Tagged: Applied Research & Technology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:03 pm on October 7, 2022 Permalink | Reply
    Tags: "Stabilizing polarons opens up new physics", A new approach for solving a major shortcoming of a well-established theory that physicists use to study the interactions of electrons in materials: “DFT” - density functional theory., Applied Research & Technology, “DFT” is used in physics; chemistry; and materials science to study the electronic structure of many-body systems like atoms and molecules., , DFT is susceptible to spurious interactions of the electron with its own self – what physicists refer to as the “self-interaction problem”., One of the many peculiarities of quantum mechanics is that particles can also be described as waves., , , Technically a polaron is a quasi-particle made up of an electron “dressed” by its self-induced phonons which represent the quantized vibrations of the crystal., The new work introduces a theoretical formulation for electron self-interaction that solves the problem of polaron localization in density functional theory.,   

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “Stabilizing polarons opens up new physics” 

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    10.7.22
    Papageorgiou

    1
    Physicists at EPFL have developed a formulation to solve the longstanding problem of electron self-interaction when studying polarons – quasiparticles produced by electron-phonon interactions in materials. The work can lead to unprecedented calculations of polarons in large systems, systematic studies of large sets of materials, and molecular dynamics evolving over long time periods.

    One of the many peculiarities of quantum mechanics is that particles can also be described as waves. A common example is the photon, the particle associated with light.

    In ordered structures, known as crystals, electrons can be seen and described as waves that spread across the entire system – a rather harmonious picture. As electrons move through the crystal, ions – atoms carrying a negative or positive charge — are periodically arranged in space.

    Now, if we were to add an extra electron to the crystal, its negative charge could make the ions around it move away from their equilibrium positions. The electron charge would localize in space and couple to the surrounding structural – “lattice” – distortions of the crystal, giving rise to a new particle known as a polaron.

    “Technically, a polaron is a quasi-particle, made up of an electron “dressed” by its self-induced phonons, which represent the quantized vibrations of the crystal,” says Stefano Falletta at EPFL’s School of Basic Sciences. He continues: “The stability of polarons arises from a competition between two energy contributions: the gain due to charge localization, and the cost due to lattice distortions. When the polaron destabilizes, the extra electron delocalizes over the entire system, while the ions restore their equilibrium positions.”

    2
    A polaron forming in magnesium oxide atoms. Credit: S. Falletta (EPFL)

    Working with Professor Alfredo Pasquarello at EPFL, they have published two papers in Physical Review Letters [below] and Physical Review B [below] describing a new approach for solving a major shortcoming of a well-established theory that physicists use to study the interactions of electrons in materials. The method is called density functional theory or DFT, and is used in physics, chemistry, and materials science to study the electronic structure of many-body systems like atoms and molecules.

    DFT is a powerful tool for performing ab-initio calculations of materials, by simplified treatment of the electron interactions. However, DFT is susceptible to spurious interactions of the electron with its own self – what physicists refer to as the “self-interaction problem”. This self-interaction is one of the greatest limitations of DFT, often leading to incorrect description of polarons, which are often destabilized.

    “In our work, we introduce a theoretical formulation for the electron self-interaction that solves the problem of polaron localization in density functional theory,” says Falletta. “This gives access to accurate polaron stabilities within a computationally-efficient scheme. Our study paves the way to unprecedented calculations of polarons in large systems, in systematic studies involving large sets of materials, or in molecular dynamics evolving over long time periods.”

    Science papers:
    Physical Review Letters
    Physical Review B

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich] (CH). Associated with several specialized research institutes, the two universities form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles Polytechniques Fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École Polytechnique Fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École Spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices were located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganized and acquired the status of a university in 1890, the technical faculty changed its name to École d’Ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich (CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organized into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences
    Institute of Mathematics
    Institute of Chemical Sciences and Engineering
    Institute of Physics
    European Centre of Atomic and Molecular Computations
    Bernoulli Center
    Biomedical Imaging Research Center
    Interdisciplinary Center for Electron Microscopy
    MPG-EPFL Centre for Molecular Nanosciences and Technology
    Swiss Plasma Center
    Laboratory of Astrophysics

    School of Engineering

    Institute of Electrical Engineering
    Institute of Mechanical Engineering
    Institute of Materials
    Institute of Microengineering
    Institute of Bioengineering

    School of Architecture, Civil and Environmental Engineering

    Institute of Architecture
    Civil Engineering Institute
    Institute of Urban and Regional Sciences
    Environmental Engineering Institute

    School of Computer and Communication Sciences

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences

    Bachelor-Master Teaching Section in Life Sciences and Technologies
    Brain Mind Institute
    Institute of Bioengineering
    Swiss Institute for Experimental Cancer Research
    Global Health Institute
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics
    NCCR Synaptic Bases of Mental Diseases

    College of Management of Technology

    Swiss Finance Institute at EPFL
    Section of Management of Technology and Entrepreneurship
    Institute of Technology and Public Policy
    Institute of Management of Technology and Entrepreneurship
    Section of Financial Engineering

    College of Humanities

    Human and social sciences teaching program

    EPFL Middle East

    Section of Energy Management and Sustainability

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École Cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 1:32 pm on October 7, 2022 Permalink | Reply
    Tags: "New route to evolution - how DNA from our mitochondria gets into our genomes", Applied Research & Technology, , Each mitochondrion has its own DNA distinct to the rest of the human genome which is comprised of nuclear DNA., , , It is not clear exactly how the mitochondrial DNA inserts itself., Mitochondrial DNA also appears in some cancer DNA suggesting that it acts as a sticking plaster to try and repair damage to our genetic code., Mitochondrial DNA is passed down the maternal line., Scientists have shown that in one in every 4000 births some of the genetic code from our mitochondria – the ‘batteries’ that power our cells – inserts itself into our DNA.,   

    From The University of Cambridge (UK): “New route to evolution – how DNA from our mitochondria gets into our genomes” 

    U Cambridge bloc

    From The University of Cambridge (UK)

    10.5.22
    Craig Brierley

    1
    Mitochondria surrounded by cytoplasm. Credit: Dr David Furness.

    Scientists have shown that in one in every 4,000 births, some of the genetic code from our mitochondria – the ‘batteries’ that power our cells – inserts itself into our DNA, revealing a surprising new insight into how humans evolve.

    In a study published today in Nature [below], researchers at the University of Cambridge and Queen Mary University of London show that mitochondrial DNA also appears in some cancer DNA suggesting that it acts as a sticking plaster to try and repair damage to our genetic code.

    Mitochondria are tiny ‘organelles’ that sit within our cells, where they act like batteries, providing energy in the form of the molecule ATP to power the cells. Each mitochondrion has its own DNA – mitochondrial DNA – that is distinct to the rest of the human genome which is comprised of nuclear DNA.

    Mitochondrial DNA is passed down the maternal line – that is, we inherit it from our mothers, not our fathers. However, a study published in PNAS [below] in 2018 from researchers at the Cincinnati Children’s Hospital Medical Center in the USA reported evidence that suggested some mitochondrial DNA had been passed down the paternal line.

    To investigate these claims, the Cambridge team looked at the DNA from over 11,000 families recruited to Genomics England’s 100,000 Genomes Project, searching for patterns that looked like paternal inheritance. The Cambridge team found mitochondrial DNA ‘inserts’ in the nuclear DNA of some children that were not present in that of their parents. This meant that the US team had probably reached the wrong conclusions: what they had observed were not paternally-inherited mitochondrial DNA, but rather these inserts.

    Now, extending this work to over 66,000 people, the team showed that the new inserts are actually happening all the time, showing a new way our genome evolves.

    Professor Patrick Chinnery, from the Medical Research Council Mitochondrial Biology Unit and Department of Clinical Neurosciences at the University of Cambridge, explained: “Billions of years ago, a primitive animal cell took in a bacterium that became what we now call mitochondria. These supply energy to the cell to allow it to function normally, while removing oxygen, which is toxic at high levels. Over time, bits of these primitive mitochondria have passed into the cell nucleus, allowing their genomes to talk to each other.

    “This was all thought to have happened a very long time ago, mostly before we had even formed as a species, but what we’ve discovered is that that’s not true. We can see this happening right now, with bits of our mitochondrial genetic code transferring into the nuclear genome in a measurable way.”

    The team estimate that mitochondrial DNA transfers to nuclear DNA in around one in every 4,000 births. If that individual has children of their own, they will pass these inserts on – the team found that most of us carry five of the new inserts, and one in seven of us (14%) carry very recent ones. Once in place, the inserts can occasionally lead to very rare diseases, including a rare genetic form of cancer.

    It is not clear exactly how the mitochondrial DNA inserts itself – whether it does so directly or via an intermediary, such as RNA – but Professor Chinnery says it is likely to occur within the mother’s egg cells.

    When the team looked at sequences taken from 12,500 tumour samples, they found that mitochondrial DNA was even more common in tumour DNA, arising in around one in 1,000 cancers, and in some cases, the mitochondrial DNA inserts actually causes the cancer.

    “Our nuclear genetic code is breaking and being repaired all the time,” said Professor Chinnery. “Mitochondrial DNA appears to act almost like a Band-Aid, a sticking plaster to help the nuclear genetic code repair itself. And sometimes this works, but on rare occasions if might make things worse or even trigger the development of tumours.”

    More than half (58%) of the insertions were in regions of the genome that code for proteins. In the majority of cases, the body recognizes the invading mitochondrial DNA and silences it in a process known as methylation, whereby a molecule attaches itself to the insert and switches it off. A similar process occurs when viruses manage to insert themselves into our DNA. However, this method of silencing is not perfect, as some of the mitochondrial DNA inserts go on to be copied and move around the nucleus itself.

    The team looked for evidence that the reverse might happen – that mitochondrial DNA absorbs parts of our nuclear DNA – but found none. There are likely to be several reasons why this should be the case.

    Firstly, cells only have two copies of nuclear DNA, but thousands of copies of mitochondrial DNA, so the chances of mitochondrial DNA being broken and passing into the nucleus are much greater than the other way around.

    Secondly, the DNA in mitochondria is packaged inside two membranes and there are no holes in the membrane, so it would be difficult for nuclear DNA to get in. By contrast, if mitochondrial DNA manages to get out, holes in the membrane surrounding nuclear DNA would allow it pass through with relative ease.

    Professor Sir Mark Caulfield, Vice Principal for Health at Queen Mary University of London, said: “I am so delighted that the 100,000 Genomes Project has unlocked the dynamic interplay between mitochondrial DNA and our genome in the cell’s nucleus. This defines a new role in DNA repair, but also one that could occasionally trigger rare disease, or even malignancy.”

    The research was mainly funded by the Medical Research Council, Wellcome, and the National Institute for Health Research.

    Science papers:
    Nature
    PNAS 2018
    See the science papers for instructive material.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Cambridge Campus

    The University of Cambridge (UK) [legally The Chancellor, Masters, and Scholars of the University of Cambridge] is a collegiate public research university in Cambridge, England. Founded in 1209 Cambridge is the second-oldest university in the English-speaking world and the world’s fourth-oldest surviving university. It grew out of an association of scholars who left the University of Oxford (UK) after a dispute with townsfolk. The two ancient universities share many common features and are often jointly referred to as “Oxbridge”.

    Cambridge is formed from a variety of institutions which include 31 semi-autonomous constituent colleges and over 150 academic departments, faculties and other institutions organized into six schools. All the colleges are self-governing institutions within the university, each controlling its own membership and with its own internal structure and activities. All students are members of a college. Cambridge does not have a main campus and its colleges and central facilities are scattered throughout the city. Undergraduate teaching at Cambridge is organized around weekly small-group supervisions in the colleges – a feature unique to the Oxbridge system. These are complemented by classes, lectures, seminars, laboratory work and occasionally further supervisions provided by the central university faculties and departments. Postgraduate teaching is provided predominantly centrally.

    Cambridge University Press a department of the university is the oldest university press in the world and currently the second largest university press in the world. Cambridge Assessment also a department of the university is one of the world’s leading examining bodies and provides assessment to over eight million learners globally every year. The university also operates eight cultural and scientific museums, including the Fitzwilliam Museum, as well as a botanic garden. Cambridge’s libraries – of which there are 116 – hold a total of around 16 million books, around nine million of which are in Cambridge University Library, a legal deposit library. The university is home to – but independent of – the Cambridge Union – the world’s oldest debating society. The university is closely linked to the development of the high-tech business cluster known as “Silicon Fe”. It is the central member of Cambridge University Health Partners, an academic health science centre based around the Cambridge Biomedical Campus.

    By both endowment size and consolidated assets Cambridge is the wealthiest university in the United Kingdom. In the fiscal year ending 31 July 2019, the central university – excluding colleges – had a total income of £2.192 billion of which £592.4 million was from research grants and contracts. At the end of the same financial year the central university and colleges together possessed a combined endowment of over £7.1 billion and overall consolidated net assets (excluding “immaterial” historical assets) of over £12.5 billion. It is a member of numerous associations and forms part of the ‘golden triangle’ of English universities.

    Cambridge has educated many notable alumni including eminent mathematicians; scientists; politicians; lawyers; philosophers; writers; actors; monarchs and other heads of state. As of October 2020, 121 Nobel laureates; 11 Fields Medalists; 7 Turing Award winners; and 14 British prime ministers have been affiliated with Cambridge as students; alumni; faculty or research staff. University alumni have won 194 Olympic medals.

    History

    By the late 12th century, the Cambridge area already had a scholarly and ecclesiastical reputation due to monks from the nearby bishopric church of Ely. However, it was an incident at Oxford which is most likely to have led to the establishment of the university: three Oxford scholars were hanged by the town authorities for the death of a woman without consulting the ecclesiastical authorities who would normally take precedence (and pardon the scholars) in such a case; but were at that time in conflict with King John. Fearing more violence from the townsfolk scholars from the University of Oxford started to move away to cities such as Paris; Reading; and Cambridge. Subsequently enough scholars remained in Cambridge to form the nucleus of a new university when it had become safe enough for academia to resume at Oxford. In order to claim precedence, it is common for Cambridge to trace its founding to the 1231 charter from Henry III granting it the right to discipline its own members (ius non-trahi extra) and an exemption from some taxes; Oxford was not granted similar rights until 1248.

    A bull in 1233 from Pope Gregory IX gave graduates from Cambridge the right to teach “everywhere in Christendom”. After Cambridge was described as a studium generale in a letter from Pope Nicholas IV in 1290 and confirmed as such in a bull by Pope John XXII in 1318 it became common for researchers from other European medieval universities to visit Cambridge to study or to give lecture courses.

    Foundation of the colleges

    The colleges at the University of Cambridge were originally an incidental feature of the system. No college is as old as the university itself. The colleges were endowed fellowships of scholars. There were also institutions without endowments called hostels. The hostels were gradually absorbed by the colleges over the centuries; but they have left some traces, such as the name of Garret Hostel Lane.

    Hugh Balsham, Bishop of Ely, founded Peterhouse – Cambridge’s first college in 1284. Many colleges were founded during the 14th and 15th centuries but colleges continued to be established until modern times. There was a gap of 204 years between the founding of Sidney Sussex in 1596 and that of Downing in 1800. The most recently established college is Robinson built in the late 1970s. However, Homerton College only achieved full university college status in March 2010 making it the newest full college (it was previously an “Approved Society” affiliated with the university).

    In medieval times many colleges were founded so that their members would pray for the souls of the founders and were often associated with chapels or abbeys. The colleges’ focus changed in 1536 with the Dissolution of the Monasteries. Henry VIII ordered the university to disband its Faculty of Canon Law and to stop teaching “scholastic philosophy”. In response, colleges changed their curricula away from canon law and towards the classics; the Bible; and mathematics.

    Nearly a century later the university was at the centre of a Protestant schism. Many nobles, intellectuals and even commoners saw the ways of the Church of England as too similar to the Catholic Church and felt that it was used by the Crown to usurp the rightful powers of the counties. East Anglia was the centre of what became the Puritan movement. In Cambridge the movement was particularly strong at Emmanuel; St Catharine’s Hall; Sidney Sussex; and Christ’s College. They produced many “non-conformist” graduates who, greatly influenced by social position or preaching left for New England and especially the Massachusetts Bay Colony during the Great Migration decade of the 1630s. Oliver Cromwell, Parliamentary commander during the English Civil War and head of the English Commonwealth (1649–1660), attended Sidney Sussex.

    Modern period

    After the Cambridge University Act formalized the organizational structure of the university the study of many new subjects was introduced e.g. theology, history and modern languages. Resources necessary for new courses in the arts architecture and archaeology were donated by Viscount Fitzwilliam of Trinity College who also founded the Fitzwilliam Museum. In 1847 Prince Albert was elected Chancellor of the University of Cambridge after a close contest with the Earl of Powis. Albert used his position as Chancellor to campaign successfully for reformed and more modern university curricula, expanding the subjects taught beyond the traditional mathematics and classics to include modern history and the natural sciences. Between 1896 and 1902 Downing College sold part of its land to build the Downing Site with new scientific laboratories for anatomy, genetics, and Earth sciences. During the same period the New Museums Site was erected including the Cavendish Laboratory which has since moved to the West Cambridge Site and other departments for chemistry and medicine.

    The University of Cambridge began to award PhD degrees in the first third of the 20th century. The first Cambridge PhD in mathematics was awarded in 1924.

    In the First World War 13,878 members of the university served and 2,470 were killed. Teaching and the fees it earned came almost to a stop and severe financial difficulties followed. As a consequence, the university first received systematic state support in 1919 and a Royal Commission appointed in 1920 recommended that the university (but not the colleges) should receive an annual grant. Following the Second World War the university saw a rapid expansion of student numbers and available places; this was partly due to the success and popularity gained by many Cambridge scientists.

     
  • richardmitnick 1:04 pm on October 7, 2022 Permalink | Reply
    Tags: "New process could enable more efficient plastics recycling", A catalyst made of a microporous material called a zeolite containing cobalt can selectively break down various plastic polymer molecules and turn more than 80 percent of them into propane., A chemical process using a catalyst based on cobalt has been found to be very effective at breaking down a variety of plastics., A key problem is that plastics come in so many different varieties and chemical processes for breaking them down into a form that can be reused in some way tend to be very specific to each type., Applied Research & Technology, , , , Polyethylene (PET) and polypropylene (PP)-two widely produced forms of plastic-can be broken down into propane. Propane can then be used as a fuel or a feedstock for a variety of products., Recycling plastics has been a thorny problem because the long-chain molecules in plastics are held together by carbon bonds which are very stable and difficult to break apart., The accumulation of plastic waste is one of the major pollution issues of modern times., , The materials needed for the process-zeolites and cobalt-are both quite cheap and widely available., Today much of the plastic material gathered through recycling programs ends up in landfills anyway.   

    From The Massachusetts Institute of Technology: “New process could enable more efficient plastics recycling” 

    From The Massachusetts Institute of Technology

    10.6.22
    David L. Chandler

    1
    A new chemical process can break down a variety of plastics into usable propane — a possible solution to our inability to effectively recycle many types of plastic. Image: Courtesy of the researchers. Edited by MIT News.

    The accumulation of plastic waste in the oceans, soil, and even in our bodies is one of the major pollution issues of modern times, with over 5 billion tons disposed of so far. Despite major efforts to recycle plastic products, actually making use of that motley mix of materials has remained a challenging issue.

    A key problem is that plastics come in so many different varieties, and chemical processes for breaking them down into a form that can be reused in some way tend to be very specific to each type of plastic. Sorting the hodgepodge of waste material, from soda bottles to detergent jugs to plastic toys, is impractical at large scale. Today much of the plastic material gathered through recycling programs ends up in landfills anyway. Surely there’s a better way.

    According to new research from MIT and elsewhere, it appears there may indeed be a much better way. A chemical process using a catalyst based on cobalt has been found to be very effective at breaking down a variety of plastics, such as polyethylene (PET) and polypropylene (PP), the two most widely produced forms of plastic, into a single product, propane. Propane can then be used as a fuel for stoves, heaters, and vehicles, or as a feedstock for the production of a wide variety of products — including new plastics, thus potentially providing at least a partial closed-loop recycling system.

    The finding is described today in the open access journal JACS Au [below], in a paper by MIT professor of chemical engineering Yuriy Román-Leshkov, postdoc Guido Zichitella, and seven others at MIT, the DOE’s SLAC National Accelerator Laboratory, and the National Renewable Energy Laboratory.

    Recycling plastics has been a thorny problem, Román-Leshkov explains, because the long-chain molecules in plastics are held together by carbon bonds, which are “very stable and difficult to break apart.” Existing techniques for breaking these bonds tend to produce a random mix of different molecules, which would then require complex refining methods to separate out into usable specific compounds. “The problem is,” he says, “there’s no way to control where in the carbon chain you break the molecule.”

    But to the surprise of the researchers, a catalyst made of a microporous material called a zeolite that contains cobalt nanoparticles can selectively break down various plastic polymer molecules and turn more than 80 percent of them into propane.

    Although zeolites are riddled with tiny pores less than a nanometer wide (corresponding to the width of the polymer chains), a logical assumption had been that there would be little interaction at all between the zeolite and the polymers. Surprisingly, however, the opposite turned out to be the case: Not only do the polymer chains enter the pores, but the synergistic work between cobalt and the acid sites in the zeolite can break the chain at the same point. That cleavage site turned out to correspond to chopping off exactly one propane molecule without generating unwanted methane, leaving the rest of the longer hydrocarbons ready to undergo the process, again and again.

    “Once you have this one compound, propane, you lessen the burden on downstream separations,” Román-Leshkov says. “That’s the essence of why we think this is quite important. We’re not only breaking the bonds, but we’re generating mainly a single product” that can be used for many different products and processes.

    The materials needed for the process, zeolites and cobalt, “are both quite cheap” and widely available, he says, although today most cobalt comes from troubled areas in the Democratic Republic of Congo. Some new production is being developed in Canada, Cuba, and other places. The other material needed for the process is hydrogen, which today is mostly produced from fossil fuels but can easily be made other ways, including electrolysis of water using carbon-free electricity such as solar or wind power.

    The researchers tested their system on a real example of mixed recycled plastic, producing promising results. But more testing will be needed on a greater variety of mixed waste streams to determine how much fouling takes place from various contaminants in the material — such as inks, glues, and labels attached to the plastic containers, or other nonplastic materials that get mixed in with the waste — and how that affects the long-term stability of the process.

    Together with collaborators at NREL, the MIT team is also continuing to study the economics of the system, and analyzing how it can fit into today’s systems for handling plastic and mixed waste streams. “We don’t have all the answers yet,” Román-Leshkov says, but preliminary analysis looks promising.

    The research team included Amani Ebrahim and Simone Bare at the SLAC National Accelerator Laboratory; Jie Zhu, Anna Brenner, Griffin Drake and Julie Rorrer at MIT; and Greg Beckham at the National Renewable Energy Laboratory. The work was supported by the U.S. Department of Energy (DoE), the Swiss National Science Foundation, and the DoE’s Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office (AMO), and Bioenergy Technologies Office (BETO), as part of the the Bio-Optimized Technologies to keep Thermoplastics out of Landfills and the Environment (BOTTLE) Consortium.

    Science paper:
    JACS Au
    See the science paper for instructive material.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

    Massachusettes Institute of Technology-Haystack Observatory Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities.

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However, six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched “OpenCourseWare” to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 11:28 am on October 7, 2022 Permalink | Reply
    Tags: "Mapping human brain development", Applied Research & Technology, , , Researchers at ETH Zürich are growing human brain-​like tissue from stem cells and are then mapping the cell types.,   

    From The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “Mapping human brain development” 

    From The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    10.7.22
    Peter Rüegg

    Researchers at ETH Zürich are growing human brain-​like tissue from stem cells and are then mapping the cell types that occur in different brain regions and the genes that regulate their development.

    1
    Brain organoid from human stem cells under the fluorescence microscope: the protein GLI3 is stained purple and marks neuronal precursor cells in forebrain regions of the organoid. Neurons are stained green. (Photograph: F. Sanchís Calleja, A. Jain, P. Wahle / ETH Zürich)

    The human brain is probably the most complex organ in the entire living world and has long been an object of fascination for researchers. However, studying the brain, and especially the genes and molecular switches that regulate and direct its development, is no easy task.

    To date, scientists have proceeded using animal models, primarily mice, but their findings cannot be transferred directly to humans. A mouse’s brain is structured differently and lacks the furrowed surface typical of the human brain. Cell cultures have thus far been of limited value in this field, as cells tend to spread over a large area when grown on a culture dish; this does not correspond to the natural three-dimensional structure of the brain.

    Mapping molecular fingerprints

    A group of researchers led by Barbara Treutlein, ETH Professor at the Department of Biosystems Science and Engineering in Basel, has now taken a new approach to studying the development of the human brain: they are growing and using organoids – millimetre-sized three-dimensional tissues that can be grown from what are known as pluripotent stem cells.

    Provided these stem cells receive the right stimulus, researchers can program them to become any kind of cell present in the body, including neurons. When the stem cells are aggregated into a small ball of tissue and then exposed to the appropriate stimulus, they can even self-organize and form a three-dimensional brain organoid with a complex tissue architecture.

    In a new study just published in Nature [below], Treutlein and her colleagues have now studied thousands of individual cells within a brain organoid at various points in time and in great detail. Their goal was to characterise the cells in molecular-genetic terms: in other words, the totality of all gene transcripts (transcriptome) as a measure of gene expression, but also the accessibility of the genome as a measure of regulatory activity. They have managed to represent this data as a kind of map showing the molecular fingerprint of each cell within the organoid.

    However, this procedure generates immense data sets: each cell in the organoid has 20,000 genes, and each organoid in turn consists of many thousands of cells. “This results in a gigantic matrix, and the only way we can solve it is with the help of suitable programs and machine learning,” explains Jonas Fleck, a doctoral student in Treutlein’s group and one of the study’s co-lead authors. To analyse all this data and predict gene regulation mechanisms, the researchers developed their own program. “We can use it to generate an entire interaction network for each individual gene and predict what will happen in real cells when that gene fails,” Fleck says.

    Identifying genetic switches

    The aim of this study was to systematically identify those genetic switches that have a significant impact on the development of neurons in the different regions of brain organoids.

    With the help of a CRISPR-Cas9 system, the ETH researchers selectively switched off one gene in each cell, altogether about two dozen genes simultaneously in the entire organoid. This enabled them to find out what role the respective genes played in the development of the brain organoid.

    “This technique can be used to screen genes involved in disease. In addition, we can look at the effect these genes have on how different cells within the organoid develop,” explains Sophie Jansen, also a doctoral student in Treutlein’s group and the second co-lead author of the study.

    2
    Map of a brain organoid: The colours of the cells shown as circles indicate different cell types. Right: Regulatory network of transcription factor genes that controls the development of a brain organoid. (Graphics: Barbara Treutlein / ETH Zürich)

    Checking pattern formation in the forebrain

    To test their theory, the researchers chose the GLI3 gene as an example. This gene is the blueprint for the transcription factor of the same name, a protein that docks onto certain sites on DNA in order to regulate another gene. When GLI3 is switched off, the cellular machinery is prevented from reading this gene and transcribing it into an RNA molecule.

    In mice, mutations in the GLI3 gene can lead to malformations in the central nervous system. Its role in human neuronal development was previously unexplored, but it is known that mutations in the gene lead to diseases such as Greig cephalopolysyndactyly and Pallister Hall Syndromes.

    Silencing this GLI3 gene enabled the researchers both to verify their theoretical predictions and to determine directly in the cell culture how the loss of this gene affected the brain organoid’s further development. “We have shown for the first time that the GLI3 gene is involved in the formation of forebrain patterns in humans. This had previously been shown only in mice,” Treutlein says.

    Model systems reflect developmental biology

    “The exciting thing about this research is that it lets you use genome-wide data from so many individual cells to postulate what roles individual genes play,” she explains. “What’s equally exciting in my opinion is that these model systems made in a Petri dish really do reflect developmental biology as we know it from mice.”

    Treutlein also finds it fascinating how the culture medium can give rise to self-organized tissue with structures comparable to those of the human brain – not only at the morphological level but also (as the researchers have shown in their latest study) at the level of gene regulation and pattern formation. “Organoids like this are truly an excellent way to study human developmental biology,” she points out.

    Versatile brain organoids

    Research on organoids made up of human cell material has the advantage that the findings are transferable to humans. They can be used to study not only basic developmental biology but also the role of genes in diseases or developmental brain disorders. For example, Treutlein and her colleagues are working with organoids of this type to investigate the genetic cause of autism and of heterotopia; in the latter, neurons appear outside their usual anatomical location in the cerebral cortex.

    Organoids may also be used for testing drugs, and possibly for culturing transplantable organs or organ parts. Treutlein confirms that the pharmaceutical industry is very interested in these cell cultures.

    However, growing organoids takes both time and effort. Moreover, each clump of cells develops individually rather than in a standardised way. That is why Treutlein and her team are working to improve the organoids and automate their manufacturing process.
    __________________________________________________
    Human Cell Atlas

    The research and mapping of brain organoids is embedded in the Human Developmental Cell Atlas; this, in turn, is part of the Human Cell Atlas. The Human Cell Atlas is an attempt by researchers worldwide both to map all cell types in the human body and to compile data on which genes are active in which cells at which times as well as on which genes might be involved in diseases. The head of the Human Cell Atlas project is Aviv Regev, a biology professor at MIT; she received an honorary doctorate from ETH Zürich in 2021. ETH Professor Barbara Treutlein is co-coordinating the Organoid Cell Atlas subsection, which aims to map all the cell stages that can be produced in cell culture and then to compare them with the original cells of the human body.
    __________________________________________________

    Science paper:
    Nature
    See the science paper for instructive material.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus

    The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of The Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the The Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas The University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology, Stanford University and University of Cambridge (UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology, Stanford University, California Institute of Technology, Princeton University, University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE Excellence Ranking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London (UK) and the University of Cambridge (UK), respectively.

     
  • richardmitnick 8:31 pm on October 6, 2022 Permalink | Reply
    Tags: "Metamorphic core complexes", "Study Shows Gravitational Forces Deep Within the Earth Have Great Impact on Landscape Evolution", Applied Research & Technology, , Collaborative national research centers on integrating tectonics climate and mammal diversity., , , ,   

    From Stoney Brook University – SUNY : “Study Shows Gravitational Forces Deep Within the Earth Have Great Impact on Landscape Evolution” 

    Stoney Brook bloc

    From Stoney Brook University – SUNY

    10.6.22

    Collaborative national research centers on integrating tectonics climate and mammal diversity.

    Stony Brook University is leading a research project that focuses on the interplay between the evolution of the landscape, climate and fossil record of mammal evolution and diversification in the Western United States. A little explored aspect of this geosciences research is the connection between gravitational forces deep in the Earth and landscape evolution. Now in a newly published paper in Nature Communications [below], the researchers show by way of computer modeling that deep roots under mountain belts (analogous to the massive ice below the tip of an iceberg) trigger dramatic movements along faults that result in collapse of the mountain belt and exposure of rocks that were once some 15 miles below the surface.

    The origin of these enigmatic exposures, called “metamorphic core complexes,” has been hotly debated within the scientific community. This study finding may alter the way scientists attempt to uncover the history of Earth as an evolving planet.

    Lead principal investigator William E. Holt, PhD, a Professor of Geophysics the Department of Geosciences in the School of Arts and Sciences at Stony Brook University, first author Alireza Bahadori, a former PhD student under Holt and now at Columbia University, and colleagues found that these core complexes are a fossil signature of past mountain belts in the Western United States that occupied regions around Phoenix and Las Vegas. These mountain areas left traces in the form of gravel deposits from ancient northward and eastward flowing rivers, found today south and west of Flagstaff, Arizona.

    1
    These visuals from the modeling illustrate metamorphic core complex development showing crustal stresses and strain rates, faults, uplift of deeper rocks, and sedimentation from surface erosion. These processes of core complex development occur after a thickened crustal root supporting topography is weakened through the introduction of heat, fluids, and partial melt. Credit: Alireza Bahadori and William E. Holt.

    The work articulated in the paper highlights the development of what the research team terms as a general model for metamorphic core complex formation and a demonstration that they result from the collapse of a mountain belt supported by a thickened crustal root.

    The authors further explain: “We show that gravitational body forces generated by topography and crustal root cause an upward flow pattern of the ductile lower-middle crust, facilitated by a detachment surface evolving into a low-angle normal fault. This detachment surface acquires large amounts of finite strain, consistent with thick mylonite zones found in metamorphic core complexes.”

    The work builds on research also published in Nature Communications [below] in 2022. Holt and colleagues published a first-of-a-kind model in three dimensions to illustrate the linkage between climate and tectonics to simulate the landscape and erosion/deposition history of the region before, during and after the formation of these metamorphic core complexes.

    This modeling was linked to a global climate model that predicted precipitation trends throughout the southwestern U.S. over time. The 3-D model accurately predicts deposition of sediments in basins that contain the mammal fossil and climate records.

    The group also published a paper in Science Advances [below] in November 2021, led by team member Katie Loughney.

    This research showed that a major peak in mammal diversification can be statistically tied to the peak in extensional collapse of the ancient mountain belts. Thus, the collaborative study is the first of its kind to quantify how deep Earth forces combine with climate to influence the landscape and impact mammal diversification and species dispersal found within the fossil record.

    The study required the vast computing resources provided by the High-Performance Computing Cluster SeaWulf at Stony Brook University. The climate modeling, produced by Ran Feng, University of Connecticut, was supported by the Cheyenne supercomputer maintained at NCAR-Wyoming Supercomputing Center.

    Much of the research that led to these findings reported each of the papers was supported by multiple grants from the National Science Foundation, including grant number EAR-1814051 to Stony Brook University.

    In addition to Holt, the national collaborative team included several researchers from Stony Brook University: Drs. Emma Troy Rasbury, Daniel Davis, Ali Bahadori (now at Columbia University) and Tara Smiley. Other colleagues include researchers from the University of Michigan (Drs. Catherine Badgley and Katie Loughney – now University of Georgia); University of Connecticut (Dr. Ran Feng); Purdue University (Dr. Lucy Flesch), as well a researcher from a consulting business, e4Sciences (Dr. Bruce Ward).

    Science papers:
    Nature Communications
    Nature Communications
    Science Advances 2021
    See the science papers for instructive material.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stoney Brook campus

    Stony Brook University-SUNY’s reach extends from its 1,039-acre campus on Long Island’s North Shore–encompassing the main academic areas, an 8,300-seat stadium and sports complex and Stony Brook Medicine–to Stony Brook Manhattan, a Research and Development Park, four business incubators including one at Calverton, New York, and the Stony Brook Southampton campus on Long Island’s East End. Stony Brook also co-manages Brookhaven National Laboratory, joining Princeton, the University of Chicago, Stanford, and the University of California on the list of major institutions involved in a research collaboration with a national lab.

    And Stony Brook is still growing. To the students, the scholars, the health professionals, the entrepreneurs and all the valued members who make up the vibrant Stony Brook community, this is a not only a great local and national university, but one that is making an impact on a global scale.

     
  • richardmitnick 4:06 pm on October 6, 2022 Permalink | Reply
    Tags: "Josephson junction": A single-photon detector meets a superconducting circuit element., "Neuromorphic chips", "NIST’s Superconducting Hardware Could Scale Up Brain-Inspired Computing", A Josephson junction is a sandwich of superconducting materials separated by a thin insulating film., Applied Research & Technology, , Further work is required to integrate all the components on a single chip., NIST researchers have achieved for the first time a circuit that behaves much like a biological synapse yet uses just single photons to transmit and receive signals., Researchers have designed networks with tiny light sources at each neuron that broadcast optical signals to thousands of connections., Scientists have long looked to the brain as an inspiration for designing computing systems., , The team’s next milestone will be to combine these designed synapses with on-chip sources of light to demonstrate full superconducting optoelectronic neurons.   

    From The National Institute of Standards and Technology: “NIST’s Superconducting Hardware Could Scale Up Brain-Inspired Computing” 

    From The National Institute of Standards and Technology

    10.6.22
    Ben P. Stein
    benjamin.stein@nist.gov
    (301) 975-2763

    1

    Artistic rendering of how superconducting circuits that mimic synapses (connections between neurons in the brain) might be used to create artificial optoelectronic neurons of the future. Credits: J. Chiles and J. Shainline/NIST.

    Scientists have long looked to the brain as an inspiration for designing computing systems. Some researchers have recently gone even further by making computer hardware with a brainlike structure. These “neuromorphic chips” have already shown great promise, but they have used conventional digital electronics, limiting their complexity and speed. As the chips become larger and more complex, the signals between their individual components become backed up like cars on a gridlocked highway and reduce computation to a crawl.

    Now, a team at the National Institute of Standards and Technology (NIST) has demonstrated a solution to these communication challenges that may someday allow artificial neural systems to operate 100,000 times faster than the human brain.

    The human brain is a network of about 86 billion cells called neurons, each of which can have thousands of connections (known as synapses) with its neighbors. The neurons communicate with each other using short electrical pulses called spikes to create rich, time-varying activity patterns that form the basis of cognition. In “neuromorphic chips”, electronic components act as artificial neurons, routing spiking signals through a brainlike network.

    Doing away with conventional electronic communication infrastructure, researchers have designed networks with tiny light sources at each neuron that broadcast optical signals to thousands of connections. This scheme can be especially energy-efficient if superconducting devices are used to detect single particles of light known as photons — the smallest possible optical signal that could be used to represent a spike.

    In a new Nature Electronics paper [below], NIST researchers have achieved for the first time a circuit that behaves much like a biological synapse yet uses just single photons to transmit and receive signals. Such a feat is possible using superconducting single-photon detectors. The computation in the NIST circuit occurs where a single-photon detector meets a superconducting circuit element called a Josephson junction. A Josephson junction is a sandwich of superconducting materials separated by a thin insulating film. If the current through the sandwich exceeds a certain threshold value, the Josephson junction begins to produce small voltage pulses called fluxons. Upon detecting a photon, the single-photon detector pushes the Josephson junction over this threshold and fluxons are accumulated as current in a superconducting loop. Researchers can tune the amount of current added to the loop per photon by applying a bias (an external current source powering the circuits) to one of the junctions. This is called the synaptic weight.

    2
    Photograph of a NIST superconducting circuit that behaves like an artificial version of a synapse, a connection between nerve cells (neurons) in the brain. The labels show various components of the circuit and their functions. Credits: S. Khan and B. Primavera/NIST.

    This behavior is similar to that of biological synapses. The stored current serves as a form of short-term memory, as it provides a record of how many times the neuron produced a spike in the near past. The duration of this memory is set by the time it takes for the electric current to decay in the superconducting loops, which the NIST team demonstrated can vary from hundreds of nanoseconds to milliseconds, and likely beyond. This means the hardware could be matched to problems occurring at many different time scales — from high-speed industrial control systems to more leisurely conversations with humans. The ability to set different weights by changing the bias to the Josephson junctions permits a longer-term memory that can be used to make the networks programmable so that the same network could solve many different problems.

    Synapses are a crucial computational component of the brain, so this demonstration of superconducting single-photon synapses is an important milestone on the path to realizing the team’s full vision of superconducting optoelectronic networks [Optoelectronic intelligence (below)]. Yet the pursuit is far from complete. The team’s next milestone will be to combine these synapses with on-chip sources of light to demonstrate full superconducting optoelectronic neurons.

    “We could use what we’ve demonstrated here to solve computational problems, but the scale would be limited,” NIST project leader Jeff Shainline said. “Our next goal is to combine this advance in superconducting electronics with semiconductor light sources. That will allow us to achieve communication between many more elements and solve large, consequential problems.”

    The team has already demonstrated light sources that could be used in a full system, but further work is required to integrate all the components on a single chip. The synapses themselves could be improved by using detector materials that operate at higher temperatures than the present system, and the team is also exploring techniques to implement synaptic weighting in larger-scale neuromorphic chips.

    The work was funded in part by the Defense Advanced Research Projects Agency.

    Science papers:
    Nature Electronics
    Optoelectronic intelligence

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NIST Campus, Gaitherberg, MD.

    The National Institute of Standards and Technology‘s Mission, Vision, Core Competencies, and Core Values

    Mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

    Background

    The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

    In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

    From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

    Bureau of Standards

    In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

    President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

    Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

    In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

    Due to a changing mission, the “National Bureau of Standards” became the “ The National Institute of Standards and Technology” in 1988.

    Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.

    Organization

    NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

    Communications Technology Laboratory (CTL)
    Engineering Laboratory (EL)
    Information Technology Laboratory (ITL)
    Center for Neutron Research (NCNR)
    Material Measurement Laboratory (MML)
    Physical Measurement Laboratory (PML)

    Extramural programs include:

    Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
    Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
    Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

    NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock.

    NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

    NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR).

    The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

    The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961.

    SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

    The Center for Nanoscale Science and Technology performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility.

    This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).
    Committees

    NIST has seven standing committees:

    Technical Guidelines Development Committee (TGDC)
    Advisory Committee on Earthquake Hazards Reduction (ACEHR)
    National Construction Safety Team Advisory Committee (NCST Advisory Committee)
    Information Security and Privacy Advisory Board (ISPAB)
    Visiting Committee on Advanced Technology (VCAT)
    Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
    Manufacturing Extension Partnership National Advisory Board (MEPNAB)

    Measurements and standards

    As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

    Handbook 44

    NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

    NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.

     
  • richardmitnick 12:22 pm on October 6, 2022 Permalink | Reply
    Tags: "Boron Nitride with a Twist Could Lead to New Way to Make Qubits", Applied Research & Technology, , ,   

    From The DOE’s Lawrence Berkeley National Laboratory: “Boron Nitride with a Twist Could Lead to New Way to Make Qubits” 

    From The DOE’s Lawrence Berkeley National Laboratory

    10.6.22
    Rachel Berkowitz

    Easy control over bright emissions from the crystalline material offer a route toward scalable quantum computing and sensing.

    1
    Shaul Aloni, Cong Su, Alex Zettl, and Steven Louie at the Molecular Foundry. The researchers synthesized a device made from twisted layers of hexagonal boron nitride with color centers that can be switched on and off with a simple switch. (Credit: Marilyn Sargent/Berkeley Lab)

    Achieving scalability in quantum processors, sensors, and networks requires novel devices that are easily manipulated between two quantum states. A team led by researchers from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has now developed a method, using a solid-state “twisted” crystalline layered material, which gives rise to tiny light-emitting points called color centers. These color centers can be switched on and off with the simple application of an external voltage.

    “This is a first step toward a color center device that engineers could build or adapt into real quantum systems,” said Shaul Aloni, a staff scientist at Berkeley Lab’s Molecular Foundry [below], who co-led the study. The work is detailed in the journal Nature Materials [below].

    For example, the research could lead to a new way to make quantum bits, or qubits, which encode information in quantum computers.

    Color centers are microscopic defects in a crystal, such as diamond, that usually emit bright and stable light of specific color when struck with laser or other energy source such as an electron beam. Their integration with waveguides, devices that guide light, can connect operations across a quantum processor. Several years ago researchers discovered that color centers in a synthesized material called hexagonal boron nitride (hBN), which is commonly used as a lubricant or additive for paints and cosmetics, emitted even brighter colors than color centers in diamond. But engineers have struggled to use the material in applications because producing the defects at a determined location is difficult, and they lacked a reliable way to switch the color centers on and off.

    The Berkeley Lab team now solves these problems. Cong Su, a postdoc from the research group led by Alex Zettl, a faculty senior scientist at Berkeley Lab and professor of physics at UC Berkeley, examined how color centers behaved in different sophisticated forms of hBN. The researchers found that two stacked and twisted layers of the material resulted in the activation and enhancement of ultraviolet (UV) emission from a color center, which can be shut off when a voltage is applied across the structure. “It’s like a sandwich with two pieces of bread, but one rotated relative to the other,” said Zettl. The rotation between the two layers activates the color centers at the interface to become extremely bright. The applied voltage then easily and reversibly tunes the intensity from bright to completely dark, without “unrotating” the halves.

    3
    An electron beam placed at a series of locations on a sheet of twisted hBN intensifies the light emission from each location. The brightness depends on how long the beam sits at a given point, or the electron flux delivered to that point. The result is an illuminated pattern. (Credit: Su et al. 2022)

    Aloni’s development of a modified electron microscope that not only probed the material’s structure but also collected the emitted light for analysis turned out to be key for this study. The setup uses an electron beam to excite the color centers; the researchers also found that they could use the electron beam to activate color centers and draw patterns, such as a smiley face, onto hBN. “People typically zap the material with lasers or ions, but we’ve instead zapped it with a beam of electrons,” said Zettl.

    The study achieves three steps toward realization of a scalable quantum device. First, the UV color centers in hBN can be reliably activated to exceptional maximum brightness, by twisting the crystal interface. Second, these color centers can then be gradually and reversibly dimmed by a simple applied voltage. Finally, electron beam treatment allows further precise spatial positioning of these color centers.

    Theoretical calculations led by Steven Louie, a faculty senior scientist at Berkeley Lab and distinguished professor of physics at UC Berkeley, provided candidates for the UV color center atomic configuration to help explain why their brightness depended on the twist angle. The light emission process involves an excited electron wandering around and recombining with a hole at the color center. But a typical hBN structure has many traps that could capture the electrons, preventing light emission. “Twisting the crystal layers removes many of these traps, or ‘quantum parking lots,’ near the interface,” said Louie.

    The team next intends to prepare samples that allow atomic characterization to pinpoint the specific atomic structures behind this mechanism and add additional levels of control. “The work is pointing us in the direction of new types of mechanisms that we can use to control the emission even better, and this is very important for many applications in quantum information sciences,” said Aloni.

    Science paper:
    Nature Materials

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LBNL campus

    Bringing Science Solutions to the World

    In the world of science, The Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the The National Academy of Sciences, one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the The National Academy of Engineering, and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the University of California- Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California-Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    History

    1931–1941

    The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California-Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

    LBNL 88 inch cyclotron.

    LBNL 88 inch cyclotron.

    Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded The DOE’s Los Alamos Laboratory, and Robert Wilson founded The DOE’s Fermi National Accelerator Laboratory.

    1942–1950

    Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.

    1951–2018

    After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now The Department of Energy . The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now The DOE’s Lawrence Livermore National Laboratory) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

    Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

    The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

    The lab remains owned by the Department of Energy , with management from the University of California. Companies such as Intel were funding the lab’s research into computing chips.

    Science mission

    From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

    The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

    Berkeley Lab operates five major National User Facilities for the DOE Office of Science:

    The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.

    The DOE’s Lawrence Berkeley National Laboratory Advanced Light Source.
    The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

    Berkeley Lab Laser Accelerator (BELLA) Center

    The DOE Joint Genome Institute supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, DOE’s Lawrence Livermore National Laboratory, DOE’s Oak Ridge National Laboratory (ORNL), DOE’s Pacific Northwest National Laboratory (PNNL), and the HudsonAlpha Institute for Biotechnology . The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

    LBNL Molecular Foundry

    The LBNL Molecular Foundry is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

    The DOE’s NERSC National Energy Research Scientific Computing Center is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

    DOE’s NERSC National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory.

    Cray Cori II supercomputer at National Energy Research Scientific Computing Center at DOE’s Lawrence Berkeley National Laboratory, named after Gerty Cori, the first American woman to win a Nobel Prize in science.

    NERSC Hopper Cray XE6 supercomputer.

    NERSC Cray XC30 Edison supercomputer.

    NERSC GPFS for Life Sciences.

    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    NERSC PDSF computer cluster in 2003.

    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    Cray Shasta Perlmutter SC18 AMD Epyc Nvidia pre-exascale supercomputer.

    NERSC is a DOE Office of Science User Facility.

    The DOE’s Energy Science Network is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

    Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory, the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science , and DOE’s Lawrence Livermore National Laboratory (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

    Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory leads JCESR and Berkeley Lab is a major partner.

     
  • richardmitnick 11:55 am on October 6, 2022 Permalink | Reply
    Tags: "Satellites detect methane plume in Nord Stream leak", A suite of complementary Earth observation satellites carrying optical and radar imaging instruments were called upon to characterize the gas leak bubbling in the Baltic., Applied Research & Technology, , , , Following unusual seismic disturbances in the Baltic Sea several leaks were discovered last week in the underwater Nord Stream 1 and 2 gas pipelines near Denmark and Sweden., ,   

    From The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganization](EU): “Satellites detect methane plume in Nord Stream leak” 

    ESA Space For Europe Banner

    European Space Agency – United Space in Europe (EU)

    From The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganization](EU)

    10.6.22

    1
    Nord Stream leak as captured by Pléiades Neo.

    Following unusual seismic disturbances in the Baltic Sea, several leaks were discovered last week in the underwater Nord Stream 1 and 2 gas pipelines near Denmark and Sweden. Neither pipeline was transporting gas at the time of the blasts, but they still contained pressurised methane – the main component of natural gas – which spewed out producing a wide stream of bubbles on the sea surface.

    With the unexplained gas release posing a serious question about the incident’s environmental impact, a suite of complementary Earth observation satellites carrying optical and radar imaging instruments were called upon to characterize the gas leak bubbling in the Baltic.

    Although methane partly dissolves in water, released later as carbon dioxide, it is not toxic, but it is the second most abundant anthropogenic greenhouse gas in our atmosphere causing climate change.

    As the pressurized gas leaked through the broken pipe and travelled rapidly towards the sea surface, the size of the gas bubbles increased as the pressure reduced. On reaching the surface, the large gas bubbles disrupted the sea surface above the location of the pipeline rupture. The signature of the gas bubbling at the sea surface can be seen from space in several ways.

    Owing to the persistent cloud cover over the area, image acquisitions from optical satellites proved extremely difficult. High-resolution images captured by Pléiades Neo and Planet, both part of ESA’s Third Party Mission Programme, showed the disturbance ranging from 500 to 700 m across the sea surface.

    Several days later, a significant reduction in the estimated diameter of the methane disturbance was witnessed as the pipelines’ gas emptied. Images captured by Copernicus Sentinel-2 and US Landsat 8 mission confirmed this.

    As disturbances such as these cause a ‘roughening’ of the sea surface, this increases the backscatter observed by Synthetic Aperture Radar (SAR) instruments, which are extremely sensitive to changes in the sea surface at such a scale. These include instruments onboard the Copernicus Sentinel-1 and ICEYE constellation – the first New Space company to join the Copernicus Contributing Missions fleet.

    ESA’s Scientist for Ocean and Ice, Craig Donlon, said, “The power of active microwave radar instruments is that they can monitor the ocean surface signatures of bubbling methane through clouds over a wide swath and at a high spatial resolution overcoming one of the major limitations to optical instruments. This allows for a more complete picture of the disaster and its associated event-timing to be established.”

    One of the ruptures occurred southeast of the Danish Island of Bornholm. Images from Sentinel-1 on 24 September showed no disturbance to the water. However, an ICEYE satellite passing over the area on the evening of 28 September acquired an image showing a disturbance to the sea surface above the rupture.

    3
    ICEYE image from 28 September.

    What about the methane released?

    Although optical satellites can provide us with the radius of the methane bubbling over water, they provide little information on how much methane has been released into the atmosphere.

    Monitoring methane over water is extremely difficult as water absorbs most of the sunlight in the shortwave infrared wavelengths used for methane remote sensing. This limits the amount of light reaching the sensor, thus making it extremely difficult to measure methane concentrations over the sea at high latitudes.

    4
    Gas leak detected by GHGSat satellite.

    5
    GHGSat satellite.

    GHGSat, a leader in methane emissions monitoring from space and also part of ESA’s Third Party Mission Programme, tasked its satellites to measure the Nord Stream 2 gas pipeline leak with its constellation of high-resolution (around 25 m) satellites. By tasking its satellites to obtain measurements at larger viewing angles, GHGSat were able to target the area where the sun’s light reflected the strongest off the sea surface – known as the ‘glint spot’.

    On 30 September, the estimated emission rate derived from its first methane concentration measurement was 79 000 kg per hour – making it the largest methane leak ever detected by GHGSat from a single point-source. This rate is extremely high, especially considering its four days following the initial breach, and this is only one of four rupture points in the pipeline.

    GHGSat Director for Europe, Adina Gillespie, said, “Predictably, the media and the world have turned to space to understand the scale of the Nord Stream industrial disaster. While we await further investigation on the cause, GHGSat responded quickly, measuring 79 000 kg per hour of methane coming from the leaks. We will continue tasking GHGSat satellites for the Nord Stream sites until we no longer detect emissions.”

    Claus Zehner, Copernicus Sentinel-5P, Altius and Flex Missions Manager, mentions: “Besides GHGSat, the Copernicus Sentinel-2 satellite provided methane concentration measurements emitted by this pipeline leak which highlights the feasibility to use both public funded and commercial satellites in a synergistic way.”

    6
    Gas leak detected by Copernicus Sentinel-2.

    Environmental impact

    Although closed at the time, the two Nord Stream stems contained enough gas to release 300 000 tonnes of methane – more than twice the amount released by the Aliso Canyon leak in California over several months in 2015-16.

    As large as it may be, the Nord Stream release pales in comparison with the 80 million tonnes emitted each year by the oil and gas industry. The latest release is roughly equivalent to one and a half days of global methane emissions.

    Methane observations from the Sentinel-5P satellite can observe regions with enhanced methane concentrations from strong point sources all over the world.

    Satellite observations are a powerful tool for improving estimates of emission strength, seeing how they change over time and can also help detect previously unknown emission sources.

    Looking ahead, the upcoming atmospheric Copernicus Anthropogenic Carbon Dioxide Monitoring mission (CO2M) will carry a near-infrared spectrometer to measure atmospheric carbon dioxide, but also methane, at a good spatial resolution. This mission will provide the EU with a unique and independent source of information to assess the effectiveness of policy measures, and to track their impact towards decarbonizing Europe and meeting national emission reduction targets.

    Yasjka Meijer, ESA’s Scientist for Copernicus Atmospheric Missions, commented, “The CO2M Mission will provide global coverage and has a special mode above water to increase observed radiances by looking toward the sunglint spot, however it will be equally limited by clouds.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC (NL) in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the
    European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA’s space flight programme includes human spaceflight (mainly through participation in the International Space Station program); the launch and operation of uncrewed exploration missions to other planets and the Moon; Earth observation, science and telecommunication; designing launch vehicles; and maintaining a major spaceport, the The Guiana Space Centre [Centre Spatial Guyanais; CSG also called Europe’s Spaceport) at Kourou, French Guiana. The main European launch vehicle Ariane 5 is operated through Arianespace with ESA sharing in the costs of launching and further developing this launch vehicle. The agency is also working with The National Aeronautics and Space Agency to manufacture the Orion Spacecraft service module that will fly on the Space Launch System.

    The agency’s facilities are distributed among the following centres:

    ESA European Space Research and Technology Centre (ESTEC) (NL) in Noordwijk, Netherlands;
    ESA Centre for Earth Observation [ESRIN] (IT) in Frascati, Italy;
    ESA Mission Control ESA European Space Operations Center [ESOC](DE) is in Darmstadt, Germany;
    ESA -European Astronaut Centre [EAC] trains astronauts for future missions is situated in Cologne, Germany;
    European Centre for Space Applications and Telecommunications (ECSAT) (UK), a research institute created in 2009, is located in Harwell, England;
    ESA – European Space Astronomy Centre [ESAC] (ES) is located in Villanueva de la Cañada, Madrid, Spain.
    European Space Agency Science Programme is a long-term programme of space science and space exploration missions.

    Foundation

    After World War II, many European scientists left Western Europe in order to work with the United States. Although the 1950s boom made it possible for Western European countries to invest in research and specifically in space-related activities, Western European scientists realized solely national projects would not be able to compete with the two main superpowers. In 1958, only months after the Sputnik shock, Edoardo Amaldi (Italy) and Pierre Auger (France), two prominent members of the Western European scientific community, met to discuss the foundation of a common Western European space agency. The meeting was attended by scientific representatives from eight countries, including Harrie Massey (United Kingdom).

    The Western European nations decided to have two agencies: one concerned with developing a launch system, ELDO (European Launch Development Organization) , and the other the precursor of the European Space Agency, ESRO (European Space Research Organization) . The latter was established on 20 March 1964 by an agreement signed on 14 June 1962. From 1968 to 1972, ESRO launched seven research satellites.

    ESA in its current form was founded with the ESA Convention in 1975, when ESRO was merged with ELDO. ESA had ten founding member states: Belgium, Denmark, France, West Germany, Italy, the Netherlands, Spain, Sweden, Switzerland, and the United Kingdom. These signed the ESA Convention in 1975 and deposited the instruments of ratification by 1980, when the convention came into force. During this interval the agency functioned in a de facto fashion. ESA launched its first major scientific mission in 1975, Cos-B, a space probe monitoring gamma-ray emissions in the universe, which was first worked on by ESRO.

    ESA50 Logo large

    Later activities

    ESA collaborated with National Aeronautics Space Agency on the International Ultraviolet Explorer (IUE), the world’s first high-orbit telescope, which was launched in 1978 and operated successfully for 18 years.

    ESA Infrared Space Observatory.

    European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU)/National Aeronautics and Space Administration Solar Orbiter annotated.

    A number of successful Earth-orbit projects followed, and in 1986 ESA began Giotto, its first deep-space mission, to study the comets Halley and Grigg–Skjellerup. Hipparcos, a star-mapping mission, was launched in 1989 and in the 1990s SOHO, Ulysses and the Hubble Space Telescope were all jointly carried out with NASA. Later scientific missions in cooperation with NASA include the Cassini–Huygens space probe, to which ESA contributed by building the Titan landing module Huygens.

    ESA/Huygens Probe from Cassini landed on Titan.

    As the successor of ELDO, ESA has also constructed rockets for scientific and commercial payloads. Ariane 1, launched in 1979, carried mostly commercial payloads into orbit from 1984 onward. The next two versions of the Ariane rocket were intermediate stages in the development of a more advanced launch system, the Ariane 4, which operated between 1988 and 2003 and established ESA as the world leader in commercial space launches in the 1990s. Although the succeeding Ariane 5 experienced a failure on its first flight, it has since firmly established itself within the heavily competitive commercial space launch market with 82 successful launches until 2018. The successor launch vehicle of Ariane 5, the Ariane 6, is under development and is envisioned to enter service in the 2020s.

    The beginning of the new millennium saw ESA become, along with agencies like National Aeronautics Space Agency, Japan Aerospace Exploration Agency (JP), Indian Space Research Organization (IN), the Canadian Space Agency(CA) and Roscosmos (RU), one of the major participants in scientific space research. Although ESA had relied on co-operation with NASA in previous decades, especially the 1990s, changed circumstances (such as tough legal restrictions on information sharing by the United States military) led to decisions to rely more on itself and on co-operation with Russia. A 2011 press issue thus stated:

    “Russia is ESA’s first partner in its efforts to ensure long-term access to space. There is a framework agreement between ESA and the government of the Russian Federation on cooperation and partnership in the exploration and use of outer space for peaceful purposes, and cooperation is already underway in two different areas of launcher activity that will bring benefits to both partners.”

    Notable ESA programs include SMART-1, a probe testing cutting-edge space propulsion technology, the Mars Express and Venus Express missions, as well as the development of the Ariane 5 rocket and its role in the ISS partnership. ESA maintains its scientific and research projects mainly for astronomy-space missions such as Corot, launched on 27 December 2006, a milestone in the search for exoplanets.

    On 21 January 2019, ArianeGroup and Arianespace announced a one-year contract with ESA to study and prepare for a mission to mine the Moon for lunar regolith.

    Mission

    The treaty establishing the European Space Agency reads:

    The purpose of the Agency shall be to provide for and to promote, for exclusively peaceful purposes, cooperation among European States in space research and technology and their space applications, with a view to their being used for scientific purposes and for operational space applications systems…

    ESA is responsible for setting a unified space and related industrial policy, recommending space objectives to the member states, and integrating national programs like satellite development, into the European program as much as possible.

    Jean-Jacques Dordain – ESA’s Director General (2003–2015) – outlined the European Space Agency’s mission in a 2003 interview:

    “Today space activities have pursued the benefit of citizens, and citizens are asking for a better quality of life on Earth. They want greater security and economic wealth, but they also want to pursue their dreams, to increase their knowledge, and they want younger people to be attracted to the pursuit of science and technology. I think that space can do all of this: it can produce a higher quality of life, better security, more economic wealth, and also fulfill our citizens’ dreams and thirst for knowledge, and attract the young generation. This is the reason space exploration is an integral part of overall space activities. It has always been so, and it will be even more important in the future.”

    Activities

    According to the ESA website, the activities are:

    Observing the Earth
    Human Spaceflight
    Launchers
    Navigation
    Space Science
    Space Engineering & Technology
    Operations
    Telecommunications & Integrated Applications
    Preparing for the Future
    Space for Climate

    Programs

    Copernicus Programme
    Cosmic Vision
    ExoMars
    FAST20XX
    Galileo
    Horizon 2000
    Living Planet Programme
    Mandatory

    Every member country must contribute to these programs:

    Technology Development Element Program
    Science Core Technology Program
    General Study Program
    European Component Initiative

    Optional

    Depending on their individual choices the countries can contribute to the following programs, listed according to:

    Launchers
    Earth Observation
    Human Spaceflight and Exploration
    Telecommunications
    Navigation
    Space Situational Awareness
    Technology

    ESA_LAB@

    ESA has formed partnerships with universities. ESA_LAB@ refers to research laboratories at universities. Currently there are ESA_LAB@

    Technische Universität Darmstadt (DE)
    École des hautes études commerciales de Paris (HEC Paris) (FR)
    Université de recherche Paris Sciences et Lettres (FR)
    The University of Central Lancashire (UK)

    Membership and contribution to ESA

    By 2015, ESA was an intergovernmental organization of 22 member states. Member states participate to varying degrees in the mandatory (25% of total expenditures in 2008) and optional space programs (75% of total expenditures in 2008). The 2008 budget amounted to €3.0 billion whilst the 2009 budget amounted to €3.6 billion. The total budget amounted to about €3.7 billion in 2010, €3.99 billion in 2011, €4.02 billion in 2012, €4.28 billion in 2013, €4.10 billion in 2014 and €4.33 billion in 2015. English is the main language within ESA. Additionally, official documents are also provided in German and documents regarding the Spacelab are also provided in Italian. If found appropriate, the agency may conduct its correspondence in any language of a member state.

    Non-full member states
    Slovenia
    Since 2016, Slovenia has been an associated member of the ESA.

    Latvia
    Latvia became the second current associated member on 30 June 2020, when the Association Agreement was signed by ESA Director Jan Wörner and the Minister of Education and Science of Latvia, Ilga Šuplinska in Riga. The Saeima ratified it on July 27. Previously associated members were Austria, Norway and Finland, all of which later joined ESA as full members.

    Canada
    Since 1 January 1979, Canada has had the special status of a Cooperating State within ESA. By virtue of this accord, The Canadian Space Agency [Agence spatiale canadienne, ASC] (CA) takes part in ESA’s deliberative bodies and decision-making and also in ESA’s programs and activities. Canadian firms can bid for and receive contracts to work on programs. The accord has a provision ensuring a fair industrial return to Canada. The most recent Cooperation Agreement was signed on 15 December 2010 with a term extending to 2020. For 2014, Canada’s annual assessed contribution to the ESA general budget was €6,059,449 (CAD$8,559,050). For 2017, Canada has increased its annual contribution to €21,600,000 (CAD$30,000,000).

    Enlargement

    After the decision of the ESA Council of 21/22 March 2001, the procedure for accession of the European states was detailed as described the document titled The Plan for European Co-operating States (PECS). Nations that want to become a full member of ESA do so in 3 stages. First a Cooperation Agreement is signed between the country and ESA. In this stage, the country has very limited financial responsibilities. If a country wants to co-operate more fully with ESA, it signs a European Cooperating State (ECS) Agreement. The ECS Agreement makes companies based in the country eligible for participation in ESA procurements. The country can also participate in all ESA programs, except for the Basic Technology Research Programme. While the financial contribution of the country concerned increases, it is still much lower than that of a full member state. The agreement is normally followed by a Plan For European Cooperating State (or PECS Charter). This is a 5-year programme of basic research and development activities aimed at improving the nation’s space industry capacity. At the end of the 5-year period, the country can either begin negotiations to become a full member state or an associated state or sign a new PECS Charter.

    During the Ministerial Meeting in December 2014, ESA ministers approved a resolution calling for discussions to begin with Israel, Australia and South Africa on future association agreements. The ministers noted that “concrete cooperation is at an advanced stage” with these nations and that “prospects for mutual benefits are existing”.

    A separate space exploration strategy resolution calls for further co-operation with the United States, Russia and China on “LEO” exploration, including a continuation of ISS cooperation and the development of a robust plan for the coordinated use of space transportation vehicles and systems for exploration purposes, participation in robotic missions for the exploration of the Moon, the robotic exploration of Mars, leading to a broad Mars Sample Return mission in which Europe should be involved as a full partner, and human missions beyond LEO in the longer term.”

    Relationship with the European Union

    The political perspective of the European Union (EU) was to make ESA an agency of the EU by 2014, although this date was not met. The EU member states provide most of ESA’s funding, and they are all either full ESA members or observers.

    History

    At the time ESA was formed, its main goals did not encompass human space flight; rather it considered itself to be primarily a scientific research organization for uncrewed space exploration in contrast to its American and Soviet counterparts. It is therefore not surprising that the first non-Soviet European in space was not an ESA astronaut on a European space craft; it was Czechoslovak Vladimír Remek who in 1978 became the first non-Soviet or American in space (the first man in space being Yuri Gagarin of the Soviet Union) – on a Soviet Soyuz spacecraft, followed by the Pole Mirosław Hermaszewski and East German Sigmund Jähn in the same year. This Soviet co-operation programme, known as Intercosmos, primarily involved the participation of Eastern bloc countries. In 1982, however, Jean-Loup Chrétien became the first non-Communist Bloc astronaut on a flight to the Soviet Salyut 7 space station.

    Because Chrétien did not officially fly into space as an ESA astronaut, but rather as a member of the French CNES astronaut corps, the German Ulf Merbold is considered the first ESA astronaut to fly into space. He participated in the STS-9 Space Shuttle mission that included the first use of the European-built Spacelab in 1983. STS-9 marked the beginning of an extensive ESA/NASA joint partnership that included dozens of space flights of ESA astronauts in the following years. Some of these missions with Spacelab were fully funded and organizationally and scientifically controlled by ESA (such as two missions by Germany and one by Japan) with European astronauts as full crew members rather than guests on board. Beside paying for Spacelab flights and seats on the shuttles, ESA continued its human space flight co-operation with the Soviet Union and later Russia, including numerous visits to Mir.

    During the latter half of the 1980s, European human space flights changed from being the exception to routine and therefore, in 1990, the European Astronaut Centre in Cologne, Germany was established. It selects and trains prospective astronauts and is responsible for the co-ordination with international partners, especially with regard to the International Space Station. As of 2006, the ESA astronaut corps officially included twelve members, including nationals from most large European countries except the United Kingdom.

    In the summer of 2008, ESA started to recruit new astronauts so that final selection would be due in spring 2009. Almost 10,000 people registered as astronaut candidates before registration ended in June 2008. 8,413 fulfilled the initial application criteria. Of the applicants, 918 were chosen to take part in the first stage of psychological testing, which narrowed down the field to 192. After two-stage psychological tests and medical evaluation in early 2009, as well as formal interviews, six new members of the European Astronaut Corps were selected – five men and one woman.

    Cooperation with other countries and organizations

    ESA has signed co-operation agreements with the following states that currently neither plan to integrate as tightly with ESA institutions as Canada, nor envision future membership of ESA: Argentina, Brazil, China, India (for the Chandrayan mission), Russia and Turkey.

    Additionally, ESA has joint projects with the European Union, NASA of the United States and is participating in the International Space Station together with the United States (NASA), Russia and Japan (JAXA).

    European Union
    ESA and EU member states
    ESA-only members
    EU-only members

    ESA is not an agency or body of the European Union (EU), and has non-EU countries (Norway, Switzerland, and the United Kingdom) as members. There are however ties between the two, with various agreements in place and being worked on, to define the legal status of ESA with regard to the EU.

    There are common goals between ESA and the EU. ESA has an EU liaison office in Brussels. On certain projects, the EU and ESA co-operate, such as the upcoming Galileo satellite navigation system. Space policy has since December 2009 been an area for voting in the European Council. Under the European Space Policy of 2007, the EU, ESA and its Member States committed themselves to increasing co-ordination of their activities and programs and to organizing their respective roles relating to space.

    The Lisbon Treaty of 2009 reinforces the case for space in Europe and strengthens the role of ESA as an R&D space agency. Article 189 of the Treaty gives the EU a mandate to elaborate a European space policy and take related measures, and provides that the EU should establish appropriate relations with ESA.

    Former Italian astronaut Umberto Guidoni, during his tenure as a Member of the European Parliament from 2004 to 2009, stressed the importance of the European Union as a driving force for space exploration, “…since other players are coming up such as India and China it is becoming ever more important that Europeans can have an independent access to space. We have to invest more into space research and technology in order to have an industry capable of competing with other international players.”

    The first EU-ESA International Conference on Human Space Exploration took place in Prague on 22 and 23 October 2009. A road map which would lead to a common vision and strategic planning in the area of space exploration was discussed. Ministers from all 29 EU and ESA members as well as members of parliament were in attendance.

    National space organizations of member states:

    The Centre National d’Études Spatiales(FR) (CNES) (National Centre for Space Study) is the French government space agency (administratively, a “public establishment of industrial and commercial character”). Its headquarters are in central Paris. CNES is the main participant on the Ariane project. Indeed, CNES designed and tested all Ariane family rockets (mainly from its centre in Évry near Paris)
    The UK Space Agency is a partnership of the UK government departments which are active in space. Through the UK Space Agency, the partners provide delegates to represent the UK on the various ESA governing bodies. Each partner funds its own programme.
    The Italian Space Agency A.S.I. – Agenzia Spaziale Italiana was founded in 1988 to promote, co-ordinate and conduct space activities in Italy. Operating under the Ministry of the Universities and of Scientific and Technological Research, the agency cooperates with numerous entities active in space technology and with the president of the Council of Ministers. Internationally, the ASI provides Italy’s delegation to the Council of the European Space Agency and to its subordinate bodies.
    The German Aerospace Center (DLR)[Deutsches Zentrum für Luft- und Raumfahrt e. V.] is the national research centre for aviation and space flight of the Federal Republic of Germany and of other member states in the Helmholtz Association. Its extensive research and development projects are included in national and international cooperative programs. In addition to its research projects, the centre is the assigned space agency of Germany bestowing headquarters of German space flight activities and its associates.
    The Instituto Nacional de Técnica Aeroespacial (INTA)(ES) (National Institute for Aerospace Technique) is a Public Research Organization specialized in aerospace research and technology development in Spain. Among other functions, it serves as a platform for space research and acts as a significant testing facility for the aeronautic and space sector in the country.

    National Aeronautics Space Agency

    ESA has a long history of collaboration with NASA. Since ESA’s astronaut corps was formed, the Space Shuttle has been the primary launch vehicle used by ESA’s astronauts to get into space through partnership programs with NASA. In the 1980s and 1990s, the Spacelab programme was an ESA-NASA joint research programme that had ESA develop and manufacture orbital labs for the Space Shuttle for several flights on which ESA participate with astronauts in experiments.

    In robotic science mission and exploration missions, NASA has been ESA’s main partner. Cassini–Huygens was a joint NASA-ESA mission, along with the Infrared Space Observatory, INTEGRAL, SOHO, and others.

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU)/ASI Italian Space Agency [Agenzia Spaziale Italiana](IT) Cassini Spacecraft.

    European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU) Integral spacecraft

    European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganization] (EU)/National Aeronautics and Space AdministrationSOHO satellite. Launched in 1995.

    Also, the Hubble Space Telescope is a joint project of NASA and ESA.

    National Aeronautics and Space Administration/European Space Agency[La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganization](EU) Hubble Space Telescope

    ESA-NASA joint projects include the James Webb Space Telescope and the proposed Laser Interferometer Space Antenna.

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganization]Canadian Space Agency [Agence Spatiale Canadienne](CA) James Webb Space Telescope annotated. Scheduled for launch in December 2021.

    Gravity is talking. Lisa will listen. Dialogos of Eide.

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU)/National Aeronautics and Space Administration eLISA space based, the future of gravitational wave research.

    NASA has committed to provide support to ESA’s proposed MarcoPolo-R mission to return an asteroid sample to Earth for further analysis. NASA and ESA will also likely join together for a Mars Sample Return Mission. In October 2020 the ESA entered into a memorandum of understanding (MOU) with NASA to work together on the Artemis program, which will provide an orbiting lunar gateway and also accomplish the first manned lunar landing in 50 years, whose team will include the first woman on the Moon.

    NASA ARTEMIS spacecraft depiction.

    Cooperation with other space agencies

    Since China has started to invest more money into space activities, the Chinese Space Agency[中国国家航天局] (CN) has sought international partnerships. ESA is, beside, The Russian Federal Space Agency Государственная корпорация по космической деятельности «Роскосмос»](RU) one of its most important partners. Two space agencies cooperated in the development of the Double Star Mission. In 2017, ESA sent two astronauts to China for two weeks sea survival training with Chinese astronauts in Yantai, Shandong.

    ESA entered into a major joint venture with Russia in the form of the CSTS, the preparation of French Guiana spaceport for launches of Soyuz-2 rockets and other projects. With India, ESA agreed to send instruments into space aboard the ISRO’s Chandrayaan-1 in 2008. ESA is also co-operating with Japan, the most notable current project in collaboration with JAXA is the BepiColombo mission to Mercury.

    European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU)/Japan Aerospace Exploration Agency [国立研究開発法人宇宙航空研究開発機構](JP) Bepicolumbo in flight illustration. Artist’s impression of BepiColombo – ESA’s first mission to Mercury. ESA’s Mercury Planetary Orbiter (MPO) will be operated from ESOC Germany.

    ESA’s Mercury Planetary Orbiter (MPO) will be operated from ESOC Germany.

    Speaking to reporters at an air show near Moscow in August 2011, ESA head Jean-Jacques Dordain said ESA and Russia’s Roskosmos space agency would “carry out the first flight to Mars together.”

     
  • richardmitnick 10:24 am on October 6, 2022 Permalink | Reply
    Tags: "An Essential Step in The Evolution of Life on Earth Could Have Taken Place in The Air", A unique reactivity of free amino acids at the air–water interface of micron-sized water droplets that leads to the formation of peptide isomers on the millisecond timescale., Amide bonds are actually hindered by water., Amide bonds are the links in the chains of amino acids that form the foundation of so many crucial components of life including peptides (short strings of amino acids) and proteins., Applied Research & Technology, , , Microdroplets may have been produced in the form of sea spray whipped up from the ocean and creating the essential chemical bonds for life to develop., , , The boundary between water and air could be where life got started., The reaction is performed under ambient conditions and does not require additional reagents; acid; catalysts or radiation.   

    From Purdue University Via “Science Alert (AU)” : “An Essential Step in The Evolution of Life on Earth Could Have Taken Place in The Air” 

    From Purdue University

    Via

    ScienceAlert

    “Science Alert (AU)”

    10.6.22
    David Nield

    1
    The boundary between water and air could be where life got started. (Yaorusheng/Moment/Getty Images)

    Life’s emergence in a ‘warm little pond’ some 4.5 billion years ago is a relatively solid foundation of modern biology.

    In spite of water’s vital role in facilitating early organic reactions on Earth, one of the most basic ingredients won’t form in aqueous surrounds, raising the question of how life initially acquired them.

    A new experiment reveals how these critical chemical reactions might have taken place.

    Amide bonds are the links in the chains of amino acids that form the foundation of so many crucial components of life, including peptides (short strings of amino acids) and proteins (longer strings of amino acids that can do work in the form of enzymes).

    The problem is that amide bonds are actually hindered by water, which is something of a problem on an oceanic world like ancient Earth. Something else must have come into play, scientists think, and the new study suggests it was at the boundary of water and air that the magic happened.

    “Here, we report a unique reactivity of free amino acids at the air–water interface of micron-sized water droplets that leads to the formation of peptide isomers on the millisecond timescale,” write Purdue University chemist Dylan Holdena and colleagues in their published paper [PNAS (below)].

    “This reaction is performed under ambient conditions and does not require additional reagents, acid, catalysts, or radiation.”

    The team sprayed microdroplets of water containing two amino acids, glycine and L-alanine, towards a mass spectrometer device for detailed chemical analysis. A chain of two amino acids, a dipeptide, was shown to form in the droplets.

    Since dipeptides are able to build further amino acid chains, the results are taken to imply airborne microdroplets could have sped up the early construction of peptide chains by exposing dissolved amino acids to the air.

    Billions of years ago, such microdroplets may have been produced in the form of sea spray was whipped up from the ocean, creating the essential chemical bonds for life to develop.

    What’s more, the reaction observed in these experiments happened without the addition of any other chemical agents, catalysts, or radiation sources, making it more likely that it could have been happening billions of years ago on Earth.

    “The observed generation of peptides from free amino acids at the air–water interface of pure water droplets, the simplest of all prebiotic systems, suggests that settings such as atmospheric aerosols or sea spray may have provided a unique and ubiquitous environment to overcome the energetic hurdles associated with condensation and polymerization of biomolecules in water,” write the researchers.

    If the team is right, where microdroplets of water hit the air, at the smallest scales the environment might be dry rather than wet – which means it would be providing conditions where dipeptides can be synthesized.

    Scientists have been busy looking at all kinds of explanations for how amino acid chains could have been formed in ocean environments. Hydrothermal vents may have played a role, for instance, or perhaps a visiting asteroid. Now, there’s a new option.

    It’s still a hypothesis for now though, and future studies will be required to work out just how these amino acid chains are being put together – and how these basic chemical building blocks led to the life on Earth that we know today.

    “This reactivity provides a plausible route for the formation of the first biopolymers in aqueous environments,” write the researchers.

    Science paper:
    PNAS

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Purdue University is a public land-grant research university in West Lafayette, Indiana, and the flagship campus of the Purdue University system. The university was founded in 1869 after Lafayette businessman John Purdue donated land and money to establish a college of science, technology, and agriculture in his name. The first classes were held on September 16, 1874, with six instructors and 39 students.

    The main campus in West Lafayette offers more than 200 majors for undergraduates, over 69 masters and doctoral programs, and professional degrees in pharmacy and veterinary medicine. In addition, Purdue has 18 intercollegiate sports teams and more than 900 student organizations. Purdue is a member of the Big Ten Conference and enrolls the second largest student body of any university in Indiana, as well as the fourth largest foreign student population of any university in the United States.

    Purdue University is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. Purdue has 25 American astronauts as alumni and as of April 2019, the university has been associated with 13 Nobel Prizes.

    In 1865, the Indiana General Assembly voted to take advantage of the Morrill Land-Grant Colleges Act of 1862 and began plans to establish an institution with a focus on agriculture and engineering. Communities throughout the state offered facilities and funding in bids for the location of the new college. Popular proposals included the addition of an agriculture department at Indiana State University, at what is now Butler University. By 1869, Tippecanoe County’s offer included $150,000 (equivalent to $2.9 million in 2019) from Lafayette business leader and philanthropist John Purdue; $50,000 from the county; and 100 acres (0.4 km^2) of land from local residents.

    On May 6, 1869, the General Assembly established the institution in Tippecanoe County as Purdue University, in the name of the principal benefactor. Classes began at Purdue on September 16, 1874, with six instructors and 39 students. Professor John S. Hougham was Purdue’s first faculty member and served as acting president between the administrations of presidents Shortridge and White. A campus of five buildings was completed by the end of 1874. In 1875, Sarah A. Oren, the State Librarian of Indiana, was appointed Professor of Botany.

    Purdue issued its first degree, a Bachelor of Science in chemistry, in 1875, and admitted its first female students that autumn.

    Emerson E. White, the university’s president, from 1876 to 1883, followed a strict interpretation of the Morrill Act. Rather than emulate the classical universities, White believed Purdue should be an “industrial college” and devote its resources toward providing a broad, liberal education with an emphasis on science, technology, and agriculture. He intended not only to prepare students for industrial work, but also to prepare them to be good citizens and family members.

    Part of White’s plan to distinguish Purdue from classical universities included a controversial attempt to ban fraternities, which was ultimately overturned by the Indiana Supreme Court, leading to White’s resignation. The next president, James H. Smart, is remembered for his call in 1894 to rebuild the original Heavilon Hall “one brick higher” after it had been destroyed by a fire.

    By the end of the nineteenth century, the university was organized into schools of agriculture, engineering (mechanical, civil, and electrical), and pharmacy; former U.S. President Benjamin Harrison served on the board of trustees. Purdue’s engineering laboratories included testing facilities for a locomotive, and for a Corliss steam engine—one of the most efficient engines of the time. The School of Agriculture shared its research with farmers throughout the state, with its cooperative extension services, and would undergo a period of growth over the following two decades. Programs in education and home economics were soon established, as well as a short-lived school of medicine. By 1925, Purdue had the largest undergraduate engineering enrollment in the country, a status it would keep for half a century.

    President Edward C. Elliott oversaw a campus building program between the world wars. Inventor, alumnus, and trustee David E. Ross coordinated several fundraisers, donated lands to the university, and was instrumental in establishing the Purdue Research Foundation. Ross’s gifts and fundraisers supported such projects as Ross–Ade Stadium, the Memorial Union, a civil engineering surveying camp, and Purdue University Airport. Purdue Airport was the country’s first university-owned airport and the site of the country’s first college-credit flight training courses.

    Amelia Earhart joined the Purdue faculty in 1935 as a consultant for these flight courses and as a counselor on women’s careers. In 1937, the Purdue Research Foundation provided the funds for the Lockheed Electra 10-E Earhart flew on her attempted round-the-world flight.

    Every school and department at the university was involved in some type of military research or training during World War II. During a project on radar receivers, Purdue physicists discovered properties of germanium that led to the making of the first transistor. The Army and the Navy conducted training programs at Purdue and more than 17,500 students, staff, and alumni served in the armed forces. Purdue set up about a hundred centers throughout Indiana to train skilled workers for defense industries. As veterans returned to the university under the G.I. Bill, first-year classes were taught at some of these sites to alleviate the demand for campus space. Four of these sites are now degree-granting regional campuses of the Purdue University system. On-campus housing became racially desegregated in 1947, following pressure from Purdue President Frederick L. Hovde and Indiana Governor Ralph F. Gates.

    After the war, Hovde worked to expand the academic opportunities at the university. A decade-long construction program emphasized science and research. In the late 1950s and early 1960s the university established programs in veterinary medicine, industrial management, and nursing, as well as the first computer science department in the United States. Undergraduate humanities courses were strengthened, although Hovde only reluctantly approved of graduate-level study in these areas. Purdue awarded its first Bachelor of Arts degrees in 1960. The programs in liberal arts and education, formerly administered by the School of Science, were soon split into an independent school.

    The official seal of Purdue was officially inaugurated during the university’s centennial in 1969.

    1

    Consisting of elements from emblems that had been used unofficially for 73 years, the current seal depicts a griffin, symbolizing strength, and a three-part shield, representing education, research, and service.

    In recent years, Purdue’s leaders have continued to support high-tech research and international programs. In 1987, U.S. President Ronald Reagan visited the West Lafayette campus to give a speech about the influence of technological progress on job creation.

    In the 1990s, the university added more opportunities to study abroad and expanded its course offerings in world languages and cultures. The first buildings of the Discovery Park interdisciplinary research center were dedicated in 2004.

    Purdue launched a Global Policy Research Institute in 2010 to explore the potential impact of technical knowledge on public policy decisions.

    On April 27, 2017, Purdue University announced plans to acquire for-profit college Kaplan University and convert it to a public university in the state of Indiana, subject to multiple levels of approval. That school now operates as Purdue University Global, and aims to serve adult learners.

    Campuses

    Purdue’s campus is situated in the small city of West Lafayette, near the western bank of the Wabash River, across which sits the larger city of Lafayette. State Street, which is concurrent with State Road 26, divides the northern and southern portions of campus. Academic buildings are mostly concentrated on the eastern and southern parts of campus, with residence halls and intramural fields to the west, and athletic facilities to the north. The Greater Lafayette Public Transportation Corporation (CityBus) operates eight campus loop bus routes on which students, faculty, and staff can ride free of charge with Purdue Identification.

    Organization and administration

    The university president, appointed by the board of trustees, is the chief administrative officer of the university. The office of the president oversees admission and registration, student conduct and counseling, the administration and scheduling of classes and space, the administration of student athletics and organized extracurricular activities, the libraries, the appointment of the faculty and conditions of their employment, the appointment of all non-faculty employees and the conditions of employment, the general organization of the university, and the planning and administration of the university budget.

    The Board of Trustees directly appoints other major officers of the university including a provost who serves as the chief academic officer for the university, several vice presidents with oversight over specific university operations, and the regional campus chancellors.

    Academic divisions

    Purdue is organized into thirteen major academic divisions.

    College of Agriculture

    The university’s College of Agriculture supports the university’s agricultural, food, life, and natural resource science programs. The college also supports the university’s charge as a land-grant university to support agriculture throughout the state; its agricultural extension program plays a key role in this.

    College of Education

    The College of Education offers undergraduate degrees in elementary education, social studies education, and special education, and graduate degrees in these and many other specialty areas of education. It has two departments: (a) Curriculum and Instruction and (b) Educational Studies.

    College of Engineering

    The Purdue University College of Engineering was established in 1874 with programs in Civil and Mechanical Engineering. The college now offers B.S., M.S., and Ph.D. degrees in more than a dozen disciplines. Purdue’s engineering program has also educated 24 of America’s astronauts, including Neil Armstrong and Eugene Cernan who were the first and last astronauts to have walked on the Moon, respectively. Many of Purdue’s engineering disciplines are recognized as top-ten programs in the U.S. The college as a whole is currently ranked 7th in the U.S. of all doctorate-granting engineering schools by U.S. News & World Report.

    Exploratory Studies

    The university’s Exploratory Studies program supports undergraduate students who enter the university without having a declared major. It was founded as a pilot program in 1995 and made a permanent program in 1999.

    College of Health and Human Sciences

    The College of Health and Human Sciences was established in 2010 and is the newest college. It offers B.S., M.S. and Ph.D. degrees in all 10 of its academic units.

    College of Liberal Arts

    Purdue’s College of Liberal Arts contains the arts, social sciences and humanities programs at the university. Liberal arts courses have been taught at Purdue since its founding in 1874. The School of Science, Education, and Humanities was formed in 1953. In 1963, the School of Humanities, Social Sciences, and Education was established, although Bachelor of Arts degrees had begun to be conferred as early as 1959. In 1989, the School of Liberal Arts was created to encompass Purdue’s arts, humanities, and social sciences programs, while education programs were split off into the newly formed School of Education. The School of Liberal Arts was renamed the College of Liberal Arts in 2005.

    Krannert School of Management

    The Krannert School of Management offers management courses and programs at the undergraduate, master’s, and doctoral levels.

    College of Pharmacy

    The university’s College of Pharmacy was established in 1884 and is the 3rd oldest state-funded school of pharmacy in the United States. The school offers two undergraduate programs leading to the B.S. in Pharmaceutical Sciences (BSPS) and the Doctor of Pharmacy (Pharm.D.) professional degree. Graduate programs leading to M.S. and Ph.D. degrees are offered in three departments (Industrial and Physical Pharmacy, Medicinal Chemistry and Molecular Pharmacology, and Pharmacy Practice). Additionally, the school offers several non-degree certificate programs and post-graduate continuing education activities.

    Purdue Polytechnic Institute

    The Purdue Polytechnic Institute offers bachelor’s, master’s and Ph.D. degrees in a wide range of technology-related disciplines. With over 30,000 living alumni, it is one of the largest technology schools in the United States.

    College of Science

    The university’s College of Science houses the university’s science departments: Biological Sciences; Chemistry; Computer Science; Earth, Atmospheric, & Planetary Sciences; Mathematics; Physics & Astronomy; and Statistics. The science courses offered by the college account for about one-fourth of Purdue’s one million student credit hours.

    College of Veterinary Medicine

    The College of Veterinary Medicine is accredited by the AVMA to offer the Doctor of Veterinary Medicine degree, associate’s and bachelor’s degrees in veterinary technology, master’s and Ph.D. degrees, and residency programs leading to specialty board certification. Within the state of Indiana, the Purdue University College of Veterinary Medicine is the only veterinary school, while the Indiana University School of Medicine is one of only two medical schools (the other being Marian University College of Osteopathic Medicine). The two schools frequently collaborate on medical research projects.

    Honors College

    Purdue’s Honors College supports an honors program for undergraduate students at the university.

    The Graduate School

    The university’s Graduate School supports graduate students at the university.

    Research

    The university expended $622.814 million in support of research system-wide in 2017, using funds received from the state and federal governments, industry, foundations, and individual donors. The faculty and more than 400 research laboratories put Purdue University among the leading research institutions. Purdue University is considered by the Carnegie Classification of Institutions of Higher Education to have “very high research activity”. Purdue also was rated the nation’s fourth best place to work in academia, according to rankings released in November 2007 by The Scientist magazine. Purdue’s researchers provide insight, knowledge, assistance, and solutions in many crucial areas. These include, but are not limited to Agriculture; Business and Economy; Education; Engineering; Environment; Healthcare; Individuals, Society, Culture; Manufacturing; Science; Technology; Veterinary Medicine. The Global Trade Analysis Project (GTAP), a global research consortium focused on global economic governance challenges (trade, climate, resource use) is also coordinated by the University. Purdue University generated a record $438 million in sponsored research funding during the 2009–10 fiscal year with participation from National Science Foundation, National Aeronautics and Space Administration, and the Department of Agriculture, Department of Defense, Department of Energy, and Department of Health and Human Services. Purdue University was ranked fourth in Engineering research expenditures amongst all the colleges in the United States in 2017, with a research expenditure budget of 244.8 million. Purdue University established the Discovery Park to bring innovation through multidisciplinary action. In all of the eleven centers of Discovery Park, ranging from entrepreneurship to energy and advanced manufacturing, research projects reflect a large economic impact and address global challenges. Purdue University’s nanotechnology research program, built around the new Birck Nanotechnology Center in Discovery Park, ranks among the best in the nation.

    The Purdue Research Park which opened in 1961 was developed by Purdue Research Foundation which is a private, nonprofit foundation created to assist Purdue. The park is focused on companies operating in the arenas of life sciences, homeland security, engineering, advanced manufacturing and information technology. It provides an interactive environment for experienced Purdue researchers and for private business and high-tech industry. It currently employs more than 3,000 people in 155 companies, including 90 technology-based firms. The Purdue Research Park was ranked first by the Association of University Research Parks in 2004.

    Purdue’s library system consists of fifteen locations throughout the campus, including an archives and special collections research center, an undergraduate library, and several subject-specific libraries. More than three million volumes, including one million electronic books, are held at these locations. The Library houses the Amelia Earhart Collection, a collection of notes and letters belonging to Earhart and her husband George Putnam along with records related to her disappearance and subsequent search efforts. An administrative unit of Purdue University Libraries, Purdue University Press has its roots in the 1960 founding of Purdue University Studies by President Frederick Hovde on a $12,000 grant from the Purdue Research Foundation. This was the result of a committee appointed by President Hovde after the Department of English lamented the lack of publishing venues in the humanities. Since the 1990s, the range of books published by the Press has grown to reflect the work from other colleges at Purdue University especially in the areas of agriculture, health, and engineering. Purdue University Press publishes print and ebook monograph series in a range of subject areas from literary and cultural studies to the study of the human-animal bond. In 1993 Purdue University Press was admitted to membership of the Association of American University Presses. Purdue University Press publishes around 25 books a year and 20 learned journals in print, in print & online, and online-only formats in collaboration with Purdue University Libraries.

    Sustainability

    Purdue’s Sustainability Council, composed of University administrators and professors, meets monthly to discuss environmental issues and sustainability initiatives at Purdue. The University’s first LEED Certified building was an addition to the Mechanical Engineering Building, which was completed in Fall 2011. The school is also in the process of developing an arboretum on campus. In addition, a system has been set up to display live data detailing current energy production at the campus utility plant. The school holds an annual “Green Week” each fall, an effort to engage the Purdue community with issues relating to environmental sustainability.

    Rankings

    In its 2021 edition, U.S. News & World Report ranked Purdue University the 5th most innovative national university, tied for the 17th best public university in the United States, tied for 53rd overall, and 114th best globally. U.S. News & World Report also rated Purdue tied for 36th in “Best Undergraduate Teaching, 83rd in “Best Value Schools”, tied for 284th in “Top Performers on Social Mobility”, and the undergraduate engineering program tied for 9th at schools whose highest degree is a doctorate.

     
  • richardmitnick 9:58 am on October 6, 2022 Permalink | Reply
    Tags: " ATP": Adenosine Triphosphate, "ADP": Adenosine Diphosphate, "Every Life Form on Earth Uses The Same Chemical For Energy. This Could Explain Why", A phosphate molecule is added to ADP through a reaction called phosphorylation – resulting in ATP., Applied Research & Technology, , , , Reactions that release that same phosphate provide chemical energy that our cells use for countless processes., ,   

    From University College London (UK) Via “Science Alert (AU)” : “Every Life Form on Earth Uses The Same Chemical For Energy. This Could Explain Why” 

    UCL bloc

    From University College London (UK)

    Via

    ScienceAlert

    “Science Alert (AU)”

    10.6.22
    Tessa Koumoundouros

    1
    TEM of a mitochondria (believed to be of bacteria origin), where ATP production takes place in animal cells. (Callista Images/Image Source/Getty Images)

    All life as we know it uses the exact same energy-carrying molecule as a kind of ‘universal cellular fuel’. Now, ancient chemistry may explain how that all-important molecule ended up being ATP (adenosine triphosphate) a new study [PLOS Biology (below)] reports.

    ATP is an organic molecule, charged up by photosynthesis or by cellular respiration (the way organisms break down food) and used in every single cell. Every day, we recycle our own body weight in ATP.

    In both the above systems, a phosphate molecule is added to ADP (adenosine diphosphate) through a reaction called phosphorylation – resulting in ATP.

    Reactions that release that same phosphate (in another process called hydrolysis) provide chemical energy that our cells use for countless processes, from brain signaling to movement and reproduction.

    How ATP ascended to metabolic dominance, in place of many possible equivalents, has been a long-standing mystery in biology and the focus of the research.

    “Our results suggest… that the emergence of ATP as the universal energy currency of the cell was not the result of a ‘frozen accident’,” but arose from unique interactions of phosphorylation molecules, explains evolutionary biochemist Nick Lane from University College London.

    The fact that ATP is used by all living things suggests it has been around since life’s very beginning and even before, during the prebiotic conditions that preceded all us animate matter.

    But researchers are puzzled as to how this could be the case when ATP has such a complicated structure that involves six different phosphorylation reactions and a whole lot of energy to create it from scratch.

    “There is nothing particularly special about the ‘high-energy’ [phosphorus] bonds in ATP,” says biochemist Silvana Pinna who was with UCL at the time, and colleagues in their paper.

    But as ATP also helps build our cells’ genetic information, it may have been roped in for energy use through this other pathway, they note.

    Pinna and team suspect some other molecules must have been involved initially in the complicated phosphorylation process. So they took a close look at another phosphorylating molecule, AcP, that’s still used by bacteria and archaea in their metabolism of chemicals, including phosphate and thioester – a chemical thought to have been abundant at the beginning of life.

    In the presence of iron ions (Fe3+), AcP can phosphorylate ADP to ATP in water. Upon testing the ability of other ions and minerals to catalyze ATP formation in water, the researchers could not replicate this with other substitute metals or phosphorylating molecules.

    “It was very surprising to discover the reaction is so selective – in the metal ion, phosphate donor, and substrate – with molecules that life still uses,” says Pinna.

    “The fact that this happens best in water under mild, life-compatible conditions is really quite significant for the origin of life.”

    This suggests that with AcP, these energy-storing reactions could take place in prebiotic conditions, before biological life was there to hoard and spur the now self-perpetuating cycle of ATP production.

    Furthermore, the experiments suggest that the creation of prebiotic ATP was most likely to take place in freshwater, where photochemical reactions and volcanic eruptions, for instance, could provide the right mix of ingredients, the team explains.

    While this doesn’t completely preclude its occurrence in the sea, it does hint that the birth of life may have required a strong link to land, they note.

    “Our results suggest that ATP became established as the universal energy currency in a prebiotic, monomeric world, on the basis of its unusual chemistry in water,” Pinna and colleagues write.

    What’s more, pH gradients in hydrothermal systems could have created an uneven ratio of ATP to ADP, enabling ATP to drive work even in the prebiotic world of small molecules.

    “Over time, with the emergence of suitable catalysts, ATP could eventually displace AcP as a ubiquitous phosphate donor, and promote the polymerization of amino acids and nucleotides to form RNA, DNA, and proteins,” explains Lane.

    Science paper:
    PLOS Biology
    See the science paper for instructive material.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UCL campus

    Established in 1826, as London University by founders inspired by the radical ideas of Jeremy Bentham, University College London (UK) was the first university institution to be established in London, and the first in England to be entirely secular and to admit students regardless of their religion. University College London also makes contested claims to being the third-oldest university in England and the first to admit women. In 1836, University College London became one of the two founding colleges of the University of London, which was granted a royal charter in the same year. It has grown through mergers, including with the Institute of Ophthalmology (in 1995); the Institute of Neurology (in 1997); the Royal Free Hospital Medical School (in 1998); the Eastman Dental Institute (in 1999); the School of Slavonic and East European Studies (in 1999); the School of Pharmacy (in 2012) and the Institute of Education (in 2014).

    University College London has its main campus in the Bloomsbury area of central London, with a number of institutes and teaching hospitals elsewhere in central London and satellite campuses in Queen Elizabeth Olympic Park in Stratford, east London and in Doha, Qatar. University College London is organised into 11 constituent faculties, within which there are over 100 departments, institutes and research centres. University College London operates several museums and collections in a wide range of fields, including the Petrie Museum of Egyptian Archaeology and the Grant Museum of Zoology and Comparative Anatomy, and administers the annual Orwell Prize in political writing. In 2019/20, UCL had around 43,840 students and 16,400 staff (including around 7,100 academic staff and 840 professors) and had a total income of £1.54 billion, of which £468 million was from research grants and contracts.

    University College London is a member of numerous academic organisations, including the Russell Group(UK) and the League of European Research Universities, and is part of UCL Partners, the world’s largest academic health science centre, and is considered part of the “golden triangle” of elite, research-intensive universities in England.

    University College London has many notable alumni, including the respective “Fathers of the Nation” of India; Kenya and Mauritius; the founders of Ghana; modern Japan; Nigeria; the inventor of the telephone; and one of the co-discoverers of the structure of DNA. UCL academics discovered five of the naturally occurring noble gases; discovered hormones; invented the vacuum tube; and made several foundational advances in modern statistics. As of 2020, 34 Nobel Prize winners and 3 Fields medalists have been affiliated with UCL as alumni, faculty or researchers.

    History

    University College London was founded on 11 February 1826 under the name London University, as an alternative to the Anglican universities of the University of Oxford(UK) and University of Cambridge(UK). London University’s first Warden was Leonard Horner, who was the first scientist to head a British university.

    Despite the commonly held belief that the philosopher Jeremy Bentham was the founder of University College London, his direct involvement was limited to the purchase of share No. 633, at a cost of £100 paid in nine installments between December 1826 and January 1830. In 1828 he did nominate a friend to sit on the council, and in 1827 attempted to have his disciple John Bowring appointed as the first professor of English or History, but on both occasions his candidates were unsuccessful. This suggests that while his ideas may have been influential, he himself was less so. However, Bentham is today commonly regarded as the “spiritual father” of University College London, as his radical ideas on education and society were the inspiration to the institution’s founders, particularly the Scotsmen James Mill (1773–1836) and Henry Brougham (1778–1868).

    In 1827, the Chair of Political Economy at London University was created, with John Ramsay McCulloch as the first incumbent, establishing one of the first departments of economics in England. In 1828 the university became the first in England to offer English as a subject and the teaching of Classics and medicine began. In 1830, London University founded the London University School, which would later become University College School. In 1833, the university appointed Alexander Maconochie, Secretary to the Royal Geographical Society, as the first professor of geography in the British Isles. In 1834, University College Hospital (originally North London Hospital) opened as a teaching hospital for the university’s medical school.

    1836 to 1900 – University College, London

    In 1836, London University was incorporated by royal charter under the name University College, London. On the same day, the University of London was created by royal charter as a degree-awarding examining board for students from affiliated schools and colleges, with University College and King’s College, London being named in the charter as the first two affiliates.

    The Slade School of Fine Art was founded as part of University College in 1871, following a bequest from Felix Slade.

    In 1878, the University College London gained a supplemental charter making it the first British university to be allowed to award degrees to women. The same year University College London admitted women to the faculties of Arts and Law and of Science, although women remained barred from the faculties of Engineering and of Medicine (with the exception of courses on public health and hygiene). While University College London claims to have been the first university in England to admit women on equal terms to men, from 1878, the University of Bristol(UK) also makes this claim, having admitted women from its foundation (as a college) in 1876. Armstrong College, a predecessor institution of Newcastle University (UK), also allowed women to enter from its foundation in 1871, although none actually enrolled until 1881. Women were finally admitted to medical studies during the First World War in 1917, although limitations were placed on their numbers after the war ended.

    In 1898, Sir William Ramsay discovered the elements krypton; neon; and xenon whilst professor of chemistry at University College London.

    1900 to 1976 – University of London, University College

    In 1900, the University College London was reconstituted as a federal university with new statutes drawn up under the University of London Act 1898. UCL, along with a number of other colleges in London, became a school of the University of London. While most of the constituent institutions retained their autonomy, University College London was merged into the University in 1907 under the University College London (Transfer) Act 1905 and lost its legal independence. Its formal name became University College London, University College, although for most informal and external purposes the name “University College, London” (or the initialism UCL) was still used.

    1900 also saw the decision to appoint a salaried head of the college. The first incumbent was Carey Foster, who served as Principal (as the post was originally titled) from 1900 to 1904. He was succeeded by Gregory Foster (no relation), and in 1906 the title was changed to Provost to avoid confusion with the Principal of the University of London. Gregory Foster remained in post until 1929. In 1906, the Cruciform Building was opened as the new home for University College Hospital.

    As it acknowledged and apologized for in 2021, University College London played “a fundamental role in the development, propagation and legitimisation of eugenics” during the first half of the 20th century. Among the prominent eugenicists who taught at University College London were Francis Galton, who coined the term “eugenics”, and Karl Pearson, and eugenics conferences were held at UCL until 2017.

    University College London sustained considerable bomb damage during the Second World War, including the complete destruction of the Great Hall and the Carey Foster Physics Laboratory. Fires gutted the library and destroyed much of the main building, including the dome. The departments were dispersed across the country to Aberystwyth; Bangor; Gwynedd; University of Cambridge; University of Oxford; Rothamsted near Harpenden; Hertfordshire; and Sheffield, with the administration at Stanstead Bury near Ware, Hertfordshire. The first UCL student magazine, Pi, was published for the first time on 21 February 1946. The Institute of Jewish Studies relocated to UCL in 1959.

    The Mullard Space Science Laboratory (UK) was established in 1967. In 1973, UCL became the first international node to the precursor of the internet, the ARPANET.

    ARPANET schematic

    Although University College London was among the first universities to admit women on the same terms as men, in 1878, the college’s senior common room, the Housman Room, remained men-only until 1969. After two unsuccessful attempts, a motion was passed that ended segregation by sex at University College London. This was achieved by Brian Woledge (Fielden Professor of French at University College London from 1939 to 1971) and David Colquhoun, at that time a young lecturer in pharmacology.

    1976 to 2005 – University College London (UK)

    In 1976, a new charter restored University College London’s legal independence, although still without the power to award its own degrees. Under this charter the college became formally known as University College London. This name abandoned the comma used in its earlier name of “University College, London”.

    In 1986, University College London merged with the Institute of Archaeology. In 1988, University College London merged with the Institute of Laryngology & Otology; the Institute of Orthopaedics; the Institute of Urology & Nephrology; and Middlesex Hospital Medical School.

    In 1993, a reorganization of the University of London meant that University College London and other colleges gained direct access to government funding and the right to confer University of London degrees themselves. This led to University College London being regarded as a de facto university in its own right.

    In 1994, the University College London Hospitals NHS Trust was established. University College London merged with the College of Speech Sciences and the Institute of Ophthalmology in 1995; the Institute of Child Health and the School of Podiatry in 1996; and the Institute of Neurology in 1997. In 1998, UCL merged with the Royal Free Hospital Medical School to create the Royal Free and University College Medical School (renamed the University College London Medical School in October 2008). In 1999, UCL merged with the School of Slavonic and East European Studies and the Eastman Dental Institute.

    The University College London Jill Dando Institute of Crime Science, the first university department in the world devoted specifically to reducing crime, was founded in 2001.

    Proposals for a merger between University College London and Imperial College London(UK) were announced in 2002. The proposal provoked strong opposition from University College London teaching staff and students and the AUT union, which criticized “the indecent haste and lack of consultation”, leading to its abandonment by University College London provost Sir Derek Roberts. The blogs that helped to stop the merger are preserved, though some of the links are now broken: see David Colquhoun’s blog and the Save University College London blog, which was run by David Conway, a postgraduate student in the department of Hebrew and Jewish studies.

    The London Centre for Nanotechnology was established in 2003 as a joint venture between University College London and Imperial College London (UK). They were later joined by King’s College London(UK) in 2018.

    Since 2003, when University College London professor David Latchman became master of the neighboring Birkbeck, he has forged closer relations between these two University of London colleges, and personally maintains departments at both. Joint research centres include the UCL/Birkbeck Institute for Earth and Planetary Sciences; the University College London /Birkbeck/IoE Centre for Educational Neuroscience; the University College London /Birkbeck Institute of Structural and Molecular Biology; and the Birkbeck- University College London Centre for Neuroimaging.

    2005 to 2010

    In 2005, University College London was finally granted its own taught and research degree awarding powers and all University College London students registered from 2007/08 qualified with University College London degrees. Also in 2005, University College London adopted a new corporate branding under which the name University College London was replaced by the initialism UCL in all external communications. In the same year, a major new £422 million building was opened for University College Hospital on Euston Road, the University College London Ear Institute was established and a new building for the University College London School of Slavonic and East European Studies was opened.

    In 2007, the University College London Cancer Institute was opened in the newly constructed Paul O’Gorman Building. In August 2008, University College London formed UCL Partners, an academic health science centre, with Great Ormond Street Hospital for Children NHS Trust; Moorfields Eye Hospital NHS Foundation Trust; Royal Free London NHS Foundation Trust; and University College London Hospitals NHS Foundation Trust. In 2008, University College London established the University College London School of Energy & Resources in Adelaide, Australia, the first campus of a British university in the country. The School was based in the historic Torrens Building in Victoria Square and its creation followed negotiations between University College London Vice Provost Michael Worton and South Australian Premier Mike Rann.

    In 2009, the Yale UCL Collaborative was established between University College London; UCL Partners; Yale University; Yale School of Medicine; and Yale – New Haven Hospital. It is the largest collaboration in the history of either university, and its scope has subsequently been extended to the humanities and social sciences.

    2010 to 2015

    In June 2011, the mining company BHP Billiton agreed to donate AU$10 million to University College London to fund the establishment of two energy institutes – the Energy Policy Institute; based in Adelaide, and the Institute for Sustainable Resources, based in London.

    In November 2011, University College London announced plans for a £500 million investment in its main Bloomsbury campus over 10 years, as well as the establishment of a new 23-acre campus next to the Olympic Park in Stratford in the East End of London. It revised its plans of expansion in East London and in December 2014 announced to build a campus (UCL East) covering 11 acres and provide up to 125,000m^2 of space on Queen Elizabeth Olympic Park. UCL East will be part of plans to transform the Olympic Park into a cultural and innovation hub, where University College London will open its first school of design, a centre of experimental engineering and a museum of the future, along with a living space for students.

    The School of Pharmacy, University of London merged with University College London on 1 January 2012, becoming the University College London School of Pharmacy within the Faculty of Life Sciences. In May 2012, University College London , Imperial College London (UK) and the semiconductor company Intel announced the establishment of the Intel Collaborative Research Institute for Sustainable Connected Cities, a London-based institute for research into the future of cities.

    In August 2012, University College London received criticism for advertising an unpaid research position; it subsequently withdrew the advert.

    University College London and the Institute of Education formed a strategic alliance in October 2012, including co-operation in teaching, research and the development of the London schools system. In February 2014, the two institutions announced their intention to merge, and the merger was completed in December 2014.

    In September 2013, a new Department of Science, Technology, Engineering and Public Policy (STEaPP) was established within the Faculty of Engineering, one of several initiatives within the university to increase and reflect upon the links between research and public sector decision-making.

    In October 2013, it was announced that the Translation Studies Unit of Imperial College London would move to University College London, becoming part of the University College London School of European Languages, Culture and Society. In December 2013, it was announced that University College London and the academic publishing company Elsevier would collaborate to establish the UCL Big Data Institute. In January 2015, it was announced that University College London had been selected by the UK government as one of the five founding members of the Alan Turing Institute(UK) (together with the universities of Cambridge, University of Edinburgh(SCL), Oxford and University of Warwick(UK)), an institute to be established at the British Library to promote the development and use of advanced mathematics, computer science, algorithms and big data.

    2015 to 2020

    In August 2015, the Department of Management Science and Innovation was renamed as the School of Management and plans were announced to greatly expand University College London’s activities in the area of business-related teaching and research. The school moved from the Bloomsbury campus to One Canada Square in Canary Wharf in 2016.

    University College London established the Institute of Advanced Studies (IAS) in 2015 to promote interdisciplinary research in humanities and social sciences. The prestigious annual Orwell Prize for political writing moved to the IAS in 2016.

    In June 2016 it was reported in Times Higher Education that as a result of administrative errors hundreds of students who studied at the UCL Eastman Dental Institute between 2005–06 and 2013–14 had been given the wrong marks, leading to an unknown number of students being attributed with the wrong qualifications and, in some cases, being failed when they should have passed their degrees. A report by University College London’s Academic Committee Review Panel noted that, according to the institute’s own review findings, senior members of University College London staff had been aware of issues affecting students’ results but had not taken action to address them. The Review Panel concluded that there had been an apparent lack of ownership of these matters amongst the institute’s senior staff.

    In December 2016 it was announced that University College London would be the hub institution for a new £250 million national dementia research institute, to be funded with £150 million from the Medical Research Council and £50 million each from Alzheimer’s Research UK and the Alzheimer’s Society.

    In May 2017 it was reported that staff morale was at “an all time low”, with 68% of members of the academic board who responded to a survey disagreeing with the statement ” University College London is well managed” and 86% with “the teaching facilities are adequate for the number of students”. Michael Arthur, the Provost and President, linked the results to the “major change programme” at University College London. He admitted that facilities were under pressure following growth over the past decade, but said that the issues were being addressed through the development of UCL East and rental of other additional space.

    In October 2017 University College London’s council voted to apply for university status while remaining part of the University of London. University College London’s application to become a university was subject to Parliament passing a bill to amend the statutes of the University of London, which received royal assent on 20 December 2018.

    The University College London Adelaide satellite campus closed in December 2017, with academic staff and student transferring to the University of South Australia (AU). As of 2019 UniSA and University College London are offering a joint master’s qualification in Science in Data Science (international).

    In 2018, University College London opened UCL at Here East, at the Queen Elizabeth Olympic Park, offering courses jointly between the Bartlett Faculty of the Built Environment and the Faculty of Engineering Sciences. The campus offers a variety of undergraduate and postgraduate master’s degrees, with the first undergraduate students, on a new Engineering and Architectural Design MEng, starting in September 2018. It was announced in August 2018 that a £215 million contract for construction of the largest building in the UCL East development, Marshgate 1, had been awarded to Mace, with building to begin in 2019 and be completed by 2022.

    In 2017 University College London disciplined an IT administrator who was also the University and College Union (UCU) branch secretary for refusing to take down an unmoderated staff mailing list. An employment tribunal subsequently ruled that he was engaged in union activities and thus this disciplinary action was unlawful. As of June 2019 University College London is appealing this ruling and the UCU congress has declared this to be a “dispute of national significance”.

    2020 to present

    In 2021 University College London formed a strategic partnership with Facebook AI Research (FAIR), including the creation of a new PhD programme.

    Research

    University College London has made cross-disciplinary research a priority and orientates its research around four “Grand Challenges”, Global Health, Sustainable Cities, Intercultural Interaction and Human Wellbeing.

    In 2014/15, University College London had a total research income of £427.5 million, the third-highest of any British university (after the University of Oxford (UK) and Imperial College London (UK)). Key sources of research income in that year were BIS research councils (£148.3 million); UK-based charities (£106.5 million); UK central government; local/health authorities and hospitals (£61.5 million); EU government bodies (£45.5 million); and UK industry, commerce and public corporations (£16.2 million). In 2015/16, University College London was awarded a total of £85.8 million in grants by UK research councils, the second-largest amount of any British university (after the University of Oxford (UK)), having achieved a 28% success rate. For the period to June 2015, University College London was the fifth-largest recipient of Horizon 2020 EU research funding and the largest recipient of any university, with €49.93 million of grants received. University College London also had the fifth-largest number of projects funded of any organization, with 94.

    According to a ranking of universities produced by SCImago Research Group University College London is ranked 12th in the world (and 1st in Europe) in terms of total research output. According to data released in July 2008 by ISI Web of Knowledge, University College London is the 13th most-cited university in the world (and most-cited in Europe). The analysis covered citations from 1 January 1998 to 30 April 2008, during which 46,166 UCL research papers attracted 803,566 citations. The report covered citations in 21 subject areas and the results revealed some of University College London’s key strengths, including: Clinical Medicine (1st outside North America); Immunology (2nd in Europe); Neuroscience & Behavior (1st outside North America and 2nd in the world); Pharmacology & Toxicology (1st outside North America and 4th in the world); Psychiatry & Psychology (2nd outside North America); and Social Sciences, General (1st outside North America).

    University College London submitted a total of 2,566 staff across 36 units of assessment to the 2014 Research Excellence Framework assessment, in each case the highest number of any UK university (compared with 1,793 UCL staff submitted to the 2008 Research Assessment Exercise (RAE 2008)). In the REF results 43% of University College London’s submitted research was classified as 4* (world-leading); 39% as 3* (internationally excellent); 15% as 2* (recognised internationally) and 2% as 1* (recognised nationally), giving an overall GPA of 3.22 (RAE 2008: 4* – 27%, 3* – 39%, 2* – 27% and 1* – 6%). In rankings produced by Times Higher Education based upon the REF results, University College London was ranked 1st overall for “research power” and joint 8th for GPA (compared to 4th and 7th respectively in equivalent rankings for the RAE 2008).

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: