but microfabrication is now old technology. Much of her current work uses nanotechnology: “You make materials so tiny that they can circulate in the body,” she explains.

    It’s with these insanely small tools that Bhatia set out to find better ways to diagnose and treat cancer. While still at UC San Diego, she began collaborating with renowned cancer researcher Erkki Ruoslahti, who had figured out how to engineer viruses so they’d home in on tumors. Bhatia replicated that, not with viruses but with materials, such as quantum dots (qdots), little semiconductor crystals that are more than ten thousand times smaller than the width of a strand of human hair.

    Bhatia coated qdots with peptide sequences that would allow them to enter tumor cells. Then she injected the qdots into mice that had cancer. Sure enough, the qdots homed in on the tumors. In 2002, Bhatia and Ruoslahti published a paper on their findings. “A lot of people say it was one of the first of its kind in what later became this field of nanomedicine,” Bhatia says.

    The urine test for cancer was an outgrowth of that work—and a happy accident. In the Bhatia lab, they were trying to make “smart contrast agents,” materials that would light up in tumors and thus show up on an MRI. “That was when the students noticed that whenever the animals were tumor-bearing, the bladder would light up,” Bhatia says. “Then we realized we didn’t need an MRI at all, that we had created this kind of urine diagnostic.” All they had to do was create a paper test to detect the biomarker that appeared in the urine and voilà, an inexpensive and relatively noninvasive test for cancer.

    “We think it’s a platform technology,” says Bhatia, who is investigating the use of this type of diagnostic with other diseases, including liver disease, which could help patients avoid expensive and invasive biopsies. The test works great in mice, so their biggest hurdle is to work with the FDA so that it can be tested on people.

    The “blue-sky” goal

    One of Bhatia’s dreams is to create a functioning human liver made outside the body that can be implanted into it. That goal is still far away, but it’s getting closer. In June, she published a paper that explained her group’s successful attempt to grow working livers in mice.

    Building on her micro liver technology, they used a 3-D printer to produce tiny liver “seeds” that they populated with a community of liver cells and helper cells. The configuration, they thought, would allow the cells to respond to regeneration cues—the liver being one of the only organs in the body that can regenerate.

    They implanted these seeds in mice with failing livers—and the lab-created livers grew 50 times larger in the mice’s bodies. They also looked a lot like real livers and performed liver functions. Making a liver for a human obviously requires many more cells than making one for a mouse, though.

    “We think you probably need about 10 billion cells to get up to clinically relevant tissue, which is a lot and too many to print practically in a reasonable amount of time,” Bhatia says. “We have a long way to go.”

    In the meantime, they have found another use for the micro livers: testing malaria drugs. “There’s a really elusive dormant form of vivax malaria that can hide out in a liver,” Bhatia explains. The only drug that’s been known to clear this dormant form of the disease is primaquine, which has been around since World War II. But it can cause blood damage in patients, and some strains of the dormant malaria have developed resistance to it. “There’s been a big push for new drugs since 2008, when the World Health Organization announced a new malaria eradication campaign,” Bhatia says.

    What Bhatia’s team has been able to do is grow this dormant strain of malaria in their micro livers, allowing drugs to be tested against it. “Now we’re trying to molecularly describe it, which has never been done,” she says.

    The malaria work came about because a lab member, graduate student Nil Gural, wanted to work on the untreatable form of the disease. “When she came, we had never grown [the dormant strain] before. We had no access to it.” Gural, who is originally from Turkey, said she was willing to live in Bangkok for a while to get it going.

    Gural has now been working on this for a couple of years, going back and forth from Boston to Bangkok. The work is going really well, Bhatia says. The lab is working with Medicine for Malaria Ventures, the organization that is coordinating the effort to develop new drugs that will work on the dormant stage of the disease. Given that there are about 212 million malaria cases that cause nearly half a million deaths each year, according to the World Health Organization, it’s research that has great potential for positive impact.

    Bhatia says her commitment to malaria work comes out of her entrepreneurial instincts as shaped by Brown. “My professional work has started out in what I would say is a very high-tech place,” she says, “and that’s growing 3-D livers. That’s probably going to be an expensive solution for patients with liver failure. The same thing for our cancer work. We’re working on really, really, really cutting-edge but still expensive ideas.”

    Expensive ideas are, of course, where the profit lies for an entrepreneur. But Bhatia says Brown taught her to look beyond profit to ask, “What can you do to make the world a better place?” For Bhatia, that’s finding global health applications for her work, such as taking the micro livers and using them to help eradicate malaria, or using the nanotechnology the lab comes up with to create inexpensive paper-based diagnostic urine tests for lung, colon, and ovarian cancers, allowing patients to be tested and even treated right on the spot, including in remote areas of developing countries where follow-up can be next to impossible. That’s still a dream, but as she said in her Spring 2017 TED Talk, “We already have this working in mice.”

    Half of Bhatia’s staff crowds into her office every Friday—it switches back and forth between the cancer and liver groups. It’s a medium-sized office with a desk, a small table, and a small couch. Behind her desk is a large framed print of something that looks like a lush white flower in full bloom. It’s actually a genetically engineered colony of yeast. Her Lego figure is perched on a window sash, and below it an unusual clock keeps the time. Six metal figures in the clock itself appear to hoist a seventh who hangs below, though every time the seventh figure gets almost to the top, it falls down again. Her husband gave it to her as a present when she got tenure. “What he said was, ‘Look at all these people helping you climb. You’re leading a team and they’re helping you achieve your vision.”

    “I was like, that’s nice, but once you get tenure”—the figure plummets to the bottom again as if to illustrate her point—“you climb the next ladder.”

    Fifteen people assemble in this space that would comfortably seat half as many. “They sit on the floor and the table,” Bhatia says. “We keep saying maybe we should move to the conference room but I think they like the intimacy of barreling into my office for 90 minutes.” The group uses the time to talk about early results of experiments and to “cross-fertilize.”

    “I’m continually reinforcing that,” Bhatia says. “Otherwise they don’t talk to each other.” Science is a lot of failure, she adds. “You have to think of all different ways to keep your team energized and excited and engaged. The best way is if they’re constantly learning.”

    Bhatia has improved and perhaps saved many lives already, thanks to the drugs that now are not tested in humans if they are toxic to micro livers. An off-the-shelf liver or a urine test for cancer or liver disease could also be lifesaving.

    But when asked what she’s proudest of, she says it’s her students, because she gets to be what she calls a “multiplier.” She trains her grad students and post-docs in a way of working and a way of thinking, and then they go out into the world. “I feel like they’ve all gone on to do really interesting things,” Bhatia says. “One of them is a venture capitalist and serial entrepreneur. He built a bunch of companies. Some of them are professors training their own students. There’s a lot of them out there. It’s the most amazing thing to feel like you’ve played a role in that.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    Welcome to Brown

    Brown U Robinson Hall
    Located in historic Providence, Rhode Island and founded in 1764, Brown University is the seventh-oldest college in the United States. Brown is an independent, coeducational Ivy League institution comprising undergraduate and graduate programs, plus the Alpert Medical School, School of Public Health, School of Engineering, and the School of Professional Studies.

    With its talented and motivated student body and accomplished faculty, Brown is a leading research university that maintains a particular commitment to exceptional undergraduate instruction.

    Brown’s vibrant, diverse community consists of 6,000 undergraduates, 2,000 graduate students, 400 medical school students, more than 5,000 summer, visiting and online students, and nearly 700 faculty members. Brown students come from all 50 states and more than 100 countries.

    Undergraduates pursue bachelor’s degrees in more than 70 concentrations, ranging from Egyptology to cognitive neuroscience. Anything’s possible at Brown—the university’s commitment to undergraduate freedom means students must take responsibility as architects of their courses of study.

    Advertisements
     
  • richardmitnick 12:10 pm on November 22, 2017 Permalink | Reply
    Tags: , , , , , , Intel, , ,   

    From CERN: “Fermilab joins CERN openlab, works on ‘data reduction’ project with CMS experiment” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    1

    2
    Fermilab Wilson Hall

    Fermilab, the USA’s premier particle physics and accelerator laboratory, has joined CERN openlab as a research member. Researchers from the laboratory will collaborate with members of the CMS experiment and the CERN IT Department on efforts to improve technologies related to ‘physics data reduction’. This work will take place within the framework of an existing CERN openlab project with Intel on ‘big-data analytics’.

    CERN/CMS Detector

    ‘Physics data reduction’ plays a vital role in ensuring researchers are able to gain valuable insights from the vast amounts of particle-collision data produced by high-energy physics experiments, such as the CMS experiment on CERN’s Large Hadron Collider (LHC).

    LHC

    CERN/LHC Map

    CERN LHC Tunnel

    CERN LHC particles

    The project’s goal is to develop a new system — using industry-standard big-data tools — for filtering many petabytes of heterogeneous collision data to create manageable, but rich, datasets of a few terabytes for analysis. Using current systems, this kind of targeted data reduction can often take weeks; but the aim of the project is to be able to achieve this in a matter of hours.

    “Time is critical in analysing the ever-increasing volumes of LHC data,”says Oliver Gutsche, a Fermilab scientist working at the CMS experiment. “I am excited about the prospects CERN openlab brings to the table: systems that could enable us to perform analysis much faster and with much less effort and resources.” Gutsche and his colleagues will explore methods of ensuring efficient access to the data from the experiment. For this, they will investigate techniques based on Apache Spark, a popular open-source software platform for distributed processing of very large data sets on computer clusters built from commodity hardware. “The success of this project will have a large impact on the way analysis is conducted, allowing more optimised results to be produced in far less time,” says Matteo Cremonesi, a research associate at Fermilab. “I am really looking forward to using the new open-source tools; they will be a game changer for the overall scientific process in high-energy physics.”

    The team plans to first create a prototype of the system, capable of processing 1 PB of data with about 1000 computer cores. Based on current projections, this is about 1/20th of the scale of the final system that would be needed to handle the data produced when the High-Luminosity LHC comes online in 2026.

    Using this prototype, it should be possible to produce a benchmark (or ‘reference workload’) that can be used evaluate the optimum configuration of both hardware and software for the data-reduction system.

    “This kind of work, investigating big-data analytics techniques is vital for high-energy physics — both in terms of physics data and data from industrial control systems on the LHC,” says Maria Girone, CERN openlab CTO. “However, these investigations also potentially have far-reaching impact for a range of other disciplines. For example, this CERN openlab project with Intel is also exploring the use of these kinds of analytics techniques for healthcare data.”

    “Intel is proud of the work it has done in enabling the high-energy physics community to adopt the latest technologies for high-performance computing, data analytics, and machine learning — and reap the benefits. CERN openlab’s project on big-data analytics is one of the strategic endeavours to which Intel has been contributing,” says Stephan Gillich, Intel Deutschland’s director of technical computing for Europe, the Middle East, and Africa. “The possibility of extending the CERN openlab collaboration to include Fermilab, one of the world’s leading research centres, is further proof of the scientific relevance and success of this private-public partnership.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About CERN openlab

    CERN openlab is a unique public-private partnership that accelerates the development of cutting-edge solutions for the worldwide LHC community and wider scientific research. Through CERN openlab, CERN collaborates with leading ICT companies and research institutes.

    Within this framework, CERN provides access to its complex IT infrastructure and its engineering experience, in some cases even extended to collaborating institutes worldwide. Testing in CERN’s demanding environment provides the ICT industry partners with valuable feedback on their products while allowing CERN to assess the merits of new technologies in their early stages of development for possible future use. This framework also offers a neutral ground for carrying out advanced R&D with more than one company.

    CERN openlab was created in 2001 (link is external) and is now in the phase V (2015-2017). This phase tackles ambitious challenges covering the most critical needs of IT infrastructures in domains such as data acquisition, computing platforms, data storage architectures, compute provisioning and management, networks and communication, and data analytics.

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    Quantum Diaries

     
  • richardmitnick 11:17 am on November 22, 2017 Permalink | Reply
    Tags: , , Reconstructing a hologram to form a microscopic image, This deep-learning–based framework opens up myriad opportunities to design fundamentally new coherent imaging systems, UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy,   

    From UCLA: “UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy” 


    UCLA Newsroom

    November 20, 2017

    Nikki Lin
    310-206-8278
    nlin@cnsi.ucla.edu

    1
    The technique developed at UCLA uses deep learning to produce high-resolution pictures from lower-resolution microscopic images. Ozcan Research Group/UCLA

    A form of machine learning called deep learning is one of the key technologies behind recent advances in applications like real-time speech recognition and automated image and video labeling.

    The approach, which uses multi-layered artificial neural networks to automate data analysis, also has shown significant promise for health care: It could be used, for example, to automatically identify abnormalities in patients’ X-rays, CT scans and other medical images and data.

    In two new papers, UCLA researchers report that they have developed new uses for deep learning: reconstructing a hologram to form a microscopic image of an object and improving optical microscopy.

    Their new holographic imaging technique produces better images than current methods that use multiple holograms, and it’s easier to implement because it requires fewer measurements and performs computations faster.

    The research was led by Aydogan Ozcan, an associate director of the UCLA California NanoSystems Institute and the Chancellor’s Professor of Electrical and Computer Engineering at the UCLA Henry Samueli School of Engineering and Applied Science; and by postdoctoral scholar Yair Rivenson and graduate student Yibo Zhang, both of UCLA’s electrical and computer engineering department.

    For one study (PDF), published in Light: Science and Applications, the researchers produced holograms of Pap smears, which are used to screen for cervical cancer, and blood samples, as well as breast tissue samples. In each case, the neural network learned to extract and separate the features of the true image of the object from undesired light interference and from other physical byproducts of the image reconstruction process.

    “These results are broadly applicable to any phase recovery and holographic imaging problem, and this deep-learning–based framework opens up myriad opportunities to design fundamentally new coherent imaging systems, spanning different parts of the electromagnetic spectrum, including visible wavelengths and even X-rays,” said Ozcan, who also is an HHMI Professor at the Howard Hughes Medical Institute.

    Another advantage of the new approach was that it was achieved without any modeling of light–matter interaction or a solution of the wave equation, which can be challenging and time-consuming to model and calculate for each individual sample and form of light.

    “This is an exciting achievement since traditional physics-based hologram reconstruction methods have been replaced by a deep-learning–based computational approach,” Rivenson said.

    Other members of the team were UCLA researchers Harun Günaydin and Da Teng, both members of Ozcan’s lab.

    The second study, published in the journal Optica, the researchers used the same deep-learning framework to improve the resolution and quality of optical microscopic images.

    That advance could help diagnosticians or pathologists looking for very small-scale abnormalities in a large blood or tissue sample, and Ozcan said it represents the powerful opportunities for deep learning to improve optical microscopy for medical diagnostics and other fields in engineering and the sciences.

    Ozcan’s research is supported by the National Science Foundation–funded Precise Advanced Technologies and Health Systems for Underserved Populations and by the NSF, as well as the Army Research Office, the National Institutes of Health, the Howard Hughes Medical Institute, the Vodafone Americas Foundation and the Mary Kay Foundation.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UC LA Campus

    For nearly 100 years, UCLA has been a pioneer, persevering through impossibility, turning the futile into the attainable.

    We doubt the critics, reject the status quo and see opportunity in dissatisfaction. Our campus, faculty and students are driven by optimism. It is not naïve; it is essential. And it has fueled every accomplishment, allowing us to redefine what’s possible, time after time.

    This can-do perspective has brought us 12 Nobel Prizes, 12 Rhodes Scholarships, more NCAA titles than any university and more Olympic medals than most nations. Our faculty and alumni helped create the Internet and pioneered reverse osmosis. And more than 100 companies have been created based on technology developed at UCLA.

     
  • richardmitnick 10:56 am on November 22, 2017 Permalink | Reply
    Tags: , , , Comet 45P/Honda-Mrkos-Pajdušáková, , ,   

    From Goddard: “NASA Telescope Studies Quirky Comet 45P” 

    NASA Goddard Banner
    NASA Goddard Space Flight Center

    Nov. 21, 2017
    Elizabeth Zubritsky
    elizabeth.a.zubritsky@nasa.gov
    NASA’s Goddard Space Flight Center in Greenbelt, Md.

    When comet 45P zipped past Earth early in 2017, researchers observing from NASA’s Infrared Telescope Facility, or IRTF, in Hawai’i gave the long-time trekker a thorough astronomical checkup. The results help fill in crucial details about ices in Jupiter-family comets and reveal that quirky 45P doesn’t quite match any comet studied so far.

    Like a doctor recording vital signs, the team measured the levels of nine gases released from the icy nucleus into the comet’s thin atmosphere, or coma. Several of these gases supply building blocks for amino acids, sugars and other biologically relevant molecules. Of particular interest were carbon monoxide and methane, which are so hard to detect in Jupiter-family comets that they’ve only been studied a few times before.

    1
    Comet 45P/Honda-Mrkos-Pajdušáková is captured using a telescope on December 22 from Farm Tivoli in Namibia, Africa.
    Credits: Gerald Rhemann

    The gases all originate from the hodgepodge of ices, rock and dust that make up the nucleus. These native ices are thought to hold clues to the comet’s history and how it has been aging.

    “Comets retain a record of conditions from the early solar system, but astronomers think some comets might preserve that history more completely than others,” said Michael DiSanti, an astronomer at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author of the new study in The Astronomical Journal.

    The comet—officially named 45P/Honda-Mrkos-Pajdušáková—belongs to the Jupiter family of comets, frequent orbiters that loop around the Sun about every five to seven years. Much less is known about native ices in this group than in the long-haul comets from the Oort Cloud.

    To identify native ices, astronomers look for chemical fingerprints in the infrared part of the spectrum, beyond visible light. DiSanti and colleagues conducted their studies using the iSHELL high-resolution spectrograph recently installed at IRTF on the summit of Maunakea.

    NASA Infrared Telescope facility Mauna Kea, Hawaii, USA, 4,207 m (13,802 ft) above sea level

    With iSHELL, researchers can observe many comets that used to be considered too faint.

    The spectral range of the instrument makes it possible to detect many vaporized ices at once, which reduces the uncertainty when comparing the amounts of different ices. The instrument covers wavelengths starting at 1.1 micrometers in the near-infrared (the range of night-vision goggles) up to 5.3 micrometers in the mid-infrared region.

    iSHELL also has high enough resolving power to separate infrared fingerprints that fall close together in wavelength. This is particularly necessary in the cases of carbon monoxide and methane, because their fingerprints in comets tend to overlap with the same molecules in Earth’s atmosphere.

    “The combination of iSHELL’s high resolution and the ability to observe in the daytime at IRTF is ideal for studying comets, especially short-period comets,” said John Rayner, director of the IRTF, which is managed for NASA by the University of Hawai’i.

    While observing for two days in early January 2017—shortly after 45P’s closest approach to the Sun—the team made robust measurements of water, carbon monoxide, methane and six other native ices. For five ices, including carbon monoxide and methane, the researchers compared levels on the sun-drenched side of the comet to the shaded side. The findings helped fill in some gaps but also raised new questions.

    The results reveal that 45P is running so low on frozen carbon monoxide, that it is officially considered depleted. By itself, this wouldn’t be too surprising, because carbon monoxide escapes into space easily when the Sun warms a comet. But methane is almost as likely to escape, so an object lacking carbon monoxide should have little methane. 45P, however, is rich in methane and is one of the rare comets that contains more methane than carbon monoxide ice.

    It’s possible that the methane is trapped inside other ice, making it more likely to stick around. But the researchers think the carbon monoxide might have reacted with hydrogen to form methanol. The team found that 45P has a larger-than-average share of frozen methanol.

    When this reaction took place is another question—one that gets to the heart of comet science. If the methanol was produced on grains of primordial ice before 45P formed, then the comet has always been this way. On the other hand, the levels of carbon monoxide and methanol in the coma might have changed over time, especially because Jupiter-family comets spend more time near the Sun than Oort Cloud comets do.

    “Comet scientists are like archaeologists, studying old samples to understand the past,” said Boncho Bonev, an astronomer at American University and the second author on the paper. “We want to distinguish comets as they formed from the processing they might have experienced, like separating historical relics from later contamination.”

    The team is now on the case to figure out how typical their results might be among similar comets. 45P was the first of five such short-period comets that are available for study in 2017 and 2018. On the heels of 45P were comets 2P/Encke and 41P/Tuttle-Giacobini-Kresak. Due next summer and fall is 21P/Giacobini–Zinner, and later will come 46P/Wirtanen, which is expected to remain within 10 million miles (16 million kilometers) of Earth throughout most of December 2018.

    “This research is groundbreaking,” said Faith Vilas, the solar and planetary research program director at the National Science Foundation, or NSF, which helped support the study. “This broadens our knowledge of the mix of molecular species coexisting in the nuclei of Jovian-family comets, and the differences that exist after many trips around the Sun.”

    “We’re excited to see this first publication from iSHELL, which was built through a partnership between NSF, the University of Hawai’i, and NASA,” said Kelly Fast, IRTF program scientist at NASA Headquarters. “This is just the first of many iSHELL results to come.”

    More information about NASA’s IRTF:
    http://irtfweb.ifa.hawaii.edu/

    More information about comets:
    http://www.nasa.gov/comets

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.


    NASA/Goddard Campus

     
  • richardmitnick 10:50 am on November 22, 2017 Permalink | Reply
    Tags: , , , , JAXA MMX spacecraft, , Seeing red: JHU's Applied Physics Lab will build 'eyeglasses' for Mars moon mission   

    From JHU Applied Physics Lab: “Seeing red: JHU’s Applied Physics Lab will build ‘eyeglasses’ for Mars moon mission” 

    Johns Hopkins
    Johns Hopkins University

    Johns Hopkins Applied Physics Lab bloc
    JHU Applied Physics Lab

    Nov 17, 2017
    Michael Buckley

    1
    Martian moon Deimos with the red planet Mars in the background. Image credit: Getty Images

    2024 launch planned for Japan Aerospace Exploration Agency mission.

    Scientists at the Johns Hopkins Applied Physics Laboratory have been tasked with building a pair of space-ready spectacles for a Japan-led mission to two moons of Mars.

    The instrument, a sophisticated gamma-ray and neutron spectrometer named MEGANE—pronounced meh-gah-nay, meaning eyeglasses in Japanese—will help scientists resolve one of the most enduring mysteries of the Red Planet: when and how the small moons formed.

    Planned for launch in 2024, the Martian Moons eXploration being developed by the Japan Aerospace Exploration Agency will visit the Martian moons Phobos and Deimos, land on the surface of Phobos, collect a surface sample, and then return that sample to Earth. NASA is supporting the development of one of the spacecraft’s seven science instruments.

    “Solving the riddle of how Mars’ moons came to be will help us better understand how planets formed around our sun and, in turn, around other stars,” said Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate at headquarters in Washington, D.C. “International partnerships like this provide high-quality science with high-impact return.”

    2
    Artist’s concept of the Japan Aerospace Exploration Agency’s MMX mission to explore the two Martian moons, Phobos and Deimos; the inset shows the gamma-ray and neutron spectrometer—to be built by APL—that will measure the moons’ surface elemental composition.
    Image credit: APL/JAXA


    JAXA MMX spacecraft

    APL space scientist David Lawrence will lead the team developing MEGANE, also an acronym for Mars-moon Exploration with GAmma rays and NEutrons. The instrument will give the mission team the ability to “see” the elemental composition of Phobos and Deimos by measuring naturally emitted gamma rays and neutrons from the Martian moons. These gamma rays and neutrons are generated by cosmic rays that continually strike and penetrate their surfaces.

    The measurements will help scientists determine whether the Martian moons are captured asteroids or the result of a larger body hitting Mars. MEGANE data will also support site selection for the MMX-gathered samples that will be returned to Earth, and provide critical context as scientists study these samples.

    “Understanding how Phobos and Deimos formed has been a goal of the planetary science community for many years,” Lawrence said.

    APL has built 69 spacecraft and more than 200 specialized instruments that have collected critical scientific data from the sun to Pluto and beyond. The lab’s most recent Mars instrument—the powerful Compact Reconnaissance Imaging Spectrometer for Mars, or CRISM, aboard NASA’s Mars Reconnaissance Orbiter—uncovered a wide range of chemical evidence indicating where and when water was present on the Red Planet.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Johns Hopkins Applied Physics Lab Campus

    Founded on March 10, 1942—just three months after the United States entered World War II—APL was created as part of a federal government effort to mobilize scientific resources to address wartime challenges.

    APL was assigned the task of finding a more effective way for ships to defend themselves against enemy air attacks. The Laboratory designed, built, and tested a radar proximity fuze (known as the VT fuze) that significantly increased the effectiveness of anti-aircraft shells in the Pacific—and, later, ground artillery during the invasion of Europe. The product of the Laboratory’s intense development effort was later judged to be, along with the atomic bomb and radar, one of the three most valuable technology developments of the war.

    On the basis of that successful collaboration, the government, The Johns Hopkins University, and APL made a commitment to continue their strategic relationship. The Laboratory rapidly became a major contributor to advances in guided missiles and submarine technologies. Today, more than seven decades later, the Laboratory’s numerous and diverse achievements continue to strengthen our nation.

    APL continues to relentlessly pursue the mission it has followed since its first day: to make critical contributions to critical challenges for our nation.

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 10:04 am on November 22, 2017 Permalink | Reply
    Tags: , , Scientists Make First Observations of How a Meteor-Like Shock Turns Silica Into Glass,   

    From SLAC: “Scientists Make First Observations of How a Meteor-Like Shock Turns Silica Into Glass” 


    SLAC Lab

    November 16, 2017
    Julia Goldstein

    Research with SLAC’s X-ray laser simulates what happens when a meteor hits Earth’s crust. The results suggest that scientists studying impact sites have been overestimating the sizes of the meteors that made them.

    1
    Meteor Crater in Arizona, formed by a meteor impact 50,000 years ago, contains bitsof a hard, compressed form of silica called stishovite. (Nikolas_jkd/iStock).

    Studies at the Department of Energy’s SLAC National Accelerator Laboratory have made the first real-time observations of how silica – an abundant material in the Earth’s crust – easily transforms into a dense glass when hit with a massive shock wave like one generated from a meteor impact.

    The results imply that meteors hitting Earth and other celestial objects are smaller than originally thought. This new information will be important for modeling planetary body formation and interpreting evidence of impacts on the ground.

    The experiments took place at SLAC’s Linac Coherent Light Source (LCLS) X-ray laser, a DOE Office of Science User Facility whose ultrafast pulses can reveal processes taking place in millionths of a billionth of a second with atomic resolution.

    SLAC/LCLS

    “We were able for the first time to really visualize from start to finish what happens in a material that makes up a major portion of the Earth’s crust,” said Arianna Gleason of the DOE’s Los Alamos National Laboratory (LANL), the principal investigator for the study, which was published Nov. 14 in Nature Communications.

    How Does Shocked Glass Get That Way?

    Scientists have long known that impacts from meteors convert silicates into a dense, amorphous phase known as shocked glass. The question is how this shocked glass forms.

    In the past, scientists have tried to estimate the amount of pressure needed to cause this transformation by examining debris from meteor impacts and squeezing mineral samples in pressure cells in the lab, but they were unable to observe the process as it unfolded.

    At LCLS, researchers can use an intense laser beam to create a shock wave that compresses a silica sample, and then use the X-ray laser to examine its response on a timescale of nanoseconds, or billionths of a second.

    A previous SLAC study, published in 2015, demonstrated that silica forms stishovite, a crystalline phase, within 10 nanoseconds of being hit by the initial laser pulse. That research showed that the transformation occurred much more rapidly than was previously believed. But the existence of debris from meteor impacts that is composed entirely of shocked glass suggests that stishovite may be a short-lived phase that can convert permanently to shocked glass after impact.

    Overturning Assumptions

    In the latest study, the scientists took advantage of the Matter in Extreme Conditions instrument at LCLS to generate shock waves that induced various peak pressures in silica samples. After sending the laser pulse, “We just watch what the silica does naturally,” said Gleason, who is the LANL Fredrick Reines Postdoctoral Fellow.

    Analysis of X-ray diffraction data taken at various intervals after peak pressure was reached showed that when the pressure is high enough, stishovite forms, but it then reverts to shocked glass. The diffraction data from the LCLS samples matched data from impact debris collected in the field.

    3
    This drawing depicts the process that turns silica into shocked glass after it’s hit with a shock wave like one from a meteor impact. At right, compression has transformed the silica into stishovite crystals. On the left, the compression has been released and the stishovite crystals have transformed into shocked glass. The LCLS X-ray laser beam recorded this process, which happens within 30 nanoseconds. (A.E. Gleason et al., Nature Communications)

    Scientists have previously assumed that peak pressures of roughly 40 gigapascals – equivalent to 400,000 times the atmospheric pressure around us – are required to create shocked glass from silica. But the results from this study suggest that the threshold is about 25 percent lower than that, and that stishovite then reverts to the shocked glass state due to thermal instability rather than higher pressure.

    “An impact event has a short timeline,” said Gleason, “making LCLS an ideal instrument for understanding the fundamental thermodynamics of glasses formed by impacts.” Gleason envisions using the MEC at LCLS to investigate other Earth-abundant minerals, such as feldspar, and to better understand the “rule book” for transformation processes.

    Gleason’s research is more broadly applicable to debris from other planets, such as meteorites from Mars that also contain shocked glass. Martian meteorites often contain trapped volatile compounds, such as water vapor and methane. No one understands how these compounds become locked inside meteorites or why they don’t escape, but continued work at LCLS could provide answers.

    In addition to LANL and SLAC, researchers contributing to this study came from the Stanford Institute for Materials and Energy Sciences (SIMES), the DOE’s Lawrence Livermore National Laboratory, the Center for High Pressure Science and Technology Advanced Research in Shanghai, the Carnegie Institution of Washington’s High Pressure Synergetic Consortium, Friedrich Schiller University Jena in Germany and Stanford University. Major funding came from the DOE Office of Science and the National Science Foundation. Part of the work was carried out at the Advanced Light Source, a DOE Office of Science User Facility at DOE’s Lawrence Berkeley National Laboratory.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.
    i1

     
  • richardmitnick 9:25 am on November 22, 2017 Permalink | Reply
    Tags: , , , , , Preparing to Light Up the LSST Network   

    From LSST: “Preparing to Light Up the LSST Network” 

    LSST

    Large Synoptic Survey Telescope

    November 16, 2017
    No writer credit found

    November 12, 2017 – LSST’s fiber-optic network, which will provide the necessary 100Gbps connectivity to move data from the summit of Cerro Pachón to all LSST operational sites and to multiple data centers, came one milestone closer to activation last week; the AURA LSST Dense Wavelength Division Multiplexing (DWDM) Network Equipment that LSST will use initially was installed in several key locations. DWDM equipment sends pulses of light down the fiber to transmit data, therefore a DWDM box is needed at each end of a fiber network in order for the network to be operational. In this installation project, the Summit-Base Network DWDM equipment was set up in the La Serena computer room and in the communications hut on the summit of Cerro Pachón. The Santiago portion of the Base-Archive Network was also addressed, with DWDM hardware installed in La Serena as well as at the National University Network (REUNA) facility in Santiago. The DWDM hardware in Santiago will be connected to AmLight DWDM equipment which will transfer the data to Florida. There, it will be picked up by Florida LambdaRail (FLR), ESnet, and internet2 for its journey to NSCA via Chicago.

    The primary South to North network traffic will be the transfer of raw image data from Cerro Pachón to the National Center for Supercomputing Applications (NCSA), where the data will be processed into scientific data products, including transient alerts, calibrated images, and catalogs. From there, a backup of the raw data will be made over the international network to IN2P3 in Lyon, France. IN2P3 will also perform half of the annual catalog processing. The network will also transfer data from North to South, returning the processed scientific data products to the Chilean Data Access Center (DAC), where they will be made available to the Chilean scientific community.

    The LSST Summit-Base and Base-Archive networks are on new fibers all the way to Santiago; there is also an existing fiber that provides a backup path from La Serena to Santiago. From Santiago to Florida, the data will travel on a new submarine fiber cable, with a backup on existing fiber cables. LSST currently shares the AURA fiber-optic network (connecting La Serena and the Summit) with the Gemini and CTIO telescopes, but will have its own dedicated DWDM equipment in 2018. Additional information on LSST data flow during LSST Operations is available here.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    LSST telescope, currently under construction at Cerro Pachón Chile
    LSST telescope, currently under construction at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes.
    LSST Interior

    LSST/Camera, built at SLAC
    LSST/Camera, built at SLAC

    The LSST is a new kind of telescope. Currently under construction in Chile, it is being built to rapidly survey the night-time sky. Compact and nimble, the LSST will move quickly between images, yet its large mirror and large field of view—almost 10 square degrees of sky, or 40 times the size of the full moon—work together to deliver more light from faint astronomical objects than any optical telescope in the world.

    From its mountaintop site in the foothills of the Andes, the LSST will take more than 800 panoramic images each night with its 3.2 billion-pixel camera, recording the entire visible sky twice each week. Each patch of sky it images will be visited 1000 times during the survey. With a light-gathering power equal to a 6.7-m diameter primary mirror, each of its 30-second observations will be able to detect objects 10 million times fainter than visible with the human eye. A powerful data system will compare new with previous images to detect changes in brightness and position of objects as big as far-distant galaxy clusters and as small as near-by asteroids.

    The LSST’s combination of telescope, mirror, camera, data processing, and survey will capture changes in billions of faint objects and the data it provides will be used to create an animated, three-dimensional cosmic map with unprecedented depth and detail , giving us an entirely new way to look at the Universe. This map will serve a myriad of purposes, from locating that mysterious substance called dark matter and characterizing the properties of the even more mysterious dark energy, to tracking transient objects, to studying our own Milky Way Galaxy in depth. It will even be used to detect and track potentially hazardous asteroids—asteroids that might impact the Earth and cause significant damage.

    As with past technological advances that opened new windows of discovery, such a powerful system for exploring the faint and transient Universe will undoubtedly serve up surprises.

    Plans for sharing the data from LSST with the public are as ambitious as the telescope itself. Anyone with a computer will be able to view the moving map of the Universe created by the LSST, including objects a hundred million times fainter than can be observed with the unaided eye. The LSST project will provide analysis tools to enable both students and the public to participate in the process of scientific discovery. We invite you to learn more about LSST science.

    The LSST will be unique: no existing telescope or proposed camera could be retrofitted or re-designed to cover ten square degrees of sky with a collecting area of forty square meters. Named the highest priority for ground-based astronomy in the 2010 Decadal Survey, the LSST project formally began construction in July 2014.

     
  • richardmitnick 9:14 am on November 22, 2017 Permalink | Reply
    Tags: , , , , NASA TSIS 1 Total Solar Irradiance Spectral Solar Irradiance 1,   

    From Goddard: “NASA’s TSIS-1 Keeps an Eye on Sun’s Power Over Ozone” 

    NASA Goddard Banner
    NASA Goddard Space Flight Center

    Nov. 21, 2017
    Rani Gran
    rani.c.gran@nasa.gov
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    NASA TSIS 1 Total Solar Irradiance Spectral Solar Irradiance 1


    TSIS-1 will be affixed to the International Space Station in December 2017 TSIS-1 operates like a sun flower: it follows the Sun, from the ISS sunrise to its sunset, which happens every 90 minutes. At sunset, it rewinds, recalibrates and waits for the next sunset.
    Credits: Courtesy NASA/LASP

    1
    Antarctic ozone hole, Oct. 10, 2017: Purple and blue represent areas of low ozone concentrations in the atmosphere; yellow and red are areas of higher concentrations. Carbon tetrachloride (CCl4), which was once used in applications such as dry cleaning and as a fire-extinguishing agent, was regulated in 1987 under the Montreal Protocol along with other chlorofluorocarbons that destroy ozone and contribute to the ozone hole over Antarctica. Credits: NASA’s Goddard Space Flight Center

    2
    The picture on the left shows a calm sun from October 2010. The right side, from October 2012, shows a much more active and varied solar atmosphere as the sun moves closer to peak solar activity, or solar maximum. NASA’s Solar Dynamics Observatory (SDO) captured both images.
    Credits: NASA’s Goddard Space Flight Center/SDO

    NASA/SDO

    High in the atmosphere, above weather systems, is a layer of ozone gas. Ozone is Earth’s natural sunscreen, absorbing the Sun’s most harmful ultraviolet radiation and protecting living things below. But ozone is vulnerable to certain gases made by humans that reach the upper atmosphere. Once there, they react in the presence of sunlight to destroy ozone molecules.

    Currently, several NASA and National Oceanic and Atmospheric Administration (NOAA) satellites track the amount of ozone in the upper atmosphere and the solar energy that drives the photochemistry that creates and destroys ozone. NASA is now ready to launch a new instrument to the International Space Station that will provide the most accurate measurements ever made of sunlight as seen from above Earth’s atmosphere — an important component for evaluating the long-term effects of ozone-destroying chemistry. The Total and Spectral solar Irradiance Sensor (TSIS-1) will measure the total amount of sunlight that reaches the top of Earth’s atmosphere and how that light is distributed between different wavelengths, including ultraviolet wavelengths that we cannot sense with our eyes, but are felt by our skin and harmful to our DNA.

    This is not the first time NASA has measured the total light energy from the Sun. TSIS-1 succeeds previous and current NASA missions to monitor incoming sunlight with technological upgrades that should improve stability, provide three times better accuracy and lower interference from other sources of light, according to Candace Carlisle, TSIS-1 project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

    “We need to measure the full spectrum of sunlight and the individual wavelengths to evaluate how the Sun affects Earth’s atmosphere,” said Dong Wu, TSIS-1 project scientist at Goddard.

    TSIS-will see more than 1,000 wavelength bands from 200 to 2400 nanometers. The visible part of the spectrum our eyes see goes from about 390 nanometers (blue) to 700 nanometers (red). A nanometer is one billionth of a meter.

    “Each color or wavelength of light affects Earth’s atmosphere differently,” Wu said.

    TSIS-1 will see different types of ultraviolet (UV) light, including UV-B and UV-C. Each plays a different role in the ozone layer. UV-C rays are essential in creating ozone. UV-B rays and some naturally occurring chemicals regulate the abundance of ozone in the upper atmosphere. The amount of ozone is a balance between these natural production and loss processes. In the course of these processes, UV-C and UV-B rays are absorbed, preventing them from reaching Earth’s surface and harming living organisms. Thinning of the ozone layer has allowed some UV-B rays to reach the ground.

    In the 1970s, scientists theorized that certain human-made chemicals found in spray cans, air conditioners and refrigerators could throw off the natural balance of ozone creation and depletion and cause an unnatural depletion of the protective ozone. In the 1980s, scientists observed ozone loss consistent with the concentrations of these chemicals and confirmed this theory.

    Ozone loss was far more severe than expected over the South Pole during the Antarctic spring (fall in the United States), a phenomenon that was named “the Antarctic ozone hole.” The discovery that human-made chemicals could have such a large effect on Earth’s atmosphere brought world leaders together. They created an international commitment to phase out ozone-depleting chemicals called the Montreal Protocol, which was universally ratified in 1987 by all countries that participate in the United Nations, and has been updated to tighten constraints and account for additional ozone depleting chemicals.

    A decade after the ratification of the Montreal Protocol, the amount of human-made ozone-destroying chemicals in the atmosphere peaked and began a slow decline. However, it takes decades for these chemicals to completely cycle out of the upper atmosphere, and the concentrations of these industrially produced molecules are not all decreasing as expected, while additional, new compounds are being created and released.

    More than three decades after ratification, NASA satellites have verified that ozone losses have stabilized and, in some specific locations, have even begun to recover due to reductions in the ozone-destroying chemicals regulated under the Montreal Protocol.

    As part of their work in monitoring the recovery of the ozone hole, scientists use computer models of the atmosphere that simulate the physical, chemical and weather processes in the atmosphere. These atmospheric models can then take input from ground and satellite observations of various atmospheric gases, both natural and human-produced, to help predict ozone layer recovery. They test the models by simulating past changes and then compare the results with satellite measurements to see if the simulations match past outcomes. To run the best possible simulation, the models also need accurate measurements of sunlight across the spectrum.

    “Atmospheric models need accurate measurements of sunlight across the to model the ozone layer correctly,” said Peter Pilewskie, TSIS-1 lead scientist at the Laboratory for Atmospheric and Space Physics in Boulder, Colorado. Scientists have learned that variations in UV radiance produce significant changes in the results of the computer simulations.

    Overall, solar energy output varies by approximately 0.1 percent — or about 1 watt per square meter between the most and least active part of an 11-year solar cycle. The solar cycle is marked by the alternating high and low activity periods of sunspots, dark regions of complex magnetic activity on the Sun’s surface. While UV light represents a tiny fraction of the total sunlight that reaches the top of Earth’s atmosphere, it fluctuates much more, anywhere from 3 to 10 percent, a change that in turn causes small changes in the chemical composition and thermal structure of the upper atmosphere.

    That’s where TSIS-1 comes in. “[TSIS] measurements of the solar spectrum are three times more accurate than previous instruments,” said Pilewskie. Its high quality measurements will allow scientists to fine tune their computer models and produce better simulations of the ozone layer’s behavior — as well as other atmospheric processes influenced by sunlight, such as the movement of winds and weather that are.

    TSIS-1 joins a fleet of NASA’s Earth-observing missions that monitor nearly every aspect of the Earth system, watching for any changes in our environment that could harm life.

    For more than five decades, NASA has used the vantage point of space to understand and explore our home planet, improve lives and safeguard our future by deploying space based sensors like TSIS-1. NASA’s Goddard Space Flight Center has overall responsibility for the development and operation of TSIS-1 on International Space Station as part of the Earth Systematic Missions program. The Laboratory for Atmospheric and Space Physics at the University of Colorado Boulder, under contract with NASA, is responsible for providing the TSIS-1 measurements and ensuring their availability to the scientific community.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.


    NASA/Goddard Campus

     
  • richardmitnick 8:53 am on November 22, 2017 Permalink | Reply
    Tags: , , , , , , , ,   

    From Futurism: “Quantum Physicists Conclude Necessary Makeup of Elusive Tetraquarks” 

    futurism-bloc

    Futurism

    Mesons Baryons Tetraquarks

    , https://blog.cerebrodigital.org/tetraquark-particula-exotica-descubierta-en-fermilab/

    November 20, 2017
    Abby Norman

    Everything in the universe is made up of atoms — except, of course, atoms themselves. They’re made up of subatomic particles, namely, protons, neutrons, and electrons. While electrons are classified as leptons, protons and neutrons are in a class of particles known as quarks. Though, “known” may be a bit misleading: there is a lot more theoretical physicists don’t know about the particles than they do with any degree of certainty.

    As far as we know, quarks are the fundamental particle of the universe. You can’t break a quark down into any smaller particles. Imagining them as being uniformly minuscule is not quite accurate, however: while they are tiny, they are not all the same size. Some quarks are larger than others, and they can also join together and create mesons (1 quark + 1 antiquark) or baryons (3 quarks of various flavors).

    In terms of possible quark flavors, which are respective to their position, we’ve identified six: up, down, top, bottom, charm, and strange. As mentioned, they usually pair up either in quark-antiquark pairs or a quark threesome — so long as the charges ( ⅔, ⅔, and ⅓ ) all add up to positive 1.

    The so-called tetraquark pairing has long-eluded scientists; a hadron which would require 2 quark-antiquark pairs, held together by the strong force. Now, it’s not enough for them to simply pair off and only interact with their partner. To be a true tetraquark, all four quarks would need to interact with one another; behaving as quantum swingers, if you will.

    “Quarky” Swingers

    It might seem like a pretty straightforward concept: throw four quarks together and they’re bound to interact, right? Well, not necessarily. And that would be assuming they’d pair off stably in the first place, which isn’t a given. As Marek Karliner of Tel Aviv University explained to LiveScience, two quarks aren’t any more likely to pair off in a stable union than two random people you throw into an apartment together. When it comes to both people and quarks, close proximity doesn’t ensure chemistry.

    “The big open question had been whether such combinations would be stable,
    or would they instantly disintegrate into two quark-antiquark mesons,” Karliner told Futurism. “Many years of experimental searches came up empty-handed, and no one knew for sure whether stable tetraquarks exist.”

    Most discussions of tetraquarks up until recently involved those “ad-hoc” tetraquarks; the ones where four quarks were paired off, but not interacting. Finding the bona-fide quark clique has been the “holy grail” of theoretical physics for years – and we’re agonizingly close.

    Recalling that quarks are not something we can actually see, it probably goes without saying that predicting the existence of such an arrangement would be incredibly hard to do. The very laws of physics dictate that it would be impossible for four quarks to come together and form a stable hadron. But two physicists found a way to simplify (as much as you can “simplify” quantum mechanics) the approach to the search for tetraquarks.

    Several years ago, Karliner and his research partner, Jonathan Rosner of the University of Chicago, set out to establish the theory that if you want to know the mass and binding energy of rare hadrons, you can start by comparing them to the common hadrons you already know the measurements for. In their research [Nature] they looked at charm quarks; the measurements for which are known and understood (to quantum physicists, at least).

    Based on these comparisons, they proposed that a doubly-charged baryon should have a mass of 3,627 MeV, +/- 12 MeV [Physical Review Letters]. The next step was to convince CERN to go tetraquark-hunting, using their math as a map.

    For all the complex work it undertakes, the vast majority of which is nothing detectable by the human eye, The Large Hadron Collider is exactly what the name implies: it’s a massive particle accelerator that smashes atoms together, revealing their inner quarks.

    LHC

    CERN/LHC Map

    CERN LHC Tunnel

    CERN LHC particles

    If you’re out to prove the existence of a very tiny theoretical particle, the LHC is where you want to start — though there’s no way to know how long it will be before, if ever, the particles you seek appear.

    It took several years, but in the summer of 2017, the LHC detected a new baryon: one with a single up quark and two heavy charm quarks — the kind of doubly-charged baryon Karliner and Rosner were hoping for. The mass of the baryon was 3,621 MeV, give or take 1 MeV, which was extremely close to the measurement Karliner and Rosner had predicted. Prior to this observation physicists had speculated about — but never detected — more than one heavy quark in a baryon. In terms of the hunt for the tetraquark, this was an important piece of evidence: that more robust bottom quark could be just what a baryon needs to form a stable tetraquark.

    The perpetual frustration of studying particles is that they don’t stay around long. These baryons, in particular, disappear faster than “blink-and-you’ll-miss-it” speed; one 10/trillionth of a second, to be exact. Of course, in the world of quantum physics, that’s actually plenty of time to establish existence, thanks to the LHC.

    The great quantum qualm within the LHC, however, is one that presents a significant challenge in the search for tetraquarks: heavier particles are less likely to show up, and while this is all happening on an infinitesimal level, as far as the quantum scale is concerned, bottom quarks are behemoths.

    The next question for Rosner and Karliner, then, was did it make more sense to try to build a tetraquark, rather than wait around for one to show up? You’d need to generate two bottom quarks close enough together that they’d hook up, then throw in a pair of lighter antiquarks — then do it again and again, successfully, enough times to satisfy the scientific method.

    “Our paper uses the data from recently discovered double-charmed baryon to point, for the first time, that a stable tetraquark *must* exist,” Karliner told Futurism, adding that there’s “a very good chance” the LHCb at CERN would succeed in observing the phenomenon experimentally.

    That, of course, is still a theoretical proposition, but should anyone undertake it, the LHC would keep on smashing in the meantime — and perhaps the combination would arise on its own. As Karliner reminded LiveScience, for years the assumption has been that tetraquarks are impossible. At the very least, they’re profoundly at odds with the Standard Model of Physics. But that assumption is certainly being challenged. “The tetraquark is a truly new form of strongly-interacting matter,” Karliner told Futurism,” in addition to ordinary baryons and mesons.”

    If tetraquarks are not impossible, or even particularly improbable, thanks to the Karliner and Rosner’s calculations, at least now we have a better sense of what we’re looking for — and where it might pop up.

    Where there’s smoke there’s fire, as they say, and while the mind-boggling realm of quantum mechanics may feel more like smoke and mirrors to us, theoretical physicists aren’t giving up just yet. Where there’s a 2-bottom quark, there could be tetraquarks.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Futurism covers the breakthrough technologies and scientific discoveries that will shape humanity’s future. Our mission is to empower our readers and drive the development of these transformative technologies towards maximizing human potential.

     
  • richardmitnick 6:02 pm on November 21, 2017 Permalink | Reply
    Tags: , , , , , , , , Plasma-facing material   

    From BNL: “Designing New Metal Alloys Using Engineered Nanostructures” 

    Brookhaven Lab

    Stony Brook University assistant professor Jason Trelewicz brings his research to design and stabilize nanostructures in metals to Brookhaven Lab’s Center for Functional Nanomaterials.

    1
    Materials scientist Jason Trelewicz in an electron microscopy laboratory at Brookhaven’s Center for Functional Nanomaterials, where he characterizes nanoscale structures in metals mixed with other elements.

    Materials science is a field that Jason Trelewicz has been interested in since he was a young child, when his father—an engineer—would bring him to work. In the materials lab at his father’s workplace, Trelewicz would use optical microscopes to zoom in on material surfaces, intrigued by all the distinct features he would see as light interacted with different samples.

    Now, Trelewicz—an assistant professor in the College of Engineering and Applied Sciences’ Department of Materials Science and Chemical Engineering with a joint appointment in the Institute for Advanced Computational Science at Stony Brook University and principal investigator of the Engineered Metallic Nanostructures Laboratory—takes advantage of the much higher magnifications of electron microscopes to see tiny nanostructures in fine detail and learn what happens when they are exposed to heat, radiation, and mechanical forces. In particular, Trelewicz is interested in nanostructured metal alloys (metals mixed with other elements) that incorporate nanometer-sized features into classical materials to enhance their performance. The information collected from electron microscopy studies helps him understand interactions between structural and chemical features at the nanoscale. This understanding can then be employed to tune the properties of materials for use in everything from aerospace and automotive components to consumer electronics and nuclear reactors.

    Since 2012, when he arrived at Stony Brook University, Trelewicz has been using the electron microscopes and the high-performance computing (HPC) cluster at the Center for Functional Nanomaterials (CFN)—a U.S. Department of Energy (DOE) Office of Science User Facility at Brookhaven National Laboratory—to perform his research.

    “At the time, I was looking for ways to apply my idea of stabilizing nanostructures in metals to an application-oriented problem,” said Trelewicz. “I’ve long been interested in nuclear energy technologies, initially reading about fusion in grade school. The idea of recreating the processes responsible for the energy we receive from the sun here on earth was captivating, and fueled my interest in nuclear energy throughout my entire academic career. Though we are still very far away from a fusion reactor that generates power, a large international team on a project under construction in France called ITER is working to demonstrate a prolonged fusion reaction at a large scale.”

    Plasma-facing materials for fusion reactors

    Nuclear fusion—the reaction in which atomic nuclei collide—could provide a nearly unlimited supply of safe, clean energy, like that naturally produced by the sun through fusing hydrogen nuclei into helium atoms. Harnessing this carbon-free energy in reactors requires generating and sustaining a plasma, an ionized gas, at the very high temperatures at which fusion occurs (about six times hotter than the sun’s core) while confining it using magnetic fields. Of the many challenges currently facing fusion reactor demonstrations, one of particular interest to Trelewicz is creating viable materials to build a reactor.

    2
    A model of the ITER tokamak, an experimental machine designed to harness the energy of fusion. A powerful magnetic field is used to confine the plasma, which is held in a doughnut-shaped vessel. Credit: ITER Organization.

    “The formidable materials challenges for fusion are where I saw an opportunity for my research—developing materials that can survive inside the fusion reactor, where the plasma will generate high heat fluxes, high thermal stresses, and high particle and neutron fluxes,” said Trelewicz. “The operational conditions in this environment are among the harshest in which one could expect a material to function.”

    A primary candidate for such “plasma-facing material” is tungsten, because of its high melting point—the highest one among metals in pure form—and low sputtering yield (number of atoms ejected by energetic ions from the plasma). However, tungsten’s stability against recrystallization, oxidation resistance, long-term radiation tolerance, and mechanical performance are problematic.

    Trelewicz thinks that designing tungsten alloys with precisely tailored nanostructures could be a way to overcome these problems. In August, he received a $750,000 five-year award from the DOE’s Early Career Research Program to develop stable nanocrystalline tungsten alloys that can withstand the demanding environment of a fusion reactor. His research is combining simulations that model atomic interactions and experiments involving real-time ion irradiation exposure and mechanical testing to understand the fundamental mechanisms responsible for the alloys’ thermal stability, radiation tolerance and mechanical performance. The insights from this research will inform the design of more resilient alloys for fusion applications.

    In addition to the computational resources they use at their home institution, Trelewicz and his lab group are using the HPC cluster at the CFN—and those at other DOE facilities, such as Titan at Oak Ridge Leadership Computing Facility (a DOE Office of Science User Facility at Oak Ridge National Laboratory)—to conduct large-scale atomistic simulations as part of the project.

    ORNL Cray Titan XK7 Supercomputer

    “The length scales of the structures we want to design into our materials are on the order of a few nanometers to 100 nanometers, and a single simulation can involve up to 10 million atoms,” said Trelewicz. “Using HPC clusters, we can build a system atom-by-atom, representative of the structure we would like to explore experimentally, and run simulations to study the response of that system under various external stimuli. For example, we can fire a high-energy atom into the system and watch what happens to the material and how it evolves, hundreds or thousands of times. Once damage has accumulated in the structure, we can simulate thermal and mechanical forces to understand how defect structure impacts other behavior.”

    These simulations inform the structures and chemistries of experimental alloys, which Trelewicz and his students fabricate at Stony Brook University through high-energy milling. To characterize the nanoscale structure and chemical distribution of the engineered alloys, they extensively use the microscopy facilities at the CFN—including scanning electron microscopes, transmission electron microscopes, and scanning transmission electron microscopes. Imaging is conducted at high resolution and often combined with heating within the microscope to examine in real time how the structures evolve with temperature. Experiments are also conducted at other DOE national labs, such as Sandia through collaboration with materials scientist Khalid Hattar of the Ion Beam Laboratory. Here, students in Trelewicz’s research group simultaneously irradiate the engineered alloys with an ion beam and image them with an electron microscope over the course of many days.

    3
    Trelewicz and his students irradiated a nanostructured tungsten-titanium alloy with high-energy gold ions to explore the radiation tolerance of this novel material.

    “Though this damage does not compare to what the material would experience in a reactor, it provides a starting point to evaluate whether or not the engineered material could indeed address some of the limitations of tungsten for fusion applications,” said Trelewicz.

    Electron microscopy at the CFN has played a key role in an exciting discovery that Trelewicz’s students recently made: an unexpected metastable-to-stable phase transition in thin films of nanostructured tungsten. This phase transition drives an abnormal “grain” growth process in which some crystalline nanostructure features grow very dramatically at the expense of others. When the students added chromium and titanium to tungsten, this metastable phase was completely eliminated, in turn enhancing the thermal stability of the material.

    “One of the great aspects of having both experimental and computational components to our research is that when we learn new things from our experiments, we can go back and tailor the simulations to more accurately reflect the actual materials,” said Trelewicz.

    Other projects in Trelewicz’s research group.

    The research with tungsten is only one of many projects ongoing in the Engineered Metallic Nanostructures Laboratory.

    “All of our projects fall under the umbrella of developing new metal alloys with enhanced and/or multifunctional properties,” said Trelewicz. “We are looking at different strategies to optimize material performance by collectively tailoring chemistry and microstructure in our materials. Much of the science lies in understanding the nanoscale mechanisms that govern the properties we measure at the macroscale.”

    4
    Jason Trelewicz (left) with Olivia Donaldson, who recently graduated with her PhD from Trelewicz’s group, and Jonathan Gentile, a current doctoral student, in front of the scanning electron microscope/focused-ion beam at Stony Brook University’s Advanced Energy Center. Credit: Stony Brook University.

    Through a National Science Foundation CAREER (Faculty Early Career Development Program) award, Trelewicz and his research group are exploring another class of high-strength alloys—amorphous metals, or “metallic glasses,” which are metals that have a disordered atomic structure akin to glass. Compared to everyday metals, metallic glasses are often inherently higher strength but usually very brittle, and it is difficult to make them in large parts such as bulk sheets. Trelewicz’s team is designing interfaces and engineering them into the metallic glasses—initially iron-based and later zirconium-based ones—to enhance the toughness of the materials, and exploring additive manufacturing processes to enable sheet-metal production. They will use the Nanofabrication Facility at the CFN to fabricate thin films of these interface-engineered metallic glasses for in situ analysis using electron microscopy techniques.

    In a similar project, they are seeking to understand how introducing a crystalline phase into a zirconium-based amorphous alloy to form a metallic glass matrix composite (composed of both amorphous and crystalline phases) augments the deformation process relative to that of regular metallic glasses. Metallic glasses usually fail catastrophically because strain becomes localized into shear bands. Introducing crystalline regions in the metallic glasses could inhibit the process by which strain localizes in the material. They have already demonstrated that the presence of the crystalline phase fundamentally alters the mechanism through which the shear bands form.

    Trelewicz and his group are also exploring the deformation behavior of metallic “nanolaminates” that consist of alternating crystalline and amorphous layers, and are trying to approach the theoretical limit of strength in lightweight aluminum alloys through synergistic chemical doping strategies (adding other elements to a material to change its properties).

    5
    Trelewicz and his students perform large-scale atomistic simulations to explore the segregation of solute species to grain boundaries (GBs)—interfaces between grains—in nanostructured alloys, as shown here for an aluminum-magnesium (Al-Mg) system, and its implications for the governing deformation mechanisms. They are using the insights gained through these simulations to design lightweight alloys with theoretical strengths.

    “We leverage resources of the CFN for every project ongoing in my research group,” said Trelewicz. “We extensively use the electron microscopy facilities to look at material micro- and nanostructure, very often at how interfaces are coupled with compositional inhomogeneities—information that helps us stabilize and design interfacial networks in nanostructured metal alloys. Computational modeling and simulation enabled by the HPC clusters at the CFN informs what we do in our experiments.”

    Beyond his work at CFN, Trelewicz collaborates with his departmental colleagues to characterize materials at the National Synchrotron Light Source II—another DOE Office of Science User Facility at Brookhaven.

    BNL NSLS-II


    BNL NSLS II

    “There are various ways to characterize structural and chemical inhomogeneities,” said Trelewicz. “We look at small amounts of material through the electron microscopes at CFN and on more of a bulk level at NSLS-II through techniques such as x-ray diffraction and the micro/nano probe. We combine this local and global information to thoroughly characterize a material and use this information to optimize its properties.”

    Future of next-generation materials

    When he is not doing research, Trelewicz is typically busy with student outreach. He connects with the technology departments at various schools, providing them with materials engineering design projects. The students not only participate in the engineering aspects of materials design but are also trained on how to use 3D printers and other tools that are critical in today’s society to manufacture products more cost effectively and with better performance.

    Going forward, Trelewicz would like to expand his collaborations at the CFN and help establish his research in metallic nanostructures as a core area supported by CFN and, ultimately, DOE, to achieve unprecedented properties in classical materials.

    “Being able to learn something new every day, using that knowledge to have an impact on society, and seeing my students fill gaps in our current understanding are what make my career as a professor so rewarding,” said Trelewicz. “With the resources of Stony Brook University, nearby CFN, and other DOE labs, I have an amazing platform to make contributions to the field of materials science and metallurgy.”

    Trelewicz holds a bachelor’s degree in engineering science from Stony Brook University and a doctorate in materials science and engineering with a concentration in technology innovation from MIT. Before returning to academia in 2012, Trelewicz spent four years in industry managing technology development and transition of harsh-environment sensors produced by additive manufacturing processes. He is the recipient of a 2017 Department of Energy Early Career Research Award, 2016 National Science Foundation CAREER award, and 2015 Young Leaders Professional Development Award from The Minerals, Metals & Materials Society (TMS), and is an active member of several professional organizations, including TMS, the Materials Research Society, and ASM International (the Materials Information Society).

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    BNL Campus

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.
    i1

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: