From University of Washington (US) and From NYU Abu Dhabi via EarthSky : “These 5 multi-star systems have habitable zones”

From University of Washington (US)

and


From NYU Abu Dhabi

NYU BLOC

New York University

via

1

EarthSky

Astronomers have identified 5 multi-star systems that have stable habitable zones. This means that any rocky worlds that may exist in those zones could potentially have life.

Planets orbiting in their stars’ Goldilocks zones or habitable zones are not too close and not too far from their stars. They’re in a place where water might exist as a liquid on a rocky planet. We tend to think of a planet in the Goldilocks zone of a single star, similar to Earth in our solar system. But what about multiple star systems? Do habitable zones exist in systems of two, three or more stars? Astronomers from New York University Abu Dhabi and the University of Washington show that it is indeed possible. Using a new mathematical model, they found that at least five such known systems – all within 6,000 light-years of Earth – have stable habitable zones where hypothetical planets could harbor life.

The peer-reviewed study was published in Frontiers in Astronomy and Space Sciences on April 15, 2021, and reported in Frontiers Science News on the same day.

These findings are important because stable habitable zones would greatly increase the chances of life evolving on any planets that orbit within them. As lead author Nikolaos Georgakarakos said:

“Life is far most likely to evolve on planets located within their system’s habitable zone, just like Earth. Here we investigate whether a habitable zone exists within nine known systems with two or more stars orbited by giant planets. We show for the first time that Kepler-34, -35, -64, -413 and especially Kepler-38 are suitable for hosting Earth-like worlds with oceans.”

2
Binary star systems, where two stars orbit each other, are common in our galaxy, and are thought to make up to 3/4 of all star systems. Image via Mark Garlick/ Science Photo Library/ New Scientist.

The astronomers studied nine different multi-star systems, and found five of those – Kepler-34, Kepler-35, Kepler-38, Kepler-64 (PH 1) and Kepler-413 – to be the most likely to contain permanent habitable zones with worlds that could host life. Of those, they found Kepler-35, Kepler-38 and Kepler-64 to offer the most benign environment for possible life.

The five star systems are located at distances between 2,764 and 5,933 light-years from Earth, in the constellations Lyra the Harp and Cygnus the Swan. Kepler-64 has at least four stars orbiting each other (!), and the rest are binary star systems with two stars.

3
The Kepler-64 system, also known as PH-1, has at least 4 stars, and is one of the 5 multi-star systems that could contain habitable planets. Image via Open Exoplanet Catalogue.

It is important to note that while smaller rocky planets haven’t yet been found in these star systems, they are all known to have at least one planet as large as Neptune or bigger. This makes it likely that at least some of them also have smaller planets, since most planetary systems found so far tend to have planets of various sizes, like ours.

Generally, multi-star systems are thought to be less likely to have habitable planets, due to all the intricate gravitational interactions going on, especially those with giant planets. But now this new research shows that some of them could be stable enough for life to originate on habitable zone planets. Co-author Ian Dobbs-Dixon said:

“We’ve known for a while that binary star systems without giant planets have the potential to harbor habitable worlds. What we have shown here is that in a large fraction of those systems Earth-like planets can remain habitable even in the presence of giant planets.”

This is good news for the prospects of finding life in such systems, since, for example, double star systems are estimated to compose up to 3/4 of all star systems. Our single star sun is actually in a minority.

How did the researchers come to these conclusions? Their work is based on previous studies, with the goal of determining the existence, location, and extent of the permanent habitable zone in binary systems with giant planets. The researchers take various factors into consideration, such as the classification, mass, luminosity and spectral energy distribution of the stars, the added gravitational effect of the giant planet and the geometry of the system; the orbital eccentricity (how narrow an ellipse the orbit is), semi-major axis and period of the hypothetical planet’s orbit. They also look at the intensity of solar radiation from the star hitting the planet’s atmosphere and the planet’s climate inertia, the speed at which the atmosphere responds to changes in irradiation.

By doing this, they determined that those five multi-star systems do indeed have permanent habitable zones. Each zone is between 0.4 and 1.5 astronomical units (AU) wide. One AU is the mean distance between Earth and the sun, about 93 million miles (150 million km).

Other binary star systems are not as promising, however. In the Kepler-453 and Kepler-1661 systems, the habitable zones are estimated to be only about half the size as those of the other five. Two others, Kepler-16 and Kepler-1647, are unlikely to have any potentially habitable planets at all. As noted by co-author Siegfried Eggl:

“In contrast, the extent of the habitable zones in two further binary systems, Kepler-453 and -1661, is roughly half the expected size, because the giant planets in those systems would destabilize the orbits of additional habitable worlds. For the same reason Kepler-16 and -1647 cannot host additional habitable planets at all. Of course, there is the possibility that life exists outside the habitable zone or on moons orbiting the giant planets themselves, but that may be less desirable real-estate for us.”

So which system has the most potential for supporting life? Georgakarakos said:

“Our best candidate for hosting a world that is potentially habitable is the binary system Kepler-38, approximately 3,970 light-years from Earth, and known to contain a Neptune-sized planet.

Our study confirms that even binary star systems with giant planets are hot targets in the search for Earth 2.0. Watch out Tatooine, we are coming!”

Habitable worlds are not limited to the habitable zone, however. In our own solar system there are multiple icy moons with subsurface oceans that could potentially be home to some kind of life. Europa, Enceladus and Titan in particular are now prime targets for further exploration. The fact that they are common in our solar system makes it reasonable that similar kinds of moons may also exist in some of these multi-star systems, and elsewhere.

See the full article here .


five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

New York University Abu Dhabi (NYUAD, Arabic: جامعة نيويورك أبوظبي‎) is a degree granting, portal campus of New York University serving as a private liberal arts college, located in Abu Dhabi, United Arab Emirates.

Together with New York University in New York City and New York University Shanghai, the portal campus is part of NYU’s Global Network University. It opened in 2008 at a temporary site for conferences and cultural events. The academic program opened in September 2010 at the university’s provisional downtown site and was later moved in 2014 to the permanent campus built on Saadiyat Island, Abu Dhabi.

In 2019, the university announced that it had produced “14 Rhodes Scholars in just seven years, more Rhodes Scholars per student than any university in the world.”

NYU Campus

More than 175 years ago, Albert Gallatin, the distinguished statesman who served as secretary of the treasury under Presidents Thomas Jefferson and James Madison, declared his intention to establish “in this immense and fast-growing city … a system of rational and practical education fitting for all and graciously opened to all.” Founded in 1831, New York University is now one of the largest private universities in the United States. Of the more than 3,000 colleges and universities in America, New York University is one of only 60 member institutions of the distinguished Association of American Universities (US).

u-washington-campus

The University of Washington (US) is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.

So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

The University of Washington (US) is a public research university in Seattle, Washington, United States. Founded in 1861, University of Washington is one of the oldest universities on the West Coast; it was established in downtown Seattle approximately a decade after the city’s founding to aid its economic development. Today, the university’s 703-acre main Seattle campus is in the University District above the Montlake Cut, within the urban Puget Sound region of the Pacific Northwest. The university has additional campuses in Tacoma and Bothell. Overall, University of Washington encompasses over 500 buildings and over 20 million gross square footage of space, including one of the largest library systems in the world with more than 26 university libraries, as well as the UW Tower, lecture halls, art centers, museums, laboratories, stadiums, and conference centers. The university offers bachelor’s, master’s, and doctoral degrees through 140 departments in various colleges and schools, sees a total student enrollment of roughly 46,000 annually, and functions on a quarter system.

University of Washington is a member of the Association of American Universities(US) and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation(US), UW spent $1.41 billion on research and development in 2018, ranking it 5th in the nation. As the flagship institution of the six public universities in Washington state, it is known for its medical, engineering and scientific research as well as its highly competitive computer science and engineering programs. Additionally, University of Washington continues to benefit from its deep historic ties and major collaborations with numerous technology giants in the region, such as Amazon, Boeing, Nintendo, and particularly Microsoft. Paul G. Allen, Bill Gates and others spent significant time at Washington computer labs for a startup venture before founding Microsoft and other ventures. The University of Washington’s 22 varsity sports teams are also highly competitive, competing as the Huskies in the Pac-12 Conference of the NCAA Division I, representing the United States at the Olympic Games, and other major competitions.

The university has been affiliated with many notable alumni and faculty, including 21 Nobel Prize laureates and numerous Pulitzer Prize winners, Fulbright Scholars, Rhodes Scholars and Marshall Scholars.

In 1854, territorial governor Isaac Stevens recommended the establishment of a university in the Washington Territory. Prominent Seattle-area residents, including Methodist preacher Daniel Bagley, saw this as a chance to add to the city’s potential and prestige. Bagley learned of a law that allowed United States territories to sell land to raise money in support of public schools. At the time, Arthur A. Denny, one of the founders of Seattle and a member of the territorial legislature, aimed to increase the city’s importance by moving the territory’s capital from Olympia to Seattle. However, Bagley eventually convinced Denny that the establishment of a university would assist more in the development of Seattle’s economy. Two universities were initially chartered, but later the decision was repealed in favor of a single university in Lewis County provided that locally donated land was available. When no site emerged, Denny successfully petitioned the legislature to reconsider Seattle as a location in 1858.

In 1861, scouting began for an appropriate 10 acres (4 ha) site in Seattle to serve as a new university campus. Arthur and Mary Denny donated eight acres, while fellow pioneers Edward Lander, and Charlie and Mary Terry, donated two acres on Denny’s Knoll in downtown Seattle. More specifically, this tract was bounded by 4th Avenue to the west, 6th Avenue to the east, Union Street to the north, and Seneca Streets to the south.

John Pike, for whom Pike Street is named, was the university’s architect and builder. It was opened on November 4, 1861, as the Territorial University of Washington. The legislature passed articles incorporating the University, and establishing its Board of Regents in 1862. The school initially struggled, closing three times: in 1863 for low enrollment, and again in 1867 and 1876 due to funds shortage. University of Washington awarded its first graduate Clara Antoinette McCarty Wilt in 1876, with a bachelor’s degree in science.

19th century relocation

By the time Washington state entered the Union in 1889, both Seattle and the University had grown substantially. University of Washington’s total undergraduate enrollment increased from 30 to nearly 300 students, and the campus’s relative isolation in downtown Seattle faced encroaching development. A special legislative committee, headed by University of Washington graduate Edmond Meany, was created to find a new campus to better serve the growing student population and faculty. The committee eventually selected a site on the northeast of downtown Seattle called Union Bay, which was the land of the Duwamish, and the legislature appropriated funds for its purchase and construction. In 1895, the University relocated to the new campus by moving into the newly built Denny Hall. The University Regents tried and failed to sell the old campus, eventually settling with leasing the area. This would later become one of the University’s most valuable pieces of real estate in modern-day Seattle, generating millions in annual revenue with what is now called the Metropolitan Tract. The original Territorial University building was torn down in 1908, and its former site now houses the Fairmont Olympic Hotel.

The sole-surviving remnants of Washington’s first building are four 24-foot (7.3 m), white, hand-fluted cedar, Ionic columns. They were salvaged by Edmond S. Meany, one of the University’s first graduates and former head of its history department. Meany and his colleague, Dean Herbert T. Condon, dubbed the columns as “Loyalty,” “Industry,” “Faith”, and “Efficiency”, or “LIFE.” The columns now stand in the Sylvan Grove Theater.

20th century expansion

Organizers of the 1909 Alaska-Yukon-Pacific Exposition eyed the still largely undeveloped campus as a prime setting for their world’s fair. They came to an agreement with Washington’s Board of Regents that allowed them to use the campus grounds for the exposition, surrounding today’s Drumheller Fountain facing towards Mount Rainier. In exchange, organizers agreed Washington would take over the campus and its development after the fair’s conclusion. This arrangement led to a detailed site plan and several new buildings, prepared in part by John Charles Olmsted. The plan was later incorporated into the overall University of Washington campus master plan, permanently affecting the campus layout.

Both World Wars brought the military to campus, with certain facilities temporarily lent to the federal government. In spite of this, subsequent post-war periods were times of dramatic growth for the University. The period between the wars saw a significant expansion of the upper campus. Construction of the Liberal Arts Quadrangle, known to students as “The Quad,” began in 1916 and continued to 1939. The University’s architectural centerpiece, Suzzallo Library, was built in 1926 and expanded in 1935.

After World War II, further growth came with the G.I. Bill. Among the most important developments of this period was the opening of the School of Medicine in 1946, which is now consistently ranked as the top medical school in the United States. It would eventually lead to the University of Washington Medical Center, ranked by U.S. News and World Report as one of the top ten hospitals in the nation.

In 1942, all persons of Japanese ancestry in the Seattle area were forced into inland internment camps as part of Executive Order 9066 following the attack on Pearl Harbor. During this difficult time, university president Lee Paul Sieg took an active and sympathetic leadership role in advocating for and facilitating the transfer of Japanese American students to universities and colleges away from the Pacific Coast to help them avoid the mass incarceration. Nevertheless many Japanese American students and “soon-to-be” graduates were unable to transfer successfully in the short time window or receive diplomas before being incarcerated. It was only many years later that they would be recognized for their accomplishments during the University of Washington’s Long Journey Home ceremonial event that was held in May 2008.

From 1958 to 1973, the University of Washington saw a tremendous growth in student enrollment, its faculties and operating budget, and also its prestige under the leadership of Charles Odegaard. University of Washington student enrollment had more than doubled to 34,000 as the baby boom generation came of age. However, this era was also marked by high levels of student activism, as was the case at many American universities. Much of the unrest focused around civil rights and opposition to the Vietnam War. In response to anti-Vietnam War protests by the late 1960s, the University Safety and Security Division became the University of Washington Police Department.

Odegaard instituted a vision of building a “community of scholars”, convincing the Washington State legislatures to increase investment in the University. Washington senators, such as Henry M. Jackson and Warren G. Magnuson, also used their political clout to gather research funds for the University of Washington. The results included an increase in the operating budget from $37 million in 1958 to over $400 million in 1973, solidifying University of Washington as a top recipient of federal research funds in the United States. The establishment of technology giants such as Microsoft, Boeing and Amazon in the local area also proved to be highly influential in the University of Washington’s fortunes, not only improving graduate prospects but also helping to attract millions of dollars in university and research funding through its distinguished faculty and extensive alumni network.

21st century

In 1990, the University of Washington opened its additional campuses in Bothell and Tacoma. Although originally intended for students who have already completed two years of higher education, both schools have since become four-year universities with the authority to grant degrees. The first freshman classes at these campuses started in fall 2006. Today both Bothell and Tacoma also offer a selection of master’s degree programs.

In 2012, the University began exploring plans and governmental approval to expand the main Seattle campus, including significant increases in student housing, teaching facilities for the growing student body and faculty, as well as expanded public transit options. The University of Washington light rail station was completed in March 2015, connecting Seattle’s Capitol Hill neighborhood to the University of Washington Husky Stadium within five minutes of rail travel time. It offers a previously unavailable option of transportation into and out of the campus, designed specifically to reduce dependence on private vehicles, bicycles and local King County buses.

University of Washington has been listed as a “Public Ivy” in Greene’s Guides since 2001, and is an elected member of the American Association of Universities. Among the faculty by 2012, there have been 151 members of American Association for the Advancement of Science, 68 members of the National Academy of Sciences(US), 67 members of the American Academy of Arts and Sciences, 53 members of the National Academy of Medicine(US), 29 winners of the Presidential Early Career Award for Scientists and Engineers, 21 members of the National Academy of Engineering(US), 15 Howard Hughes Medical Institute Investigators, 15 MacArthur Fellows, 9 winners of the Gairdner Foundation International Award, 5 winners of the National Medal of Science, 7 Nobel Prize laureates, 5 winners of Albert Lasker Award for Clinical Medical Research, 4 members of the American Philosophical Society, 2 winners of the National Book Award, 2 winners of the National Medal of Arts, 2 Pulitzer Prize winners, 1 winner of the Fields Medal, and 1 member of the National Academy of Public Administration. Among UW students by 2012, there were 136 Fulbright Scholars, 35 Rhodes Scholars, 7 Marshall Scholars and 4 Gates Cambridge Scholars. UW is recognized as a top producer of Fulbright Scholars, ranking 2nd in the US in 2017.

The Academic Ranking of World Universities (ARWU) has consistently ranked University of Washington as one of the top 20 universities worldwide every year since its first release. In 2019, University of Washington ranked 14th worldwide out of 500 by the ARWU, 26th worldwide out of 981 in the Times Higher Education World University Rankings, and 28th worldwide out of 101 in the Times World Reputation Rankings. Meanwhile, QS World University Rankings ranked it 68th worldwide, out of over 900.

U.S. News & World Report ranked University of Washington 8th out of nearly 1,500 universities worldwide for 2021, with University of Washington’s undergraduate program tied for 58th among 389 national universities in the U.S. and tied for 19th among 209 public universities.

In 2019, it ranked 10th among the universities around the world by SCImago Institutions Rankings. In 2017, the Leiden Ranking, which focuses on science and the impact of scientific publications among the world’s 500 major universities, ranked University of Washington 12th globally and 5th in the U.S.

In 2019, Kiplinger Magazine’s review of “top college values” named University of Washington 5th for in-state students and 10th for out-of-state students among U.S. public colleges, and 84th overall out of 500 schools. In the Washington Monthly National University Rankings University of Washington was ranked 15th domestically in 2018, based on its contribution to the public good as measured by social mobility, research, and promoting public service.

Leave a comment