Tagged: Cosmology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:27 pm on July 23, 2019 Permalink | Reply
    Tags: , , , , Cosmology,   

    From NASA Chandra Blog: “Exploring New Paths of Study with Chandra” 

    NASA Chandra Banner

    NASA/Chandra Telescope


    From NASA Chandra Blog

    2019-07-22
    Peter Edmonds, CXC

    1
    NASA/Chandra
    We make progress in astrophysics in a variety of ways. There is the sort that starts along a defined path, driven by meticulous proposals for telescope time or detailed science justifications for new missions. The plan is to advance knowledge by traveling further than others, or clearing a broader path. And then there are others.

    A big mission like NASA’s Chandra X-ray Observatory begins with plans for investigation along a slew of different directions and lines of study. At the time of Chandra’s launch on July 23rd, 1999, scientists thought these paths would mainly follow studies of galaxy clusters, dark matter, black holes, supernovas, and young stars. Indeed, in the last 20 years we’ve learned about black holes ripping stars apart (reported eg in 2004, 2011 and 2017), about a black hole generating the deepest known note in the universe, about dark matter being wrenched apart from normal matter in the famous Bullet Cluster and similar objects, about the discovery of the youngest supernova remnant in our galaxy, and much more.

    Bullet Cluster NASA Chandra NASA ESA Hubble


    NASA/ESA Hubble Telescope

    Progress in astrophysics can also be made when new paths of study suddenly open up. Three outstanding examples for Chandra are studies of gravitational wave events, dark energy and exoplanets. None of these fields existed before Chandra was conceived or built, but have now delivered some of our most exciting results.

    2
    Release: NASA Missions Catch FirstLight from a Gravitational-Wave Event

    The newest example is the study of X-rays produced by the aftermath of gravitational wave events. In 1999 the detection of gravitational waves seemed like a distant or even impossible goal for many astronomers. But the LIGO scientists kept improving their remarkably sensitive observatory until September 2015, when they detected a burst of gravitational waves from the merger of two black holes. Two black holes that merge are not expected to produce electromagnetic radiation, but the mergers of two neutron stars are. That is exactly what was as observed for the first time in August 2017 with LIGO and a slew of telescopes.


    VIRGO Gravitational Wave interferometer, near Pisa, Italy


    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger

    Gravity is talking. Lisa will listen. Dialogos of Eide

    ESA/eLISA the future of gravitational wave research

    Localizations of gravitational-wave signals detected by LIGO in 2015 (GW150914, LVT151012, GW151226, GW170104), more recently, by the LIGO-Virgo network (GW170814, GW170817). After Virgo came online in August 2018


    Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

    UC Santa Cruz

    UC Santa Cruz

    UCSC All the Gold in the Universe

    A UC Santa Cruz special report

    Tim Stephens

    Astronomer Ryan Foley says “observing the explosion of two colliding neutron stars” –the first visible event ever linked to gravitational waves–is probably the biggest discovery he’ll make in his lifetime. That’s saying a lot for a young assistant professor who presumably has a long career still ahead of him.

    The first optical image of a gravitational wave source was taken by a team led by Ryan Foley of UC Santa Cruz using the Swope Telescope at the Carnegie Institution’s Las Campanas Observatory in Chile. This image of Swope Supernova Survey 2017a (SSS17a, indicated by arrow) shows the light emitted from the cataclysmic merger of two neutron stars. (Image credit: 1M2H Team/UC Santa Cruz & Carnegie Observatories/Ryan Foley)

    Carnegie Institution Swope telescope at Las Campanas, Chile, 100 kilometres (62 mi) northeast of the city of La Serena. near the north end of a 7 km (4.3 mi) long mountain ridge. Cerro Las Campanas, near the southern end and over 2,500 m (8,200 ft) high, at Las Campanas, Chile

    A neutron star forms when a massive star runs out of fuel and explodes as a supernova, throwing off its outer layers and leaving behind a collapsed core composed almost entirely of neutrons. Neutrons are the uncharged particles in the nucleus of an atom, where they are bound together with positively charged protons. In a neutron star, they are packed together just as densely as in the nucleus of an atom, resulting in an object with one to three times the mass of our sun but only about 12 miles wide.

    “Basically, a neutron star is a gigantic atom with the mass of the sun and the size of a city like San Francisco or Manhattan,” said Foley, an assistant professor of astronomy and astrophysics at UC Santa Cruz.

    These objects are so dense, a cup of neutron star material would weigh as much as Mount Everest, and a teaspoon would weigh a billion tons. It’s as dense as matter can get without collapsing into a black hole.

    THE MERGER

    Like other stars, neutron stars sometimes occur in pairs, orbiting each other and gradually spiraling inward. Eventually, they come together in a catastrophic merger that distorts space and time (creating gravitational waves) and emits a brilliant flare of electromagnetic radiation, including visible, infrared, and ultraviolet light, x-rays, gamma rays, and radio waves. Merging black holes also create gravitational waves, but there’s nothing to be seen because no light can escape from a black hole.

    Foley’s team was the first to observe the light from a neutron star merger that took place on August 17, 2017, and was detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO).

    ALL THE GOLD IN THE UNIVERSE

    It turns out that the origins of the heaviest elements, such as gold, platinum, uranium—pretty much everything heavier than iron—has been an enduring conundrum. All the lighter elements have well-explained origins in the nuclear fusion reactions that make stars shine or in the explosions of stars (supernovae). Initially, astrophysicists thought supernovae could account for the heavy elements, too, but there have always been problems with that theory, says Enrico Ramirez-Ruiz, professor and chair of astronomy and astrophysics at UC Santa Cruz.

    The violent merger of two neutron stars is thought to involve three main energy-transfer processes, shown in this diagram, that give rise to the different types of radiation seen by astronomers, including a gamma-ray burst and a kilonova explosion seen in visible light. (Image credit: Murguia-Berthier et al., Science)

    A theoretical astrophysicist, Ramirez-Ruiz has been a leading proponent of the idea that neutron star mergers are the source of the heavy elements. Building a heavy atomic nucleus means adding a lot of neutrons to it. This process is called rapid neutron capture, or the r-process, and it requires some of the most extreme conditions in the universe: extreme temperatures, extreme densities, and a massive flow of neutrons. A neutron star merger fits the bill.

    Ramirez-Ruiz and other theoretical astrophysicists use supercomputers to simulate the physics of extreme events like supernovae and neutron star mergers. This work always goes hand in hand with observational astronomy. Theoretical predictions tell observers what signatures to look for to identify these events, and observations tell theorists if they got the physics right or if they need to tweak their models. The observations by Foley and others of the neutron star merger now known as SSS17a are giving theorists, for the first time, a full set of observational data to compare with their theoretical models.

    According to Ramirez-Ruiz, the observations support the theory that neutron star mergers can account for all the gold in the universe, as well as about half of all the other elements heavier than iron.

    RIPPLES IN THE FABRIC OF SPACE-TIME

    Einstein predicted the existence of gravitational waves in 1916 in his general theory of relativity, but until recently they were impossible to observe. LIGO’s extraordinarily sensitive detectors achieved the first direct detection of gravitational waves, from the collision of two black holes, in 2015. Gravitational waves are created by any massive accelerating object, but the strongest waves (and the only ones we have any chance of detecting) are produced by the most extreme phenomena.

    Two massive compact objects—such as black holes, neutron stars, or white dwarfs—orbiting around each other faster and faster as they draw closer together are just the kind of system that should radiate strong gravitational waves. Like ripples spreading in a pond, the waves get smaller as they spread outward from the source. By the time they reached Earth, the ripples detected by LIGO caused distortions of space-time thousands of times smaller than the nucleus of an atom.

    The rarefied signals recorded by LIGO’s detectors not only prove the existence of gravitational waves, they also provide crucial information about the events that produced them. Combined with the telescope observations of the neutron star merger, it’s an incredibly rich set of data.

    LIGO can tell scientists the masses of the merging objects and the mass of the new object created in the merger, which reveals whether the merger produced another neutron star or a more massive object that collapsed into a black hole. To calculate how much mass was ejected in the explosion, and how much mass was converted to energy, scientists also need the optical observations from telescopes. That’s especially important for quantifying the nucleosynthesis of heavy elements during the merger.

    LIGO can also provide a measure of the distance to the merging neutron stars, which can now be compared with the distance measurement based on the light from the merger. That’s important to cosmologists studying the expansion of the universe, because the two measurements are based on different fundamental forces (gravity and electromagnetism), giving completely independent results.

    “This is a huge step forward in astronomy,” Foley said. “Having done it once, we now know we can do it again, and it opens up a whole new world of what we call ‘multi-messenger’ astronomy, viewing the universe through different fundamental forces.”

    IN THIS REPORT

    Neutron stars
    A team from UC Santa Cruz was the first to observe the light from a neutron star merger that took place on August 17, 2017 and was detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)

    Graduate students and post-doctoral scholars at UC Santa Cruz played key roles in the dramatic discovery and analysis of colliding neutron stars.Astronomer Ryan Foley leads a team of young graduate students and postdoctoral scholars who have pulled off an extraordinary coup. Following up on the detection of gravitational waves from the violent merger of two neutron stars, Foley’s team was the first to find the source with a telescope and take images of the light from this cataclysmic event. In so doing, they beat much larger and more senior teams with much more powerful telescopes at their disposal.

    “We’re sort of the scrappy young upstarts who worked hard and got the job done,” said Foley, an untenured assistant professor of astronomy and astrophysics at UC Santa Cruz.

    David Coulter, graduate student

    The discovery on August 17, 2017, has been a scientific bonanza, yielding over 100 scientific papers from numerous teams investigating the new observations. Foley’s team is publishing seven papers, each of which has a graduate student or postdoc as the first author.

    “I think it speaks to Ryan’s generosity and how seriously he takes his role as a mentor that he is not putting himself front and center, but has gone out of his way to highlight the roles played by his students and postdocs,” said Enrico Ramirez-Ruiz, professor and chair of astronomy and astrophysics at UC Santa Cruz and the most senior member of Foley’s team.

    “Our team is by far the youngest and most diverse of all of the teams involved in the follow-up observations of this neutron star merger,” Ramirez-Ruiz added.

    Charles Kilpatrick, postdoctoral scholar

    Charles Kilpatrick, a 29-year-old postdoctoral scholar, was the first person in the world to see an image of the light from colliding neutron stars. He was sitting in an office at UC Santa Cruz, working with first-year graduate student Cesar Rojas-Bravo to process image data as it came in from the Swope Telescope in Chile. To see if the Swope images showed anything new, he had also downloaded “template” images taken in the past of the same galaxies the team was searching.

    Ariadna Murguia-Berthier, graduate student

    “In one image I saw something there that was not in the template image,” Kilpatrick said. “It took me a while to realize the ramifications of what I was seeing. This opens up so much new science, it really marks the beginning of something that will continue to be studied for years down the road.”

    At the time, Foley and most of the others in his team were at a meeting in Copenhagen. When they found out about the gravitational wave detection, they quickly got together to plan their search strategy. From Copenhagen, the team sent instructions to the telescope operators in Chile telling them where to point the telescope. Graduate student David Coulter played a key role in prioritizing the galaxies they would search to find the source, and he is the first author of the discovery paper published in Science.

    Matthew Siebert, graduate student

    “It’s still a little unreal when I think about what we’ve accomplished,” Coulter said. “For me, despite the euphoria of recognizing what we were seeing at the moment, we were all incredibly focused on the task at hand. Only afterward did the significance really sink in.”

    Just as Coulter finished writing his paper about the discovery, his wife went into labor, giving birth to a baby girl on September 30. “I was doing revisions to the paper at the hospital,” he said.

    It’s been a wild ride for the whole team, first in the rush to find the source, and then under pressure to quickly analyze the data and write up their findings for publication. “It was really an all-hands-on-deck moment when we all had to pull together and work quickly to exploit this opportunity,” said Kilpatrick, who is first author of a paper comparing the observations with theoretical models.

    César Rojas Bravo, graduate student

    Graduate student Matthew Siebert led a paper analyzing the unusual properties of the light emitted by the merger. Astronomers have observed thousands of supernovae (exploding stars) and other “transients” that appear suddenly in the sky and then fade away, but never before have they observed anything that looks like this neutron star merger. Siebert’s paper concluded that there is only a one in 100,000 chance that the transient they observed is not related to the gravitational waves.

    Ariadna Murguia-Berthier, a graduate student working with Ramirez-Ruiz, is first author of a paper synthesizing data from a range of sources to provide a coherent theoretical framework for understanding the observations.

    Another aspect of the discovery of great interest to astronomers is the nature of the galaxy and the galactic environment in which the merger occurred. Postdoctoral scholar Yen-Chen Pan led a paper analyzing the properties of the host galaxy. Enia Xhakaj, a new graduate student who had just joined the group in August, got the opportunity to help with the analysis and be a coauthor on the paper.

    Yen-Chen Pan, postdoctoral scholar

    “There are so many interesting things to learn from this,” Foley said. “It’s a great experience for all of us to be part of such an important discovery.”

    Enia Xhakaj, graduate student

    IN THIS REPORT

    Scientific Papers from the 1M2H Collaboration

    Coulter et al., Science, Swope Supernova Survey 2017a (SSS17a), the Optical Counterpart to a Gravitational Wave Source

    Drout et al., Science, Light Curves of the Neutron Star Merger GW170817/SSS17a: Implications for R-Process Nucleosynthesis

    Shappee et al., Science, Early Spectra of the Gravitational Wave Source GW170817: Evolution of a Neutron Star Merger

    Kilpatrick et al., Science, Electromagnetic Evidence that SSS17a is the Result of a Binary Neutron Star Merger

    Siebert et al., ApJL, The Unprecedented Properties of the First Electromagnetic Counterpart to a Gravitational-wave Source

    Pan et al., ApJL, The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source

    Murguia-Berthier et al., ApJL, A Neutron Star Binary Merger Model for GW170817/GRB170817a/SSS17a

    Kasen et al., Nature, Origin of the heavy elements in binary neutron star mergers from a gravitational wave event

    Abbott et al., Nature, A gravitational-wave standard siren measurement of the Hubble constant (The LIGO Scientific Collaboration and The Virgo Collaboration, The 1M2H Collaboration, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, The Las Cumbres Observatory Collaboration, The VINROUGE Collaboration & The MASTER Collaboration)

    Abbott et al., ApJL, Multi-messenger Observations of a Binary Neutron Star Merger

    PRESS RELEASES AND MEDIA COVERAGE


    Watch Ryan Foley tell the story of how his team found the neutron star merger in the video below. 2.5 HOURS.

    Press releases:

    UC Santa Cruz Press Release

    UC Berkeley Press Release

    Carnegie Institution of Science Press Release

    LIGO Collaboration Press Release

    National Science Foundation Press Release

    Media coverage:

    The Atlantic – The Slack Chat That Changed Astronomy

    Washington Post – Scientists detect gravitational waves from a new kind of nova, sparking a new era in astronomy

    New York Times – LIGO Detects Fierce Collision of Neutron Stars for the First Time

    Science – Merging neutron stars generate gravitational waves and a celestial light show

    CBS News – Gravitational waves – and light – seen in neutron star collision

    CBC News – Astronomers see source of gravitational waves for 1st time

    San Jose Mercury News – A bright light seen across the universe, proving Einstein right

    Popular Science – Gravitational waves just showed us something even cooler than black holes

    Scientific American – Gravitational Wave Astronomers Hit Mother Lode

    Nature – Colliding stars spark rush to solve cosmic mysteries

    National Geographic – In a First, Gravitational Waves Linked to Neutron Star Crash

    Associated Press – Astronomers witness huge cosmic crash, find origins of gold

    Science News – Neutron star collision showers the universe with a wealth of discoveries

    UCSC press release
    First observations of merging neutron stars mark a new era in astronomy

    Credits

    Writing: Tim Stephens
    Video: Nick Gonzales
    Photos: Carolyn Lagattuta
    Header image: Illustration by Robin Dienel courtesy of the Carnegie Institution for Science
    Design and development: Rob Knight
    Project managers: Sherry Main, Scott Hernandez-Jason, Tim Stephens

    Dark Energy Survey


    Dark Energy Camera [DECam], built at FNAL


    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet

    Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile, at an altitude of 7200 feet

    Noted in the video but not in the article:

    NASA/Chandra Telescope

    NASA/SWIFT Telescope

    NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

    Prompt telescope CTIO Chile

    NASA NuSTAR X-ray telescope

    See the full article here

    A Chandra observation two days after the merger failed to make a detection, but about a week later a source was discovered. These and additional observations taught us about the behavior and orientation of the jet that the neutron star merger produced.

    The interest in this X-ray detection was so intense that there was a race between three different teams to publish the early Chandra observations first. This was accompanied by a rush to publicly announce the full set of results from LIGO and telescopes across the electromagnetic spectrum, before too many smart science writers dug out the news from Twitter and other publicly available information.

    3
    Release: All in the Family: Kin ofGravitational-Wave Source Discovered

    Chandra detections of two likely neutron star mergers have been reported since August 2017 (in 2018 and 2019). These did not involve a detection of GWs, both because Advanced LIGO wasn’t yet operating, and because the events were likely too distant to be detectable even if it was. When Advanced LIGO and Virgo detect other neutron star mergers, and optical telescopes track them down, Chandra “Target of Opportunity” programs will kick in to study them. (TOOs, as they are called, are special cases made by scientists to interrupt the regularly scheduled observations in favor of one that is time sensitive and/or extremely important.) One is a large proposal and collaboration between three different teams, one aims to take a spectrum, another aims to observe a relatively nearby event, and a fourth involves joint observations with the VLA.

    Those who work on Chandra and many in the wider science community were very excited about this detection because it marked the first time that gravitational waves and electromagnetic radiation were observed together, as a new type of “multi-messenger” astrophysics. (Multi-messenger astrophysics involves at least two of the following messengers: electromagnetic radiation, gravitational waves, neutrinos and cosmic rays.) However, it did not represent the first instance of multi-messenger astrophysics, because both electromagnetic radiation and neutrinos had already been observed from the Sun and from Supernova 1987A. Chandra may have already got into the act with the observation of a flare from material very close to the supermassive black hole in the center of our Galaxy, as reported in 2014. An energetic neutrino observed with the IceCube detector may have originated from this flare.

    Another exciting new line of study has come from the discovery that the expansion of the universe is accelerating. The two key papers providing the first evidence for this surprising result were published in 1998 and 1999, just before Chandra launched. Both papers used distance measurements to supernova explosions over the last 5 billion or so years to follow the expansion. Since then a set of different techniques have been used to independently confirm and extend these results, including two involving Chandra observations of galaxy clusters. In one of them the distances to galaxy clusters were used to probe the expansion rate of the universe and another involved measuring the effects of accelerating expansion in slowing down the growth rate of galaxy clusters, in a type of cosmic arrested development. As explained in this article, if it wasn’t for accelerating expansion the universe would look very different from how it looks today.

    The work measuring the growth rate of galaxy clusters has led to independent tests of Einstein’s General Theory of Relativity over distances that are much greater than those of Earth-orbiting satellites. The confirmation of GR has added to the evidence that a mysterious force called “dark energy” is causing cosmic acceleration.

    4
    Release: Astronomers Find Dark EnergyMay Vary Over Time

    More recently, Chandra is being used with a new technique to probe cosmic expansion out to greater distances than are possible with supernova data. Astronomers have found tentative evidence that dark energy might be strengthening with time, but this result needs to be confirmed with more extensive use of Chandra data, a study that is currently underway, and independent work.

    The recently-launched European mission eROSITA will be taking a sensitive X-ray survey of the complete sky and will discover a huge number of galaxy clusters for follow-up studies of both dark energy and dark matter with Chandra.

    eRosita DLR MPG

    5
    Release: NASA’s Chandra Sees Eclipsing Planetin X-rays for First Time

    Many think the field of exoplanets studies started in 1995 with the detection of a hot Jupiter around the star 51 Pegasus, acclaimed as the first exoplanet discovered around a Sun-like star. (This was about the time that the grinding and polishing of Chandra’s grazing-incidence mirrors was completed.) Chandra observations have shown cases of the tail wagging the dog, where a planet is affecting the star it is orbiting, in one case by making the star appear unusually old, and in others causing it to behave like a much younger star, as reported in 2011 and 2013.

    Chandra observations have uncovered multiple examples of planets under assault by outside forces. They’ve found cases where radiation from the host star is evaporating the atmosphere of a close-in planet (from 2011 and 2013), where the powerful gravity of a white dwarf may have ripped a planet apart, a case of possible stellar or planetary cannibalism, and a case where a star may be devouring a young planet. Chandra data was also used to show that young stars much less massive than the Sun can unleash a torrent of X-ray radiation that may significantly shorten the lifetime of planet-forming disks surrounding these stars.

    We look forward to reporting more results in these three new fields, along with discoveries from X-ray astronomy’s traditional specialities. We also hope to see new fields appear, for fresh exploration with NASA’s premier X-ray mission.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 1:23 pm on July 23, 2019 Permalink | Reply
    Tags: , , , Cosmology,   

    From NASA Chandra (2): “NASA’s Chandra X-ray Observatory Celebrates Its 20th Anniversary” 

    NASA Chandra Banner

    NASA/Chandra Telescope


    From NASA Chandra

    July 23, 2019
    Media contacts:
    Megan Watzke
    Chandra X-ray Center, Cambridge, Mass.
    617-496-7998
    mwatzke@cfa.harvard.edu

    Molly Porter
    Marshall Space Flight Center, Huntsville, Alabama
    256-544-0034
    molly.a.porter@nasa.gov

    1
    Credit: NASA/CXC/SAO

    On July 23, 1999, the Space Shuttle Columbia blasted into space carrying NASA’s Chandra X-ray Observatory.

    Twenty years later, a collection of new images has been released to commemorate this milestone.

    Chandra observes many different types of astrophysical objects with the sharpest vision of any X-ray telescope.

    Along with the Hubble Space Telescope, Spitzer Space Telescope, and Compton Gamma Ray Observatory, Chandra is one of NASA’s “Great Observatories”.

    NASA/ESA Hubble Telescope

    NASA/Spitzer Infrared Telescope

    NASA Compton Gamma Ray Observatory

    To commemorate the 20th anniversary of NASA’s Chandra X-ray Observatory, an assembly of new images is being released. These images represent the breadth of Chandra’s exploration, demonstrating the variety of objects it studies as well as how X-rays complement the data collected in other types of light. Some of these images contain Chandra data exclusively and the rest show how X-rays fit with the different types of light that other telescopes collect.

    See the full article for images and descriptions here.

    “In this year of exceptional anniversaries — 50 years after Apollo 11 and 100 years after the solar eclipse that proved Einstein’s General Theory of Relativity — we should not lose sight of one more,” said Paul Hertz, Director of Astrophysics at NASA. “Chandra was launched 20 years ago, and it continues to deliver amazing science discoveries year after year.”

    Chandra is one of NASA’s “Great Observatories” (along with the Hubble Space Telescope, Spitzer Space Telescope, and Compton Gamma Ray Observatory), and has the sharpest vision of any X-ray telescope ever built. It is often used in conjunction with telescopes like Hubble and Spitzer that observe in different parts of the electromagnetic spectrum, and with other high-energy missions like the European Space Agency’s XMM-Newton and NASA’s NuSTAR.

    Chandra’s discoveries have impacted virtually every aspect of astrophysics. For example, Chandra was involved in a direct proof of dark matter’s existence. It has witnessed powerful eruptions from supermassive black holes. Astronomers have also used Chandra to map how the elements essential to life are spread from supernova explosions.

    Many of the phenomena Chandra now investigates were not even known when the telescope was being developed and built. For example, astronomers now use Chandra to study the effects of dark energy, test the impact of stellar radiation on exoplanets, and observe the outcomes of gravitational wave events.

    “Chandra remains peerless in its ability to find and study X-ray sources,” said Chandra X-ray Center Director Belinda Wilkes. “Since virtually every astronomical source emits X-rays, we need a telescope like Chandra to fully view and understand our Universe.”

    Chandra was originally proposed to NASA in 1976 by Riccardo Giacconi, recipient of the 2002 Nobel Prize for Physics based on his contributions to X-ray astronomy, and Harvey Tananbaum, who would become the first director of the Chandra X-ray Center. It took decades of collaboration — between scientists and engineers, private companies and government agencies, and more — to make Chandra a reality.

    “The building and operation of Chandra has always been and continues to be a team effort,” said Martin Weisskopf, Chandra Project Scientist of NASA’s Marshall Space Flight Center. “It’s been an honor and a privilege to be involved with this scientific powerhouse.”

    In 2018, NASA awarded a contract extension to continue operation and science support of Chandra through 2024, with the possibility of two three-year options.

    The Chandra X-ray Observatory was named in honor of the late Nobel laureate Subrahmanyan Chandrasekhar. NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science and flight operations from Cambridge, Mass.

    Other materials are available at:
    http://chandra.si.edu
    http://chandra.si.edu/20th

    For more Chandra images, multimedia and related materials, visit:
    http://www.nasa.gov/chandra

    See the full article by Megan Watzke and Molly Porter here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 12:57 pm on July 23, 2019 Permalink | Reply
    Tags: "NASA Delivers Hardware for ESA Dark Energy Mission", , , , , Cosmology, , , , , Near Infrared Spectrometer and Photometer (NISP) instrument, Thales Alenia Space   

    From European Space Agency and From NASA : “NASA Delivers Hardware for ESA Dark Energy Mission” 

    ESA Space For Europe Banner

    From European Space Agency

    and

    NASA image
    NASA

    July 23, 2019

    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-808-2469
    calla.e.cofield@jpl.nasa.gov

    1
    The cryogenic (cold) portion of the Euclid space telescope’s Near Infrared Spectrometer and Photometer (NISP) instrument. NASA led the procurement and delivery of the detectors for the NISP instrument. The gold-coated hardware is the 16 sensor-chip electronics integrated with the infrared sensors.
    Credits: NASA/JPL-CaltechEuclid Consortium/CPPM/LAM

    ESA/Euclid spacecraft

    2
    Technicians with the manufacturer Thales Alenia Space work with the structural and thermal model of the Euclid telescope at their facility in Cannes, France.
    Credits: NASA/JPL-Caltech ESA/Thales Alenia Space/Airbus Defence and Space
    4
    4

    The European Space Agency’s Euclid mission, set to launch in 2022, will investigate two of the biggest mysteries in modern astronomy: dark matter and dark energy. A team of NASA engineers recently delivered critical hardware for one of the instruments that will fly on Euclid and probe these cosmic puzzles.

    Based at NASA’s Jet Propulsion Laboratory in Pasadena, California, and the Goddard Space Flight Center in Greenbelt, Maryland, the engineers designed, fabricated and tested 20 pieces of sensor-chip electronics (SCEs) hardware for Euclid (16 for the flight instrument and four backups).



    NASA JPL-Caltech Campus



    NASA Goddard Campus



    5
    Airbus Defence and Space

    These parts, which operate at minus 213 degrees Fahrenheit (minus 136 degrees Celsius), are responsible for precisely amplifying and digitizing the tiny signals from the light detectors in Euclid’s Near Infrared Spectrometer and Photometer (NISP) instrument. The Euclid observatory will also carry a visible-light imaging instrument.

    The image, taken in May 2019, above shows the detectors and sensor-chip electronics on a flight model of the NISP instrument in the Laboratory of Astrophysics of Marseille in France. Eighteen SCEs have been delivered to the European Space Agency (ESA), and two more will soon be on their way. The detector system will undergo extensive testing ahead of launch.

    “Even under the best of circumstances, it is extremely challenging to design and build very sensitive and complex electronics that function reliably at very cold operating temperatures,” said Moshe Pniel, the U.S. project manager for Euclid at JPL, who led the team that delivered the sensor-chip electronics. “This truly remarkable team, spread across two NASA centers, accomplished this task under intense schedule pressure and international attention.”

    Euclid will conduct a survey of billions of distant galaxies, which are moving away from us at a faster and faster rate as the expansion of space itself accelerates. Scientists don’t know what causes this accelerating expansion but have named the source of this phenomenon dark energy. By observing the effect of dark energy on the distribution of a large population of galaxies, scientists will try to narrow down what could possibly be driving this mysterious phenomenon.

    In addition, Euclid will provide insights into the mystery of dark matter. While we can’t see dark matter, it’s five times more prevalent in the universe than the “regular” matter that makes up planets, stars and everything else we can see in the universe.

    To detect dark matter, scientists look for the effects of its gravity. Euclid’s census of distant galaxies will reveal how the large-scale structure of the universe is shaped by the interplay of regular matter, dark matter and dark energy. This in turn will allow scientists to learn more about the properties and effects of both dark matter and dark energy in the universe, and to get closer to understanding their fundamental nature.

    The NISP instrument is led by the Laboratory of Astrophysics of Marseille, with contributions from 15 countries, including the United States, through an agreement between ESA and NASA.

    Three NASA-supported science groups contribute to the Euclid mission. In addition to designing and fabricating the NISP sensor-chip electronics, JPL led the procurement and delivery of the NISP detectors. Those detectors were tested at NASA’s Goddard Space Flight Center. The Euclid NASA Science Center at IPAC (ENSCI), at Caltech, will support U.S.-based investigations using Euclid data.

    For more information about Euclid go to:

    https://www.nasa.gov/mission_pages/euclid/main/index.html

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 8:44 am on July 23, 2019 Permalink | Reply
    Tags: "10 million star puzzle", , , , Cosmology, , ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres.,   

    From European Space Agency: “10 million star puzzle” 

    ESA Space For Europe Banner

    From European Space Agency


    ESA/CESAR/Wouter van Reeven, CC BY-SA 3.0 IGO

    When observed with the unaided eye, Omega Centauri, the object in this image, appears as a fuzzy, faint star. But the blue orb we see here is, in fact, a collection of stars – 10 million of them. You cannot count them all, but in this sharp, beautiful image you can see a few of the numerous pinpoints of bright light that make up this unique cluster.

    The image was taken by Wouter van Reeven, a software engineer at ESA’s European Space Astronomy Centre near Madrid, Spain, during his recent visit to Chile to observe the July total solar eclipse. From his home base in Spain the cluster only grazes the horizon, making it near-impossible to image, but from the ESO/Cerro LaSilla Observatory in Chile it was high in the sky, presenting the ideal opportunity to photograph it.

    ESO/Cerro LaSilla, 600 km north of Santiago de Chile at an altitude of 2400 metres.

    Omega Centauri is a picture-perfect example of a globular cluster: tightly bound by gravity, it has a very high density of stars at its centre and a nearly perfect spherical shape (the name ‘globular cluster’ comes from the latin word for small sphere, globulus). It lives in the halo of the Milky Way, at a distance of about 15 800 light years from Earth.

    As other globular clusters, Omega Centauri is made up of very old stars and it is almost devoid of gas and dust, indicating star formation in the cluster has long ceased. Its stars have a low proportion of elements heavier than hydrogen and helium, signaling they were formed earlier in the history of the Universe than stars like our Sun. Unlike in many other globular clusters, however, the stars in Omega Centauri don’t all have the same age and chemical abundances, making astronomers puzzle over the formation and evolution of this cluster. Some scientists have even suggested that Omega Centauri may not be a true cluster at all, but rather the leftovers of a dwarf galaxy that collided with the Milky Way.

    Omega Centauri is also special in many other ways, not least because of the sheer number of stars it contains. It is the largest globular cluster in our galaxy, at about 150 light years in diameter, and is also the brightest and most massive of its type, its stars having a combined mass of about four million solar masses.

    Omega Centauri can be seen with the naked eye under dark skies and imaging it doesn’t require long exposure times. To create the composition we see here, Wouter combined eight images taken with an exposure time of 10 seconds, seven images of 30 seconds each and another seven images of 60 seconds each. He used a SkyWatcher Esprit 80 ED telescope and a Canon EOS 200D camera.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 10:16 pm on July 22, 2019 Permalink | Reply
    Tags: "10 billion years ago the Milky Way ate a smaller galaxy dubbed Gaia-Enceladus", , , , Cosmology, , ,   

    From COSMOS Magazine: “10 billion years ago, the Milky Way ate a smaller galaxy dubbed Gaia-Enceladus” 

    Cosmos Magazine bloc

    From COSMOS Magazine

    23 July 2019
    Barry Keily

    1
    Artist’s impression of the merger between the Gaia-Enceladus galaxy and the Milky Way. NASA/ESA/Hubble, CC BY-SA 3.0 IGO

    NASA/ESA Hubble Telescope

    The Milky Way achieved its present form about 10 billion years ago when it merged with a smaller, neighbouring galaxy, new observations and modelling show.

    Researchers led by astrophysicist Carme Gallar of the Universidad de La Laguna in Spain took advantage of measurements taken by the European Space Agency’s Gaia space observatory, which was launched in 2013 for the dedicated purpose of mapping the positions of stars with unprecedented accuracy.

    ESA/GAIA satellite

    They took the new data and subjected it to the two most commonly used techniques for estimating the age of stars – comparison with existing stellar models and what is known as colour-magnitude diagram fitting.

    The approach was applied to Gaia measurements for the galaxy’s two outer rings of stars – known as the blue and red haloes – and what astronomers call its thick central disc.

    The results showed that the stars in the haloes were all more ancient than those in the disc, with those in the former category all exceeding 10 billion years old.

    MIlky Way Galaxy NASA/JPL-Caltech /ESO R. Hurt

    The sharp age difference, the researchers say, confirms and, for the first time, accurately dates a titanic encounter between the progenitor of the Milky Way and a neighbouring, smaller galaxy, dubbed Gaia-Enceladus.

    The different colours of the two haloes are an indication of the iron content of their respective stars. Red stars contain more of it than blue ones. Colour also often indicates great age. Until now, thus, astronomers assumed that the Milky Way’s blue halo was younger than its red one.

    Gallar and colleagues used Gaia data to show that this is not the case. Their modelling reveals that the red and blue haloes contain stars of identical age, and that each region started and ceased star production at about the same time.

    The difference in iron content, the researchers say, is a function of a galaxy size – more massive galaxies contain larger amounts of metal than smaller ones. Thus, they write, the result “means that the stars in the red sequence of the halo, being more metal-rich, must have formed in a galaxy that was more massive than the one where the stars in the blue sequence were formed.”

    The blue halo, they say, represents the remnants of Gaia-Enceladus – a galaxy they estimate to have been around a quarter of the size of the proto Milky Way.

    The research is published in the journal Nature Astronomy.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 9:45 pm on July 22, 2019 Permalink | Reply
    Tags: "Five Years Watching Volcanoes on Another World" Jupiter's moon Io, , , , , Cosmology, Io from Keck Observatory and Gemini North both using Adaptive Optics   

    From AAS NOVA: “Five Years Watching Volcanoes on Another World” Jupiter’s moon Io 

    AASNOVA

    From AAS NOVA

    22 July 2019
    Susanna Kohler

    1
    Image of Jupiter’s volcanic moon Io, taken by the Galileo spacecraft in 1997. [NASA/JPL/University of Arizona]

    NASA/Galileo 1989-2003




    For all that space telescopes are powerful tools for exploring our universe, we can achieve some remarkable science using ground-based observations! A new study explores the lessons learned from five years of monitoring Jupiter’s volcanic moon Io from the ground.

    2
    This set of images from Keck, all taken within 30 minutes of each other, demonstrates the range of filters used to observe Io during this campaign. [de Kleer et al. 2019]

    Keck Observatory, operated by Caltech and the University of California, Maunakea Hawaii USA, 4,207 m (13,802 ft)

    A Dramatic Landscape

    Jupiter’s innermost moon, Io, is a dramatic, roiling world of heated activity. The moon’s not-quite-circular orbit means that it receives a varying gravitational tug from Jupiter, generating friction and warming up the moon’s interior. This heat then escapes from Io’s surface in the form of active volcanic vents, tremendous explosions, and scalding lava flows.

    Continuous monitoring of all of these activities — Io’s hotspots, or locations of thermal emission — is essential to understand how heat is dissipated in this violently active moon. We’ve had the opportunity to explore Io’s volcanism up close as the Voyager, Galileo, Cassini, and New Horizons missions have each passed by the moon, revealing more than 150 active volcanoes on Io’s surface. But these brief flybys don’t provide the important long-term, high-cadence observations of Io’s hotspots needed to truly track its activity.

    Luckily, space-based astronomy is not the only solution!

    View from the Ground

    Over the last five years, scientists have carefully monitored Io’s thermal emission using the Keck and Gemini North telescopes located in Hawaii.


    NOAO Gemini North on MaunaKea, Hawaii, USA, Altitude 4,213 m (13,822 ft)

    Think their observations couldn’t possibly be as useful as the up-close data from space telescopes? Think again! The powerful adaptive optics on Keck and Gemini North allowed the team to resolve down to distances of 100–500 km on Io’s surface in infrared— a scale not far from the resolution attained by the Near-Infrared Mapping Spectrometer on Galileo during its flybys.

    Keck Adaptive Optics

    4
    Gemini North Adaptive Optics

    What’s more, the flexible scheduling of Gemini North and a dedicated observing program at Keck made it possible for the team to gather 271 nights of observations of Io over 5 years. In a new study led by Katherine de Kleer (California Institute of Technology), the team now details what they’ve learned from this campaign.

    Lessons from Hotspots

    Five years of observing have produced a grand total of 980 detections of more than 75 unique hotspots. A few points of interest from these observations:

    The brightest eruptions are generally short-lived (lasting only a few days) and very hot (above 800 K, or nearly 1,000°F). They also almost all cluster in Io’s trailing hemisphere — the side of the moon located away from its direction of motion. This trend remains unexplained.
    A number of new hotspots have only been detected in the past three years. Some of these likely existed before but only emit sporadically; others may have arisen more recently.
    113 detections of the extremely active Loki Patera hint at a periodicity to this volcano of ~470 days — behavior that could be tied to Io’s orbital properties.

    The authors have made all of their hotspot data available for public download and invite the astronomy community to extend their work. Between future analysis of these data and further observations of Io, we can certainly look forward to more insights into this heated, dynamic world.

    Citation

    “Io’s Volcanic Activity from Time Domain Adaptive Optics Observations: 2013–2018,” Katherine de Kleer et al 2019 AJ 158 29.
    https://iopscience.iop.org/article/10.3847/1538-3881/ab2380

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    1

    AAS Mission and Vision Statement

    The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

    The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
    The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
    The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
    The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
    The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

    Adopted June 7, 2009

     
  • richardmitnick 2:46 pm on July 22, 2019 Permalink | Reply
    Tags: "A certain amount of material within the universe collapses to form galaxy clusters. But once they are formed these clusters are 'closed boxes.' “, "Scientists Weigh the Balance of Matter in Galaxy Clusters", "This research is powered by more than a decade of telescope investments", A method of weighing the quantities of matter in galaxy clusters — the largest objects in our universe — has shown a balance between the amounts of hot gas stars and other materials., , , , , Cosmology, Galaxy clusters are the largest objects in the universe each composed of around 1000 massive galaxies., The findings will be crucial to astronomers’ efforts to measure the properties of the universe as a whole., The results are the first to use observational data to measure this balance which was theorized 20 years ago and will yield fresh insight into the relationship between ordinary matter that emits light, University of Birmingham,   

    From Carnegie Mellon University: “Scientists Weigh the Balance of Matter in Galaxy Clusters” 

    From Carnegie Mellon University

    July 22, 2019
    Jocelyn Duffy
    Carnegie Mellon University
    jhduffy@andrew.cmu.edu
    412-268-9982

    Beck Lockwood
    University of Birmingham
    0121 414 2772

    1
    Galaxy Cluster Abell 1763. The image shows the galaxy content, produced from SDSS images from g,r, and i bands, overlaid with the extended X-ray emission from XMM.

    SDSS Telescope at Apache Point Observatory, near Sunspot NM, USA, Altitude2,788 meters (9,147 ft)


    ESA/XMM Newton

    A method of weighing the quantities of matter in galaxy clusters — the largest objects in our universe — has shown a balance between the amounts of hot gas, stars and other materials.

    The results are the first to use observational data to measure this balance, which was theorized 20 years ago, and will yield fresh insight into the relationship between ordinary matter that emits light and dark matter, and about how our universe is expanding.

    Galaxy clusters are the largest objects in the universe, each composed of around 1,000 massive galaxies. They contain vast amounts of dark matter, along with hot gas and cooler “ordinary matter,” such as stars and cooler gas.

    In a new study, published in Nature Communications, an international team led by astrophysicists from the University of Michigan and the University of Birmingham, and including a Carnegie Mellon University postdoctoral fellow, used data from the Local Cluster Substructure Survey (LoCuSS) to measure the connections between the three main mass components that comprise galaxy clusters — dark matter, hot gas and stars.

    Members of the research team spent 12 years gathering data, which span a factor of 10 million in wavelength, using the Chandra and XMM-Newton satellites, the ROSAT All-sky survey, Subaru telescope, United Kingdom Infrared Telescope (UKIRT), Mayall telecope, the Sunyaev Zeldovich Array and the Planck satellite. Using sophisticated statistical models and algorithms built by Arya Farahi during his doctoral studies at the University of Michigan, the team was able to conclude that the sum of gas and stars across the clusters that they studied is a nearly fixed fraction of the dark matter mass. This means that as stars form, the amount of hot gas available will decrease proportionally.

    NASA/Chandra X-ray Telescope


    ESA/XMM Newton


    ROSAT X-ray satellite built by DLR , with instruments built by West Germany, the United Kingdom and the United States



    NAOJ/Subaru Telescope at Mauna Kea Hawaii, USA,4,207 m (13,802 ft) above sea level



    UKIRT, located on Mauna Kea, Hawai’i, USA as part of Mauna Kea Observatory,4,207 m (13,802 ft) above sea level



    NOAO/Mayall 4 m telescope at Kitt Peak, Arizona, USA, Altitude 2,120 m (6,960 ft)


    3
    Sunyaev Zeldovich Array

    ESA/Planck 2009 to 2013

    Using sophisticated statistical models and algorithms built by Arya Farahi during his doctoral studies at the University of Michigan, the team was able to conclude that the sum of gas and stars across the clusters that they studied is a nearly fixed fraction of the dark matter mass. This means that as stars form, the amount of hot gas available will decrease proportionally.

    “This validates the predictions of the prevailing cold dark matter theory. Everything is consistent with our current understanding of the universe,” said Farahi, who is a McWilliams Postdoctoral Fellow in the Department of Physics at Carnegie Mellon.

    Lambda-Cold Dark Matter, Accelerated Expansion of the Universe, Big Bang-Inflation (timeline of the universe) Date 2010 Credit: Alex Mittelmann Cold creation

    “A certain amount of material within the universe collapses to form galaxy clusters. But once they are formed, these clusters are ‘closed boxes.’ The hot gas has either formed stars, or still remains as gas, but the overall quantity remains constant,” said Graham Smith of the School of Physics and Astronomy at the University of Birmingham, and Principal Investigator of LoCuSS.

    “This research is powered by more than a decade of telescope investments,” added August E. Evrard, of the University of Michigan. “Using this high-quality data, we were able to characterize 41 nearby galaxy clusters and find a special relationship, specifically anti-correlated behaviour between the mass in stars and the mass in hot gas. This is significant because these two measurements together give us the best indication of the total system mass.”

    The findings will be crucial to astronomers’ efforts to measure the properties of the universe as a whole. By gaining a better understanding of the internal physics of galaxy clusters, researchers will be able to better understand the behaviour of dark energy and the processes behind the expansion of the universe.

    “Galaxy clusters are intrinsically fascinating, but in many ways still mysterious objects,” Smith said. “Unpicking the complex astrophysics governing these objects will open many doors onto a broader understanding of the universe. Essentially, if we want to be able to claim that we understand how the universe works, we need to understand galaxy clusters.”

    Data of the kind studied by the team will grow by several orders of magnitude over the coming decades thanks to next-generation telescopes, such as the Large Synoptic Survey Telescope (LSST), which is currently under construction in Chile, and e-ROSITA, a new x-ray satellite. Both will begin observations in the early 2020s.

    LSST


    LSST Camera, built at SLAC



    LSST telescope, currently under construction on the El Peñón peak at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes.


    LSST Data Journey, Illustration by Sandbox Studio, Chicago with Ana Kova

    “These measurements are laying a foundation for precise science with clusters of galaxies,” said Professor Alexis Finoguenov, a member of the team based at the University of Helsinki.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    https://www.cmu.edu/index.htmlis a global research university with more than 12,000 students, 95,000 alumni, and 5,000 faculty and staff.
    CMU has been a birthplace of innovation since its founding in 1900.
    Today, we are a global leader bringing groundbreaking ideas to market and creating successful startup businesses.
    Our award-winning faculty members are renowned for working closely with students to solve major scientific, technological and societal challenges. We put a strong emphasis on creating things—from art to robots. Our students are recruited by some of the world’s most innovative companies.
    We have campuses in Pittsburgh, Qatar and Silicon Valley, and degree-granting programs around the world, including Africa, Asia, Australia, Europe and Latin America.

     
  • richardmitnick 9:26 am on July 22, 2019 Permalink | Reply
    Tags: , , , Cosmology, LightSail 2, Planetary Society,   

    From The Planetary Society via : “LightSail 2 Just Gifted Us Stunning New Pictures of Our Little Blue Marble From Space “ 

    1

    From The Planetary Society

    via

    ScienceAlert

    Science Alert

    22 JUL 2019
    EVAN GOUGH

    LightSail 2, the brainchild of The Planetary Society, has gifted us two new gorgeous images of Earth. The small spacecraft is currently in orbit at about 720 km, and the LightSail 2 mission team is putting it through its paces in preparation for solar sail deployment sometime on or after Sunday, July 21st.

    LightSail 2 is a modular CubeSat that measures 10 × 10 × 30 cm. The solar sails, once deployed, will measure 32 square meters (340 sq ft).

    3

    The spacecraft was designed to test a solar sail’s ability to both raise a satellite’s orbit and lower its orbit. Right now the spacecraft is being tested and analyzed in advance of deploying its sails.

    4

    Flight controllers recently uploaded a software patch related to LightSail 2’s stability system. According to The Planetary Society, the patch “refined the operation of the spacecraft’s electromagnetic torque rods, which are responsible for keeping LightSail 2 stable as it circles the Earth.”

    6
    The Planetary Society’s LightSail 2 spacecraft is almost ready to go solar sailing.

    Mission officials today cleared the spacecraft for a possible sail deployment attempt on Tuesday, 23 July 2019, during a ground station pass that starts at roughly 11:22 PDT (18:22 UTC). A backup pass is available the following orbit starting at 13:07 PDT (20:07 UTC). These times may change slightly as new orbit predictions become available.

    Live sail deployment coverage will be available at planetary.org/live. A video and audio stream from mission control, located at Cal Poly San Luis Obispo in California, will be available during ground station passes. Rolling updates will also be posted on the page for context.

    We also have two new images from LightSail 2. As the satellite passed over ground stations, it used excess bandwidth to transmit the high-resolution images.

    7
    LightSail 2 captured this image of Mexico on July 12th, 2019. The image is looking east across Mexico. The tip of the Baja Peninsula is on the left, and on the far right is Tropical Storm Barry.

    8
    LightSail 2 captured this image of Earth on July 7th. It’s looking at the Caribbean Sea towards Central America, with north roughly at the top. The blue-green color of the ocean around the Bahamas can be seen at the picture’s 1:00 position. A lens flare is visible in the lower right.

    It’s so far, so good for LightSail 2. The Planetary Society says the satellite is healthy and is stable in its orbit. Before they deploy the solar sail system, operators want to be confident that the attitude control system is operating correctly. That’s because atmospheric drag on the deployed sail limits the period in which LightSail 2’s orbit can be raised.

    LightSail 2 is a composite spacecraft made of three nanosatellites. Two of them handle the solar sails, and one handles the electronics. The sail system has four triangular sails that deploy into a square. It was launched on 25 June 2019.

    LightSail 2 is the successor to LightSail 1. They were both crowd-funded by The Planetary Society, the non-profit group known for their innovative approach to advancing space technologies. Overall, the entire LightSail project cost US$7 million. That includes both LightSail spacecraft, and their predecessor Cosmos 1.

    9
    LightSail 2 captured this picture of Earth’s limb on 6 July 2019 at 04:41 UTC from a camera mounted on its dual-sided solar panels.

    he society boasts well-known members like Bill Nye and Neil DeGrasse Tyson. Experienced professional scientist populate the Board and Advisory Council, and it shows in the society’s results.

    The Planetary Society does important, tangible work in space. Their vision is to “Know the cosmos and our place within it.” Their mission statement is “Empower the world’s citizens to advance space science and exploration.”

    If that sounds good to you, you can learn more about the Society, or join the ranks of supporters, here.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    3

    In 1980, Carl Sagan, Louis Friedman, and Bruce Murray founded The Planetary Society. They saw that there was enormous public interest in space, but that this was not reflected in government, as NASA’s budget was cut again and again.

    Today, The Planetary Society continues this work, under the leadership of CEO Bill Nye, as the world’s largest and most influential non-profit space organization. The organization is supported by over 50,000 members in over 100 countries, and by hundreds of volunteers around the world.

    Our mission is to empower the world’s citizens to advance space science and exploration. We advocate for space and planetary science funding in government, inspire and educate people around the world, and develop and fund groundbreaking space science and technology.

    We introduce people to the wonders of the cosmos, bridging the gap between the scientific community and the general public to inspire and educate people from all walks of life.

    We give every citizen of the planet the opportunity to make their voices heard in government and effect real change in support of space exploration.

    And we bring ordinary people directly to the frontier of exploration as we crowdfund innovative and exciting space technologies.

     
  • richardmitnick 8:38 am on July 22, 2019 Permalink | Reply
    Tags: , , , , Cosmology, Deep below Alaskan ice tiny life forms went untouched for 50000 years., Gleaning insight into the kind of extraterrestrial life we might discover elsewhere in the solar system, Liquid pockets called cryopegs have remained untouched for 50000 years., Scientists are probing tiny life forms to improve the hunt for aliens.,   

    From University of Washington via Business Insider: “Deep below Alaskan ice, tiny life forms went untouched for 50,000 years. Scientists are probing them to improve the hunt for aliens.” 

    U Washington

    From University of Washington

    via

    1
    Business Insider

    Jul. 18, 2019
    Aylin Woodward

    2
    Scientist Zachary Cooper climbs down a ladder into a tunnel leading to a cryopeg, a pocket of super-cool water suspended in the Alaskan permafrost, May 2018. Researchers are harnessed to a rope for safety. Shelly Carpenter/University of Washington

    -In pockets of briny water 20 feet under the Arctic tundra, scientists have found thriving microbial communities.
    -Some of these liquid pockets, called cryopegs, have remained untouched for 50,000 years.
    -By studying the microbes that survive in these extreme environments, researchers can glean insight into what types of life to look for on planets like Mars or on Saturn’s moon Titan.

    Almost one-quarter of the Earth’s northern hemisphere remains frozen year-round.

    This permanently chilled ground, aptly named permafrost, consists of soil, rocks and sand held together by ice. Sometimes, permafrost traps pockets of bacteria and viruses hundreds of thousands of years old.

    These unchanging conditions and sub-zero temperatures make patches of permafrost suitable analogs for the icy conditions on other planets and their moons. So scientists are studying the microbes that survive and thrive there to glean insight into the kind of extraterrestrial life we might discover elsewhere in the solar system.

    Recently, researchers from the University of Washington took a new approach to this effort, probing subsurface pockets where sediment mixes with salty water. These pockets under the Arctic tundra are called cryopegs, and some have remained untouched for 50,000 years.

    As it turns out, some are also home to thriving groups of microscopic bacteria.

    “We study really old seawater trapped inside of permafrost for up to 50,000 years, to see how those bacterial communities have evolved over time,” Zachary Cooper, an oceanographer who recently presented some of this research, said in a press release.

    The team’s hope is that the tiny lifeforms they found could offer clues about what types of creatures we should hunt for on Mars or other planets.

    3
    A view of Siberian permafrost from the air.Brocken Inaglory/Wikimedia Commons

    Isolated for 50,000 years

    In cryopegs, the water is so salty that the liquid remains unfrozen even at below-freezing temperatures.

    To reach one of these underground pockets, Cooper and his colleagues drilled more than 20 feet into the permafrost near Utqiaġvik, Alaska.

    They presented a DNA analysis of the bacteria that they discovered there at an astrobiology conference last month. To the researchers’ surprise, their analysis revealed that the isolated bacteria are thriving.

    That shouldn’t be the case.

    “The extreme conditions here are not just the below-zero temperatures, but also the very high salt concentrations,” Jody Deming, another study author, said in the press release. “140 parts per thousand — 14% — is a lot of salt. In canned goods, that would stop microbes from doing anything.”

    4
    A University of Washington research site sits a mile outside of Utqiagvik, Alaska. Zac Cooper/University of Washington

    The primary microbe they found in the salty water was marinobacter, a common type of marine bacteria.

    “Even though it has been in the dark, buried in frozen permafrost for a very long time, it originally came from the marine environment,” Deming said.

    This shows that marinobacter are able to survive even when transplanted into a hyper-salty sediment pocket below the icy tundra.

    “We were quite startled at how dense the bacterial communities are,” Cooper said. “We’re just discovering that there’s a very robust microbial community, co-evolving with viruses, in these ancient buried brines.”

    Drilling into a subterranean tunnel

    Researchers aren’t sure how cryopegs form under layers of ice. They could be former coastal lagoons that got trapped during the last ice age as the ocean receded.

    To access this particular cryopeg, located about 20 to 25 feet below the surface, the researchers had to climb down a 12-foot ladder into the icy tundra, then crawl through a tunnel bored within the permafrost. The tunnel was only wide enough for a single person and not high enough to stand in.

    Researchers then drilled into the tunnel floor to reach the cryopeg’s saline liquid.

    Once they were finally able to analyze the samples they removed, the water turned out to be replete with tiny lifeforms.

    Studying extreme environments could help scientists better understand Mars and Titan

    These pockets of ancient saltwater could be very similar to the environments under the oceans and ice of other planets, the researchers wrote.

    Mars may have once harbored a liquid ocean, and other moons in our solar system also have liquid water. Other ocean worlds include Saturn’s icy moons Titan and Enceladus, and Jupiter’s moons Europa and Ganymede.

    Studying how Earthly bacteria thrives in semi-frozen liquid environments could inform future space-exploration missions about what kind of life to look for and how to detect it. The researchers behind the recent work think that the types of adaptations that allowed marinobacter to survive in hyper-salty, sub-zero water could also arise in bacteria on other planets.

    5
    This near-infrared color mosaic from NASA’s Cassini spacecraft shows the sun glinting off of Titan’s north polar seas.NASA/JPL-Caltech/Univ. Arizona/Univ. Idaho

    Titan, specifically, is a prime candidate in the ongoing search for signs of extraterrestrial life. It’s Saturn’s largest moon and the second-largest moon in the solar system. Scientists refer to Titan as a “proto-Earth” because of its size, composition, and the bodies of liquid water on its surface. A colossal ocean of liquid water also likely exists below Titan’s roughly 60-mile-thick crust of ice.

    Recently, NASA announced that its next $1 billion mission to space will send a nuclear-powered helicopter to explore Titan. The drone-like rotorcraft, nicknamed “Dragonfly,” is set to launch in 2026. Once it arrives at the distant moon, it will scan Titan’s surface seeking signs of past — or present — microbial alien life.

    6
    Dragonfly: NASA Announces Mission to Saturn’s Largest Moon Titan

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    u-washington-campus
    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.
    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

     
  • richardmitnick 11:29 am on July 21, 2019 Permalink | Reply
    Tags: , , , , Cosmology, , , Is anyone out there?, , , Shelley Wright of UCSD and Niroseti at UCSC Lick Observatory's Nickel Telescope,   

    From WIRED: “An Alien-Hunting Tech Mogul May Help Solve a Space Mystery” 

    Wired logo

    From WIRED

    07.21.19
    Katia Moskvitch

    1
    Yuri Milner. Billy H.C. Kwok/Getty Images

    In spring 2007, David Narkevic, a physics student at West Virginia University, was sifting through reams of data churned out by the Parkes telescope—a dish in Australia that had been tracking pulsars, the collapsed, rapidly spinning cores of once massive stars.

    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia

    His professor, astrophysicist Duncan Lorimer, had asked him to search for a recently discovered type of ultra-rapid pulsar dubbed RRAT. But buried among the mountain of data, Narkevic found an odd signal that seemed to come from the direction of our neighboring galaxy, the Small Magellanic Cloud.

    smc

    Small Magellanic Cloud. NASA/ESA Hubble and ESO/Digitized Sky Survey 2

    The signal was unlike anything Lorimer had encountered before. Although it flashed only briefly, for just five milliseconds, it was 10 billion times brighter than a typical pulsar in the Milky Way galaxy. It was emitting in a millisecond as much energy as the sun emits in a month.

    What Narkevic and Lorimer found was the first of many bizarre, ultra-powerful flashes detected by our telescopes. For years the flashes first seemed either improbable or at least vanishingly rare. But now researchers have observed more than 80 of these Fast Radio Bursts, or FRBs. While astronomers once thought that what would be later dubbed the “Lorimer Burst” was a one-off, they now agree that there’s probably one FRB happening somewhere in the universe nearly every second.

    And the reason for this sudden glut of discoveries? Aliens. Well, not aliens per se, but the search for them. Among the scores of astronomers and researchers working tirelessly to uncover these enigmatic signals is an eccentric Russian billionaire who, in his relentless hunt for extraterrestrial life, has ended up partly bankrolling one of the most complex and far-reaching scans of our universe ever attempted.

    Ever since Narkevic spotted the first burst, scientists have been wondering what could produce these mesmerizing flashes in deep space. The list of possible sources is long, ranging from the theoretical to the simply unfathomable: colliding black holes, white holes, merging neutron stars, exploding stars, dark matter, rapidly spinning magnetars, and malfunctioning microwaves have all been proposed as possible sources.

    While some theories can now be rejected, many live on. Finally though, after more than a decade of searching, a new generation of telescopes is coming online that could help researchers to understand the mechanism that is producing these ultra-powerful bursts. In two recent back-to-back papers, one published last week and one today, two different arrays of radio antennas—the Australian Square Kilometer Array Pathfinder (ASKAP) and Caltech’s Deep Synoptic Array 10 at the Owens Valley Radio Observatory (OVRO) in the US—have for the first time ever been able to precisely locate two different examples of these mysterious one-off FRBs.

    Australian Square Kilometre Array Pathfinder (ASKAP) is a radio telescope array located at Murchison Radio-astronomy Observatory (MRO) in the Australian Mid West. ASKAP consists of 36 identical parabolic antennas, each 12 metres in diameter, working together as a single instrument with a total collecting area of approximately 4,000 square metres.

    Caltech’s Deep Synoptic Array 10 dish array at Owens Valley Radio Observatory, near Big Pine, California USA, Altitude 1,222 m (4,009 ft

    Physicists are now expecting that two other new telescopes—Chime (the Canadian Hydrogen Intensity Mapping Experiment) in Canada and MeerKAT in South Africa—will finally tell us what produces these powerful radio bursts.

    CHIME Canadian Hydrogen Intensity Mapping Experiment -A partnership between the University of British Columbia, the University of Toronto, McGill University, Yale and the National Research Council in British Columbia, at the Dominion Radio Astrophysical Observatory in Penticton, British Columbia, CA Altitude 545 m (1,788 ft)

    SKA Meerkat telescope(s), 90 km outside the small Northern Cape town of Carnarvon, SA

    But Narkevic’s and Lorimer’s discovery nearly got binned. For a few months after they first spotted the unusually bright burst, it looked like the findings wouldn’t make it any further than Lorimer’s office walls, just beyond the banks of the Monongahela River that slices through the city of Morgantown in West Virginia.

    Soon after detecting the burst, Lorimer asked his former graduate adviser Matthew Bailes, an astronomer at Swinburne University in Melbourne, to help him plot the signal—which to astronomers is now a famous and extremely bright energy peak, rising well above the power of any known pulsar. The burst seemed to come from much, much further away than where the Parkes telescope would usually find pulsars; in this case, probably from another galaxy, potentially billions of light-years away.

    “It just looked beautiful. I was like, ‘Whoa, that’s amazing.’ We nearly fell off our chairs,” recalls Bailes. “I had trouble sleeping that night because I thought if this thing is really that far away and that insanely bright, it’s an amazing discovery. But it better be right.”

    Within weeks, Lorimer and Bailes crafted a paper and sent it to Nature—and swiftly received a rejection. In a reply, a Nature editor raised concerns that there had been only one event, which appeared way brighter than seemed possible. Bailes was disappointed, but he had been in a worse situation before. Sixteen years earlier, he and fellow astronomer Andrew Lyne had submitted a paper claiming to have spotted the first ever planet orbiting another star—and not just any star but a pulsar. The scientific discovery turned out to be a fluke of their telescope. Months later, Lyne had to stand up in front of a large audience at an American Astronomical Society conference and announce their mistake. “It’s science. Anything can happen,” says Bailes. This time around, Bailes and Lorimer were certain that they had it right and decided to send their FRB paper to another journal, Science.

    After it was published, the paper immediately stirred interest; some scientists even wondered whether the mysterious flash was an alien communication. This wasn’t the first time that astronomers had reached for aliens as the answer for a seemingly inexplicable signal from space; in 1967, when researchers detected what turned out to be the first pulsar, they also wondered whether it could be a sign of intelligent life.

    Just like Narkevic decades later, Cambridge graduate student Jocelyn Bell had stumbled across a startling signal in the reams of data gathered by a radio array in rural Cambridgeshire.

    Women in STEM – Dame Susan Jocelyn Bell Burnell

    Dame Susan Jocelyn Bell Burnell, discovered pulsars with radio astronomy. Jocelyn Bell at the Mullard Radio Astronomy Observatory, Cambridge University, taken for the Daily Herald newspaper in 1968. Denied the Nobel.

    Dame Susan Jocelyn Bell Burnell at work on first plusar chart 1967 pictured working at the Four Acre Array in 1967. Image courtesy of Mullard Radio Astronomy Observatory.

    Dame Susan Jocelyn Bell Burnell 2009

    Dame Susan Jocelyn Bell Burnell (1943 – ), still working from http://www. famousirishscientists.weebly.com

    Not much of the array is left today; in the fields near the university where it once stood, there’s an overgrown hedge, hiding a collection of wonky, sad-looking wooden poles that were once covered in a web of copper wire designed to detect radio waves from faraway sources. The wire has long been stolen and sold on to scrap metal dealers.

    “We did seriously consider the possibility of aliens,” Bell says, now an emeritus professor at Oxford University. Tellingly, the first pulsar was half-jokingly dubbed LGM-1 —for little green men. With only half a year left until the defense of her PhD thesis, she was less than thrilled that “some silly lot of little green men” were using her telescope and her frequency to signal to planet Earth. Why would aliens “be using a daft technique signaling to what was probably still a rather inconspicuous planet?” she once wrote in an article for Cosmic Search Magazine.

    Just a few weeks later, however, Bell spotted a second pulsar, and then a third just as she got engaged, in January 1968. Then, as she was defending her thesis and days before her wedding, she discovered a fourth signal in yet another part of the sky. Proof that pulsars had to be a natural phenomenon of an astrophysical origin, not a signal from intelligent life. Each new signal made the prospect even more unlikely that groups of aliens, separated by the vastness of the space, were somehow coordinating their efforts to send a message to an uninteresting hunk of rock on the outskirts of the Milky Way.

    Lorimer wasn’t so lucky. After the first burst, six years would pass without another detection. Many scientists began to lose interest. The microwave explanation persisted for a while, says Lorimer, as skeptics sneered at the notion of finding a burst that was observed only once. It didn’t help that in 2010 Parkes detected 16 similar pulses, which were quickly proven to be indeed caused by the door of a nearby microwave oven that had been opened suddenly during its heating cycle.

    2
    Yuri Milner on stage with Mark Zuckerberg at a Breakthrough Prize event in 2017. Kimberly White/Getty Images

    When Avi Loeb first read of Lorimer’s unusual discovery, he too wondered if it was nothing more than the result of some errant wiring or miscalibrated computer. The chair of the astronomy department at Harvard happened to be in Melbourne in November 2007, just as Lorimer’s and Bailes’ paper appeared in Science, so he had a chance to discuss the odd burst with Bailes. Loeb thought the radio flash was a compelling enigma—but not much more than that.

    Still, that same year Loeb wrote a theoretical paper arguing that radio telescopes built to detect very specific hydrogen emissions from the early universe would also be able to eavesdrop on radio signals from alien civilizations up to about 10 light-years away. “We have been broadcasting for a century—so another civilization with the same arrays can see us from a distance out to 50 light-years,” was Loeb’s reasoning. He followed up with another paper on the search for artificial lights in the solar system. There, Loeb showed that a city as bright as Tokyo could be detected with the Hubble Space Telescope even if it was located right at the edge of the solar system. In yet another paper he argued how to detect industrial pollution in planetary atmospheres.

    Ever since he was a little boy growing up in Israel, Loeb has been fascinated with life—on Earth and elsewhere in the universe. “Currently, the search for microbial life is part of the mainstream in astronomy—people are looking for the chemical fingerprints of primitive life in the atmosphere of exoplanets,” says Loeb, who first dabbled in philosophy before his degree in physics.

    But the search for intelligent life beyond Earth should also be part of the mainstream, he argues. “There is a taboo, it’s a psychological and sociological problem that people have. It’s because there is the baggage of science fiction and UFO reports, both of which have nothing to do with what actually goes on out there in space,” he adds. He’s frustrated with having to explain—and defend—his point of view. After all, he says, billions have been poured into the search for dark matter over decades with zero results. Should the search for extraterrestrial intelligence, more commonly known as SETI, be regarded as even more fringe than this fruitless search?

    Lorimer didn’t follow Loeb’s SETI papers closely. After six long and frustrating years, his luck turned in 2013, when a group of his colleagues—including Bailes—spotted four other bright radio flashes in Parkes’ data. Lorimer felt vindicated and relieved. More detections followed and the researchers were on a roll: At long last, FRBs had been confirmed as a real thing. After the first event was dubbed “Lorimer’s Burst,” it swiftly made it onto the physics and astronomy curricula of universities around the globe. In physics circles, Lorimer was elevated to the position of a minor celebrity.

    Keeping an eye on events from a distance was Loeb. One evening in February 2014, at a dinner in Boston, he started chatting to a charismatic Russian-Israeli called Yuri Milner, a billionaire technology investor with a background in physics and a well-known name in Silicon Valley. Ever since he could remember, Milner had been fascinated with life beyond Earth, a subject close to Loeb’s heart; the two instantly hit it off.

    Milner came to see Loeb again in May the following year, at Harvard, and asked the academic how long it would take to travel to Alpha Centauri, the star system closest to Earth.

    Centauris Alpha Beta Proxima 27, February 2012. Skatebiker

    Loeb replied he would need half a year to identify the technology that would allow humans to get there in their lifetime. Milner then asked Loeb to lead Breakthrough Starshot, one of five Breakthrough Initiatives the Russian oligarch was about to announce in a few weeks—backed by $100 million of his own money and all designed to support SETI.

    Breakthrough Starshot Initiative

    Breakthrough Starshot

    ESO 3.6m telescope & HARPS at LaSilla, 600 km north of Santiago de Chile at an altitude of 2400 metres.

    SPACEOBS, the San Pedro de Atacama Celestial Explorations Observatory is located at 2450m above sea level, north of the Atacama Desert, in Chile, near to the village of San Pedro de Atacama and close to the border with Bolivia and Argentina

    SNO Sierra Nevada Observatory is a high elevation observatory 2900m above the sea level located in the Sierra Nevada mountain range in Granada Spain and operated maintained and supplied by IAC

    Teide Observatory in Tenerife Spain, home of two 40 cm LCO telescopes

    Observatori Astronòmic del Montsec (OAdM), located in the town of Sant Esteve de la Sarga (Pallars Jussà), 1,570 meters on the sea level

    Bayfordbury Observatory,approximately 6 miles from the main campus of the University of Hertfordshire

    Fast-forward six months, and at the end of December 2015 Loeb got a call asking him to prepare a presentation summarizing his recommended technology for the Alpha Centauri trip. Loeb was visiting Israel and about to head on a weekend trip to a goat farm in the southern part of the country. “The following morning, I was sitting next to the reception of the farm—the only location with internet connectivity—and typing the PowerPoint presentation that contemplated a lightsail technology for Yuri’s project,” says Loeb. He presented it at Milner’s home in Moscow two weeks later, and the Breakthrough Initiatives were announced with fanfare in July 2015.

    The initiatives were an adrenaline shot in the arm of the SETI movement—the largest ever private cash injection into the search for aliens. One of the five projects is Breakthrough Listen, which was championed, among others, by the famous astronomer Stephen Hawking (who has died since) and British astronomer royal Martin Rees.

    Breakthrough Listen Project

    1

    UC Observatories Lick Autmated Planet Finder, fully robotic 2.4-meter optical telescope at Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA




    GBO radio telescope, Green Bank, West Virginia, USA


    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia


    SKA Meerkat telescope, 90 km outside the small Northern Cape town of Carnarvon, SA

    Newly added

    CfA/VERITAS, a major ground-based gamma-ray observatory with an array of four 12m optical reflectors for gamma-ray astronomy in the GeV – TeV energy range. Located at Fred Lawrence Whipple Observatory, Mount Hopkins, Arizona, US in AZ, USA, Altitude 2,606 m (8,550 ft)

    Echoing the film Contact, with Jodie Foster playing an astronomer listening out for broadcasts from aliens (loosely based on real-life SETI astronomer Jill Tarter), the project uses radio telescopes around the world to look for any signals from extraterrestrial intelligence.

    Jill Tarter Image courtesy of Jill Tarter

    After the Breakthrough Initiatives were announced, Milner’s money quickly got invested into the deployment of cutting-edge technology—such as computer storage and new receivers—at existing radio telescopes, including Green Bank in West Virginia and Parkes in Australia; whether the astronomers using these observatories believed in alien life or not, they welcomed the investment with open arms. It didn’t take long to receive the first scientific returns.

    After the Breakthrough Initiatives were announced, Milner’s money quickly got invested into the deployment of cutting-edge technology—such as computer storage and new receivers—at existing radio telescopes, including Green Bank in West Virginia and Parkes in Australia; whether the astronomers using these observatories believed in alien life or not, they welcomed the investment with open arms. It didn’t take long to receive the first scientific returns.

    In August 2015 one of the previously spotted FRBs decided to make a repeat appearance, triggering headlines worldwide because it was so incredibly powerful, brighter than the Lorimer Burst and any other FRB. It was dubbed “the repeater” and is also known as the Spitler Burst, because it was first discovered by astronomer Laura Spitler of the Max Planck Institute for Radio Astronomy in Bonn, Germany.

    Max Planck Institute for Radio Astronomy

    Max Planck Institute for Radio Astronomy Bonn Germany

    Over the next few months, the burst flashed many more times, not regularly, but often enough to allow researchers to determine its host galaxy and consider its possible source—likely a highly magnetized, young, rapidly spinning neutron star (or magnetar).

    This localization was done with the Very Large Array (VLA), a group of 27 radio dishes in New Mexico that feature heavily in the film Contact. But the infrastructure at Green Bank Telescope upgraded by Breakthrough Listen caught the repeating flashes many more times, says Lorimer—allowing researchers to study its host galaxy more in detail. “It’s wonderful—they have a mission to find ET, but along the way they want to show that this is producing other useful results for the scientific community,” he adds. Detecting FRBs has quickly become one of the main objectives of Breakthrough Listen.

    Netting the repeater was both a boon and a hindrance—on the one hand, it eliminated models that cataclysmic events such as supernova explosions were causing FRBs; after all, these can happen only once. On the other hand, it deepened the mystery. The repeater lives in a small galaxy with a lot of star formation—the kind of environment where a neutron star could be born, hence the magnetar model. But what about all the other FRBs that don’t repeat?

    Researchers started to think that perhaps there were different types of these bursts, each with its own source. Scientific conferences still buzz with talks of mights and might-nots, with physicists eagerly debating possible sources of FRBs in corridors and at conference bars. In March 2017, Loeb caused a media frenzy by suggesting that FRBs could actually be of alien origin—solar-powered radio transmitters that might be interstellar light sails pushing huge spaceships across galaxies.

    That Parkes is part of the SETI project is obvious to any visitor. Walking up the flight of stairs to the circular operating tower below the dish, every button, every door, and every wall nostalgically screams 1960s, until you reach the control room full of modern screens where astronomers remotely control the antenna to observe pulsars.

    Up another flight of stairs is the data storage room, stacked with columns and columns of computer drives full of blinking lights. One thick column of hard drives is flashing neon blue, put there by Breakthrough Listen as part of a cutting-edge recording system designed to help astronomers search for every possible radio signal in 12 hours of data, much more than ever before. Bailes, who now splits his time between FRB search and Breakthrough Listen, takes a smiling selfie in front of Milner’s drives.

    While many early FRB discoveries were made with veteran telescopes—single mega dishes like Parkes and Green Bank—new telescopes, some with the financial backing of Breakthrough Listen, are now revolutionizing the FRB field.

    Deep in South African’s semi-desert region of the Karoo, eight hours by car from Cape Town, stands an array of 64 dishes, permanently tracking space. They are much smaller than their mega-dish cousins, and all work in unison. This is MeerKAT [above], another instrument in Breakthrough Listen’s growing worldwide network of giant telescopes. Together with a couple of other next-generation instruments, this observatory might hopefully tell us one day, probably in the next decade, what FRBs really are.

    The name MeerKAT means “More KAT,” a follow up to KAT 7, the Karoo Array Telescope of seven antennas—although real meerkats do lurk around the remote site, sharing the space with wild donkeys, horses, snakes, scorpions and kudus, moose-sized mammals with long, spiraling antlers. Visitors to MeerKAT are told to wear safety leather boots with steel toes as a precaution against snakes and scorpions. They’re also warned about the kudus, which are very protective of their calves and recently attacked the pickup truck of a security guard, turning him and his car over. Around MeerKAT there is total radio silence; all visitors have to switch off their phones and laptops. The only place with connectivity is an underground “bunker” shielded by 30-centimeter-thick walls and a heavy metal door to protect the sensitive antennas from any human-made interference.

    MeerKAT is one of the two precursors to a much bigger future radio observatory—the SKA, or Square Kilometer Array.

    SKA Square Kilometer Array

    SKA South Africa

    Once SKA is complete, scientists will have added another 131 antennas in the Karoo. The first SKA dish has just been shipped to the MeerKAT site from China. Each antenna will take several weeks to assemble, followed by a few more months of testing to see whether it actually works the way it should. If all goes well, more will be commissioned, built, and shipped to this faraway place, where during the day the dominant color is brown; as the sun sets, however, the MeerKAT dishes dance in an incredible palette of purples, reds, and pinks, as they welcome the Milky Way stretching its starry path just above. MeerKAT will soon be an incredible FRB machine, says Bailes.

    There is another SKA precursor—ASKAP in Australia.

    Australian Square Kilometre Array Pathfinder (ASKAP) is a radio telescope array located at Murchison Radio-astronomy Observatory (MRO) in the Australian Mid West. ASKAP consists of 36 identical parabolic antennas, each 12 metres in diameter, working together as a single instrument with a total collecting area of approximately 4,000 square metres.

    Back in 2007, when Lorimer was mulling over the Nature rejection, Ryan Shannon was finishing his PhD in physics at Cornell University in New York—sharing the office with Laura Spitler, who would later discover the Spitler Burst. Shannon had come to the US from Canada, growing up in a small town in British Columbia. About half an hour drive from his home is the Dominion and Radio Astronomical Observatory (DRAO)—a relatively small facility that was involved in building equipment for the VLA.

    5

    NRAO/Karl V Jansky Expanded Very Large Array, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

    Subconsciously, says Shannon, DRAO must have impacted his choice of career. And it was at DRAO that a few years later a totally new telescope—Chime [above]—would be built that would greatly impact the nascent field of FRB research. But in 2007 that was still to come. After graduating from Cornell in 2011, Shannon decided not to stay close to home—“something my mum would’ve wanted.” Instead, he moved to Australia and ultimately to Swinburne University on the outskirts of Melbourne.

    Shannon joined Bailes’ team in 2017—and by then astronomers had begun to understand why they weren’t detecting more FRBs, even though they were already estimating that these flashes were happening hundreds of times every day, if not more. “Our big radio telescopes don’t have wide fields of view, they can’t see the entire sky—that’s why we missed nearly all FRBs in the first decade of realizing these things exist,” says Shannon.

    When he, Bailes, and other FRB hunters saw the ultra-bright repeater, the Spitler Burst, they understood that there were fast radio bursts which could be found even without gigantic telescopes like Parkes, by using instruments that have a wider field of view. So they started building ASKAP [above]—a new observatory conceived in 2012 and recently completed in the remote Australian outback. It sports 36 dishes with a 12-meter diameter each, and just like with MeerKAT, they all work together.

    To get to ASKAP, in a very sparsely populated area in the Murchison Shire of Western Australia, one has to first fly to Perth, change for a smaller plane bound for Murchison, then squeeze into a really tiny single propeller plane, or drive for five hours across 150 kilometers of dirt roads. “When it rains, it turns to mud, and you can’t drive there,” says Shannon, who went to the ASKAP site twice, to introduce the local indigenous population to the new telescope constructed—with permission—on their land and see the remote, next-generation ultra-sensitive radio observatory for himself.

    MeerKAT and ASKAP bring two very different technological approaches to the hunt for FRBs. Both observatories look at the southern sky, which makes it possible to see the Milky Way’s bright core much better than in the northern hemisphere; they complement old but much upgraded observatories like Parkes and Arecibo in South America. But the MeerKAT dishes have highly sensitive receivers which are able to detect very distant objects, while ASKAP’s novel multi-pixel receivers on each dish offer a much wider field of view, enabling the telescope to find nearby FRBs more often.

    “ASKAP’s dishes are less sensitive, but we can observe a much larger portion of the sky,” says Shannon. “So ASKAP is going to be able to see things that are usually intrinsically brighter.” Together, the two precursors will be hunting for different parts of the FRB population—since “you want to understand the entire population to know the big picture.”

    MeerKAT only started taking data in February, but ASKAP has been busy scanning the universe for FRBs for a few years now. Not only has it already spotted about 30 new bursts, but in a new paper just released in Science, Shannon and colleagues have detailed a new way to localize them despite their short duration, which is a big and important step toward being able to determine what triggers this ultra-bright radiation. Think of ASKAP’s antennas as the eye of a fly; they can scan a wide patch of the sky to spot as many bursts as possible, but the antennas can all be made to point instantly in the same direction. This way, they make an image of the sky in real time, and spot a millisecond-long FRB as it washes over Earth. That’s what Shannon and his colleagues have done, and for the first time ever, managed to net one burst they named FRB 180924 and pinpoint its host galaxy, some 4 billion light-years away, all in real time.

    Another team, at Caltech’s Owens Valley Radio Observatory (OVRO) in the Sierra Nevada mountains in California, have also just caught a new burst and traced it back to its source, a galaxy 7.9 billion light years away.

    Caltech’s Deep Synoptic Array 10 dish array at Owens Valley Radio Observatory, near Big Pine, California USA, Altitude 1,222 m (4,009 ft

    And just like Shannon, they didn’t do it with a single dish telescope but a recently built array of 10 4.5-meter antennas called the Deep Synoptic Array-10. The antennas act together like a mile-wide dish to cover an area on the sky the size of 150 full moons. The telescope’s software then processes an amount of data equivalent to a DVD every second. The array is a precursor for the Deep Synoptic Array that, when built by 2021, will sport 110 radio dishes, and may be able to detect and locate more than 100 FRBs every year.

    What both ASKAP’s and OVRO’s teams found was that their presumably one-off bursts originated in galaxies very different from the home of the first FRB repeater. Both come from galaxies with very little star formation, similar to the Milky Way and very different from the home of the repeater, where stars are born at a rate of about a hundred times faster. The discoveries show that “every galaxy, even a run-of-the-mill galaxy like our Milky Way, can generate an FRB,” says Vikram Ravi, an astronomer at Caltech and part of the OVRO team.

    But the findings also mean that the magnetar model, accepted by many as the source of the repeating burst, does not really work for these one-off flashes. Perhaps, Shannon says, ASKAP’s burst could be the result of a merger of two neutron stars, similar to the one spotted two years ago by the gravitational wave detectors LIGO and Virgo in the US and Italy, because both host galaxies are very similar. “It’s a bit spooky that way,” says Shannon. One thing is clear though, he adds: The findings show that there is likely more than one type of FRBs.

    Back in Shannon’s hometown in Canada, the excitement has also been growing exponentially because of CHIME. Constructed at the same time as MeerKAT and ASKAP, this is a very different observatory; it has no dishes but antennas in the form of long buckets designed to capture light. In January, the CHIME team reported the detection of the second FRB repeater and 12 non-repeating FRBs. CHIME is expected to find many, many more bursts, and with ASKAP, MeerKAT and CHIME working together, astronomers hope to understand the true nature of the enigmatic radio flashes very soon.

    But will they fulfill Milner’s dream and successfully complete SETI, the search for extraterrestrial intelligence? Lorimer says that scientists hunting for FRBs and pulsars have for decades been working closely with colleagues involved in SETI projects.

    After all, Loeb’s models for different—alien—origins of FRBs are not fundamentally wrong. “The energetics when you consider what we know from the observations are consistent and there’s nothing wrong with that,” says Lorimer. “And as part of the scientific method, you definitely want to encourage those ideas.” He personally prefers to find the simplest natural explanation for the phenomena he observes in space—but until we manage to directly observe the source of these FRBs, all theoretical ideas should stand, as long as they are scientifically sound—whether they involve aliens or not.

    Any image repeats in this post were required for complete coverage.

    See the full article here .

    Totally missing from this article on SETI-

    SETI Institute


    SETI/Allen Telescope Array situated at the Hat Creek Radio Observatory, 290 miles (470 km) northeast of San Francisco, California, USA, Altitude 986 m (3,235 ft)

    UCSC alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument. (Photo by Laurie Hatch).jpg

    Shelley Wright of UC San Diego, with NIROSETI, developed at U Toronto, at the 1-meter Nickel Telescope at Lick Observatory at UC Santa Cruz

    Laser SETI, the future of SETI Institute research

    SETI@home, a BOINC project originated in the Space Science Lab at UC Berkeley

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: