Tagged: Applied Research & Technology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:29 pm on August 18, 2017 Permalink | Reply
    Tags: Applied Research & Technology, Different Triggers Same Shaking, , , Fault types differ between the two regions, , Quakes Pack More Punch in Eastern Than in Central United States   

    From Eos: “Quakes Pack More Punch in Eastern Than in Central United States” 

    AGU bloc

    Eos news bloc


    Kimberly M. S. Cartier

    A new finding rests on the recognition that fault types differ between the two regions. It helps explain prior evidence that human-induced quakes and natural ones behave the same in the nation’s center.

    A broken angel statue lies among other damage on the roof of the Washington National Cathedral, Washington, D. C., after a magnitude 5.8 earthquake that impacted the eastern United States and Canada on 23 August 2011. Credit: AP Photo/J. Scott Applewhite

    Earthquakes in the eastern United States and Canada are many times more severe than central U.S. earthquakes of human or natural origin, earthquake scientists have found, highlighting a crucial need to separate the two regions when designing future earthquake hazard maps. The study separated the regions from the Mississippi-Alabama border up to the base of Lake Michigan, approximately 87°W.

    “People have never really compared these two regions very carefully,” said Yihe Huang, assistant professor of Earth and environmental sciences at the University of Michigan, Ann Arbor, and lead author of a study published in Science Advances on 2 August.

    Because earthquakes have occurred rarely in the central and eastern United States until recently, seismologists have not studied those areas as closely as they have more high-risk ones like the U.S. West Coast. “They are always taken as one region in the hazard models, but…if you look closely, they actually [are] very different,” she said. “We didn’t really think about this before.”

    Huang’s research shows that there is a fundamental and important difference in the stress released, and therefore in the hazard level, of central U.S. quakes compared with those in the eastern United States and Canada, said Gail Atkinson, professor of Earth sciences and Industrial Research Chair in Hazards from Induced Seismicity at Western University in London, Ontario, Canada.

    Different Triggers, Same Shaking

    Huang and her coauthors began their investigation questioning whether seismologists can use existing earthquake hazard models—developed using data from naturally occurring tectonic earthquakes—to accurately predict the severity of quakes induced by human activity.

    They expected the trigger mechanism to be a major source of uncertainty in hazard prediction models, but they found instead that the biggest difference was geography. Earthquakes they analyzed from the eastern United States and Canada along the Appalachians released 5–6 times more energy than their central counterparts. Consequently, Huang argued that “we should treat the central and eastern U.S. tectonic earthquakes differently in our hazard prediction.”

    Their study confirmed that earthquakes in the central United States released similar amounts of energy and shook the ground the same way whether they were induced or natural. So seismologists can use the same models to study them all, report Huang and her colleagues.

    “Within the central U.S., all of the earthquakes appear to be the same, and we’re really comparing apples and apples,” said William Ellsworth, professor of geophysics at Stanford University in Stanford, Calif., and a coauthor on the paper.

    “We don’t need to discriminate why the earthquake occurred to describe its shaking,” he said.

    Different Types of Stress Relief

    Why do the two regions produce earthquakes of such different severity? The reason, the researchers explained, is that the central and eastern regions release underground stress using different mechanisms. The way that ground layers shift and slide against each other to dissipate energy determines the violence of the stress release and strength of high-frequency motion aboveground, the shaking most relevant for engineering safety and seismic hazard assessment.

    Huang explained that in the central United States, seven of nine earthquakes they examined happened when chunks of Earth’s crust slid horizontally against each other along strike-slip faults. All eight of the eastern earthquakes they analyzed occurred at reverse faults, where the ground shifts vertically against the pull of gravity. Separating by region, Huang said, equates to separating by fault type.

    A comparison of earthquake magnitudes in eastern and central regions underscores the greater power of eastern temblors, according to Huang. The team’s list of natural events, reaching back more than 15 years, contains only one earthquake stronger than magnitude 5 in the central United States but three from the eastern United States. The strongest, an M5.8 quake in Mineral, Va., on 23 August 2011, caused significant property damage but only minor injuries.

    Ellsworth explained that industrial processes in the central and eastern United States, like the disposal of wastewater from oil production and hydraulic fracturing, may simply be speeding up the normal geologic processes nearby by releasing underground pressure that builds up naturally. “We might be speeding up the processes by hundreds of thousands of years,” he said.

    The researchers noted in their paper that wastewater injection is likely acting as a trigger for stress release but that subsequent shaking follows natural tectonic physics. Because the shaking is similar, Huang said, existing ground motion prediction equations can actually be used to predict the severity of induced earthquakes as long as they first account for the fault type at work.

    Improving Hazard Predictions Nationwide

    Now that this new work has revealed a significant difference in the types of earthquake-producing faults prevalent in the central and eastern regions, Huang said that she wants to conduct a broader investigation into seismic events nationwide to see if there are other overlooked patterns related to earthquake strength.

    In the meantime, the new recognition of an eastern versus central difference in typical fault type should help improve future hazard prediction maps and guide the construction of earthquake-safe structures, Ellsworth said.

    “The more accurate we can make that forecast,” he said, “the more it actually reduces the cost of ensuring seismic safety.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

  • richardmitnick 12:34 pm on August 18, 2017 Permalink | Reply
    Tags: A bioengineering class helped Stanford researchers understand coral bleaching and more, Aiptasia, Applied Research & Technology, , , , , Team Traptasia   

    From Stanford: “A bioengineering class helped Stanford researchers understand coral bleaching and more” 

    Stanford University Name
    Stanford University

    August 16, 2017
    Nathan Collins

    Polly Fordyce (left), assistant professor of bioengineering and of genetics, and graduate students Louai Labanieh, Sarah Lensch and Diego Oyarzun discuss the design of a microfluidic device built to study coral bleaching. The device was designed and built as part of Fordyce’s graduate-level microfluidics course. (Image credit: Courtesy Polly Fordyce)

    Team Traptasia had a problem: The tiny baby sea anemones they were trying to ensnare are, unlike their adult forms, surprisingly powerful swimmers. They are also, as team member and chemical engineering graduate student Daniel Hunt put it, “pretty squishy little deformable things.” Previous attempts to trap the anemones, called Aiptasia, while keeping them alive long enough to study under a microscope had ended in gruesome, if teensy, failure.

    But Traptasia had to make it work. Cawa Tran, then a postdoctoral fellow, and her research into climate change’s effects on coral bleaching were depending on them. (Sea anemones, it turns out, are a close relative of corals, but easier to study.)

    And then there was the matter of the team’s grades to consider, along with the outcome of an experiment in the “democratization” of a powerful set of tools known as microfluidics.

    Democratizing science

    Team Traptasia was part of a microfluidics course dreamed up by Polly Fordyce, an assistant professor of genetics and of bioengineering and a Stanford ChEM-H faculty fellow.

    At the time, she was feeling a bit frustrated.

    “Microfluidics has the potential to be this really awesome tool,” Fordyce said. That’s because microfluidic devices shrink equipment that would normally fill a chemistry or biology lab bench down to the size of a large wristwatch, saving space and materials, not to mention time and money. They also open up entirely new ways to conduct biological research – trapping baby sea anemones and watching them under a microscope, for example. But making high-quality devices takes expertise and resources most labs don’t have.

    “There’s this big chasm between the bioengineers that develop devices and the biologists that want to use them,” Fordyce said. Bioengineers know how to design sophisticated devices and biologists have important questions to answer, but there is little overlap between the two.

    To bridge the gap, Fordyce invited biology labs to propose projects to students in her graduate-level microfluidics course. The idea, she said, was to give students real-world experience while giving labs access to technology they might not have the time, money or expertise to pursue otherwise.

    In fact, the desire to break down disciplinary boundaries was something that attracted her to Stanford and to ChEM-H in the first place. “One of the reasons that I came to Stanford and ChEM-H was that I really love the idea of having interdisciplinary institutes that attempt to cross the boundaries between disciplines,” she said.

    Ultimately, researchers from four labs took part, including Tran, who was working in the lab of John Pringle, a professor of genetics. Fordyce will be describing her experiences teaching that class in an upcoming paper, which she hopes will provide a blueprint for people eager to help others make use of microfluidics tools.

    Shrinky Dinks vs. Aiptasia

    Before linking up with Fordyce’s class, Tran had been working with Heather Cartwright, core imaging director at the Carnegie Institution for Science’s Department of Plant Biology. Together they tried a more do-it-yourself approach involving the children’s toy Shrinky Dinks, an approach first proposed by Michelle Khine at the University of California, Irvine.

    The effort did not work. “We got some movies. They were mostly end-of-life movies,” Cartwright said.

    If Tran and Cartwright managed to trap Aiptasia, their Shrinky Dink device crushed or twisted the sea anemones apart. So when Fordyce approached them to work with what would become Team Traptasia – graduate students Salil Bhate, Hunt, Louai Labanieh, Sarah Lensch and Will Van Treuren – and Stanford’s Microfluidics Foundry, they jumped at the chance.

    A non-smashing success

    Team Traptasia, Tran said, solved her problem “completely.”

    After several rounds of design, troubleshooting and testing, Team Traptasia built a microfluidic device that kept Aiptasia alive and healthy long enough to study. As a result, the researchers could actually watch the effects of rising water temperature and pollution on living sea anemones and their symbiotic algae – something that has never been done before. Tran, Cartwright and Team Traptasia will publish their findings soon, Tran said.

    Other teams helped labs design devices to study how the parasite that causes toxoplasmosis infects human cells, to trap and study placental cells, and to isolate single cells in tiny reaction chambers for detailed molecular biology studies.

    Tran said the device Team Traptasia came up with could provide opportunities for the Pringle lab, as well as in education. Now an assistant professor at California State University, Chico, Tran said she’ll be using the device with undergraduates there. “Basically, this device has given me the opportunity to train the next generation of biologists” in a new, research-focused way, she said.

    Hunt, the chemical engineering student in Team Traptasia, said that his own research on intestinal biology could benefit from microfluidics. “I’m hoping to take the expertise that I gained in the microfluidics design process to my own research,” he said. Hunt is working in the lab of Sarah Heilshorn, an associate professor of materials science and engineering.

    Those are exactly the kinds of results Fordyce had hoped for.

    “This year was successful beyond my dreams, and the reason is that the students in the course were incredibly creative and talented and driven,” Fordyce said. She also credits her graduate student and teaching assistant Kara Brower, who won a teaching award for her efforts. “She went way above and beyond what would be required of a TA and really helped imagine and develop the course,” Fordyce said.

    “If you put this forward as a model for people at other schools, that could actually make a difference,” both for students and the labs that could benefit from microfluidics, she said.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

  • richardmitnick 11:46 am on August 18, 2017 Permalink | Reply
    Tags: , Applied Research & Technology, CBETA, Cornell University, The overall mission for CBETA is to develop a prototype for eRHIC a 2.4 mile-long electron-ion collider proposed to be built at BNL on Long Island New York   

    From Cornell: “Energy-efficient accelerator was 50 years in the making” 

    Cornell Bloc

    Cornell University

    July 5, 2017 [I never saw this in social media. I got it from a BNL article.]
    Rick Ryan

    Main linac cryomodule being placed into its final position by Cornell engineers at Wilson Lab.

    With the introduction of CBETA, the Cornell-Brookhaven ERL Test Accelerator, Cornell University and Brookhaven National Laboratory scientists are following up on the concept of energy-recovering particle accelerators first introduced by physicist Maury Tigner at Cornell more than 50 years ago.

    CBETA tests two energy-saving technologies for accelerators: energy recovery and permanent magnets. An energy recovery linac (ERL) like CBETA reclaims the energy of a used electron beam instead of dumping it after the experiment. The recovered energy is used to accelerate the next beam of particles, creating a beam of electrons that can be used for many areas of research. The beams are accelerated by Superconducting Radio Frequency (SRF) units, another energy-efficient technology pioneered at Cornell.

    By using permanent magnets, the power that is usually needed to steer the beam with electromagnets is saved. While energy recovery linacs and fixed magnets are being used elsewhere, never before has a group been able to steer four particle beams of different energies simultaneously by using fixed magnets through an ERL.

    Imagine four cars traveling at different speeds around a turn. The physics involved is different for each car: One must turn exceptionally hard at a higher speed as opposed to another traveling at a much lower speed. This also holds true for particles with different energy in the beam pipe. Permanent magnets with alternating gradients make it possible to steer each particle of different energy within the same 120 mm-wide chamber.

    While this method recycles energy, it also creates beams that are much more powerful: They are more tightly bound, can produce brighter and more coherent radiation, can have higher currents, and can produce higher luminosity in colliding-beam experiments.

    “The ERL process was invented at Cornell University 50 years ago, and having its first demonstration in a multi-turn SRF ERL shows Cornell’s strong and continuing tradition in this research field,” said Georg Hoffstaetter, Cornell professor of physics and CBETA principal investigator.

    Combining world-record-holding accelerator components constructed by Cornell with the permanent magnet technology developed by the U.S Department of Energy’s Brookhaven National Laboratory (BNL), the CBETA collaboration aims to revolutionize the way in which accelerators are built.

    Artist’s rendering of the main accelerator components in Wilson Lab.

    The overall mission for CBETA is to develop a prototype for eRHIC, a 2.4 mile-long electron-ion collider proposed to be built at BNL on Long Island, New York.

    Roughly two dozen scientists from BNL and Cornell’s Laboratory for Accelerator-based Sciences and Education (CLASSE) are collaborating on the project. They are running initial tests and expect to complete installation of CBETA by summer 2019. They will test and commission the prototype for eRHIC by spring 2020.

    More than 30,000 accelerators are in operation around the world. This prototype ERL has far-reaching implications for biology, chemistry and a host of other disciplines. ERLs are not only envisioned for nuclear and elementary particle physics colliders, as in eRHIC and the LHeC at CERN in Switzerland, but also as coherent X-ray sources for basic research, industrial and medical purposes.

    “Existing linear accelerators have superior beam quality when compared to large circular accelerators,” Hoffstaeter said. “However, they are exceedingly wasteful due to the beam being discarded after use and can therefore only have an extremely low current compared to ring accelerators. This limits the amount of data collected during an experiment. An ERL like CBETA solves the problem of low beam quality in rings and of low beam-current in linear accelerators, all while conserving energy compared to their predecessors.”

    The most complex components of CBETA already exist at Wilson Lab: the DC electron source, the superconducting radio-frequency (SRF) injector linac, the main ERL cryomodule and the high-power beam stop. They were designed, constructed and commissioned in 10 years of National Science Foundation funding.

    Said Karl Smolenski, lead engineer for Cornell ERL development: “If we are successful it will be a great thing for science and industry. So many different departments and scientists will be able to use this technology. It will also put us way ahead in the competitive world.”

    Principal funding for CBETA comes from the New York State Energy Research and Development Authority.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

  • richardmitnick 11:32 am on August 18, 2017 Permalink | Reply
    Tags: , Applied Research & Technology, , Successful Test of Small-Scale Accelerator with Big Potential Impacts for Science and Medicine   

    From BNL: “Successful Test of Small-Scale Accelerator with Big Potential Impacts for Science and Medicine” 

    Brookhaven Lab

    August 16, 2017
    Karen McNulty Walsh

    “Fixed-field” accelerator transports multiple particle beams at a wide range of energies through a single beam pipe.

    Members of the team testing a fixed-field, alternating-gradient beam transport line made with permanent magnets at Brookhaven Lab’s Accelerator Test Facility (ATF), left to right: Mark Palmer (Director of ATF), Dejan Trbojevic, Stephen Brooks, George Mahler, Steven Trabocchi, Thomas Roser, and Mikhail Fedurin (ATF operator and experimental liaison).

    An advanced particle accelerator designed at the U.S. Department of Energy’s Brookhaven National Laboratory could reduce the cost and increase the versatility of facilities for physics research and cancer treatment. It uses lightweight, 3D-printed frames to hold blocks of permanent magnets and an innovative method for fine-tuning the magnetic field to steer multiple beams at different energies through a single beam pipe.

    With this design, physicists could accelerate particles through multiple stages to higher and higher energies within a single ring of magnets, instead of requiring more than one ring to achieve these energies. In a medical setting, where the energy of particle beams determines how far they penetrate into the body, doctors could more easily deliver a range of energies to zap a tumor throughout its depth.

    Scientists testing a prototype of the compact, cost-effective design at Brookhaven’s Accelerator Test Facility (ATF)—a DOE Office of Science User Facility—say it came through with flying colors. Color-coded images show how a series of electron beams accelerated to five different energies successfully passed through the five-foot-long curve of magnets, with each beam tracing a different pathway within the same two-inch-diameter beam pipe.

    Brooks’ proof-of-principle experiment showed that electron beams of five different energies could make their way through the arc of permanent magnets, each taking a somewhat different, color-coded path: dark green (18 million electron volts, or MeV), light green (24MeV), yellow (36MeV), red (54MeV), and purple (70MeV).

    “For each of five energy levels, we injected the beam at the ‘ideal’ trajectory for that energy and scanned to see what happens when it is slightly off the ideal orbit,” said Brookhaven Lab physicist Stephen Brooks, lead architect of the design. Christina Swinson, a physicist at the ATF, steered the beam through the ATF line and Brooks’ magnet assembly and played an essential role in running the experiments.

    “We designed these experiments to test our predictions and see how far away you can go from the ideal incoming trajectory and still get the beam through. For the most part, all the beam that went in came out at the other end,” Brooks said.

    The beams reached energies more than 3.5 times what had previously been achieved in a similar accelerator made from significantly larger electromagnets, with a doubling of the ratio between the highest and lowest energy beams.

    “These tests give us confidence that this accelerator technology can be used to carry beams at a wide range of energies,” Brooks said.

    No wires required

    Most particle accelerators use electromagnets to generate the powerful magnetic fields required to steer a beam of charged particles. To transport particles of different energies, scientists change the strength of the magnetic field by ramping up or down the electrical current passing through the magnets.

    Brooks’ design instead uses permanent magnets, the kind that stay magnetic without an electrical current—like the ones that stick to your refrigerator, only stronger. By arranging differently shaped magnet blocks to form a circle, Brooks creates a fixed magnetic field that varies in strength across different positions within the central aperture of each donut-shaped magnet array.

    When the magnets are lined up end-to-end like beads on a necklace to form a curved arc—as they were in the ATF experiment with assistance from Brookhaven’s surveying team to achieve precision alignment—higher energy particles move to the stronger part of the field. Alternating the field directions of sequential magnets keeps particles oscillating along their preferred trajectory as they move through the arc, with no power needed to accommodate particles of different energies.

    No electricity means less supporting infrastructure and easier operation—which all contribute to the significant cost savings potential of this non-scaling, fixed-field, alternating-gradient accelerator technology.

    Simplified design

    Brooks’ successful test lays the foundation for the CBETA accelerator, in which bunches of electrons will be accelerated to four different energies and travel simultaneously within the same beampipe, as shown in this simulation.

    Brooks worked with George Mahler and Steven Trabocchi, engineers in Brookhaven’s Collider-Accelerator Department, to assemble the deceptively simple yet powerful magnets.

    First they used a 3D printer to create plastic frames to hold the shaped magnetic blocks, like pieces in a puzzle, around the central aperture. “Different sizes, or block thicknesses, and directions of magnetism allow a customized field within the aperture,” Brooks said.

    After the blocks were tapped into the frames with a mallet to create a coarse assembly, John Cintorino, a technician in Lab’s magnet division, measured the strength of the field. The team then fine-tuned each assembly by inserting different lengths of iron rods into as many as 64 positions around a second 3D-printed cartridge that fits within the ring of magnets. A computational program Brooks wrote uses the coarse assembly field-strength measurements to determine exactly how much iron goes into each slot. He’s also currently working on a robot to custom cut and insert the rods.

    The end-stage fine-tuning “compensates for any errors in machining and positioning of the magnet blocks,” Brooks said, improving the quality of the field 10-fold over the coarse assembly. The final magnets’ properties match or even surpass those of sophisticated electromagnets, which require much more precise engineering and machining to create each individual piece of metal.

    “The only high-tech equipment in our setup is the rotating coil we use to do the precision measurements,” he said.

    Applications and next steps

    The lightweight, compact components and simplified operation of Brooks’ permanent magnet beam transport line would be “a dramatic improvement from what is currently on the market for delivering particle beams in cancer treatment centers,” said Dejan Trbojevic, Brooks’ supervisor, who holds several patents on designs for particle therapy gantries.

    A gantry is the arced beamline that delivers cancer-killing particles from an accelerator to a patient. In some particle therapy facilities the gantry and supporting infrastructure can weigh 50 tons or more, often occupying a specially constructed wing of a hospital. Trbojevic estimates that a gantry using Brooks’ compact design would weigh just one ton. That would bring down the cost of constructing such facilities.

    “Plus with no need for electricity [to the magnets] to change field strengths, it would be much easier to operate,” Trbojevic said.

    The ability to accelerate particles rapidly to higher and higher energy levels within a single accelerator ring could also bring down the cost of proposed future physics experiments, including a muon collider, a neutrino factory, and an electron-ion collider (EIC). In these cases, additional accelerator components would boost the beams to higher energy.

    For example, Brookhaven physicists have been collaborating with physicists at Cornell University on a similar fixed-field design called CBETA. That project, developed with funding from the New York State Energy Research and Development Authority (NYSERDA), is a slightly larger version of Brooks’ machine and includes all the accelerator components for bringing electron beams up to the energies required for an EIC. CBETA also decelerates electrons once they’ve been used for experiments to recover and reuse most of the energy. It will also test beams of multiple energies at the same time, something Brooks’ proof-of-principle experiment at the ATF did not do. But Brooks’ successful test strengthens confidence that the CBETA design is sound.

    “Everyone in Brookhaven’s Collider-Accelerator Department has been very supportive of this project,” said Trbojevic, Brookhaven’s Principal Investigator on CBETA.

    As Collider-Accelerator Department Chair Thomas Roser noted, “All these efforts are working toward advanced accelerator concepts that will ultimately benefit science and society as a whole. We’re looking forward to the next chapter in the evolution of this technology.”

    The magnets for Brooks’ experiment were built with Brookhaven’s Laboratory Directed Research and Development funds for the CBETA project as part of the R&D effort for an early version of Brookhaven’s proposed design for an EIC, known as eRHIC. Operation of the ATF is supported by the DOE Office of Science.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    BNL Campus

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

  • richardmitnick 11:03 am on August 18, 2017 Permalink | Reply
    Tags: A Closer Look at an Undersea Source of Alaskan Earthquakes, Applied Research & Technology, , , ,   

    From Eos: “A Closer Look at an Undersea Source of Alaskan Earthquakes” 

    AGU bloc

    Eos news bloc


    15 August 2017
    Daniel S. Brothers
    Peter Haeussler
    Amy East
    Uri ten Brink
    Brian Andrews
    Peter Dartnell
    Nathan Miller
    Jared Kluesner

    All is calm in southern Alaska’s Lisianski Inlet in this 2015 view from the deck of the R/V Solstice. A systematic survey of the nearby Queen Charlotte–Fairweather Fault, the source of several major earthquakes, has produced valuable information on the fault’s structure and slip mechanisms. Credit: Daniel S. Brothers

    During the past century, movement along the Queen Charlotte–Fairweather fault, which lies for most of its length beneath the waters off southeastern Alaska and British Columbia, has generated at least seven earthquakes of magnitude 7 or greater. This includes a magnitude 8.1 earthquake in 1949, the largest ever recorded in Canada.

    Other events include a magnitude 7.8 earthquake in 1958 that dislodged a massive landslide above Lituya Bay, Alaska. The earthquake generated a tsunami that sent water 525 meters up the mountainside, a world record run-up [Miller, 1960]. The 2012 magnitude 7.8 Haida Gwaii earthquake, centered on Moresby Island, British Columbia, and the 2013 magnitude 7.5 earthquake near Craig, Alaska [Walton et al., 2015], increased awareness of the potential geologic hazards posed to residents of southeastern Alaska and western British Columbia.

    Together, these events highlight the need for a greater understanding of the Queen Charlotte–Fairweather fault and its history.

    Yet despite the dramatic effects of this fault’s activity, a near absence of high-resolution marine geophysical and geological data limits scientific understanding of its slip rate, earthquake recurrence interval, paleoseismic history, and rupture dynamics.

    The U.S. Geological Survey (USGS) has now completed a systematic examination of the tectonic geomorphology along a 500-kilometer-long undersea section of the Queen Charlotte–Fairweather fault that offers new insights into activity at this strike-slip boundary, where the North American and Pacific plates slide horizontally past each other.

    Fig. 1. Recent geophysical surveys provided high-resolution seafloor depth data for the northernmost undersea portion of the Queen Charlotte–Fairweather fault (area outlined in red). The colored seafloor relief represents multibeam echo sounder data acquired along the continental shelf and slope in 2015 and 2016; the gray seafloor relief in deeper water west of the fault was acquired by the University of New Hampshire in 2005. Black boxes are locations of depth imagery shown in Figures 2a–2d. Purple lines represent high-resolution seismic reflection profiles that were acquired in 2016 aboard the R/V Norseman. One such profile (green line) is shown in Figure 3. AMT represents the Alaska-Aleutian megathrust, and ME indicates Mount Edgecumbe.

    A Complicated Boundary

    The Queen Charlotte–Fairweather fault system and its better known counterpart, the San Andreas fault (which is highly visible on land in California), form the boundary between the North American and Pacific tectonic plates. The Queen Charlotte–Fairweather fault system defines this plate boundary for a distance of more than 1,200 kilometers, from Yakutat, Alaska, to the Queen Charlotte Triple Junction, a confluence of three faults west of British Columbia (Figure 1). Within this system, the Queen Charlotte fault represents the underwater section and is widely recognized as one of the world’s most seismically active continent-ocean transform faults [Plafker et al., 1978; Bruns and Carlson, 1987; Nishenko and Jacob, 1990; Walton et al., 2015].

    The northern part of the boundary between the North American and Pacific plates is complicated by the collision of the Yakutat terrane, a block of crustal material surrounded by faults, with southern Alaska. In this region, the Pacific Plate begins to subduct, or plunge beneath, the North American Plate along a boundary known as the Alaska-Aleutian megathrust.

    The Fairweather fault is the only stretch of the fault system accessible by land. To the south of Icy Point, the Fairweather fault runs offshore, becoming the Queen Charlotte fault, which extends about 900 kilometers southward along the continental slope.

    Earlier studies estimated a slip rate of 41 to 58 millimeters per year on the Fairweather fault [Plafker et al., 1978; Bruns and Carlson, 1987; Elliot et al., 2010], but few direct observations of horizontal seafloor displacement existed [Bruns and Carlson, 1987] because of the absence of high-resolution seabed data.

    Geophysical Surveys

    In 2015, our team conducted two marine geophysical surveys, one aboard the research vessel R/V Solstice and a second on R/V Alaskan Gyre. We collected high-resolution seafloor depth data using multibeam sonar along the northernmost section of the fault. We also used a chirp subbottom profiler, which returns detailed images down to 50 meters beneath the seafloor.

    The Queen Charlotte–Fairweather fault lies off the coast of southeastern Alaska. New imagery of a 400-kilometer-long undersea section of this transform fault provides a striking view of its structure and offers insights into activity at the boundary between the North American and Pacific tectonic plates. This perspective view of depth data acquired during recent surveys of the area shows the fault as it emerges from the Alaskan coast and stretches as a distinct line across the ocean floor. The color spectrum from red to purple represents increasing water depth.

    In 2016, two additional cruises (aboard R/V Medeia and R/V Norseman) extended data coverage of the Queen Charlotte–Fairweather fault an additional 325 kilometers southward. We again used multibeam sonar to map the ocean floor and multichannel seismic reflection to image deeper layers of sediment. Most recently, seismic reflection and chirp surveys were completed in July 2017 aboard the R/V Ocean Starr.

    In total, during 95 days of seagoing operations, we collected more than 5,000 square kilometers of high-resolution depth data, 9,400 kilometers of high-resolution multichannel seismic reflection profiles, and 500 kilometers of subbottom chirp data.

    A Clearer View of the Fault System

    Imagery from the surveys shows the fault in pristine detail, cutting straight across the seafloor, with offsetting seabed channels and submerged glacial valleys (Figure 2). The continuous knife-edge character of the fault is evident over the entire 500-kilometer-long survey area. At the same time, we can see several previously unknown features, including a series of subtle bends and steps in the fault that appear to form basins within the fault zone.

    Fig. 2. High-resolution depth images at four locations along the Queen Charlotte fault show the morphological features of the fault and the continental slope. Red arrows indicate the relative sense of motion (see Figure 1 for locations).

    Because the surveys spanned four sections of the fault that ruptured in significant historical earthquakes, the results provide a unique catalog of geomorphic features commonly associated with active strike-slip faults.

    The Fairweather fault bends 20° as it extends southward across the shoreline near Icy Point (Figures 1 and 2a) and then continues southward at a 340° strike along the shelf edge as a single fault trace for another 150 kilometers.

    Numerous submarine canyons, gullies, and ridges have been displaced or warped along the fault. Fault valleys parallel to the margin locally separate geomorphically distinct upper and lower sections of the continental slope (Figures 2b and 3). A Pleistocene basaltic-andesitic volcanic edifice exposed at the seabed extends from Mount Edgecumbe to the shelf edge (Figure 2b).

    West of southern Baranof Island, the fault takes a series of subtle 3° to 5° right steps and bends that form en echelon pull-apart basins along the shelf edge (Figure 2c). The fault continues southward as a single lineament but exhibits a subtle warp and series of westward steps displacing submarine canyon valleys (Figure 2d) before crossing Noyes Canyon and extending southward into Canadian waters [see, e.g., Barrie et al., 2013].

    Fig. 3. A seismic reflection profile acquired in August 2016 highlights the structure and stratigraphy of the continental slope.

    Fault Slip Rates

    The offset features along the seabed provide important information for reconstructing past fault motion. From the ages of these features we can calculate the average rate of motion along the fault, then estimate the typical recurrence interval for large earthquakes.

    For example, the southern margin of the Yakobi Sea Valley has been sliced and translated about 925 meters by the linear, knife-edge fault trace (Figure 2a). Ice likely retreated from the valley about 17,000 years ago. Thus, the slip rate of the Queen Charlotte–Fairweather fault across the Yakobi Sea Valley exceeds 50 millimeters per year: one of the fastest-slipping continent-ocean transform faults in the world [Brothers et al., 2015].

    Furthermore, we observe coincidence between the pull-apart basins shown in Figure 2c and the northernmost extent of the 2013 Craig earthquake, implying that changes in fault geometry likely influenced the length of rupture propagation [e.g., Walton et al., 2015].

    Future Plans

    The USGS, the Geological Survey of Canada, the Sitka Sound Science Center, and the University of Calgary will jointly lead a research cruise in September 2017 to collect sediment cores along the Queen Charlotte–Fairweather fault in Canadian and U.S. territories to constrain the sedimentation history along the margin and date features offset by fault motion.

    Overall, this project has shown that the Queen Charlotte–Fairweather fault is an ideal laboratory to examine the tectonic geomorphology of a major strike-slip fault and the associated processes responsible for generating offshore hazards.


    We thank J. Currie, G. Hatcher, R. Wyland, A. Balster-Gee, P. Hart, J. Conrad, T. O’Brien, A. Nichols, M. Walton, R. Marcuson, and E. Moore of the U.S. Geological Survey (USGS); K. Green of the Alaska Department of Fish and Game; G. Greene of Moss Landing Marine Laboratories; V. Barrie and K. Conway of the Geological Survey of Canada; and the crews of the R/V Solstice, R/V Medeia, R/V Norseman, R/V Ocean Starr, and R/V Alaskan Gyre. We also thank J. Warrick, R. von Huene, J. Watt, and an anonymous reader for helpful reviews. The USGS Coastal and Marine Geology Program funded this study. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. government.


    Barrie, J. V., K. W. Conway, and P. T. Harris (2013), The Queen Charlotte fault, British Columbia: Seafloor anatomy of a transform fault and its influence on sediment processes, Geo Mar. Lett., 33, 311–318, https://doi.org/10.1007/s00367-013-0333-3.

    Brothers, D. S., et al. (2015), High-resolution geophysical constraints on late Pleistocene–Present deformation history, seabed morphology, and slip-rate along the Queen Charlotte-Fairweather fault, offshore southeastern Alaska, Abstract NH23B-1882 presented at 2015 Fall Meeting, AGU, San Francisco, Calif.

    Bruns, T. R., and P. R. Carlson (1987), Geology and petroleum potential of the southeast Alaska continental margin, in Geology and Petroleum Potential of the Continental Margin of Western North America and Adjacent Ocean Basins, Beaufort Sea to Baja California, Earth Sci. Ser., vol. 9, edited by D. W. Scholl, A. Grantz, and J. G. Vedder, pp. 269–282, Circum-Pac. Counc. for Energy and Miner. Resour., Houston, Texas.

    Elliot, J. L., et al. (2010), Tectonic block motion and glacial isostatic adjustment in southeast Alaska and adjacent Canada constrained by GPS measurements, J. Geophys. Res., 115, B09407, https://doi.org/10.1029/2009JB007139.

    Miller, D. J. (1960), Giant waves in Lituya Bay, Alaska, U.S. Geol. Surv. Prof. Pap., 354-C, 51–86, scale 1:50,000.

    Nishenko, S. P., and K. H. Jacob (1990), Seismic potential of the Queen Charlotte-Alaska-Aleutian seismic zone, J. Geophys. Res., 95(B3), 2511–2532, https://doi.org/10.1029/JB095iB03p02511.

    Plafker, G., et al. (1978), Late Quaternary offsets along the Fairweather fault and crustal plate interactions in southern Alaska, Can. J. Earth Sci., 15(5), 805–816, https://doi.org/10.1139/e78-085.

    Walton, M. A. L., et al. (2015), Basement and regional structure along strike of the Queen Charlotte fault in the context of modern and historical earthquake ruptures, Bull. Seismol. Soc. Am., 105, 1090–1105, https://doi.org/10.1785/0120140174.

    Author Information

    Daniel S. Brothers (email: dbrothers@usgs.gov; @DBrothersSC), Pacific Coastal and Marine Science Center, U.S. Geological Survey (USGS), Santa Cruz, Calif.; Peter Haeussler, Alaska Science Center, USGS, Anchorage; Amy East, Pacific Coastal and Marine Science Center, USGS, Santa Cruz, Calif.; Uri ten Brink and Brian Andrews, Woods Hole Science Center, USGS, Mass.; Peter Dartnell, Pacific Coastal and Marine Science Center, USGS, Santa Cruz, Calif.; Nathan Miller, Woods Hole Science Center, USGS, Mass.; and Jared Kluesner, Pacific Coastal and Marine Science Center, USGS, Santa Cruz, Calif.
    Citation: Brothers, D. S., P. Haeussler, A. East, U. ten Brink, B. Andrews, P. Dartnell, N. Miller, and J. Kluesner (2017), A closer look at an undersea source of Alaskan earthquakes, Eos, 98, https://doi.org/10.1029/2017EO079019. Published on 15 August 2017.

    © 2017. The authors. CC BY-NC-ND 3.0

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

  • richardmitnick 9:58 am on August 18, 2017 Permalink | Reply
    Tags: Applied Research & Technology, Back to school for Science Week, , ,   

    From CSIRO: “Back to school for Science Week” 

    CSIRO bloc

    Commonwealth Scientific and Industrial Research Organisation

    18 Aug 2017
    Ashleigh Fortington
    +61 2 4960 6142

    More than 350 Australian schools are today welcoming Science, Technology, Engineering and Maths (STEM) professionals into their classrooms – virtually and physically – to promote the importance of STEM to Australia’s future.


    Minister for Industry, Innovation and Science, Senator the Hon Arthur Sinodinos AO talks to Gundaroo primary students about all things science during our STEM in Schools event.

    Minister for Education and Training, Senator the Hon Simon Birmingham working with East Adelaide Primary School students as part of STEM in Schools.

    The STEM in Schools event, run by CSIRO, Australia’s national science agency, forms part of National Science Week and will see classrooms across the country come alive with science as students participate in a virtual classroom discussion with STEM professionals working in the international space industry.

    Many also have the opportunity to take part in hands-on science activities with CSIRO scientists.

    More than 30 Federal MPs will also head back to school for the day and join students in the activities, underlining the national importance of STEM for Australia’s future.

    With research indicating that 75 per cent of the fastest growing occupations now require STEM skills and knowledge, it is now more important than ever to engage students in science, technology, engineering and maths.

    CSIRO Chief Executive Dr Larry Marshall said the event was about inspiring a curiosity and passion in science that will encourage more students to pursue STEM as a foundation of their future.

    “For Australia to prosper, we need to empower our students to calmly and confidently stare into the face of Australia’s challenges, knowing that science has the power to solve the impossible and turn challenge into opportunity,” Dr Marshall said.

    “STEM in Schools teaches our children how they can reshape the future, inspiring them with the possibilities of science. These students will go on to become our scientists, engineers, business leaders and entrepreneurs of tomorrow.”

    STEM in Schools events are taking place in over 350 schools around Australia, with over 70 CSIRO staff and 30 members of parliament visiting schools across the country to conduct activities and share their passion for STEM.

    Follow the conversation and see all the action from the events across the country with #STEMinSchools on Twitter, Facebook and Instagram.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    CSIRO campus

    CSIRO, the Commonwealth Scientific and Industrial Research Organisation, is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

  • richardmitnick 1:10 pm on August 17, 2017 Permalink | Reply
    Tags: Applied Research & Technology, , , New diffractometer,   

    From BNL: “NSLS-II Welcomes New Tool for Studying the Physics of Materials” 

    Brookhaven Lab

    August 17, 2017
    Kelsey Harper

    Versatile instrument for precisely studying materials’ structural, electronic, magnetic characteristics arrives at Brookhaven Lab.

    Beamline lead scientist Christie Nelson works with a diffractometer located at beamline 4-ID.

    A new instrument for studying the physics of materials using high intensity x-ray beams has arrived at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory. This new diffractometer, installed at beamline 4-ID at the National Synchrotron Light Source II (NSLS-II), a DOE Office of Science User Facility that produces extremely bright beams of x-rays, will offer researchers greater precision when studying materials with unique structural, electronic, and magnetic characteristics. Understanding these materials’ properties could lead to better electronics, solar cells, or superconductors (materials that carry electricity with almost no energy loss).

    A diffractometer allows researchers to “see” the structure of a material by shooting highly focused x-rays at it and measuring how they diffract, or bounce off. According to Brookhaven physicist Christie Nelson, who worked with Huber X-Ray Diffraction Equipment to design the diffractometer, the new instrument has big advantages compared to one that operated at Brookhaven’s original light source, NSLS. Most significantly, it gives researchers additional ways to control where the beam hits the sample and how the x-rays are detected.

    In all diffractometers, both the sample and x-ray detector can rotate in certain directions to let researchers control where the beam hits the sample and where they measure the x-rays that bounce off. This diffractometer, however, has a uniquely large range of motion. The sample can rotate in four directions with extremely high precision, and in two of those directions it rotates much farther than in most other instruments. With this amount of control, researchers can target the precision of the x-ray beam to within 60 millionths of a meter.

    The instrument also has two detectors. While one allows users to quickly survey the overall structure of a sample, the other gives a zoomed-in view of the material’s subtler details. Since this diffractometer can have both detectors attached at the same time, researchers can quickly switch between these two views.

    “It’s a huge upgrade. There’s only one other like it in the world,” said Nelson, referring to a similar instrument at PETRA-III, an x-ray light source in Germany.

    DESY Petra III interior

    This diffractometer can also hold a cold chamber for looking at samples over a wide range of temperatures, all the way down to two Kelvin, or -271 degrees Celsius.

    “That’s crazy cold,” said Nelson—it’s just two degrees above “absolute zero,” the coldest anything can be.

    This cold chamber lets researchers study materials whose properties change with temperature. A research group from the University of California, Berkeley, has already used it to study superconductors, which need intense cold to function. The diffractometer allowed them to see fundamental changes in the material’s electronic structure as the temperature decreased.

    In the future, Nelson expects scientists will use the tool to examine materials at very high temperatures, under an electric or magnetic field, or in an environment with a custom atmosphere.

    “It’s a very versatile instrument,” said Nelson.

    The newly acquired diffractometer before its installation at NSLS-II.

    The diffractometer additionally allows researchers to study magnetism. Similar to the way polarized sunglasses only let in light oriented in a certain direction, NSLS-II produces ‘polarized’ beams of x-rays that are all lined up the same way. When these x-rays interact with magnetic areas of a sample, their orientation shifts. The diffractometer can detect these subtle changes, allowing researchers to study a material’s different magnetic characteristics.

    A group from the University of Toronto used this feature to study the magnetic properties of “double perovskites.” Although these materials are structurally similar to those used in prototype solar cells, the Toronto group is most interested in their unique magnetic properties and potential applications in quantum computing and information storage.

    Nelson looks forward to welcoming future research teams to use the new instrument at NSLS-II. “It’s yet another tool that enables the cutting-edge discoveries that happen here,” she said.

    NSLS-II is funded by the DOE Office of Science.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    BNL Campus

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

  • richardmitnick 12:23 pm on August 17, 2017 Permalink | Reply
    Tags: Applied Research & Technology, , , ,   

    From Stanford: “New source of energy-critical lithium found in supervolcanoes, Stanford researchers find” 

    Stanford University Name
    Stanford University

    August 16, 2017
    Danielle Torrent Tucker

    Stanford researchers detail a new method for locating lithium in lake deposits from ancient supervolcanoes, which appear as large holes in the ground that often fill with water to form a lake, such as Crater Lake in Oregon, pictured here. (Image credit: Lindsay Snow / Shutterstock)

    Stanford researchers show that lake sediments preserved within ancient supervolcanoes can host large lithium-rich clay deposits. A domestic source of lithium would help meet the rising demand for this valuable metal, which is critical for modern technology.

    Most of the lithium used to make the lithium-ion batteries that power modern electronics comes from Australia and Chile. But Stanford scientists say there are large deposits in sources right here in America: supervolcanoes.

    In a study published today in Nature Communications, scientists detail a new method for locating lithium in supervolcanic lake deposits. The findings represent an important step toward diversifying the supply of this valuable silvery-white metal, since lithium is an energy-critical strategic resource, said study co-author Gail Mahood, a professor of geological sciences at Stanford’s School of Earth, Energy & Environmental Sciences.

    “We’re going to have to use electric vehicles and large storage batteries to decrease our carbon footprint,” Mahood said. “It’s important to identify lithium resources in the U.S. so that our supply does not rely on single companies or countries in a way that makes us subject to economic or political manipulation.”

    Supervolcanoes can produce massive eruptions of hundreds to thousands of cubic kilometers of magma – up to 10,000 times more than a typical eruption from a Hawaiian volcano. They also produce vast quantities of pumice and volcanic ash that are spread over wide areas. They appear as huge holes in the ground, known as calderas, rather than the cone-like shape typically associated with volcanoes because the enormous loss of magma causes the roof of the chamber to collapse following eruption.

    The resulting hole often fills with water to form a lake – Oregon’s Crater Lake is a prime example. Over tens of thousands of years, rainfall and hot springs leach out lithium from the volcanic deposits. The lithium accumulates, along with sediments, in the caldera lake, where it becomes concentrated in a clay called hectorite.

    Exploring supervolcanoes for lithium would diversify its global supply. Major lithium deposits are currently mined from brine deposits in high-altitude salt flats in Chile and pegmatite deposits in Australia. The supervolcanoes pose little risk of eruption because they are ancient.

    “The caldera is the ideal depositional basin for all this lithium,” said lead author Thomas Benson, a recent PhD graduate at Stanford Earth, who began working on the study in 2012.

    Since its discovery in the 1800s, lithium has largely been used in psychiatric treatments and nuclear weapons. Beginning in the 2000s, lithium became the major component of lithium-ion batteries, which today provide portable power for everything from cellphones and laptops to electric cars. Volvo Cars recently announced its commitment to only produce new models of its vehicles as hybrids or battery-powered options beginning in 2019, a sign that demand for lithium-ion batteries will continue to increase.

    “We’ve had a gold rush, so we know how, why and where gold occurs, but we never had a lithium rush,” Benson said. “The demand for lithium has outpaced the scientific understanding of the resource, so it’s essential for the fundamental science behind these resources to catch up.”

    Working backward

    To identify which supervolcanoes offer the best sources of lithium, researchers measured the original concentration of lithium in the magma. Because lithium is a volatile element that easily shifts from solid to liquid to vapor, it is very difficult to measure directly and original concentrations are poorly known.

    So, the researchers analyzed tiny bits of magma trapped in crystals during growth within the magma chamber. These “melt inclusions,” completely encapsulated within the crystals, survive the supereruption and remain intact throughout the weathering process. As such, melt inclusions record the original concentrations of lithium and other elements in the magma. Researchers sliced through the host crystals to expose these preserved magma blebs, which are 10 to 100 microns in diameter, then analyzed them with the Sensitive High Resolution Ion Microprobe in the SHRIMP-RG Laboratory at Stanford Earth.

    “Understanding how lithium is transported in magmas and what causes a volcanic center to become enriched in lithium has never really systematically been done before,” Benson said.

    The team analyzed samples from a range of tectonic settings, including the Kings Valley deposit in the McDermitt volcanic field located on the Nevada-Oregon border, which erupted 16.5 to 15.5 million years ago and is known to be rich in lithium. They compared results from this volcanic center with samples from the High Rock caldera complex in Nevada, Sierra la Primavera in Mexico, Pantelleria in the Strait of Sicily, Yellowstone in Wyoming and Hideaway Park in Colorado, and determined that lithium concentrations varied widely as a function of the tectonic setting of the supervolcano.

    “If you have a lot of magma erupting, it doesn’t have to have as much lithium in it to produce something that is worthy of economic interest as we previously thought,” Mahood said. “You don’t need extraordinarily high concentrations of lithium in the magma to form lithium deposits and reserves.”

    Improving identification

    In addition to exploring for lithium, the researchers analyzed other trace elements to determine their correlations with lithium concentrations. As a result, they discovered a previously unknown correlation that will now enable geologists to identify candidate supervolcanoes for lithium deposits in a much easier way than measuring lithium directly in melt inclusions. The trace elements can be used as a proxy for original lithium concentration. For example, greater abundance of easily analyzed rubidium in the bulk deposits indicates more lithium, whereas high concentrations of zirconium indicate less lithium.

    “We can essentially use the zirconium content to determine the lithium content within about 100 parts per million,” Benson said. “Now that we have a way to easily find more of these lithium deposits, it shows that this fundamental geological work can help solve societal problems – that’s really exciting.”

    Co-authors of the paper, “Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins,” include Matthew Coble, a research and development scientist and engineer at Stanford University, and James Rytuba of the U.S. Geological Survey. The research was partially supported by a U.S. Department of Defense NDSEG Fellowship.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

  • richardmitnick 11:26 am on August 17, 2017 Permalink | Reply
    Tags: Applied Research & Technology, CSU, ,   

    From CSU: “New test differentiates between Lyme disease, similar illness” 

    Colorado State University

    16 Aug, 2017
    Mary Guiden

    Lyme disease is the most commonly reported vector-borne illness in the United States, but it can be confused with similar conditions, including Southern Tick-Associated Rash Illness (STARI). A team of researchers led by Colorado State University has identified a way to distinguish Lyme disease from similar conditions, according to a new study published Aug. 16 in Science Translational Medicine.

    Senior author John Belisle, a professor in CSU’s Department of Microbiology, Immunology and Pathology, said the findings are significant.

    “We were able to tell the difference between early Lyme disease and Southern Tick-Associated Rash Illness by using biomarkers that show us how the body reacts to these illnesses,” Belisle said. “This could be important in helping to more accurately detect early Lyme disease, which is crucial because the longer people wait for Lyme disease treatment, the higher the potential risk for having more severe symptoms.”

    The research team, which also included scientists from the Centers for Disease Control and Prevention, hopes the findings will lay the groundwork for other studies that could lead to better early testing for Lyme disease.

    A female lone star tick, found through the eastern and south-central states. Photo: Centers for Disease Control and Prevention.

    Lyme disease versus STARI

    Current laboratory tests aren’t sensitive enough to detect Lyme disease infection with high accuracy in the first few weeks of illness. Adding to the complexity, researchers have yet to identify what pathogen causes STARI, which presents a rash and other symptoms nearly indistinguishable from that of Lyme disease: fatigue, fever, headache, and muscle pains. STARI cannot be diagnosed with the current test for Lyme disease.

    The geographic boundaries of both diseases are expanding and will overlap even more in the years to come, making the need for a more accurate early test for Lyme disease all the more urgent.

    The researchers used mass spectrometry to identify biomarkers of metabolic differences in the two diseases. In doing this, they were able to differentiate early Lyme disease from STARI with an accuracy of up to 98 percent.

    The blacklegged or deer tick, no bigger than the size of a period at the end of this sentence, transmits Lyme disease. Photo: Centers for Disease Control and Prevention.

    Proper diagnosis of Lyme disease important

    An estimated 300,000 cases of Lyme disease occur annually in the U.S., with most of the cases occurring in the northeast and upper Midwest. In 2015, 95 percent of confirmed Lyme disease cases were reported from 14 states (see sidebar). Lyme disease is transmitted when blacklegged ticks infected with the bacterium Borrelia burgdorferi bite people. Lone star ticks, which cause STARI, do not transmit B. burgdorferi.

    People with untreated Lyme disease may experience a fever, rash, facial paralysis, and arthritis. More severe long-term symptoms include severe headaches, heart palpitations or an irregular heartbeat, nerve pain, problems with short-term memory and inflammation of the brain and spinal cord.

    “It is extremely important to be able to tell a patient they have Lyme disease as early as possible so they can be treated as quickly as possible,” said Claudia Molins, first author of the study and a microbiologist in the CDC’s Division of Vector-Borne Diseases. “Most Lyme disease infections are successfully treated with a two- to three-week course of oral antibiotics.”

    Researchers have also found that Lyme disease-related health care costs are huge. In a 2015 report published in PLOS ONE, a team from the Johns Hopkins Bloomberg School of Public Health found that Lyme disease costs the U.S. health-care system between $712 million and $1.3 billion a year in return doctor visits and testing.

    CSU tuberculosis, leprosy research offers insight

    Belisle saw that the approaches his team has taken with tuberculosis and leprosy — developing biomarkers or biosignatures for diagnosing a disease or the prognosis for a disease — could be applied to developing a diagnostic test for STARI and improving Lyme disease diagnostic tests.

    “We have found that all of these infections and diseases are associated with an inflammatory response, but the alteration of the immune response and the metabolic profiles aren’t all the same,” Belisle said.

    Metabolic pathways are a linked series of chemical reactions occurring within a cell. “To some extent, your metabolism is going to change based on what your ailments are,” Molins explained. The studies performed were based on this idea that unique metabolic differences are associated with an illness or disease. The research team looked at metabolites, very small molecules produced by the body that include things like sugars, peptides, amino acids, and lipids.

    Fine-tuning the test for broader use

    Next steps for the team include developing a test that could be used in a diagnostic lab, outside of a research setting.

    “The focus of our efforts is to develop a test that has a much greater sensitivity, and maintains that same level of specificity,” Belisle said. “We don’t want people to receive unnecessary treatment if they don’t have Lyme disease, but we want to identify those who have the disease as quickly as possible.”

    In the longer-term, Belisle said researchers also hope to monitor how patients respond to treatment.

    Study coauthors also include researchers from New York Medical College and the Burnett School of Biomedical Sciences at the University of Central Florida.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Colorado State University (also referred to as Colorado State, State, and CSU) is a public research university in the U.S. state of Colorado. The university is the state’s land grant university, and the flagship university of the Colorado State University System.

    The current enrollment is approximately 37,198 students, including resident and non-resident instruction students and the University is planning on having 42,000 students by 2020. The university has approximately 2,000 faculty in eight colleges and 55 academic departments. Bachelor’s degrees are offered in 65 fields of study, with master’s degrees in 55 fields. Colorado State confers doctoral degrees in 40 fields of study, in addition to a professional degree in veterinary medicine.

  • richardmitnick 8:37 am on August 17, 2017 Permalink | Reply
    Tags: Applied Research & Technology, , , , , SynBio FSP-SynBio Future Science Platform, SynBio-synthetic biology   

    From CSIRO blog: “First steps toward a synthetic biology future” 

    CSIRO bloc

    CSIRO blog

    17 August 2017
    Chris McKay

    The Industrial Revolution set off a wave of technological revolutions. Illustration: D O Hill/Wikimedia Commons

    It was steam power in 18th Century Britain that helped set off the Industrial Revolution, an evolution in technology that would change the course of human history. But that turned out to be only the first in a wave of technological revolutions to follow. From the late 1800s, electricity was being harnessed to allow for mass production, and then in the 1980s, electronics and information technology took the world by storm, heralding the third technological revolution and giving us the digital world we know today.

    Now, we’re in the midst of a fourth technological revolution. Building on the digital revolution that came before it, we’re seeing increasing digital connectedness (think Internet of Things) and a fusing of digital technology with biological systems and technologies. And there has been a step change in the speed at which progress is occurring.

    The trend in the cost of sequencing a human-sized genome since 2001. Image: National Human Genome Research Institute.

    Consider the speed of progress during the IT revolution, which saw computing power doubling roughly every two years in accordance with Moore’s Law. Then contrast that with the rate of progress in the field of biotechnology, which has been exponential: the Human Genome Project, starting in 1990, was a $3 billion USD project that sequenced the human genome for the first time over a period of more than 10 years; then as a result of that work, from 2001 a genome could be sequenced for $100 million USD; and today we can sequence a genome for less than $1000.

    It is in this context that the field of synthetic biology (SynBio) has emerged. SynBio is essentially the application of engineering principles to biology. It involves making things from biological components, such as genetic code, to carry out useful activities. These activities could include sustainable production of fuels, treatment and cure of diseases, controlling invasive pests, or sensing toxins in the environment. Indeed, recent advancements in writing DNA code, printing DNA, and gene editing technology have made SynBio one of the fastest growing areas of modern science. It is a rapidly expanding multi-billion dollar industry with significant potential for generating societal benefits and commercial opportunities.

    That’s why SynBio was among the six new Future Science Platforms we announced last year; a program of investment in areas of science that are set to drive innovation and have the potential to help reinvent and create new industries for Australia. The SynBio Future Science Platform (SynBio FSP) is also growing the capability of a new generation of researchers in partnership with some Australian universities—some of the newest recruits, 11 SynBio Future Science Fellows, will be undertaking work on a suite of innovative projects.

    Future Science Fellow Dr Michele Fabris, based at the University of Technology Sydney’s Climate Change Cluster, will be exploring the potential for photosynthetic microalgae to be modified to carry out new functions, like the production of anti-cancer pharmaceutical compounds. Image: Anna Zhu/UTS

    The research projects cover a broad spectrum of activity. There will be environmental and biocontrol applications, such as the development of cell-tissue structures capable of sensing the environment and eliminating toxins, new tools for targeting antibiotic resistant biofilms, and biosensors providing real-time biological monitoring. Some projects will be exploring the potential to use yeast, microalgae or cyanobacteria cells for the production of valuable pharmaceuticals or fuels, driving innovation in chemical and fibre manufacturing. Other projects will be creating new tools and building blocks that will be fundamental in driving progress in SynBio.

    This work will complement other SynBio FSP research being undertaken at CSIRO that will help us position Australia to play a role in the latest technological revolution. It is research that will allow us to better understand global developments and, where appropriate, contribute responsibly to advances in areas as diverse as healthcare, industrial biotechnology, biosecurity, food and agriculture.

    SynBio FSP’s Future Science Fellowships are co-funded partnerships between CSIRO and the host universities, with each partner contributing matching funding. The host universities are Australian National University, Macquarie University, University of Adelaide, University of Queensland, University of the Sunshine Coast, University of Technology Sydney and University of Western Australia.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    CSIRO campus

    CSIRO, the Commonwealth Scientific and Industrial Research Organisation, is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

    The CSIRO blog is designed to entertain, inform and inspire by generally digging around in the work being done by our terrific scientists, and leaving the techie speak and jargon for the experts.

    We aim to bring you stories from across the vast breadth and depth of our organisation: from the wild sea voyages of our Research Vessel Investigator to the mind-blowing astronomy of our Space teams, right through all the different ways our scientists solve national challenges in areas as diverse as Health, Farming, Tech, Manufacturing, Energy, Oceans, and our Environment.

    If you have any questions about anything you find on our blog, we’d love to hear from you. You can reach us at socialmedia@csiro.au.

    And if you’d like to find out more about us, our science, or how to work with us, head over to CSIRO.au

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: