Tagged: Astronomy Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:02 am on May 11, 2021 Permalink | Reply
    Tags: "Space debris- feel the burn", , Astronomy, ‘D4D’ – Design for Demise, Debris landed in Texas, DRAMA (Debris Risk Assessment and Mitigation Analysis) software, , , In practice some pieces can make it all the way down to Earth – some of them big enough to do serious damage., In theory reentering space hardware is vaporised entirely in the course of plunging through the atmosphere., Modern space debris regulations demand that such incidents should not happen. Uncontrolled reentries should have a less than 1 in 10 000 chance of injuring anyone on the ground., Testing reentry.   

    From European Space Agency [Agence spatiale européenne] [Europäische Weltraumorganisation](EU) : “Space debris- feel the burn” 

    ESA Space For Europe Banner

    European Space Agency – United Space in Europe (EU)

    From European Space Agency [Agence spatiale européenne] [Europäische Weltraumorganisation](EU)

    1
    Testing reentry.
    4.23.21
    ESA’s Clean Space initiative performed simulated reentry testing inside a plasma wind tunnel at the DLR German Aerospace Center’s site in Cologne.

    The item seen here is a section of a satellite electronics box, measuring 300 x 200 x 150 mm across – the full-sized box being too large to fit inside the 120 mm-diameter plasma wind tunnel. This aluminium-made section of box also contained a backplane connected to four electronics cards made of glass fibre reinforced plastic.

    The testing investigated the box’s fragmentation behavior, including how the electronics cards were released from the housing, to verify the predictions of reentry simulation software. Other heavy satellite parts were also subjected to this ‘ablation’ testing, including a ball bearing unit, reaction wheel, magnetotorquer, flywheel unit, battery module and battery cells.

    In theory reentering space hardware is vaporised entirely in the course of plunging through the atmosphere. In practice some pieces can make it all the way down to Earth – some of them big enough to do serious damage.

    Modern space debris regulations demand that such incidents should not happen. Uncontrolled reentries should have a less than 1 in 10 000 chance of injuring anyone on the ground.

    As part of a larger effort called CleanSat, ESA is developing technologies and techniques to ensure future low-orbiting satellites are designed according to the concept of ‘D4D’ – Design for Demise.


    Oct 1, 2020
    Testing a fiery reentry. ESA.
    What would a satellite look like as it burns up in the atmosphere? Researchers attempted to duplicate this fiery fate for a bulky satellite electronics box using a plasma wind tunnel.

    Their goal was to better understand how satellites burn up during reentry, to minimise the risk of endangering anyone on the ground. Taking place as part of ESA’s Clean Space initiative, the testing occurred inside a plasma wind tunnel at the DLR German Aerospace Center’s site in Cologne.
    The item seen here is a section of a satellite electronics box, measuring 300 x 200 x 150 mm across – the full-sized box being too large to fit inside the 120 mm-diameter plasma wind tunnel. This aluminium-made section of box also contained a backplane connected to four electronics cards made of glass fibre reinforced plastic.

    In theory reentering space hardware is vaporised entirely in the course of plunging through the atmosphere. In practice some pieces can make it all the way down to Earth – some of them big enough to do serious damage.

    As part of a larger effort called CleanSat, ESA is developing technologies and techniques to ensure future low-orbiting satellites are designed according to the concept of ‘D4D’ – Design for Demise. ESA.

    28/04/2021
    ESA / Safety & Security / Clean Space

    It might be counter-intuitive, but designing satellites to better fall apart is one of the key strategies to combat space debris. Developed by ESA’s Clean Space initiative, the approach is called ‘Design for Demise’ and involves making sure that derelict satellites will break up and burn up fully as they reenter the atmosphere.

    Reentering space hardware should burn up entirely in the course of plunging through the atmosphere to be safe. In practice some pieces can make it all the way down to Earth – some of them big enough to do serious damage.

    In 1997, for instance, Texans Steve and Verona Gutowski were woken by the impact of what looked like a “dead rhinoceros” just 50 m from their farmhouse. It turned out to be a 250 kg fuel tank from a rocket stage.

    1
    Debris landed in Texas. The main propellant tank of the second stage of a Delta 2 rocket landed near Georgetown, Texas, USA, on 22 January 1997. This tank of about 250 kg is primarily a stainless steel structure and survived reentry relatively intact. National Aeronautics Space Agency (US)

    2
    During atmospheric reentry, peak heat fluxes and mechanical loads usually result in a satellite’s break-up at around 75 km up. Only after this this altitude will all the internal equipment exposed to the heat flux start ‘demising’ as well. Credit: ESA/ Sacha Berna.

    Modern space debris regulations demand that such incidents should not happen. Uncontrolled reentries should have a less than 1 in 10 000 chance of injuring anyone on the ground.

    As part of a larger effort called cleansat, ESA is developing technologies and techniques to ensure future low-orbiting satellites are designed according to the concept of ‘D4D’ – design for demise.

    Some heavier satellite elements are more likely to survive the reentry process. These include magnetotorquers which use magnets to shift spacecraft orientation against Earth’s magnetic field, optical instruments, propellant and pressure tanks, the drive mechanisms operating solar arrays and reaction wheels – spinning gyroscopes used to change a satellite’s pointing direction.

    4
    Testing reentry.
    ESA’s Clean Space initiative performed simulated reentry testing inside a plasma wind tunnel at the DLR German Aerospace Center’s site in Cologne.

    The item seen here is a section of a satellite electronics box, measuring 300 x 200 x 150 mm across – the full-sized box being too large to fit inside the 120 mm-diameter plasma wind tunnel. This aluminium-made section of box also contained a backplane connected to four electronics cards made of glass fibre reinforced plastic.

    The testing investigated the box’s fragmentation behavior, including how the electronics cards were released from the housing, to verify the predictions of reentry simulation software. Other heavy satellite parts were also subjected to this ‘ablation’ testing, including a ball bearing unit, reaction wheel, magnetotorquer, flywheel unit, battery module and battery cells.

    In theory reentering space hardware is vaporised entirely in the course of plunging through the atmosphere. In practice some pieces can make it all the way down to Earth – some of them big enough to do serious damage.

    Modern space debris regulations demand that such incidents should not happen. Uncontrolled reentries should have a less than 1 in 10 000 chance of injuring anyone on the ground.

    As part of a larger effort called CleanSat, ESA is developing technologies and techniques to ensure future low-orbiting satellites are designed according to the concept of ‘D4D’ – Design for Demise.

    In theory reentering space hardware is vaporised entirely in the course of plunging through the atmosphere. In practice some pieces can make it all the way down to Earth – some of them big enough to do serious damage.

    As part of a larger effort called CleanSat, ESA is developing technologies and techniques to ensure future low-orbiting satellites are designed according to the concept of ‘D4D’ – Design for Demise.

    But engineering a higher break-up altitude would imply that the internal equipment would be exposed to the heat flux for a longer time, greatly enhancing its overall demisability. Possible ways to ensure this include more meltable joints holding satellite panels together or the use of ‘shape memory alloys’ which shift shape with temperature.

    Clean Space also uses the DRAMA (Debris Risk Assessment and Mitigation Analysis) software to calculate the compliance of a given satellite design with space debris mitigation standards and to ensure that the latest research findings are accounted for, always aiming to reduce the risk of injury below that crucial 1 in 10 000 value.

    5
    Breaking apart on reentry.
    23/04/2021
    During atmospheric reentry, peak heat fluxes and mechanical loads usually result in a satellite’s break-up at around 75 km up. Only after this this altitude will all the internal equipment exposed to the heat flux start ‘demising’ as well. But engineering a higher break-up altitude would imply that the internal equipment would be exposed to the heat flux for a longer time, greatly enhancing its overall demisability. Possible ways to ensure this include more meltable joints holding satellite panels together or the use of ‘shape memory alloys’ which shift shape with temperature. This is known as ‘Design for Demise’. Credit: ESA/ Sacha Berna.

    8th European Conference on Space Debris

    Last week saw the latest European Conference on Space Debris, the largest dedicated gathering on the subject. International scientists, engineers, operators, industry experts, lawyers and policy makers meet here to discuss different aspects of space debris research, including measurement techniques, environment modelling theories, risk analysis techniques, protection designs, mitigation and remediation concepts, and standardisation, policy, regulation and legal issues. Find out more about the four-day virtual conference here.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings


    Please help promote STEM in your local schools.

    Stem Education Coalition

    From European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC (NL) in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA’s space flight programme includes human spaceflight (mainly through participation in the International Space Station program); the launch and operation of uncrewed exploration missions to other planets and the Moon; Earth observation, science and telecommunication; designing launch vehicles; and maintaining a major spaceport, the The Guiana Space Centre [Centre Spatial Guyanais; CSG also called Europe’s Spaceport) at Kourou, French Guiana. The main European launch vehicle Ariane 5 is operated through Arianespace with ESA sharing in the costs of launching and further developing this launch vehicle. The agency is also working with NASA to manufacture the Orion Spacecraft service module that will fly on the Space Launch System.

    The agency’s facilities are distributed among the following centres:

    ESA European Space Research and Technology Centre (ESTEC) (NL)in Noordwijk, Netherlands;
    ESA Centre for Earth Observation [ESRIN] (IT) in Frascati, Italy;
    ESA Mission Control ESA European Space Operations Center [ESOC](DE) is in Darmstadt, Germany;
    ESA -European Astronaut Centre [EAC] trains astronauts for future missions is situated in Cologne, Germany;
    European Centre for Space Applications and Telecommunications (ECSAT) (UK), a research institute created in 2009, is located in Harwell, England;
    ESA – European Space Astronomy Centre [ESAC] (ES) is located in Villanueva de la Cañada, Madrid, Spain.
    European Space Agency Science Programme is a long-term programme of space science and space exploration missions.

    Foundation

    After World War II, many European scientists left Western Europe in order to work with the United States. Although the 1950s boom made it possible for Western European countries to invest in research and specifically in space-related activities, Western European scientists realized solely national projects would not be able to compete with the two main superpowers. In 1958, only months after the Sputnik shock, Edoardo Amaldi (Italy) and Pierre Auger (France), two prominent members of the Western European scientific community, met to discuss the foundation of a common Western European space agency. The meeting was attended by scientific representatives from eight countries, including Harrie Massey (United Kingdom).

    The Western European nations decided to have two agencies: one concerned with developing a launch system, ELDO (European Launch Development Organization), and the other the precursor of the European Space Agency, ESRO (European Space Research Organisation). The latter was established on 20 March 1964 by an agreement signed on 14 June 1962. From 1968 to 1972, ESRO launched seven research satellites.

    ESA in its current form was founded with the ESA Convention in 1975, when ESRO was merged with ELDO. ESA had ten founding member states: Belgium, Denmark, France, West Germany, Italy, the Netherlands, Spain, Sweden, Switzerland, and the United Kingdom. These signed the ESA Convention in 1975 and deposited the instruments of ratification by 1980, when the convention came into force. During this interval the agency functioned in a de facto fashion. ESA launched its first major scientific mission in 1975, Cos-B, a space probe monitoring gamma-ray emissions in the universe, which was first worked on by ESRO.

    ESA50 Logo large

    Later activities

    ESA collaborated with National Aeronautics Space Agency on the International Ultraviolet Explorer (IUE), the world’s first high-orbit telescope, which was launched in 1978 and operated successfully for 18 years. A number of successful Earth-orbit projects followed, and in 1986 ESA began Giotto, its first deep-space mission, to study the comets Halley and Grigg–Skjellerup. Hipparcos, a star-mapping mission, was launched in 1989 and in the 1990s SOHO, Ulysses and the Hubble Space Telescope were all jointly carried out with NASA. Later scientific missions in cooperation with NASA include the Cassini–Huygens space probe, to which ESA contributed by building the Titan landing module Huygens.

    As the successor of ELDO, ESA has also constructed rockets for scientific and commercial payloads. Ariane 1, launched in 1979, carried mostly commercial payloads into orbit from 1984 onward. The next two versions of the Ariane rocket were intermediate stages in the development of a more advanced launch system, the Ariane 4, which operated between 1988 and 2003 and established ESA as the world leader in commercial space launches in the 1990s. Although the succeeding Ariane 5 experienced a failure on its first flight, it has since firmly established itself within the heavily competitive commercial space launch market with 82 successful launches until 2018. The successor launch vehicle of Ariane 5, the Ariane 6, is under development and is envisioned to enter service in the 2020s.

    The beginning of the new millennium saw ESA become, along with agencies like National Aeronautics Space Agency(US), Japan Aerospace Exploration Agency, Indian Space Research Organisation, the Canadian Space Agency(CA) and Roscosmos(RU), one of the major participants in scientific space research. Although ESA had relied on co-operation with NASA in previous decades, especially the 1990s, changed circumstances (such as tough legal restrictions on information sharing by the United States military) led to decisions to rely more on itself and on co-operation with Russia. A 2011 press issue thus stated:

    “Russia is ESA’s first partner in its efforts to ensure long-term access to space. There is a framework agreement between ESA and the government of the Russian Federation on cooperation and partnership in the exploration and use of outer space for peaceful purposes, and cooperation is already underway in two different areas of launcher activity that will bring benefits to both partners.”

    Notable ESA programmes include SMART-1, a probe testing cutting-edge space propulsion technology, the Mars Express and Venus Express missions, as well as the development of the Ariane 5 rocket and its role in the ISS partnership. ESA maintains its scientific and research projects mainly for astronomy-space missions such as Corot, launched on 27 December 2006, a milestone in the search for exoplanets.

    On 21 January 2019, ArianeGroup and Arianespace announced a one-year contract with ESA to study and prepare for a mission to mine the Moon for lunar regolith.

    Mission

    The treaty establishing the European Space Agency reads:

    The purpose of the Agency shall be to provide for and to promote, for exclusively peaceful purposes, cooperation among European States in space research and technology and their space applications, with a view to their being used for scientific purposes and for operational space applications systems…

    ESA is responsible for setting a unified space and related industrial policy, recommending space objectives to the member states, and integrating national programs like satellite development, into the European program as much as possible.

    Jean-Jacques Dordain – ESA’s Director General (2003–2015) – outlined the European Space Agency’s mission in a 2003 interview:

    “Today space activities have pursued the benefit of citizens, and citizens are asking for a better quality of life on Earth. They want greater security and economic wealth, but they also want to pursue their dreams, to increase their knowledge, and they want younger people to be attracted to the pursuit of science and technology. I think that space can do all of this: it can produce a higher quality of life, better security, more economic wealth, and also fulfill our citizens’ dreams and thirst for knowledge, and attract the young generation. This is the reason space exploration is an integral part of overall space activities. It has always been so, and it will be even more important in the future.”

    Activities

    According to the ESA website, the activities are:

    Observing the Earth
    Human Spaceflight
    Launchers
    Navigation
    Space Science
    Space Engineering & Technology
    Operations
    Telecommunications & Integrated Applications
    Preparing for the Future
    Space for Climate

    Programmes

    Copernicus Programme
    Cosmic Vision
    ExoMars
    FAST20XX
    Galileo
    Horizon 2000
    Living Planet Programme

    Mandatory

    Every member country must contribute to these programmes:

    Technology Development Element Programme
    Science Core Technology Programme
    General Study Programme
    European Component Initiative

    Optional

    Depending on their individual choices the countries can contribute to the following programmes, listed according to:

    Launchers
    Earth Observation
    Human Spaceflight and Exploration
    Telecommunications
    Navigation
    Space Situational Awareness
    Technology

    ESA_LAB@

    ESA has formed partnerships with universities. ESA_LAB@ refers to research laboratories at universities. Currently there are ESA_LAB@

    Technische Universität Darmstadt
    École des hautes études commerciales de Paris (HEC Paris)
    Université de recherche Paris Sciences et Lettres
    University of Central Lancashire

    Membership and contribution to ESA

    By 2015, ESA was an intergovernmental organisation of 22 member states. Member states participate to varying degrees in the mandatory (25% of total expenditures in 2008) and optional space programmes (75% of total expenditures in 2008). The 2008 budget amounted to €3.0 billion whilst the 2009 budget amounted to €3.6 billion. The total budget amounted to about €3.7 billion in 2010, €3.99 billion in 2011, €4.02 billion in 2012, €4.28 billion in 2013, €4.10 billion in 2014 and €4.33 billion in 2015. English is the main language within ESA. Additionally, official documents are also provided in German and documents regarding the Spacelab are also provided in Italian. If found appropriate, the agency may conduct its correspondence in any language of a member state.

    Non-full member states
    Slovenia
    Since 2016, Slovenia has been an associated member of the ESA.

    Latvia
    Latvia became the second current associated member on 30 June 2020, when the Association Agreement was signed by ESA Director Jan Wörner and the Minister of Education and Science of Latvia, Ilga Šuplinska in Riga. The Saeima ratified it on July 27. Previously associated members were Austria, Norway and Finland, all of which later joined ESA as full members.

    Canada
    Since 1 January 1979, Canada has had the special status of a Cooperating State within ESA. By virtue of this accord, the Canadian Space Agency takes part in ESA’s deliberative bodies and decision-making and also in ESA’s programmes and activities. Canadian firms can bid for and receive contracts to work on programmes. The accord has a provision ensuring a fair industrial return to Canada. The most recent Cooperation Agreement was signed on 15 December 2010 with a term extending to 2020. For 2014, Canada’s annual assessed contribution to the ESA general budget was €6,059,449 (CAD$8,559,050). For 2017, Canada has increased its annual contribution to €21,600,000 (CAD$30,000,000).

    Enlargement

    After the decision of the ESA Council of 21/22 March 2001, the procedure for accession of the European states was detailed as described the document titled The Plan for European Co-operating States (PECS). Nations that want to become a full member of ESA do so in 3 stages. First a Cooperation Agreement is signed between the country and ESA. In this stage, the country has very limited financial responsibilities. If a country wants to co-operate more fully with ESA, it signs a European Cooperating State (ECS) Agreement. The ECS Agreement makes companies based in the country eligible for participation in ESA procurements. The country can also participate in all ESA programmes, except for the Basic Technology Research Programme. While the financial contribution of the country concerned increases, it is still much lower than that of a full member state. The agreement is normally followed by a Plan For European Cooperating State (or PECS Charter). This is a 5-year programme of basic research and development activities aimed at improving the nation’s space industry capacity. At the end of the 5-year period, the country can either begin negotiations to become a full member state or an associated state or sign a new PECS Charter.

    During the Ministerial Meeting in December 2014, ESA ministers approved a resolution calling for discussions to begin with Israel, Australia and South Africa on future association agreements. The ministers noted that “concrete cooperation is at an advanced stage” with these nations and that “prospects for mutual benefits are existing”.

    A separate space exploration strategy resolution calls for further co-operation with the United States, Russia and China on “LEO exploration, including a continuation of ISS cooperation and the development of a robust plan for the coordinated use of space transportation vehicles and systems for exploration purposes, participation in robotic missions for the exploration of the Moon, the robotic exploration of Mars, leading to a broad Mars Sample Return mission in which Europe should be involved as a full partner, and human missions beyond LEO in the longer term.”

    Relationship with the European Union

    The political perspective of the European Union (EU) was to make ESA an agency of the EU by 2014, although this date was not met. The EU member states provide most of ESA’s funding, and they are all either full ESA members or observers.

    History

    At the time ESA was formed, its main goals did not encompass human space flight; rather it considered itself to be primarily a scientific research organisation for uncrewed space exploration in contrast to its American and Soviet counterparts. It is therefore not surprising that the first non-Soviet European in space was not an ESA astronaut on a European space craft; it was Czechoslovak Vladimír Remek who in 1978 became the first non-Soviet or American in space (the first man in space being Yuri Gagarin of the Soviet Union) – on a Soviet Soyuz spacecraft, followed by the Pole Mirosław Hermaszewski and East German Sigmund Jähn in the same year. This Soviet co-operation programme, known as Intercosmos, primarily involved the participation of Eastern bloc countries. In 1982, however, Jean-Loup Chrétien became the first non-Communist Bloc astronaut on a flight to the Soviet Salyut 7 space station.

    Because Chrétien did not officially fly into space as an ESA astronaut, but rather as a member of the French CNES astronaut corps, the German Ulf Merbold is considered the first ESA astronaut to fly into space. He participated in the STS-9 Space Shuttle mission that included the first use of the European-built Spacelab in 1983. STS-9 marked the beginning of an extensive ESA/NASA joint partnership that included dozens of space flights of ESA astronauts in the following years. Some of these missions with Spacelab were fully funded and organizationally and scientifically controlled by ESA (such as two missions by Germany and one by Japan) with European astronauts as full crew members rather than guests on board. Beside paying for Spacelab flights and seats on the shuttles, ESA continued its human space flight co-operation with the Soviet Union and later Russia, including numerous visits to Mir.

    During the latter half of the 1980s, European human space flights changed from being the exception to routine and therefore, in 1990, the European Astronaut Centre in Cologne, Germany was established. It selects and trains prospective astronauts and is responsible for the co-ordination with international partners, especially with regard to the International Space Station. As of 2006, the ESA astronaut corps officially included twelve members, including nationals from most large European countries except the United Kingdom.

    In the summer of 2008, ESA started to recruit new astronauts so that final selection would be due in spring 2009. Almost 10,000 people registered as astronaut candidates before registration ended in June 2008. 8,413 fulfilled the initial application criteria. Of the applicants, 918 were chosen to take part in the first stage of psychological testing, which narrowed down the field to 192. After two-stage psychological tests and medical evaluation in early 2009, as well as formal interviews, six new members of the European Astronaut Corps were selected – five men and one woman.

    Cooperation with other countries and organisations

    ESA has signed co-operation agreements with the following states that currently neither plan to integrate as tightly with ESA institutions as Canada, nor envision future membership of ESA: Argentina, Brazil, China, India (for the Chandrayan mission), Russia and Turkey.

    Additionally, ESA has joint projects with the European Union, NASA of the United States and is participating in the International Space Station together with the United States (NASA), Russia and Japan (JAXA).

    European Union
    ESA and EU member states
    ESA-only members
    EU-only members

    ESA is not an agency or body of the European Union (EU), and has non-EU countries (Norway, Switzerland, and the United Kingdom) as members. There are however ties between the two, with various agreements in place and being worked on, to define the legal status of ESA with regard to the EU.

    There are common goals between ESA and the EU. ESA has an EU liaison office in Brussels. On certain projects, the EU and ESA co-operate, such as the upcoming Galileo satellite navigation system. Space policy has since December 2009 been an area for voting in the European Council. Under the European Space Policy of 2007, the EU, ESA and its Member States committed themselves to increasing co-ordination of their activities and programmes and to organising their respective roles relating to space.

    The Lisbon Treaty of 2009 reinforces the case for space in Europe and strengthens the role of ESA as an R&D space agency. Article 189 of the Treaty gives the EU a mandate to elaborate a European space policy and take related measures, and provides that the EU should establish appropriate relations with ESA.

    Former Italian astronaut Umberto Guidoni, during his tenure as a Member of the European Parliament from 2004 to 2009, stressed the importance of the European Union as a driving force for space exploration, “…since other players are coming up such as India and China it is becoming ever more important that Europeans can have an independent access to space. We have to invest more into space research and technology in order to have an industry capable of competing with other international players.”

    The first EU-ESA International Conference on Human Space Exploration took place in Prague on 22 and 23 October 2009. A road map which would lead to a common vision and strategic planning in the area of space exploration was discussed. Ministers from all 29 EU and ESA members as well as members of parliament were in attendance.

    National space organisations of member states:

    The Centre National d’Études Spatiales(FR) (CNES) (National Centre for Space Study) is the French government space agency (administratively, a “public establishment of industrial and commercial character”). Its headquarters are in central Paris. CNES is the main participant on the Ariane project. Indeed, CNES designed and tested all Ariane family rockets (mainly from its centre in Évry near Paris)
    The UK Space Agency is a partnership of the UK government departments which are active in space. Through the UK Space Agency, the partners provide delegates to represent the UK on the various ESA governing bodies. Each partner funds its own programme.
    The Italian Space Agency A.S.I. – Agenzia Spaziale Italiana was founded in 1988 to promote, co-ordinate and conduct space activities in Italy. Operating under the Ministry of the Universities and of Scientific and Technological Research, the agency cooperates with numerous entities active in space technology and with the president of the Council of Ministers. Internationally, the ASI provides Italy’s delegation to the Council of the European Space Agency and to its subordinate bodies.
    The German Aerospace Center (DLR)[Deutsches Zentrum für Luft- und Raumfahrt e. V.] is the national research centre for aviation and space flight of the Federal Republic of Germany and of other member states in the Helmholtz Association. Its extensive research and development projects are included in national and international cooperative programmes. In addition to its research projects, the centre is the assigned space agency of Germany bestowing headquarters of German space flight activities and its associates.
    The Instituto Nacional de Técnica Aeroespacial (INTA)(ES) (National Institute for Aerospace Technique) is a Public Research Organization specialised in aerospace research and technology development in Spain. Among other functions, it serves as a platform for space research and acts as a significant testing facility for the aeronautic and space sector in the country.

    National Aeronautics Space Agency(US)

    ESA has a long history of collaboration with NASA. Since ESA’s astronaut corps was formed, the Space Shuttle has been the primary launch vehicle used by ESA’s astronauts to get into space through partnership programmes with NASA. In the 1980s and 1990s, the Spacelab programme was an ESA-NASA joint research programme that had ESA develop and manufacture orbital labs for the Space Shuttle for several flights on which ESA participate with astronauts in experiments.

    In robotic science mission and exploration missions, NASA has been ESA’s main partner. Cassini–Huygens was a joint NASA-ESA mission, along with the Infrared Space Observatory, INTEGRAL, SOHO, and others. Also, the Hubble Space Telescope is a joint project of NASA and ESA. Future ESA-NASA joint projects include the James Webb Space Telescope and the proposed Laser Interferometer Space Antenna. NASA has committed to provide support to ESA’s proposed MarcoPolo-R mission to return an asteroid sample to Earth for further analysis. NASA and ESA will also likely join together for a Mars Sample Return Mission. In October 2020 the ESA entered into a memorandum of understanding (MOU) with NASA to work together on the Artemis program, which will provide an orbiting lunar gateway and also accomplish the first manned lunar landing in 50 years, whose team will include the first woman on the Moon. Astronaut selection announcements are expected within two years of the 2024 scheduled launch date.

    Cooperation with other space agencies

    Since China has started to invest more money into space activities, the Chinese Space Agency(CN) has sought international partnerships. ESA is, beside the Russian Space Agency, one of its most important partners. Two space agencies cooperated in the development of the Double Star Mission. In 2017, ESA sent two astronauts to China for two weeks sea survival training with Chinese astronauts in Yantai, Shandong.

    ESA entered into a major joint venture with Russia in the form of the CSTS, the preparation of French Guiana spaceport for launches of Soyuz-2 rockets and other projects. With India, ESA agreed to send instruments into space aboard the ISRO’s Chandrayaan-1 in 2008. ESA is also co-operating with Japan, the most notable current project in collaboration with JAXA is the BepiColombo mission to Mercury.

    Speaking to reporters at an air show near Moscow in August 2011, ESA head Jean-Jacques Dordain said ESA and Russia’s Roskosmos space agency would “carry out the first flight to Mars together.”

     
  • richardmitnick 4:32 pm on May 10, 2021 Permalink | Reply
    Tags: "In the emptiness of space Voyager 1 detects plasma ‘hum’", Astronomy, , , ,   

    From Cornell Chronicle (US) : “In the emptiness of space Voyager 1 detects plasma ‘hum’” 

    From Cornell Chronicle (US)

    May 10, 2021
    Blaine Friedlander
    bpf2@cornell.edu

    1
    In an artist’s depiction, the Voyager 1 craft continues to cruise through interstellar space. National Aeronautics Space Agency (US)/JPL-Caltech/Provided.

    Voyager 1 – one of two sibling NASA spacecraft launched 44 years ago and now the most distant human-made object in space – still works and zooms toward infinity.

    As the craft toils, it has long since zipped past the edge of the solar system through the heliopause – the solar system’s border with interstellar space – into the interstellar medium. Now, its instruments have detected the constant drone of interstellar gas (plasma waves), according to Cornell-led research published May 10 in Nature Astronomy.

    Examining data slowly sent back from more than 14 billion miles away, Stella Koch Ocker, a Cornell doctoral student in astronomy, has uncovered the emission. “It’s very faint and monotone, because it is in a narrow frequency bandwidth,” Ocker said. “We’re detecting the faint, persistent hum of interstellar gas.”

    This work allows scientists to understand how the interstellar medium interacts with the solar wind, Ocker said, and how the protective bubble of the solar system’s heliosphere is shaped and modified by the interstellar environment.

    Launched in September 1977, the Voyager 1 spacecraft flew by Jupiter in 1979 and then Saturn in late 1980. Travelling at about 38,000 mph, Voyager 1 crossed the heliopause in August 2012.

    After entering interstellar space, the spacecraft’s Plasma Wave System detected perturbations in the gas. But, in between those eruptions – caused by our own roiling sun – researchers have uncovered a steady, persistent signature produced by the tenuous near-vacuum of space.

    ”The interstellar medium is like a quiet or gentle rain,” said senior author James Cordes, the George Feldstein Professor of Astronomy (A&S). “In the case of a solar outburst, it’s like detecting a lightning burst in a thunderstorm and then it’s back to a gentle rain.”

    Ocker believes there is more low-level activity in the interstellar gas than scientists had previously thought, which allows researchers to track the spatial distribution of plasma – that is, when it’s not being perturbed by solar flares.

    Cornell research scientist Shami Chatterjee explained how continuous tracking of the density of interstellar space is important. “We’ve never had a chance to evaluate it. Now we know we don’t need a fortuitous event related to the sun to measure interstellar plasma,” Chatterjee said. “Regardless of what the sun is doing, Voyager is sending back detail. The craft is saying, ‘Here’s the density I’m swimming through right now. And here it is now. And here it is now. And here it is now.’ Voyager is quite distant and will be doing this continuously.”

    Voyager 1 left Earth carrying a Golden Record created by a committee chaired by the late Cornell professor Carl Sagan, as well as mid-1970s technology.

    “Scientifically, this research is quite a feat. It’s a testament to the amazing Voyager spacecraft,” Ocker said. “It’s the engineering gift to science that keeps on giving.”

    In addition to Ocker, Cordes and Chatterjee, the paper was co-authored by professor emeritus Donald A. Gurnett, the principal investigator on the plasma wave system (PWS) on both Voyager spacecraft; Steven R. Spangler, professor; and research scientist William S. Kurth, co-investigator on PWS, all from the University of Iowa (US).

    NASA, the Jet Propulsion Laboratory and the National Science Foundation supported the work. Cordes, Chatterjee and Ockler are members of Cornell’s Carl Sagan Institute.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

    Cornell University(US) is a private, statutory, Ivy League and land-grant research university in Ithaca, New York. Founded in 1865 by Ezra Cornell and Andrew Dickson White, the university was intended to teach and make contributions in all fields of knowledge—from the classics to the sciences, and from the theoretical to the applied. These ideals, unconventional for the time, are captured in Cornell’s founding principle, a popular 1868 quotation from founder Ezra Cornell: “I would found an institution where any person can find instruction in any study.”

    The university is broadly organized into seven undergraduate colleges and seven graduate divisions at its main Ithaca campus, with each college and division defining its specific admission standards and academic programs in near autonomy. The university also administers two satellite medical campuses, one in New York City and one in Education City, Qatar, and Jacobs Technion-Cornell Institute(US) in New York City, a graduate program that incorporates technology, business, and creative thinking. The program moved from Google’s Chelsea Building in New York City to its permanent campus on Roosevelt Island in September 2017.

    Cornell is one of the few private land grant universities in the United States. Of its seven undergraduate colleges, three are state-supported statutory or contract colleges through the State University of New York(US) (SUNY) system, including its Agricultural and Human Ecology colleges as well as its Industrial Labor Relations school. Of Cornell’s graduate schools, only the veterinary college is state-supported. As a land grant college, Cornell operates a cooperative extension outreach program in every county of New York and receives annual funding from the State of New York for certain educational missions. The Cornell University Ithaca Campus comprises 745 acres, but is much larger when the Cornell Botanic Gardens (more than 4,300 acres) and the numerous university-owned lands in New York City are considered.

    Alumni and affiliates of Cornell have reached many notable and influential positions in politics, media, and science. As of January 2021, 61 Nobel laureates, four Turing Award winners and one Fields Medalist have been affiliated with Cornell. Cornell counts more than 250,000 living alumni, and its former and present faculty and alumni include 34 Marshall Scholars, 33 Rhodes Scholars, 29 Truman Scholars, 7 Gates Scholars, 55 Olympic Medalists, 10 current Fortune 500 CEOs, and 35 billionaire alumni. Since its founding, Cornell has been a co-educational, non-sectarian institution where admission has not been restricted by religion or race. The student body consists of more than 15,000 undergraduate and 9,000 graduate students from all 50 American states and 119 countries.

    History

    Cornell University was founded on April 27, 1865; the New York State (NYS) Senate authorized the university as the state’s land grant institution. Senator Ezra Cornell offered his farm in Ithaca, New York, as a site and $500,000 of his personal fortune as an initial endowment. Fellow senator and educator Andrew Dickson White agreed to be the first president. During the next three years, White oversaw the construction of the first two buildings and traveled to attract students and faculty. The university was inaugurated on October 7, 1868, and 412 men were enrolled the next day.

    Cornell developed as a technologically innovative institution, applying its research to its own campus and to outreach efforts. For example, in 1883 it was one of the first university campuses to use electricity from a water-powered dynamo to light the grounds. Since 1894, Cornell has included colleges that are state funded and fulfill statutory requirements; it has also administered research and extension activities that have been jointly funded by state and federal matching programs.

    Cornell has had active alumni since its earliest classes. It was one of the first universities to include alumni-elected representatives on its Board of Trustees. Cornell was also among the Ivies that had heightened student activism during the 1960s related to cultural issues; civil rights; and opposition to the Vietnam War, with protests and occupations resulting in the resignation of Cornell’s president and the restructuring of university governance. Today the university has more than 4,000 courses. Cornell is also known for the Residential Club Fire of 1967, a fire in the Residential Club building that killed eight students and one professor.

    Since 2000, Cornell has been expanding its international programs. In 2004, the university opened the Weill Cornell Medical College in Qatar. It has partnerships with institutions in India, Singapore, and the People’s Republic of China. Former president Jeffrey S. Lehman described the university, with its high international profile, a “transnational university”. On March 9, 2004, Cornell and Stanford University(US) laid the cornerstone for a new ‘Bridging the Rift Center’ to be built and jointly operated for education on the Israel–Jordan border.

    Research

    Cornell, a research university, is ranked fourth in the world in producing the largest number of graduates who go on to pursue PhDs in engineering or the natural sciences at American institutions, and fifth in the world in producing graduates who pursue PhDs at American institutions in any field. Research is a central element of the university’s mission; in 2009 Cornell spent $671 million on science and engineering research and development, the 16th highest in the United States. Cornell is classified among “R1: Doctoral Universities – Very high research activity”.

    For the 2016–17 fiscal year, the university spent $984.5 million on research. Federal sources constitute the largest source of research funding, with total federal investment of $438.2 million. The agencies contributing the largest share of that investment are the Department of Health and Human Services and the National Science Foundation(US), accounting for 49.6% and 24.4% of all federal investment, respectively. Cornell was on the top-ten list of U.S. universities receiving the most patents in 2003, and was one of the nation’s top five institutions in forming start-up companies. In 2004–05, Cornell received 200 invention disclosures; filed 203 U.S. patent applications; completed 77 commercial license agreements; and distributed royalties of more than $4.1 million to Cornell units and inventors.

    Since 1962, Cornell has been involved in unmanned missions to Mars. In the 21st century, Cornell had a hand in the Mars Exploration Rover Mission. Cornell’s Steve Squyres, Principal Investigator for the Athena Science Payload, led the selection of the landing zones and requested data collection features for the Spirit and Opportunity rovers. NASA-JPL/Caltech(US) engineers took those requests and designed the rovers to meet them. The rovers, both of which have operated long past their original life expectancies, are responsible for the discoveries that were awarded 2004 Breakthrough of the Year honors by Science. Control of the Mars rovers has shifted between National Aeronautics and Space Administration(US)’s Jet Propulsion Laboratory at Caltech and Cornell’s Space Sciences Building.

    Further, Cornell researchers discovered the rings around the planet Uranus, and Cornell built and operated the telescope at Arecibo Observatory located in Arecibo, Puerto Rico(US) until 2011, when they transferred the operations to SRI International, the Universities Space Research Association (US) and the Metropolitan University of Puerto Rico [Universidad Metropolitana de Puerto Rico](US).

    The Automotive Crash Injury Research Project was begun in 1952. It pioneered the use of crash testing, originally using corpses rather than dummies. The project discovered that improved door locks; energy-absorbing steering wheels; padded dashboards; and seat belts could prevent an extraordinary percentage of injuries.

    In the early 1980s, Cornell deployed the first IBM 3090-400VF and coupled two IBM 3090-600E systems to investigate coarse-grained parallel computing. In 1984, the National Science Foundation began work on establishing five new supercomputer centers, including the Cornell Center for Advanced Computing, to provide high-speed computing resources for research within the United States. As an National Science Foundation (US) center, Cornell deployed the first IBM Scalable Parallel supercomputer.

    In the 1990s, Cornell developed scheduling software and deployed the first supercomputer built by Dell. Most recently, Cornell deployed Red Cloud, one of the first cloud computing services designed specifically for research. Today, the center is a partner on the National Science Foundation XSEDE-Extreme Science Eniginnering Discovery Environment supercomputing program, providing coordination for XSEDE architecture and design, systems reliability testing, and online training using the Cornell Virtual Workshop learning platform.

    Cornell scientists have researched the fundamental particles of nature for more than 70 years. Cornell physicists, such as Hans Bethe, contributed not only to the foundations of nuclear physics but also participated in the Manhattan Project. In the 1930s, Cornell built the second cyclotron in the United States. In the 1950s, Cornell physicists became the first to study synchrotron radiation.

    During the 1990s, the Cornell Electron Storage Ring, located beneath Alumni Field, was the world’s highest-luminosity electron-positron collider. After building the synchrotron at Cornell, Robert R. Wilson took a leave of absence to become the founding director of DOE’s Fermi National Accelerator Laboratory(US), which involved designing and building the largest accelerator in the United States.

    Cornell’s accelerator and high-energy physics groups are involved in the design of the proposed ILC-International Linear Collider(JP) and plan to participate in its construction and operation. The International Linear Collider(JP), to be completed in the late 2010s, will complement the CERN Large Hadron Collider(CH) and shed light on questions such as the identity of dark matter and the existence of extra dimensions.

    As part of its research work, Cornell has established several research collaborations with universities around the globe. For example, a partnership with the University of Sussex(UK) (including the Institute of Development Studies at Sussex) allows research and teaching collaboration between the two institutions.

     
  • richardmitnick 1:22 pm on May 10, 2021 Permalink | Reply
    Tags: "High-mass stars are formed not from dust disk but from debris", , Astronomy, , , , , ,   

    From Leiden University [Universiteit Leiden] (NL) : “High-mass stars are formed not from dust disk but from debris” 


    From Leiden University [Universiteit Leiden] (NL)

    03 May 2021

    1
    Credit: CC0 Public Domain

    A Dutch-led team of astronomers has discovered that high-mass stars are formed differently from their smaller siblings. Whereas small stars are often surrounded by an orderly disk of dust and matter, the supply of matter to large stars is a chaotic mess. The researchers used the Atacama Large Millimeter/submillimeter Array (ALMA) telescope for their observations, and recently published their findings in The Astrophysical Journal.

    It is well known how small, young stars are created. They accrete matter from a disk of gas and dust in a relatively orderly fashion. Astronomers have already seen many of these disks of dust around young, low-mass stars but never around young, high-mass stars. This raised the question of whether large stars come into existence in the same way as small ones.

    Large stars are formed in a different way

    “Our findings now provide convincing evidence to show that the answer is ‘No'”, according to Ciriaco Goddi, affiliated with the ALMA expertise centre Allegro at Leiden University and with Radboud University [Radboud Universiteit](NL) in Nijmegen.

    Goddi led a team that studied three young, high-mass stars in star-forming region W51, roughly 17,000 light years from Earth. The researchers were looking in particular for large, stable disks expelling jets of matter perpendicular to the surface of the disk. Such disks should be visible with the high resolution ALMA telescopes.

    Not stable disks but chaos

    Goddi: “But instead of stable disks, we discovered that the accretion zone of young, high-mass stars looks like a chaotic mess.”

    The observation showed strands of gas coming at the young, high-mass stars from all directions. In addition, the researchers saw jets which indicate that there may be small disks, invisible to the telescope. Also, it would appear that some hundred years ago the disk around one of three stars studied rotated. In short: chaos.

    Matter from multiple directions

    The researchers concluded that these young, high-mass stars, in their early years at least, are formed by matter coming from multiple directions and at an irregular speed. This is different for small stars, where there is a stable influx of matter. The astronomers suspect that that multiple supply of matter is probably the reason that no large, stable disks can be created.

    “Such an unstructured influx model had previously been proposed, on the basis of computer simulations. We now have the first observational evidence to support the model”, says Goddi.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Universiteit Leiden Heijmans onderhoudt

    Leiden University [Universiteit Leiden] (NL) is a public research university in Leiden, Netherlands. Founded in 1575 by William, Prince of Orange as a reward to the town of Leiden for its defense against Spanish attacks during the Eighty Years’ War, it is the oldest institution of higher education in the Netherlands.

    Known for its historic foundations and emphasis on the social sciences, the university came into particular prominence during the Dutch Golden Age, when scholars from around Europe were attracted to the Dutch Republic due to its climate of intellectual tolerance and Leiden’s international reputation. During this time, Leiden became the home to individuals such as René Descartes, Rembrandt, Christiaan Huygens, Hugo Grotius, Baruch Spinoza and Baron d’Holbach.

    The university has seven academic faculties and over fifty subject departments while housing more than 40 national and international research institutes. Its historical primary campus consists of buildings scattered across the college town of Leiden, while a second campus located in The Hague houses a liberal arts college and several of its faculties. It is a member of the Coimbra Group, the Europaeum, and a founding member of the League of European Research Universities.

    Leiden University consistently ranks among the top 100 universities in the world by major ranking tables. It was placed top 50 worldwide in thirteen fields of study in the 2020 QS World University Rankings: classics & ancient history, politics, archaeology, anthropology, history, pharmacology, law, public policy, public administration, religious studies, arts & humanities, linguistics, modern languages and sociology.

    The school has produced twenty-one Spinoza Prize Laureates and sixteen Nobel Laureates, including Enrico Fermi and Albert Einstein. It is closely associated with the Dutch Royal Family, with Queen Juliana, Queen Beatrix and King Willem-Alexander being alumni. Ten prime ministers of the Netherlands were also Leiden University alumni. Internationally, it is associated with nine foreign leaders, among them John Quincy Adams (the 6th President of the United States), two NATO Secretaries General, a President of the International Court of Justice, and a Prime Minister of the United Kingdom.

    In 1575, the emerging Dutch Republic did not have any universities in its northern heartland. The only other university in the Habsburg Netherlands was the University of Leuven [Universiteit Leuven](BE) in southern Leuven, firmly under Spanish control. The scientific renaissance had begun to highlight the importance of academic study, so Prince William founded the first Dutch university in Leiden, to give the Northern Netherlands an institution that could educate its citizens for religious purposes, but also to give the country and its government educated men in other fields. It is said the choice fell on Leiden as a reward for the heroic defence of Leiden against Spanish attacks in the previous year. Ironically, the name of Philip II of Spain, William’s adversary, appears on the official foundation certificate, as he was still the de jure count of Holland. Philip II replied by forbidding any subject to study in Leiden. Originally located in the convent of St Barbara, the university moved to the Faliede Bagijn Church in 1577 (now the location of the University museum) and in 1581 to the convent of the White Nuns, a site which it still occupies, though the original building was destroyed by fire in 1616.

    The presence within half a century of the date of its foundation of such scholars as Justus Lipsius; Joseph Scaliger; Franciscus Gomarus; Hugo Grotius; Jacobus Arminius; Daniel Heinsius; and Gerhard Johann Vossius rapidly made Leiden university into a highly regarded institution that attracted students from across Europe in the 17th century. Renowned philosopher Baruch Spinoza was based close to Leiden during this period and interacted with numerous scholars at the university. The learning and reputation of Jacobus Gronovius; Herman Boerhaave; Tiberius Hemsterhuis; and David Ruhnken, among others, enabled Leiden to maintain its reputation for excellence down to the end of the 18th century.

    At the end of the nineteenth century, Leiden University again became one of Europe’s leading universities. In 1896 the Zeeman effect was discovered there by Pieter Zeeman and shortly afterwards given a classical explanation by Hendrik Antoon Lorentz. At the world’s first university low-temperature laboratory, professor Heike Kamerlingh Onnes achieved temperatures of only one degree above absolute zero of −273 degrees Celsius. In 1908 he was also the first to succeed in liquifying helium and can be credited with the discovery of the superconductivity in metals.

    The University Library, which has more than 5.2 million books and fifty thousand journals, also has a number of internationally renowned special collections of western and oriental manuscripts, printed books, archives, prints, drawings, photographs, maps, and atlases. It houses the largest collections worldwide on Indonesia and the Caribbean. The research activities of the Scaliger Institute focus on these special collections and concentrate particularly on the various aspects of the transmission of knowledge and ideas through texts and images from antiquity to the present day.

    In 2005 the manuscript of Einstein on the quantum theory of the monatomic ideal gas (the Einstein-Bose condensation) was discovered in one of Leiden’s libraries.

    The portraits of many famous professors since the earliest days hang in the university aula, one of the most memorable places, as Niebuhr called it, in the history of science.

    In 2012 Leiden entered into a strategic alliance with Delft University of Technology [Technische Universiteit Delft](NL) and Erasmus University Rotterdam [Erasmus Universiteit Rotterdam](NL)in order for the universities to increase the quality of their research and teaching. The university is also the unofficial home of the Bilderberg Group, a meeting of high-level political and economic figures from North America and Europe.

    The university has no central campus; its buildings are spread over the city. Some buildings, like the Gravensteen, are very old, while buildings like Lipsius and Gorlaeus are much more modern.

    Among the institutions affiliated with the university are The KITLV or Royal Netherlands Institute of Southeast Asian and Caribbean Studies [Koninklijk Instituut voor Taal-, Land- en Volkenkunde] (NL) (founded in 1851); the observatory 1633; the natural history museum; with a very complete anatomical cabinet; the Rijksmuseum van Oudheden (National Museum of Antiquities) with specially valuable Egyptian and Indian departments; a museum of Dutch antiquities from the earliest times; and three ethnographical museums, of which the nucleus was Philipp Franz von Siebold’s Japanese collections. The anatomical and pathological laboratories of the university are modern, and the museums of geology and mineralogy have been restored.

    The Hortus Botanicus (botanical garden) is the oldest botanical garden in the Netherlands, and one of the oldest in the world. Plants from all over the world have been carefully cultivated here by experts for more than four centuries. The Clusius garden (a reconstruction), the 18th century Orangery with its monumental tub plants, the rare collection of historical trees hundreds of years old, the Japanese Siebold Memorial Museum symbolising the historical link between East and West, the tropical greenhouses with their world class plant collections, and the central square and Conservatory exhibiting exotic plants from South Africa and southern Europe.

     
  • richardmitnick 12:05 pm on May 10, 2021 Permalink | Reply
    Tags: "New sub-Neptune exoplanet discovered by astronomers", Astronomy, , , , , Newly found alien world designated TOI-269 b,   

    From phys.org : “New sub-Neptune exoplanet discovered by astronomers” 

    From phys.org

    May 10, 2021
    Tomasz Nowakowski

    1
    TESS target pixel file image of TOI-269 in Sector 3. Credit: Cointepas et al., 2021.

    A team of astronomers from the Grenoble Alps University [Université Grenoble Alpes] (FR) and elsewhere, reports the detection of a new sub-Neptune exoplanet orbiting an M dwarf star. The newly found alien world, designated TOI-269 b, is nearly three times larger than the Earth. The finding was detailed in a paper published April 30 in Astronomy & Astrophysics.

    NASA’s Transiting Exoplanet Survey Satellite (TESS) is conducting a survey of about 200,000 of the brightest stars near the sun with the aim of searching for transiting exoplanets. So far, it has identified nearly 2,700 candidate exoplanets (TESS Objects of Interest, or TOI), of which 125 have been confirmed so far.

    National Aeronautics Space Agency (US)/Massachusetts Institute of Technology (US) TESS

    Additional partners include Northrop Grumman, based in Falls Church, Virginia; NASA’s Ames Research Center in California’s Silicon Valley; the Center for Astrophysics – Harvard and Smithsonian; MIT Lincoln Laboratory; and the NASA Space Telescope Science Institute (US) in Baltimore.

    TOI-269 (also known as TIC 220479565) is an M dwarf located some 186 light years away from the Earth. It has a spectral type of M2V, radius of about 0.4 solar radii and mass of approximately 0.39 solar masses. The star’s effective temperature is estimated to be some 3,500 K, while its metallicity is at a level of around -0.29.

    TOI-269 was observed by the TESS spacecraft between September 2018 and July 2019, which resulted in the identification of a transit signal in its light curve. Now, using various ground-based telescopes, including the Exoplanets in Transits and their Atmospheres (ExTrA) facility at La Silla Observatory in Chile, a group of astronomers led by Marion Cointepas has confirmed the planetary nature of this signal.

    “We present the confirmation of a new sub-Neptune close to the transition between super-Earths and sub-Neptunes transiting the M2 dwarf TOI-269,” the researchers wrote in the paper.

    The newly detected alien world has a radius of about 2.77 Earth radii, is 8.8 times more massive than our planet and orbits its host every 3.7 days. The observations show that TOI-269 b is separated by around 0.0345 AU from the parent star and its equilibrium temperature is most likely at a level of 530 K.

    What is interesting is that TOI-269 b has an unusually high orbital eccentricity—approximately 0.425. This is one of the highest eccentricities among the known extrasolar planets with periods below 10 days and suggests that the object may have recently arrived in its position.

    “We surmise TOI-269 b may have acquired its high eccentricity as it migrated inward through planet-planet interactions,” the astronomers wrote in the study.

    Moreover, the density of TOI-269 b, calculated to be some 2.28 g/cm3, is significantly lower than the typical density of rock planets and indicates the presence of a volatile envelope. Such low density and its other properties make it an interesting target for atmospheric characterization in order to compare it with other sub-Neptunes. In particular, the authors of the paper propose to probe the atmosphere of TOI-269 b with transmission spectroscopy to shed more light on its composition.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    About Science X in 100 words
    Science X™ is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004 (Physorg.com), Science X’s readership has grown steadily to include 5 million scientists, researchers, and engineers every month. Science X publishes approximately 200 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Science X community members enjoy access to many personalized features such as social networking, a personal home page set-up, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.
    Mission 12 reasons for reading daily news on Science X Organization Key editors and writersinclude 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

     
  • richardmitnick 5:28 pm on May 9, 2021 Permalink | Reply
    Tags: "Black Hole Pairs Found in Distant Merging Galaxies Provide Crucial Insight Into the Early Universe", Astronomy, , , ,   

    From SciTechDaily : “Black Hole Pairs Found in Distant Merging Galaxies Provide Crucial Insight Into the Early Universe” 

    From SciTechDaily

    May 9, 2021

    1
    Astronomers have discovered two pairs of quasars in the distant Universe, about 10 billion light-years from Earth. In each pair, the two quasars are separated by only about 10,000 light-years, making them closer together than any other double quasars found so far away. The proximity of the quasars in each pair suggests that they are located within two merging galaxies. Quasars are the intensely bright cores of distant galaxies, powered by the feeding frenzies of supermassive black holes. One of the distant double quasars is depicted in this illustration. Credit: J. da Silva/ International Gemini Observatory (US)/NOIRLab (US)//National Science Foundation (US)/ Association of Universities for Research in Astronomy (US).

    Gemini North spectroscopically resolves a pair of quasars that are closer together than any yet discovered in the distant Universe.

    Astronomers have found two close pairs of quasars in the distant Universe. Follow-up observations with Gemini North spectroscopically resolved one of the distant quasar pairs, after their discovery with the Hubble Space Telescope and Gaia spacecraft. These quasars are closer together than any pair of quasars found so far away, providing strong evidence for the existence of supermassive black hole pairs as well as crucial insight into galaxy mergers in the early Universe.

    The quasars in each of the two pairs are separated by just over 10,000 light-years, suggesting that they belong to two merging galaxies.[1] Double quasars are scientifically interesting but rare objects — particularly in the most distant reaches of the Universe — and these are the most distant quasars found that are so close together. We see these quasar pairs as they existed roughly 10 billion years ago.[2]

    “We estimate that in the distant Universe, for every one thousand quasars, there is one double quasar. So finding these double quasars is like finding a needle in a haystack,” commented Yue Shen, an astronomer at the University of Illinois (US) and lead author of the paper announcing this discovery.


    Black Hole Pairs Found in Distant Merging Galaxies.

    Quasars are the intensely bright cores of distant galaxies, powered by the feeding frenzies of supermassive black holes.[3] These energetic objects profoundly affect galaxy formation and evolution, making observations of quasar pairs in the early Universe a unique way for astronomers to investigate the evolution of merging galaxies. Quasar pairs also provide a natural laboratory in which to study the processes leading to the formation of binary supermassive black holes.

    “This truly is the first sample of dual quasars at the peak epoch of galaxy formation that we can use to probe ideas about how supermassive black holes come together to eventually form a binary,” elaborated team member Nadia Zakamska of Johns Hopkins University (US).

    Finding the two quasar pairs was a daunting challenge, requiring a new method that combined data from several space and ground-based telescopes, including the international Gemini Observatory, a Program of NSF’s NOIRLab. Quasar pairs at such large distances can only be resolved by sharp-eyed telescopes such as Hubble or Gemini, but observing time on these telescopes is too valuable to use it to sweep through large areas of the night sky in search of rare astronomical objects.

    2
    Astronomers have discovered two pairs of quasars in the distant Universe, about 10 billion light-years from Earth, annotated. In each pair, the two quasars are separated by only about 10,000 light-years, making them closer together than any other double quasars found so far away. The proximity of the quasars in each pair suggests that they are located within two merging galaxies. Quasars are the intensely bright cores of distant galaxies, powered by the feeding frenzies of supermassive black holes. One of the distant double quasars is depicted in this illustration. Credit: J. da Silva/ International Gemini Observatory/NOIRLab/NSF/AURA/

    To focus their search, the researchers first identified 15 quasars for further investigation using the Sloan Digital Sky Survey (US), a three-dimensional map of objects in the night sky.

    From this list of 15 quasars, they then used observations from the Gaia spacecraft to identify four potential quasar pairs.[4] Finally, these candidates were imaged with the Hubble Space Telescope, which visually resolved two quasar pairs, giving this novel method a success rate of 50%.

    The team then used the Gemini Multi-Object Spectrograph (GMOS) on Gemini North (located on Maunakea in Hawai‘i) to verify the discovery and further investigate one of the quasar pairs.[5]

    The combination of the sensitivity of GMOS and superb observing conditions allowed the team to resolve individual spectra from both quasars in the pair.[6] These spectra provided the team with independent measurements of the distance to the quasars and their composition, as well as confirming that the two quasars are indeed a pair rather than a chance alignment of a single quasar with a foreground star.

    “The Gemini observations were critically important to our success because they provided spatially resolved spectra to yield redshifts and spectroscopic confirmations simultaneously for both quasars in a double,” explained Yu-Ching Chen, a graduate student at the University of Illinois (US) who is on the discovery team. “This method unambiguously rejected interlopers due to chance superpositions such as from unassociated star-quasar systems.”

    While the team members are confident in their discovery, there is a small possibility that they have actually observed double images of single quasars. These astronomical doppelgängers can be formed by gravitational lensing, which occurs when an intervening massive galaxy distorts and splits the light from a distant object, often resulting in multiple images of that object.

    The researchers are convinced that this is highly unlikely, however, as they could not detect any foreground galaxies in their observations.

    With their method successfully demonstrated, the researchers now plan to search for more quasar pairs, building up a census of double quasars in the early Universe.

    “This proof of concept really demonstrates that our targeted search for dual quasars is very efficient,” concluded Hsiang-Chih Hwang, a graduate student at John Hopkins University (US) and the principal investigator of the Hubble observations. “It opens a new direction where we can accumulate a lot more interesting systems to follow up, which astronomers weren’t able to do with previous techniques or datasets.”

    “This exciting investigation illustrates yet again the discovery potential of combining archived survey data with new, focused observations from state-of-the-art facilities,” said Martin Still, Gemini Program Officer at National Science Foundation (US). “The international Gemini Observatory proved to be the ideal instrument to confirm the identity of these black holes and characterize their environment.”

    Notes

    1.By comparison, our home galaxy, the Milky Way, is around 100,000 light-years across.
    2.Distance and time are entwined in astronomy. The farther away astronomical objects are, the longer it takes for their light to reach us on Earth. In the Solar System, for example, it takes sunlight just over 8 minutes to reach Earth, meaning we see the Sun as it was 8 minutes ago. On a far grander scale, we can observe distant galaxies as they were billions of years ago — offering astronomers a window onto the early Universe. One pair of quasars has a redshift of 2.17, and the pair that Gemini spectroscopically resolved has a redshift of 2.95.
    3.As these black holes consume infalling matter from their surroundings, they produce an intense torrent of radiation across the electromagnetic spectrum. The amount of energy released is enormous, enough to outshine entire galaxies, and makes quasars bright beacons in the night sky.
    4.The European Space Agency’s Gaia spacecraft measures the positions and distances of astronomical objects with painstaking precision. Gaia measures how the positions of stars subtly shift as Earth orbits the Sun, an effect known as parallax. Distant quasars are much too far from Earth to have measurable parallaxes, but the researchers realized that quasar pairs could mimic the motion of nearby stars. While these quasar pairs appear to be single points in the Gaia data, random fluctuations in the brightness of each quasar could make the pair resemble a nearby star “jiggling” from side to side. Identifying quasars with this apparent jiggling motion provided the team with a list of quasar pair candidates for further investigation with Hubble.
    5.The Gemini observations were awarded through Director’s Discretionary Time (DDT), a small portion of observing time that is reserved for testing new methods or responding to unexpected astronomical events. DDT can also be used for high-risk, high-reward observations — such as the ones in this discovery.
    6.The emission spectrum of an astronomical object is a measure of how intensely the object emits light at different wavelengths. This can provide astronomers with insights into the properties of an object, such as its chemical composition, mass, temperature, and distance.

    More information

    This research was presented in the paper in the journal Nature Astronomy.

    The team is composed of Yue Shen (Department of Astronomy and National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign (US)), Yu-Ching Chen (Department of Astronomy, University of Illinois at Urbana-Champaign), Hsiang-Chih Hwang (Department of Physics and Astronomy, Johns Hopkins University (US)), Xin Liu (Department of Astronomy and National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign), Nadia Zakamska (Department of Physics and Astronomy, Johns Hopkins University), Masamune Oguri (Research Center for the Early Universe, Department of Physics, and Kavli Institute for the Physics and Mathematics of the Universe (JP), University of Tokyo[(東京大] (JP)), Jennifer I-Hsiu Li (Department of Astronomy, University of Illinois at Urbana-Champaign), Joseph Lazio (NASA JPL-Caltech (US), California Institute of Technology (US)), and Peter Breiding (Department of Physics and Astronomy, West Virginia University (US) ).

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 2:40 pm on May 9, 2021 Permalink | Reply
    Tags: "These 5 multi-star systems have habitable zones", , Astronomy, , , , , ,   

    From University of Washington (US) and From NYU Abu Dhabi via EarthSky : “These 5 multi-star systems have habitable zones” 

    From University of Washington (US)

    and


    From NYU Abu Dhabi

    NYU BLOC

    New York University

    via

    1

    EarthSky

    Astronomers have identified 5 multi-star systems that have stable habitable zones. This means that any rocky worlds that may exist in those zones could potentially have life.

    Planets orbiting in their stars’ Goldilocks zones or habitable zones are not too close and not too far from their stars. They’re in a place where water might exist as a liquid on a rocky planet. We tend to think of a planet in the Goldilocks zone of a single star, similar to Earth in our solar system. But what about multiple star systems? Do habitable zones exist in systems of two, three or more stars? Astronomers from New York University Abu Dhabi and the University of Washington show that it is indeed possible. Using a new mathematical model, they found that at least five such known systems – all within 6,000 light-years of Earth – have stable habitable zones where hypothetical planets could harbor life.

    The peer-reviewed study was published in Frontiers in Astronomy and Space Sciences on April 15, 2021, and reported in Frontiers Science News on the same day.

    These findings are important because stable habitable zones would greatly increase the chances of life evolving on any planets that orbit within them. As lead author Nikolaos Georgakarakos said:

    “Life is far most likely to evolve on planets located within their system’s habitable zone, just like Earth. Here we investigate whether a habitable zone exists within nine known systems with two or more stars orbited by giant planets. We show for the first time that Kepler-34, -35, -64, -413 and especially Kepler-38 are suitable for hosting Earth-like worlds with oceans.”

    2
    Binary star systems, where two stars orbit each other, are common in our galaxy, and are thought to make up to 3/4 of all star systems. Image via Mark Garlick/ Science Photo Library/ New Scientist.

    The astronomers studied nine different multi-star systems, and found five of those – Kepler-34, Kepler-35, Kepler-38, Kepler-64 (PH 1) and Kepler-413 – to be the most likely to contain permanent habitable zones with worlds that could host life. Of those, they found Kepler-35, Kepler-38 and Kepler-64 to offer the most benign environment for possible life.

    The five star systems are located at distances between 2,764 and 5,933 light-years from Earth, in the constellations Lyra the Harp and Cygnus the Swan. Kepler-64 has at least four stars orbiting each other (!), and the rest are binary star systems with two stars.

    3
    The Kepler-64 system, also known as PH-1, has at least 4 stars, and is one of the 5 multi-star systems that could contain habitable planets. Image via Open Exoplanet Catalogue.

    It is important to note that while smaller rocky planets haven’t yet been found in these star systems, they are all known to have at least one planet as large as Neptune or bigger. This makes it likely that at least some of them also have smaller planets, since most planetary systems found so far tend to have planets of various sizes, like ours.

    Generally, multi-star systems are thought to be less likely to have habitable planets, due to all the intricate gravitational interactions going on, especially those with giant planets. But now this new research shows that some of them could be stable enough for life to originate on habitable zone planets. Co-author Ian Dobbs-Dixon said:

    “We’ve known for a while that binary star systems without giant planets have the potential to harbor habitable worlds. What we have shown here is that in a large fraction of those systems Earth-like planets can remain habitable even in the presence of giant planets.”

    This is good news for the prospects of finding life in such systems, since, for example, double star systems are estimated to compose up to 3/4 of all star systems. Our single star sun is actually in a minority.

    How did the researchers come to these conclusions? Their work is based on previous studies, with the goal of determining the existence, location, and extent of the permanent habitable zone in binary systems with giant planets. The researchers take various factors into consideration, such as the classification, mass, luminosity and spectral energy distribution of the stars, the added gravitational effect of the giant planet and the geometry of the system; the orbital eccentricity (how narrow an ellipse the orbit is), semi-major axis and period of the hypothetical planet’s orbit. They also look at the intensity of solar radiation from the star hitting the planet’s atmosphere and the planet’s climate inertia, the speed at which the atmosphere responds to changes in irradiation.

    By doing this, they determined that those five multi-star systems do indeed have permanent habitable zones. Each zone is between 0.4 and 1.5 astronomical units (AU) wide. One AU is the mean distance between Earth and the sun, about 93 million miles (150 million km).

    Other binary star systems are not as promising, however. In the Kepler-453 and Kepler-1661 systems, the habitable zones are estimated to be only about half the size as those of the other five. Two others, Kepler-16 and Kepler-1647, are unlikely to have any potentially habitable planets at all. As noted by co-author Siegfried Eggl:

    “In contrast, the extent of the habitable zones in two further binary systems, Kepler-453 and -1661, is roughly half the expected size, because the giant planets in those systems would destabilize the orbits of additional habitable worlds. For the same reason Kepler-16 and -1647 cannot host additional habitable planets at all. Of course, there is the possibility that life exists outside the habitable zone or on moons orbiting the giant planets themselves, but that may be less desirable real-estate for us.”

    So which system has the most potential for supporting life? Georgakarakos said:

    “Our best candidate for hosting a world that is potentially habitable is the binary system Kepler-38, approximately 3,970 light-years from Earth, and known to contain a Neptune-sized planet.

    Our study confirms that even binary star systems with giant planets are hot targets in the search for Earth 2.0. Watch out Tatooine, we are coming!”

    Habitable worlds are not limited to the habitable zone, however. In our own solar system there are multiple icy moons with subsurface oceans that could potentially be home to some kind of life. Europa, Enceladus and Titan in particular are now prime targets for further exploration. The fact that they are common in our solar system makes it reasonable that similar kinds of moons may also exist in some of these multi-star systems, and elsewhere.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    New York University Abu Dhabi (NYUAD, Arabic: جامعة نيويورك أبوظبي‎) is a degree granting, portal campus of New York University serving as a private liberal arts college, located in Abu Dhabi, United Arab Emirates.

    Together with New York University in New York City and New York University Shanghai, the portal campus is part of NYU’s Global Network University. It opened in 2008 at a temporary site for conferences and cultural events. The academic program opened in September 2010 at the university’s provisional downtown site and was later moved in 2014 to the permanent campus built on Saadiyat Island, Abu Dhabi.

    In 2019, the university announced that it had produced “14 Rhodes Scholars in just seven years, more Rhodes Scholars per student than any university in the world.”

    NYU Campus

    More than 175 years ago, Albert Gallatin, the distinguished statesman who served as secretary of the treasury under Presidents Thomas Jefferson and James Madison, declared his intention to establish “in this immense and fast-growing city … a system of rational and practical education fitting for all and graciously opened to all.” Founded in 1831, New York University is now one of the largest private universities in the United States. Of the more than 3,000 colleges and universities in America, New York University is one of only 60 member institutions of the distinguished Association of American Universities (US).

    u-washington-campus

    The University of Washington (US) is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.

    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

    The University of Washington (US) is a public research university in Seattle, Washington, United States. Founded in 1861, University of Washington is one of the oldest universities on the West Coast; it was established in downtown Seattle approximately a decade after the city’s founding to aid its economic development. Today, the university’s 703-acre main Seattle campus is in the University District above the Montlake Cut, within the urban Puget Sound region of the Pacific Northwest. The university has additional campuses in Tacoma and Bothell. Overall, University of Washington encompasses over 500 buildings and over 20 million gross square footage of space, including one of the largest library systems in the world with more than 26 university libraries, as well as the UW Tower, lecture halls, art centers, museums, laboratories, stadiums, and conference centers. The university offers bachelor’s, master’s, and doctoral degrees through 140 departments in various colleges and schools, sees a total student enrollment of roughly 46,000 annually, and functions on a quarter system.

    University of Washington is a member of the Association of American Universities(US) and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation(US), UW spent $1.41 billion on research and development in 2018, ranking it 5th in the nation. As the flagship institution of the six public universities in Washington state, it is known for its medical, engineering and scientific research as well as its highly competitive computer science and engineering programs. Additionally, University of Washington continues to benefit from its deep historic ties and major collaborations with numerous technology giants in the region, such as Amazon, Boeing, Nintendo, and particularly Microsoft. Paul G. Allen, Bill Gates and others spent significant time at Washington computer labs for a startup venture before founding Microsoft and other ventures. The University of Washington’s 22 varsity sports teams are also highly competitive, competing as the Huskies in the Pac-12 Conference of the NCAA Division I, representing the United States at the Olympic Games, and other major competitions.

    The university has been affiliated with many notable alumni and faculty, including 21 Nobel Prize laureates and numerous Pulitzer Prize winners, Fulbright Scholars, Rhodes Scholars and Marshall Scholars.

    In 1854, territorial governor Isaac Stevens recommended the establishment of a university in the Washington Territory. Prominent Seattle-area residents, including Methodist preacher Daniel Bagley, saw this as a chance to add to the city’s potential and prestige. Bagley learned of a law that allowed United States territories to sell land to raise money in support of public schools. At the time, Arthur A. Denny, one of the founders of Seattle and a member of the territorial legislature, aimed to increase the city’s importance by moving the territory’s capital from Olympia to Seattle. However, Bagley eventually convinced Denny that the establishment of a university would assist more in the development of Seattle’s economy. Two universities were initially chartered, but later the decision was repealed in favor of a single university in Lewis County provided that locally donated land was available. When no site emerged, Denny successfully petitioned the legislature to reconsider Seattle as a location in 1858.

    In 1861, scouting began for an appropriate 10 acres (4 ha) site in Seattle to serve as a new university campus. Arthur and Mary Denny donated eight acres, while fellow pioneers Edward Lander, and Charlie and Mary Terry, donated two acres on Denny’s Knoll in downtown Seattle. More specifically, this tract was bounded by 4th Avenue to the west, 6th Avenue to the east, Union Street to the north, and Seneca Streets to the south.

    John Pike, for whom Pike Street is named, was the university’s architect and builder. It was opened on November 4, 1861, as the Territorial University of Washington. The legislature passed articles incorporating the University, and establishing its Board of Regents in 1862. The school initially struggled, closing three times: in 1863 for low enrollment, and again in 1867 and 1876 due to funds shortage. University of Washington awarded its first graduate Clara Antoinette McCarty Wilt in 1876, with a bachelor’s degree in science.

    19th century relocation

    By the time Washington state entered the Union in 1889, both Seattle and the University had grown substantially. University of Washington’s total undergraduate enrollment increased from 30 to nearly 300 students, and the campus’s relative isolation in downtown Seattle faced encroaching development. A special legislative committee, headed by University of Washington graduate Edmond Meany, was created to find a new campus to better serve the growing student population and faculty. The committee eventually selected a site on the northeast of downtown Seattle called Union Bay, which was the land of the Duwamish, and the legislature appropriated funds for its purchase and construction. In 1895, the University relocated to the new campus by moving into the newly built Denny Hall. The University Regents tried and failed to sell the old campus, eventually settling with leasing the area. This would later become one of the University’s most valuable pieces of real estate in modern-day Seattle, generating millions in annual revenue with what is now called the Metropolitan Tract. The original Territorial University building was torn down in 1908, and its former site now houses the Fairmont Olympic Hotel.

    The sole-surviving remnants of Washington’s first building are four 24-foot (7.3 m), white, hand-fluted cedar, Ionic columns. They were salvaged by Edmond S. Meany, one of the University’s first graduates and former head of its history department. Meany and his colleague, Dean Herbert T. Condon, dubbed the columns as “Loyalty,” “Industry,” “Faith”, and “Efficiency”, or “LIFE.” The columns now stand in the Sylvan Grove Theater.

    20th century expansion

    Organizers of the 1909 Alaska-Yukon-Pacific Exposition eyed the still largely undeveloped campus as a prime setting for their world’s fair. They came to an agreement with Washington’s Board of Regents that allowed them to use the campus grounds for the exposition, surrounding today’s Drumheller Fountain facing towards Mount Rainier. In exchange, organizers agreed Washington would take over the campus and its development after the fair’s conclusion. This arrangement led to a detailed site plan and several new buildings, prepared in part by John Charles Olmsted. The plan was later incorporated into the overall University of Washington campus master plan, permanently affecting the campus layout.

    Both World Wars brought the military to campus, with certain facilities temporarily lent to the federal government. In spite of this, subsequent post-war periods were times of dramatic growth for the University. The period between the wars saw a significant expansion of the upper campus. Construction of the Liberal Arts Quadrangle, known to students as “The Quad,” began in 1916 and continued to 1939. The University’s architectural centerpiece, Suzzallo Library, was built in 1926 and expanded in 1935.

    After World War II, further growth came with the G.I. Bill. Among the most important developments of this period was the opening of the School of Medicine in 1946, which is now consistently ranked as the top medical school in the United States. It would eventually lead to the University of Washington Medical Center, ranked by U.S. News and World Report as one of the top ten hospitals in the nation.

    In 1942, all persons of Japanese ancestry in the Seattle area were forced into inland internment camps as part of Executive Order 9066 following the attack on Pearl Harbor. During this difficult time, university president Lee Paul Sieg took an active and sympathetic leadership role in advocating for and facilitating the transfer of Japanese American students to universities and colleges away from the Pacific Coast to help them avoid the mass incarceration. Nevertheless many Japanese American students and “soon-to-be” graduates were unable to transfer successfully in the short time window or receive diplomas before being incarcerated. It was only many years later that they would be recognized for their accomplishments during the University of Washington’s Long Journey Home ceremonial event that was held in May 2008.

    From 1958 to 1973, the University of Washington saw a tremendous growth in student enrollment, its faculties and operating budget, and also its prestige under the leadership of Charles Odegaard. University of Washington student enrollment had more than doubled to 34,000 as the baby boom generation came of age. However, this era was also marked by high levels of student activism, as was the case at many American universities. Much of the unrest focused around civil rights and opposition to the Vietnam War. In response to anti-Vietnam War protests by the late 1960s, the University Safety and Security Division became the University of Washington Police Department.

    Odegaard instituted a vision of building a “community of scholars”, convincing the Washington State legislatures to increase investment in the University. Washington senators, such as Henry M. Jackson and Warren G. Magnuson, also used their political clout to gather research funds for the University of Washington. The results included an increase in the operating budget from $37 million in 1958 to over $400 million in 1973, solidifying University of Washington as a top recipient of federal research funds in the United States. The establishment of technology giants such as Microsoft, Boeing and Amazon in the local area also proved to be highly influential in the University of Washington’s fortunes, not only improving graduate prospects but also helping to attract millions of dollars in university and research funding through its distinguished faculty and extensive alumni network.

    21st century

    In 1990, the University of Washington opened its additional campuses in Bothell and Tacoma. Although originally intended for students who have already completed two years of higher education, both schools have since become four-year universities with the authority to grant degrees. The first freshman classes at these campuses started in fall 2006. Today both Bothell and Tacoma also offer a selection of master’s degree programs.

    In 2012, the University began exploring plans and governmental approval to expand the main Seattle campus, including significant increases in student housing, teaching facilities for the growing student body and faculty, as well as expanded public transit options. The University of Washington light rail station was completed in March 2015, connecting Seattle’s Capitol Hill neighborhood to the University of Washington Husky Stadium within five minutes of rail travel time. It offers a previously unavailable option of transportation into and out of the campus, designed specifically to reduce dependence on private vehicles, bicycles and local King County buses.

    University of Washington has been listed as a “Public Ivy” in Greene’s Guides since 2001, and is an elected member of the American Association of Universities. Among the faculty by 2012, there have been 151 members of American Association for the Advancement of Science, 68 members of the National Academy of Sciences(US), 67 members of the American Academy of Arts and Sciences, 53 members of the National Academy of Medicine(US), 29 winners of the Presidential Early Career Award for Scientists and Engineers, 21 members of the National Academy of Engineering(US), 15 Howard Hughes Medical Institute Investigators, 15 MacArthur Fellows, 9 winners of the Gairdner Foundation International Award, 5 winners of the National Medal of Science, 7 Nobel Prize laureates, 5 winners of Albert Lasker Award for Clinical Medical Research, 4 members of the American Philosophical Society, 2 winners of the National Book Award, 2 winners of the National Medal of Arts, 2 Pulitzer Prize winners, 1 winner of the Fields Medal, and 1 member of the National Academy of Public Administration. Among UW students by 2012, there were 136 Fulbright Scholars, 35 Rhodes Scholars, 7 Marshall Scholars and 4 Gates Cambridge Scholars. UW is recognized as a top producer of Fulbright Scholars, ranking 2nd in the US in 2017.

    The Academic Ranking of World Universities (ARWU) has consistently ranked University of Washington as one of the top 20 universities worldwide every year since its first release. In 2019, University of Washington ranked 14th worldwide out of 500 by the ARWU, 26th worldwide out of 981 in the Times Higher Education World University Rankings, and 28th worldwide out of 101 in the Times World Reputation Rankings. Meanwhile, QS World University Rankings ranked it 68th worldwide, out of over 900.

    U.S. News & World Report ranked University of Washington 8th out of nearly 1,500 universities worldwide for 2021, with University of Washington’s undergraduate program tied for 58th among 389 national universities in the U.S. and tied for 19th among 209 public universities.

    In 2019, it ranked 10th among the universities around the world by SCImago Institutions Rankings. In 2017, the Leiden Ranking, which focuses on science and the impact of scientific publications among the world’s 500 major universities, ranked University of Washington 12th globally and 5th in the U.S.

    In 2019, Kiplinger Magazine’s review of “top college values” named University of Washington 5th for in-state students and 10th for out-of-state students among U.S. public colleges, and 84th overall out of 500 schools. In the Washington Monthly National University Rankings University of Washington was ranked 15th domestically in 2018, based on its contribution to the public good as measured by social mobility, research, and promoting public service.

     
  • richardmitnick 1:53 pm on May 9, 2021 Permalink | Reply
    Tags: "How do you measure the mass of a star?", Astronomy, , , ,   

    From EarthSky : “How do you measure the mass of a star?” 

    1

    From EarthSky

    May 9, 2021
    Bruce McClure
    Theresa Wiegert

    Binary stars – a star system consisting of two stars – are extremely useful. They give all the information needed to measure the stars masses’. Here is how.

    1
    Artist’s concept of the binary star system of Sirius A and its small blue companion, Sirius B, a hot white dwarf. The 2 stars revolve around each other every 50 years. Credit: G. Bacon/ European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU).

    There are lots of binary stars – two stars revolving around a common center of mass – populating the starry sky. In fact, a large majority of all stars we see (around 85%) are part of a multiple star system of two or more stars! This is fortunate for astronomers because two stars together provide an easy way to measure their respective masses.

    To find the masses of stars in double systems, you need to know only two things: the semi-major axis or mean distance between the two stars (often expressed in astronomical units, which is the average distance between the Earth and sun), and the time it takes for the two stars to revolve around one another (aka the orbital period, often expressed in Earth-years). With those two observations alone, astronomers are able to calculate the stars’ masses, which they typically do in units of solar masses (that is, a measure of how many of our suns the star “weighs”. One solar mass is 1.989 x 1030 kilograms or about 333,000 times the mass of our planet Earth.).

    We will use Sirius, the brightest star of the nighttime sky, as an example. It looks like a single star to the unaided eye, but it, too, is a binary star (and you can see it yourself, if you have a small telescope). The two stars orbit each other with a period of about 50 Earth-years, at an average distance of about 20 astronomical units (AU). The brighter of the two is called Sirius A, while its fainter companion is known as Sirius B (The Pup).

    2
    Michael Teoh at Heng Ee Observatory in Penang, Malaysia, captured this photo of Sirius A and Sirius B (a white dwarf) on January 26, 2021. He used 30 1-second exposures and stacked them together to make faint Sirius B appear. Thank you, Michael!

    So how would astronomers find the masses of Sirius A and B? They would simply plug in the mean distance between the two stars and their orbital period into the easy-to-use formula below, first derived by Johannes Kepler in 1618, and known as Kepler’s Third Law of Motion:

    Total mass = distance^3/period^2

    Here, the distance is the mean distance between the stars (or, more precisely, the semi-major axis) in astronomical units, so 20, and the orbital period is 50 years.

    The resulting total mass is about three solar masses. Note that this is not the mass of one star but of both stars added together. So, we know that the whole binary system equals three solar masses.

    The resulting total mass is about three solar masses. Note that this is not the mass of one star but of both stars added together. So, we know that the whole binary system equals three solar masses.

    To find out the mass of each individual star, astronomers need to know the mean distance of each star from the barycenter: their common center of mass. To learn this, once again they rely on their observations.

    It turns out that Sirius B, the less massive star, is about twice as far from the barycenter than is Sirius A. That means Sirius B has about half the mass of Sirius A.

    Thus, if you know the whole system is about three solar masses, you can deduce that the mass of Sirius A is about two solar masses, while Sirius B pretty much equals our sun in mass.

    But what about stars that are alone in their star systems, like the sun? The binary star systems are once again the key: Once we have calculated the masses for a whole lot of stars in binary systems, and also know how luminous they are, we notice that there is a relationship between their luminosity and their mass. In other words, for single stars we only need to measure its luminosity and then use the mass-luminosity relation to figure out their mass. Thank you, binaries!

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    Deborah Byrd created the EarthSky radio series in 1991 and founded EarthSky.orgin 1994. Today, she serves as Editor-in-Chief of this website. She has won a galaxy of awards from the broadcasting and science communities, including having an asteroid named 3505 Byrd in her honor. A science communicator and educator since 1976, Byrd believes in science as a force for good in the world and a vital tool for the 21st century. “Being an EarthSky editor is like hosting a big global party for cool nature-lovers,” she says.

     
  • richardmitnick 9:16 am on May 8, 2021 Permalink | Reply
    Tags: "Massive flare seen on the closest star to the solar system- What it means for chances of alien neighbors", Astronomy, , , , ,   

    From The Conversation : “Massive flare seen on the closest star to the solar system- What it means for chances of alien neighbors” 

    From The Conversation

    May 3, 2021

    R. O. Parke Loyd
    Post-Doctoral Researcher in Astrophysics
    Arizona State University

    The Sun isn’t the only star to produce stellar flares. On April 21, 2021, a team of astronomers published new research [The Astrophysical Journal Letters] describing the brightest flare ever measured from Proxima Centauri in ultraviolet light.

    Centauris Alpha Beta Proxima, 27 February 2012. Skatebiker.

    To learn about this extraordinary event – and what it might mean for any life on the planets orbiting Earth’s closest neighboring star – The Conversation spoke with Parke Loyd, an astrophysicist at Arizona State University and co-author of the paper. Excerpts from our conversation are below and have been edited for length and clarity.

    Why were you looking at Proxima Centauri?

    Proxima Centauri is the closest star to this solar system. A couple of years ago, a team discovered that there is a planet – called Proxima b – orbiting the star. It’s just a little bit bigger than Earth, it’s probably rocky and it is in what is called the habitable zone, or the Goldilocks zone. This means that Proxima b is about the right distance from the star so that it could have liquid water on its surface.

    But this star system differs from the Sun in a pretty key way. Proxima Centauri is a small star called a red dwarf – it’s around 15% of the radius of our Sun, and it’s substantially cooler. So Proxima b, in order for it to be in that Goldilocks zone, actually is a lot closer to Proxima Centauri than Earth is to the Sun.

    You might think that a smaller star would be a tamer star, but that’s actually not the case at all – red dwarfs produce stellar flares a lot more frequently than the Sun does. So Proxima b, the closest planet in another solar system with a chance for having life, is subject to space weather that is a lot more violent than the space weather in Earth’s solar system.

    What did you find?

    In 2018, my colleague Meredith MacGregor discovered flashes of light coming from Proxima Centauri that looked very different from solar flares. She was using a telescope that detects light at millimeter wavelengths to monitor Proxima Centauri and saw a big of flash of light in this wavelength. Astronomers had never seen a stellar flare in millimeter wavelengths of light.

    My colleagues and I wanted to learn more about these unusual brightenings in the millimeter light coming from the star and see whether they were actually flares or some other phenomenon. We used nine telescopes on Earth, as well as a satellite observatory, to get the longest set of observations – about two days’ worth – of Proxima Centauri with the most wavelength coverage that had ever been obtained.

    Immediately we discovered a really strong flare. The ultraviolet light of the star increased by over 10,000 times in just a fraction of a second. If humans could see ultraviolet light, it would be like being blinded by the flash of a camera. Proxima Centauri got bright really fast. This increase lasted for only a couple of seconds, and then there was a gradual decline.

    This discovery confirmed that indeed, these weird millimeter emissions are flares.

    What does that mean for chances of life on the planet?

    Astronomers are actively exploring this question at the moment because it can kind of go in either direction. When you hear ultraviolet radiation, you’re probably thinking about the fact that people wear sunscreen to try to protect ourselves from ultraviolet radiation here on Earth. Ultraviolet radiation can damage proteins and DNA in human cells, and this results in sunburns and can cause cancer. That would potentially be true for life on another planet as well.

    On the flip side, messing with the chemistry of biological molecules can have its advantages – it could help spark life on another planet. Even though it might be a more challenging environment for life to sustain itself, it might be a better environment for life to be generated to begin with.

    But the thing that astronomers and astrobiologists are most concerned about is that every time one of these huge flares occurs, it basically erodes away a bit of the atmosphere of any planets orbiting that star – including this potentially Earth-like planet. And if you don’t have an atmosphere left on your planet, then you definitely have a pretty hostile environment to life – there would be huge amounts of radiation, massive temperature fluctuations and little or no air to breathe. It’s not that life would be impossible, but having the surface of a planet basically directly exposed to space would be an environment totally different than anything on Earth.

    Is there any atmosphere left on Proxima b?

    That’s anybody’s guess at the moment. The fact that these flares are happening doesn’t bode well for that atmosphere being intact – especially if they’re associated with explosions of plasma like what happens on the Sun. But that’s why we’re doing this work. We hope the folks who build models of planetary atmospheres can take what our team has learned about these flares and try to figure out the odds for an atmosphere being sustained on this planet.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Conversation launched as a pilot project in October 2014. It is an independent source of news and views from the academic and research community, delivered direct to the public.
    Our team of professional editors work with university and research institute experts to unlock their knowledge for use by the wider public.
    Access to independent, high quality, authenticated, explanatory journalism underpins a functioning democracy. Our aim is to promote better understanding of current affairs and complex issues. And hopefully allow for a better quality of public discourse and conversation.

     
  • richardmitnick 1:06 pm on May 7, 2021 Permalink | Reply
    Tags: "Planet formation may start earlier than previously thought", Astronomy, , , , ,   

    From RIKEN [理研](JP): “Planet formation may start earlier than previously thought” 

    RIKEN bloc

    From RIKEN [理研](JP)

    May 7, 2021

    Rings in protoplanetary systems may develop much earlier than in conventional scenarios of planet formation.

    1
    Figure 1: An image taken by the Atacama Large Millimeter/submillimeter Array (ALMA) of the protoplanetary disc around the nearby young star TW Hydrae. This image reveals multiple rings and gaps that indicate the presence of emerging planets as they sweep their orbits clear of dust and gas. Simulations by RIKEN astrophysicists suggest that the rings may form earlier than previously thought. © S. ANDREWS (Harvard Smithsonian Center for Astrophysics (US)); B. SAXTON (National Radio Astronomy Observatory (US)/Associated Universities Inc (US)/National Science Foundation (US)); ALMA (European Southern Observatory [Observatoire européen austral][Europäische Südsternwarte] (EU)/National Astronomical Observatory of Japan [国立天文台](JP)/NRAO /SCIENCE PHOTO LIBRARY

    On their long journey to form planets, dust grains may coalesce with each other much earlier than previously thought, simulations by RIKEN astrophysicists suggest. This may mean revisiting conventional theories of planet formation.

    Massive planets start off life as specks of dust that are too miniscule to be observed by the human eye. “Planets like the Earth that are thousands of kilometers in diameter evolved from submicron particles of interstellar dust—that’s quite a jump in scale,” notes Satoshi Ohashi of the RIKEN Star and Planet Formation Laboratory. “We’re interested in discovering how dust grains come together to form objects that are thousands of kilometers in size.”

    Planets are birthed from protoplanetary disks—swirling disks of gas and dust around new stars. Ring-like structures have been observed in these disks, and the rings are thought to merge into larger and larger structures over time, eventually leading to the formation of planets. But much remains unknown about the process.

    Now, Ohashi and his co-workers have studied a possible scenario for the formation of these rings by performing computer simulations. The results they obtained indicate that dust may aggregate into larger particles during the protostellar stage, while the star itself is still forming and much earlier than predicted by current theories of planet formation. “We found that ring structures emerged even in the early stages of disk formation,” says Ohashi. “This suggests that the dust grains may become bigger earlier than we had previously thought.”

    This is an unexpected finding because the dust disk is still in a state of considerable flux during the protostellar stage—hardly a promising place for dust to agglomerate. “It’s really surprising because during planet formation the dust grains should stay in the disk, but material is still falling into the central star during the protostellar stage,” says Ohashi. “So we are thinking that planet formation could be a highly dynamic process.”

    The team found good agreement between their simulation results and observations of 23 ring structures in disks by the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile and other telescopes. Their results could also explain the recent observation of rings in protostellar disks. “Recent ALMA observations have found at least four ring structures in protostellar disks, which are consistent with our simulations,” notes Ohashi.

    In the future, the team hopes to obtain images of ring structures around protoplanetary disks in multiple wavelengths, since that would enable them to better compare their simulation with observations.

    Science paper:
    The Astrophysical Journal

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    RIKEN campus

    RIKEN [理研](JP) is Japan’s largest comprehensive research institution renowned for high-quality research in a diverse range of scientific disciplines. Founded in 1917 as a private research foundation in Tokyo, RIKEN has grown rapidly in size and scope, today encompassing a network of world-class research centers and institutes across Japan.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: