Tagged: Astronomy Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:19 am on June 3, 2023 Permalink | Reply
    Tags: "Eventually everything will evaporate - not only black holes", All large objects in the universe-like the remnants of stars-will eventually evaporate., , Astronomy, , , , , , , , Sometimes a particle falls into the black hole and then the other particle can escape: Hawking radiation. According to Hawking this would eventually result in the evaporation of black holes.   

    From Radboud University [Radboud Universiteit Nijmegen](NL) : “Eventually everything will evaporate – not only black holes” 

    From Radboud University [Radboud Universiteit Nijmegen](NL)

    6.2.23
    Dr M.F. Wondrak (Michael)
    michael.wondrak@ru.nl

    Prof. W.D. van Suijlekom (Walter)
    waltervs@math.ru.nl
    024-3652873

    Prof. H.D.E. Falcke (Heino)
    h.falcke@astro.ru.nl
    024-3652020

    New theoretical research by Michael Wondrak, Walter van Suijlekom and Heino Falcke of Radboud University has shown that Stephen Hawking was right about black holes, although not completely. Due to Hawking radiation, black holes will eventually evaporate, but the event horizon is not as crucial as has been believed. Gravity and the curvature of spacetime cause this radiation too. This means that all large objects in the universe, like the remnants of stars, will eventually evaporate.

    Using a clever combination of quantum physics and Albert Einstein’s Theory of General Relativity, Stephen Hawking argued that the spontaneous creation and annihilation of pairs of particles must occur near the event horizon (the point beyond which there is no escape from the gravitational force of a black hole). A particle and its anti-particle are created very briefly from the quantum field, after which they immediately annihilate. But sometimes a particle falls into the black hole, and then the other particle can escape: Hawking radiation. According to Hawking, this would eventually result in the evaporation of black holes.

    Spiral

    In this new study the researchers at Radboud University revisited this process and investigated whether or not the presence of an event horizon is indeed crucial. They combined techniques from physics, astronomy and mathematics to examine what happens if such pairs of particles are created in the surroundings of black holes. The study showed that new particles can also be created far beyond this horizon. Michael Wondrak: “We demonstrate that, in addition to the well-known Hawking radiation, there is also a new form of radiation.”

    Everything evaporates

    Van Suijlekom: “We show that far beyond a black hole the curvature of spacetime plays a big role in creating radiation. The particles are already separated there by the tidal forces of the gravitational field.” Whereas it was previously thought that no radiation was possible without the event horizon, this study shows that this horizon is not necessary.

    Falcke: “That means that objects without an event horizon, such as the remnants of dead stars and other large objects in the universe, also have this sort of radiation. And, after a very long period, that would lead to everything in the universe eventually evaporating, just like black holes. This changes not only our understanding of Hawking radiation but also our view of the universe and its future.”

    The study was published on 2 June in the Physical Review Letters

    https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.221502

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Radboud University [Radboud Universiteit Nijmegen](NL) has seven faculties and enrolls over 19.900 students in 112 study programs (37 bachelor’s and 75 master’s programs).

    As of September 2013, the university offers 36 international master’s programs taught in English and several more taught in Dutch. There are nine bachelor’s programs taught fully in English: American Studies, Artificial Intelligence, Biology, Chemistry, Computing Science, International Economics & Business, International Business Administration, English Language and Culture, and Molecular Life Sciences. International Business Communication, Psychology and Arts and Culture Studies offer English-language tracks. All other bachelors are in Dutch, although most of the required literature is in English. Some exams, papers and even classes may be in English as well, despite the programs being Dutch-taught. All master’s programs have been internationally accredited by the Accreditation Organization of the Netherlands and Flanders(NVAO).

     
  • richardmitnick 10:37 am on June 2, 2023 Permalink | Reply
    Tags: "Bright young supernova now visible in Messier 101", Astronomy, , , , , Messier 101 stretches about 22′ across and sits just over 20 million light-years away., Take your small scope out tonight to view the aftermath of a massive star’s death., The new supernova called SN 2023ixf, When a massive star dies it goes out with a bang creating a stunningly bright explosion that can temporarily change the look of the night sky.   

    From “Astronomy Magazine” : “Bright young supernova now visible in Messier 101” 

    From “Astronomy Magazine”

    5.24.23
    Alison Klesman

    1
    The box on this image shows the spot where the bright, new supernova SN 2023ixf has appeared in Messier 101. Credit: [-ChristiaN-] (Flickr)

    2
    The bright supernova SN 2023ixf (identified with the vertical lines) was recently discovered in spiral galaxy Messier 101. Credit: Dominique Dierick (Flickr)

    Take your small scope out tonight to view the aftermath of a massive star’s death.

    When a massive star dies, it goes out with a bang, creating a stunningly bright explosion that can temporarily change the look of the night sky. The brightest and closest may be visible with the naked eye, but even those in distant galaxies can be easily spotted with amateur equipment from your backyard. And now, just such an opportunity has appeared: A supernova just went off in the nearby spiral galaxy Messier 101 (NGC 5457) and you can find it tonight in the sky.

    According to NASA, the new supernova, called SN 2023ixf, was first spotted by Koichi Itagaki on May 19. Itagaki discovered the supernova when it was magnitude 14.9, though it quickly brightened over the weekend. After the blast had been identified, astronomers went back through data from the Zwicky Transient Facility and found the first evidence of the supernova two days before that.

    Now that it’s appeared, SN 2023ixf is expected to remain visible in a telescope for months, offering an amazing and unique target for your telescope all summer long.

    Finding Messier 101 and its supernova

    Those of us in the Northern Hemisphere are extra-lucky: Messier 101 is located in the circumpolar constellation Ursa Major, meaning it’s always above the horizon. No matter when your observing session starts, it will be up in the sky for you to find, and you can also start looking for it as soon as darkness falls.

    3
    Messier 101 lies in Ursa Major near the last two stars in the Big Dipper’s handle. Credit: Alison Klesman (via TheSkyX)

    The galaxy sits near the end of the Big Dipper’s handle, forming the apex of a triangle with the last two stars in the handle, magnitude 2.2 Mizar and magnitude 1.9 Alkaid, as the base. Draw a line between these two stars, stop halfway along, and look about 4.5° northeast. You’ll land right on 8th-magnitude Messier 101, often called the Pinwheel Galaxy because its face-on nature shows off its stunning spiral arms.

    Messier 101 stretches about 22′ across and sits just over 20 million light-years away. That’s pretty close, by cosmic standards, which means its supernova should be easy to spot. The bright point of light lies just southwest of NGC 5461, a bright knot of glowing hydrogen gas in the galaxy’s southeastern arm. If you have a go-to scope, you can dial in the supernova’s exact coordinates if you like: According to the American Association of Variable Star Observer’s (AAVSO) alert notice, SN 2023ixf is located at R.A. 14h03m38.58s, Dec. 54°18’42.1″. Alternatively, if you start at the nucleus of the galaxy Messier 101, SN 2023ixf is about 228″ east and 134″ south of this point.

    But while you’ll need a good-sized scope to pull out a lot of detail in the galaxy itself, the supernova is so bright — last reported as magnitude 11 on the 23rd — that you’ll see the bright “star” even in a small (4-inch or so) scope! You can continue to follow the supernova’s progress here. If you’re an experienced astroimager or have your own spectroscope, you can even submit your observations to the AAVSO to help astronomers study this event over time.
    ===
    An exciting find

    Although it’s millions of light-years away, SN 2023ixf is the closest supernova that has occurred within the past five years. Because it is so close — and so young — astronomers will be eagerly following its evolution. Studying such events, specifically classified as type II supernovae (to differentiate them from their white dwarf, type Ia brethren), gives us a window into how massive stars die and what becomes of them afterward. And a notice published May 20 on The Astronomer’s Telegram has even suggested a possible progenitor star, weighing in at some 15 times the mass of the Sun.

    Regardless of the scientific discoveries yet to come, for now, SN 2023ixf presents the perfect springtime target for your backyard telescope tonight!

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Astronomy is a magazine about the science and hobby of Astronomy. Based near Milwaukee in Waukesha, Wisconsin, it is produced by Kalmbach Publishing. Astronomy’s readers include those interested in astronomy and those who want to know about sky events, observing techniques, astrophotography, and amateur astronomy in general.

    Astronomy was founded in 1973 by Stephen A. Walther, a graduate of The University of Wisconsin–Stevens Point and amateur astronomer. The first issue, August 1973, consisted of 48 pages with five feature articles and information about what to see in the sky that month. Issues contained astrophotos and illustrations created by astronomical artists. Walther had worked part time as a planetarium lecturer at The University of Wisconsin–Milwaukee and developed an interest in photographing constellations at an early age. Although even in childhood he was interested to obsession in Astronomy, he did so poorly in mathematics that his mother despaired that he would ever be able to earn a living. However, he graduated in Journalism from the University of Wisconsin Stevens Point, and as a senior class project he created a business plan for a magazine for amateur astronomers. With the help of his brother David, he was able to bring the magazine to fruition. He died in 1977.

     
  • richardmitnick 2:15 pm on June 1, 2023 Permalink | Reply
    Tags: "Colorful Kuiper Belt puzzle solved by University of Hawai’i-Manoa researchers", Astronomy, , , , , Objects observed in the Kuiper Belt exhibit a more unique color range than any other solar system population ranging from white to dark reddish., Scientists have speculated that the coloration is likely the result of prolonged exposure to the radiation of organic materials by galactic cosmic rays.,   

    From The University of Hawai’i-Manoa: “Colorful Kuiper Belt puzzle solved by University of Hawai’i-Manoa researchers” 

    From The University of Hawai’i-Manoa

    5.31.23

    1
    Aromatic structures linked through unsaturated hydrocarbon chains drive the color variety of hydrocarbon rich surfaces of Kuiper Belt objects. UHawai’i.

    The Kuiper Belt is a massive disk of icy bodies, including Pluto, that is located just outside of Neptune’s orbit in our solar system.

    Objects observed in the Kuiper Belt exhibit a more unique color range than any other solar system population ranging from white to dark reddish. While the source of this diversity in colors is unknown, scientists have speculated that it is likely the result of the prolonged exposure to radiation of organic materials by galactic cosmic rays.

    A new study led by researchers in University of Hawaiʻi at Mānoa’s Department of Chemistry has replicated the environment in the Kuiper Belt to discover what is causing the array of colors in hydrocarbon-rich surfaces of Kuiper Belt objects, providing a solution to a long-standing problem in astrophysics. The study was published in Science Advances [below] on May 31.

    The research team led by Professor Ralf I. Kaiser performed the cutting-edge research at UH Mānoa. They used ultrahigh vacuum irradiation experiments and conducted comprehensive analyses to examine the color evolution and their source on the molecular level as galactic cosmic rays processed hydrocarbons, such as methane and acetylene, under Kuiper Belt-like conditions.

    Aromatic (organic molecules with fused benzene rings) structural units carrying up to three rings, for example in chemical compounds phenanthrene, phenalene and acenaphthylene, connected by hydrogen-deficient bridges among each other were found to play a key role in producing reddish colors. The UH experiments demonstrated the level of molecular complexity of galactic cosmic rays processing hydrocarbons and provided insight into the role played by ices exposed to radiation in the early production of biological precursor molecules, a molecule that participates in a chemical reaction that produces another molecule.

    “This research is a critical first step to systematically unravel the carriers of the molecular units responsible for hydrocarbon-rich surfaces of Kuiper Belt objects,” Kaiser said. “Since astronomical detections also detected, e.g., ammonia, water, and methanol, on the surfaces of Kuiper Belt objects, further experiments on the cosmic ray processing of these ices hopefully reveal the nature of the true color diversity of Kuiper Belt objects on the molecular level.”

    The research team consisted of Ralf I. Kaiser, Chaojiang Zhang, Cheng Zhu, Andrew M. Turner and Ivan O. Antonov from UH Mānoa; Adrien D. Garcia and Cornelia Meinert from Côte d’Azur University in France; Leslie A. Young from the Southwest Research Institute in Colorado; and David C. Jewitt from UCLA, who previously worked at UH’s Institute for Astronomy.

    Science Advances

    Fig. 1. UV-vis reflectance spectra collected during the irradiation of 13C-acetylene (13C2H2) and 13C-methane (13CH4) ices.
    (A) 13C2H2 ice irradiated at 10 K. (B) 13C2H2 ice irradiated at 40 K. (C) 13CH4 ice irradiated at 10 K. (D) 13CH4 ice irradiated at 20 K. All the spectra were normalized at 550 nm.
    2

    Fig. 2. Comparison of the color from irradiated 13C-acetylene (13C2H2) and 13C-methane (13CH4) ices with KBOs.
    (A) Color slopes of irradiated 13C-acetylene (13C2H2) and 13C-methane (13CH4). (B) Color-color diagram comparing irradiated 13C-acetylene (13C2H2) and 13C-methane (13CH4) at different doses with KBOs. The colors of 10 K 13C2H2 (square), 40 K 13C2H2 (circle), 10 K 13CH4 (triangle), and 20 K 13CH4 (pentagon) are obtained from their UV-vis spectra. The gray circle indicates the color of the Sun. (C) Images of the residues for 13C-acetylene (13C2H2) ices irradiated at 10 K at distinct doses recorded after annealing the ices to 300 K.
    3

    See the science paper for further instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    System Overview

    The University of Hawai‘i includes 10 campuses and dozens of educational, training and research centers across the Hawaiian Islands. As the public system of higher education in Hawai‘i, UH offers opportunities as unique and diverse as our Island home.

    The 10 UH campuses and educational centers on six Hawaiian Islands provide unique opportunities for both learning and recreation.

    UH is the State’s leading engine for economic growth and diversification, stimulating the local economy with jobs, research and skilled workers.

    The University of Hawaiʻi system is a public college and university system that confers associate, bachelor’s, master’s, and doctoral degrees through three university campuses, seven community college campuses, an employment training center, three university centers, four education centers and various other research facilities distributed across six islands throughout the state of Hawaii in the United States. All schools of the University of Hawaiʻi system are accredited by the Western Association of Schools and Colleges. The U.H. system’s main administrative offices are located on the property of the University of Hawaiʻi at Mānoa in Honolulu CDP.

    The University of Hawaiʻi-Mānoa is the flagship institution of the University of Hawaiʻi system. It was founded as a land-grant college under the terms of the Morrill Acts of 1862 and 1890. Programs include Hawaiian/Pacific Studies, Astronomy, East Asian Languages and Literature, Asian Studies, Comparative Philosophy, Marine Science, Second Language Studies, along with Botany, Engineering, Ethnomusicology, Geophysics, Law, Business, Linguistics, Mathematics, and Medicine. The second-largest institution is the University of Hawaiʻi at Hilo on the “Big Island” of Hawaiʻi, with over 3,000 students. The University of Hawaiʻi-West Oʻahu in Kapolei primarily serves students who reside in Honolulu’s western and central suburban communities. The University of Hawaiʻi Community College system comprises four community colleges island campuses on O’ahu and one each on Maui, Kauaʻi, and Hawaiʻi. The schools were created to improve accessibility of courses to more Hawaiʻi residents and provide an affordable means of easing the transition from secondary school/high school to college for many students. University of Hawaiʻi education centers are located in more remote areas of the State and its several islands, supporting rural communities via distance education.

    Research facilities

    Center for Philippine Studies
    Cancer Research Center of Hawaiʻi
    East-West Center
    Haleakalā Observatory
    Hawaiʻi Natural Energy Institute
    Institute for Astronomy
    Institute of Geophysics and Planetology
    Institute of Marine Biology
    Lyon Arboretum
    Mauna Kea Observatory
    W. M. Keck Observatory
    Waikīkī Aquarium

    University of Hawaii 2.2 meter telescope.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth.

    W.M. Keck Observatory two ten meter telescopes operated by California Institute of Technology and the University of California Mauna Kea Hawaii, altitude 4207 m (13802 ft). Credit: Caltech.

    The two, 10-meter optical/infrared telescopes near the summit of Maunakea on the island of Hawai’i feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrographs and world-leading laser guide star adaptive optics systems.

    Pann-STARS 1 Telescope, U Hawaii, situated at Haleakala Observatories near the summit of Haleakala in Hawaii, altitude 3052 m (10013 ft).

     
  • richardmitnick 10:48 am on June 1, 2023 Permalink | Reply
    Tags: "Supercomputer simulations provide a better picture of the Sun’s magnetic field", , , Astronomy, , , , , The new findings challenge the conventional understanding of solar dynamics and could improve predictions of solar weather in the future.   

    From Aalto University [Aalto-yliopisto] (FI) And The MPG Institute for Solar System Research [MPG Institut für Sonnensystemforschung](DE): “Supercomputer simulations provide a better picture of the Sun’s magnetic field” 

    From Aalto University [Aalto-yliopisto] (FI)

    And

    The MPG Institute for Solar System Research [MPG Institut für Sonnensystemforschung](DE)

    1.6.23 [Just today in social media.]

    The new findings challenge the conventional understanding of solar dynamics and could improve predictions of solar weather in the future.

    1
    Computer simulation of magnetic structures in solar-like conditions. Image: Jörn Warnecke.

    The Sun’s strong, dynamic magnetic field can catapult huge jets of plasma known as coronal mass ejections (CMEs) out into the solar system.

    Sometimes these hit Earth, where they can knock out power grids and damage satellites. Scientists don’t fully understand how magnetic fields are generated and amplified inside the Sun, but a study recently published in Nature Astronomy [below] answers one of the fundamental questions about this complex process. By clarifying the dynamics behind solar weather, these findings could help predict major solar events a few days earlier, providing vital extra time for us to prepare.

    The Sun’s magnetism comes from a process known as the solar dynamo. It consists of two main parts, the large-scale dynamo and the small-scale dynamo, neither of which scientists have been able to fully model yet. In fact, scientists aren’t even sure whether a small-scale dynamo could exist in the conditions found in the Sun. Addressing that uncertainty is important, because a small-scale dynamo would have a large effect on solar dynamics.

    In the new study, scientists at Aalto University and the MPG Institute for Solar System Research (MPS) tackled the small-scale dynamo question by running massive computer simulations on petascale supercomputers in Finland and Germany. The joint computing power enabled the team to directly simulate whether the Sun could have a small-scale dynamo.

    ‘Using one of the largest possible computing simulations currently available, we achieved the most realistic setting to date in which to model this dynamo,’ says Maarit Korpi-Lagg, astroinformatics group leader and associate professor at Aalto University’s Department of Computer Science. ‘We showed not only that the small-scale dynamo exists but also that it becomes more feasible as our model more closely resembles the Sun.’

    Some previous studies have suggested that the small-scale dynamo might not work under the conditions found in stars like the Sun, which have a very low magnetic Prandtl number (PrM), a measure used in fluid and plasma physics to compare how quickly variations in the magnetic field and velocities even out. Korpi-Lagg’s research team modeled conditions of turbulence with unprecedentedly low PrM values and found that, contrary to what has been thought, a small-scale dynamo can occur at such low values.

    ‘This is a major step towards understanding magnetic field generation in the Sun and other stars,’ says Jörn Warnecke, a senior postdoctoral researcher at MPS. ‘This result will bring us closer to resolving the riddle of CME formation, which is important for devising protection for the Earth against hazardous space weather.’

    The research group is currently expanding their study to even lower magnetic Prandtl number values using GPU-accelerated code on the new pan-European pre-exascale supercomputer LUMI.

    Next, they plan to study the interaction of the small-scale dynamo with the large-scale dynamo, which is responsible for the 11-year solar cycle.

    Nature Astronomy

    Fig. 1: Visualization of flow and SSD solution.
    1
    Flow speed (left) and magnetic field strength (right) from a high-resolution SSD-active run with Re = 18,200 and PrM = 0.01 on the surface of the simulation box.

    Fig. 2: SSD growth rate as function of the fluid and magnetic Reynolds numbers (Re and ReM).
    2
    The diamonds represent the results of this work and the triangles represent the results of [ref. 10*]. The colour coding indicates the value of the normalized growth rate λτ with τ = 1/urmskf, a rough estimate for the turnover time. The dotted lines indicate constant magnetic Prandtl number PrM. The white circles indicate zero growth rate for certain PrM, obtained from fitting for the critical magnetic Reynolds number, as shown in Fig. 3; fitting errors are signified by yellow-black bars (Supplementary Section 5). The background colours, including the thin black line (zero growth), are assigned via linear interpolation of the simulation data. The green dashed line shows the power-law fit of the critical ReM for PrM ≤ 0.08, with power 0.125 (Fig. 3b).

    See the science paper for further instructive material with images.

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The MPG Institute for Solar System Research [MPG Institut für Sonnensystemforschung] (DE) has had an eventful history – with several moves, changes of name, and structural developments. The first prototype of the current institute was founded in 1934 in Mecklenburg; it moved to Katlenburg-Lindau in 1946. Not just the location of the buildings changed – the topic of research also moved, from Earth to outer space. In the first decades the focus of research was the stratosphere and ionosphere of the Earth, but since 1997 the institute exclusively researches the physics of planets and the Sun. In January 2014 the Max Planck Institute for Solar System Research has relocated to it’s new home: a new building in Göttingen close to the Northern Campus of the University of Göttingen [Georg-August-Universität Göttingen] (DE).

    The MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.](DE) is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the Max Planck Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.

    According to its primary goal, the MPG Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014) MPG Institutes. The society has a total staff of approximately 17,000 permanent employees, including 5,470 scientists, plus around 4,600 non-tenured scientists and guests. Society budget for 2015 was about €1.7 billion.

    The MPG Institutes focus on excellence in research. The MPG Society has a world-leading reputation as a science and technology research organization, with 33 Nobel Prizes awarded to their scientists, and is generally regarded as the foremost basic research organization in Europe and the world. In 2013, the Nature Publishing Index placed the MPG institutes fifth worldwide in terms of research published in Nature journals (after Harvard University, The Massachusetts Institute of Technology, Stanford University and The National Institutes of Health). In terms of total research volume (unweighted by citations or impact), the Max Planck Society is only outranked by The Chinese Academy of Sciences [中国科学院](CN), The Russian Academy of Sciences [Росси́йская акаде́мия нау́к](RU) and Harvard University. The Thomson Reuters-Science Watch website placed the MPG Society as the second leading research organization worldwide following Harvard University, in terms of the impact of the produced research over science fields.

    The MPG Society and its predecessor Kaiser Wilhelm Society hosted several renowned scientists in their fields, including Otto Hahn, Werner Heisenberg, and Albert Einstein.

    History

    The organization was established in 1911 as the Kaiser Wilhelm Society, or Kaiser-Wilhelm-Gesellschaft (KWG), a non-governmental research organization named for the then German emperor. The KWG was one of the world’s leading research organizations; its board of directors included scientists like Walther Bothe, Peter Debye, Albert Einstein, and Fritz Haber. In 1946, Otto Hahn assumed the position of President of KWG, and in 1948, the society was renamed the Max Planck Society (MPG) after its former President (1930–37) Max Planck, who died in 1947.

    The MPG Society has a world-leading reputation as a science and technology research organization. In 2006, the Times Higher Education Supplement rankings of non-university research institutions (based on international peer review by academics) placed the MPG Society as No.1 in the world for science research, and No.3 in technology research (behind AT&T Corporation and The DOE’s Argonne National Laboratory.

    The domain mpg.de attracted at least 1.7 million visitors annually by 2008 according to a Compete.com study.

    MPG Institutes and research groups

    The MPG Society consists of over 80 research institutes. In addition, the society funds a number of Max Planck Research Groups (MPRG) and International Max Planck Research Schools (IMPRS). The purpose of establishing independent research groups at various universities is to strengthen the required networking between universities and institutes of the Max Planck Society.
    The research units are primarily located across Europe with a few in South Korea and the U.S. In 2007, the Society established its first non-European centre, with an institute on the Jupiter campus of Florida Atlantic University (US) focusing on neuroscience.
    The MPG Institutes operate independently from, though in close cooperation with, the universities, and focus on innovative research which does not fit into the university structure due to their interdisciplinary or transdisciplinary nature or which require resources that cannot be met by the state universities.

    Internally, MPG Institutes are organized into research departments headed by directors such that each MPI has several directors, a position roughly comparable to anything from full professor to department head at a university. Other core members include Junior and Senior Research Fellows.

    In addition, there are several associated institutes:

    International Max Planck Research Schools

    Together with the Association of Universities and other Education Institutions in Germany, the Max Planck Society established numerous International Max Planck Research Schools (IMPRS) to promote junior scientists:

    • Cologne Graduate School of Ageing Research, Cologne
    • International Max Planck Research School for Intelligent Systems, at the Max Planck Institute for Intelligent Systems located in Tübingen and Stuttgart
    • International Max Planck Research School on Adapting Behavior in a Fundamentally Uncertain World (Uncertainty School), at the Max Planck Institutes for Economics, for Human Development, and/or Research on Collective Goods
    • International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering, Magdeburg
    • International Max Planck Research School for Astronomy and Cosmic Physics, Heidelberg at the MPI for Astronomy
    • International Max Planck Research School for Astrophysics, Garching at the MPI for Astrophysics
    • International Max Planck Research School for Complex Surfaces in Material Sciences, Berlin
    • International Max Planck Research School for Computer Science, Saarbrücken
    • International Max Planck Research School for Earth System Modeling, Hamburg
    • International Max Planck Research School for Elementary Particle Physics, Munich, at the MPI for Physics
    • International Max Planck Research School for Environmental, Cellular and Molecular Microbiology, Marburg at the Max Planck Institute for Terrestrial Microbiology
    • International Max Planck Research School for Evolutionary Biology, Plön at the Max Planck Institute for Evolutionary Biology
    • International Max Planck Research School “From Molecules to Organisms”, Tübingen at the Max Planck Institute for Developmental Biology
    • International Max Planck Research School for Global Biogeochemical Cycles, Jena at the Max Planck Institute for Biogeochemistry
    • International Max Planck Research School on Gravitational Wave Astronomy, Hannover and Potsdam MPI for Gravitational Physics
    • International Max Planck Research School for Heart and Lung Research, Bad Nauheim at the Max Planck Institute for Heart and Lung Research
    • International Max Planck Research School for Infectious Diseases and Immunity, Berlin at the Max Planck Institute for Infection Biology
    • International Max Planck Research School for Language Sciences, Nijmegen
    • International Max Planck Research School for Neurosciences, Göttingen
    • International Max Planck Research School for Cognitive and Systems Neuroscience, Tübingen
    • International Max Planck Research School for Marine Microbiology (MarMic), joint program of the Max Planck Institute for Marine Microbiology in Bremen, the University of Bremen, the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, and the Jacobs University Bremen
    • International Max Planck Research School for Maritime Affairs, Hamburg
    • International Max Planck Research School for Molecular and Cellular Biology, Freiburg
    • International Max Planck Research School for Molecular and Cellular Life Sciences, Munich
    • International Max Planck Research School for Molecular Biology, Göttingen
    • International Max Planck Research School for Molecular Cell Biology and Bioengineering, Dresden
    • International Max Planck Research School Molecular Biomedicine, program combined with the ‘Graduate Programm Cell Dynamics And Disease’ at the University of Münster and the Max Planck Institute for Molecular Biomedicine
    • International Max Planck Research School on Multiscale Bio-Systems, Potsdam
    • International Max Planck Research School for Organismal Biology, at the University of Konstanz and the Max Planck Institute for Ornithology
    • International Max Planck Research School on Reactive Structure Analysis for Chemical Reactions (IMPRS RECHARGE), Mülheim an der Ruhr, at the Max Planck Institute for Chemical Energy Conversion
    • International Max Planck Research School for Science and Technology of Nano-Systems, Halle at Max Planck Institute of Microstructure Physics
    • International Max Planck Research School for Solar System Science at the University of Göttingen hosted by MPI for Solar System Research
    • International Max Planck Research School for Astronomy and Astrophysics, Bonn, at the MPI for Radio Astronomy (formerly the International Max Planck Research School for Radio and Infrared Astronomy)
    • International Max Planck Research School for the Social and Political Constitution of the Economy, Cologne
    • International Max Planck Research School for Surface and Interface Engineering in Advanced Materials, Düsseldorf at Max Planck Institute for Iron Research GmbH
    • International Max Planck Research School for Ultrafast Imaging and Structural Dynamics, Hamburg

    Max Planck Schools

    • Max Planck School of Cognition
    • Max Planck School Matter to Life
    • Max Planck School of Photonics

    Max Planck Center

    • The Max Planck Centre for Attosecond Science (MPC-AS), POSTECH Pohang
    • The Max Planck POSTECH Center for Complex Phase Materials, POSTECH Pohang

    Max Planck Institutes

    Among others:
    • Max Planck Institute for Neurobiology of Behavior – caesar, Bonn
    • Max Planck Institute for Aeronomics in Katlenburg-Lindau was renamed to Max Planck Institute for Solar System Research in 2004;
    • Max Planck Institute for Biology in Tübingen was closed in 2005;
    • Max Planck Institute for Cell Biology in Ladenburg b. Heidelberg was closed in 2003;
    • Max Planck Institute for Economics in Jena was renamed to the Max Planck Institute for the Science of Human History in 2014;
    • Max Planck Institute for Ionospheric Research in Katlenburg-Lindau was renamed to Max Planck Institute for Aeronomics in 1958;
    • Max Planck Institute for Metals Research, Stuttgart
    • Max Planck Institute of Oceanic Biology in Wilhelmshaven was renamed to Max Planck Institute of Cell Biology in 1968 and moved to Ladenburg 1977;
    • Max Planck Institute for Psychological Research in Munich merged into the Max Planck Institute for Human Cognitive and Brain Sciences in 2004;
    • Max Planck Institute for Protein and Leather Research in Regensburg moved to Munich 1957 and was united with the Max Planck Institute for Biochemistry in 1977;
    • Max Planck Institute for Virus Research in Tübingen was renamed as Max Planck Institute for Developmental Biology in 1985;
    • Max Planck Institute for the Study of the Scientific-Technical World in Starnberg (from 1970 until 1981 (closed)) directed by Carl Friedrich von Weizsäcker and Jürgen Habermas.
    • Max Planck Institute for Behavioral Physiology
    • Max Planck Institute of Experimental Endocrinology
    • Max Planck Institute for Foreign and International Social Law
    • Max Planck Institute for Physics and Astrophysics
    • Max Planck Research Unit for Enzymology of Protein Folding
    • Max Planck Institute for Biology of Ageing

    Aalto University [Aalto-yliopisto] (FI) is a university located in Espoo, Finland. It was established in 2010 as a merger of three major Finnish universities: the Helsinki University of Technology (established 1849), the Helsinki School of Economics (established 1904), and the University of Art and Design Helsinki (established 1871). The close collaboration between the scientific, business and arts communities is intended to foster multi-disciplinary education and research. The Finnish government, in 2010, set out to create a university that fosters innovation, merging the three institutions into one.

    The university is composed of six schools with close to 17,500 students and 4,000 staff members, making it Finland’s second largest university. The main campus of Aalto University is located in Otaniemi, Espoo. Aalto University Executive Education operates in the district of Töölö, Helsinki. In addition to the Greater Helsinki area, the university also operates its Bachelor’s Programme in International Business in Mikkeli and the Metsähovi Radio Observatory Metsähovi Radio Observatory [Metsähovin radiotutkimusasema] Aalto University [Aalto-yliopisto](FI) in Kirkkonummi. in Kirkkonummi.

    Aalto University’s operations showcase Finland’s experiment in higher education. The Aalto Design Factory, Aalto Ventures Program and Aalto Entrepreneurship Society (Aaltoes), among others, drive the university’s mission for a radical shift towards multidisciplinary learning and have contributed substantially to the emergence of Helsinki as a hotbed for startups. Aaltoes is Europe’s largest and most active student run entrepreneurship community that has founded major concepts such as the Startup Sauna accelerator program and the Slush startup event.

    The university is named in honour of Alvar Aalto, a prominent Finnish architect, designer and alumnus of the former Helsinki University of Technology, who was also instrumental in designing a large part of the university’s main campus in Otaniemi.

     
  • richardmitnick 7:53 pm on May 31, 2023 Permalink | Reply
    Tags: "Astrophysicists confirm the faintest galaxy ever seen in the early universe", Astronomy, , , Before the Webb telescope switched on just a year ago we could not even dream of confirming such a faint galaxy., , Determining the types of galaxies that dominated that era-dubbed the "Epoch of Reionization"-is a major goal in astronomy today., Hydrogen atoms absorb ultraviolet photons from young stars; however until the birth of the first stars universe was in the “cosmic dark ages”., JD1 is located behind a large cluster of nearby galaxies called Abell 2744 whose combined gravitational strength bends and amplifies the light from JD1., JD1 is seen as it was approximately 13.3 billion years ago when the universe was only about 4% of its present age., JD1 is so dim and so far away that it is challenging to study without a powerful telescope., The appearance of the first stars and galaxies a few hundred million years later bathed the universe in ultraviolet light which began burning the hydrogen fog., The first billion years of the universe’s life were a crucial period in its evolution., The galaxy called JD1 is one of the most distant identified to date.,   

    From The University of California-Los Angeles: “Astrophysicists confirm the faintest galaxy ever seen in the early universe” 

    From The University of California-Los Angeles

    5.31.23
    Holly Ober
    310-956-6465
    hober@stratcomm.ucla.edu

    1
    A projected image of the galaxy JD1 (inset), which is located behind a bright cluster galaxy called Abell2744.
    Guido Roberts-Borsani/UCLA); Original images: NASA, ESA, CSA, Swinburne University of Technology, University of Pittsburgh, STScI.

    _______________________________________________________________________________
    Key takeaways

    -After the Big Bang, the universe expanded and cooled sufficiently for hydrogen atoms to form. In the absence of light from the first stars and galaxies, the universe entered a period known as the cosmic dark ages.
    -The first stars and galaxies appeared several hundred million years later and began burning away the hydrogen fog left over from the Big Bang, rendering the universe transparent, like it is today.
    -Researchers led by astrophysicists from UCLA confirmed the existence of a distant, faint galaxy typical of those whose light burned through the hydrogen atoms; the finding should help them understand how the cosmic dark ages ended.
    _______________________________________________________________________________
    An international research team led by UCLA astrophysicists has confirmed the existence of the faintest galaxy ever seen in the early universe. The galaxy, called JD1, is one of the most distant identified to date, and it is typical of the kinds of galaxies that burned through the fog of hydrogen atoms left over from the Big Bang, letting light shine through the universe and shaping it into what exists today.

    The discovery was made using NASA’s James Webb Space Telescope, and the findings are published in the journal Nature [below].

    The first billion years of the universe’s life were a crucial period in its evolution. After the Big Bang, approximately 13.8 billion years ago, the universe expanded and cooled sufficiently for hydrogen atoms to form. Hydrogen atoms absorb ultraviolet photons from young stars; however, until the birth of the first stars and galaxies, the universe became dark and entered a period known as the “cosmic dark ages”.

    The appearance of the first stars and galaxies a few hundred million years later bathed the universe in energetic ultraviolet light which began burning, or ionizing, the hydrogen fog. That, in turn, enabled photons to travel through space, rendering the universe transparent.

    Determining the types of galaxies that dominated that era — dubbed the “Epoch of Reionization” — is a major goal in astronomy today.

    Until the development of the Webb telescope, scientists lacked the sensitive infrared instruments required to study the first generation of galaxies.

    “Most of the galaxies found with Webb so far are bright galaxies that are rare and not thought to be particularly representative of the young galaxies that populated the early universe,” said Guido Roberts-Borsani, a UCLA postdoctoral researcher and the study’s first author. “As such, while important, they are not thought to be the main agents that burned through all of that hydrogen fog.

    “Ultra-faint galaxies such as JD1, on the other hand, are far more numerous, which is why we believe they are more representative of the galaxies that conducted the reionization process, allowing ultraviolet light to travel unimpeded through space and time.”

    JD1 is so dim and so far away that it is challenging to study without a powerful telescope — and a helping hand from nature. JD1 is located behind a large cluster of nearby galaxies, called Abell 2744, whose combined gravitational strength bends and amplifies the light from JD1, making it appear larger and 13 times brighter than it otherwise would. The effect, known as gravitational lensing, is similar to how a magnifying glass distorts and amplifies light within its field of view; without gravitational lensing, JD1 would likely have been missed.

    The researchers used the Webb Telescope’s near-infrared spectrograph instrument, NIRSpec, to obtain an infrared light spectrum of the galaxy, allowing them to determine its precise age and its distance from Earth, as well as the number of stars and amount of dust and heavy elements that it formed in its relatively short lifetime.

    The combination of the galaxy’s gravitational magnification and new images from another one of the Webb Telescope’s near-infrared instruments, NIRCam, also made it possible for the team to study the galaxy’s structure in unprecedented detail and resolution, revealing three main elongated clumps of dust and gas that are forming stars.

    The team used the new data to trace JD1’s light back to its original source and shape, revealing a compact galaxy just a fraction of the size of older galaxies like the Milky Way, which is 13.6 billion years old.

    Because light takes time to travel to Earth, JD1 is seen as it was approximately 13.3 billion years ago, when the universe was only about 4% of its present age.

    “Before the Webb telescope switched on, just a year ago, we could not even dream of confirming such a faint galaxy,” said Tommaso Treu, a UCLA physics and astronomy professor, and the study’s second author. “The combination of JWST and the magnifying power of gravitational lensing is a revolution. We are rewriting the book on how galaxies formed and evolved in the immediate aftermath of the Big Bang.”

    Nature

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC LA Campus

    For nearly 100 years, The University of California-Los Angeles has been a pioneer, persevering through impossibility, turning the futile into the attainable.

    We doubt the critics, reject the status quo and see opportunity in dissatisfaction. Our campus, faculty and students are driven by optimism. It is not naïve; it is essential. And it has fueled every accomplishment, allowing us to redefine what’s possible, time after time.

    This can-do perspective has brought us 12 Nobel Prizes, 12 Rhodes Scholarships, more NCAA titles than any university and more Olympic medals than most nations. Our faculty and alumni helped create the Internet and pioneered reverse osmosis. And more than 100 companies have been created based on technology developed at UCLA.

    The University of California-Los Angeles is a public land-grant research university in Los Angeles, California. The University of California-Los Angeles traces its early origins back to 1882 as the southern branch of the California State Normal School (now San Jose State University). It became the Southern Branch of The University of California in 1919, making it the second-oldest (after University of California-Berkeley ) of the 10-campus University of California system.

    The University of California-Los Angeles offers 337 undergraduate and graduate degree programs in a wide range of disciplines, enrolling about 31,500 undergraduate and 12,800 graduate students. The University of California-Los Angeles had 168,000 applicants for Fall 2021, including transfer applicants, making the school the most applied-to of any American university.

    The university is organized into six undergraduate colleges; seven professional schools; and four professional health science schools. The undergraduate colleges are the College of Letters and Science; Samueli School of Engineering; School of the Arts and Architecture; Herb Alpert School of Music; School of Theater, Film and Television; and School of Nursing.

    The University of California-Los Angeles is called a “Public Ivy”, and is ranked among the best public universities in the United States by major college and university rankings. This includes one ranking that has The University of California-Los Angeles as the top public university in the United States in 2021. As of October 2020, 25 Nobel laureates; three Fields Medalists; five Turing Award winners; and two Chief Scientists of the U.S. Air Force have been affiliated with The University of California-Los Angeles as faculty, researchers or alumni. Among the current faculty members, 55 have been elected to the National Academy of Sciences; 28 to the National Academy of Engineering ; 39 to the Institute of Medicine; and 124 to the American Academy of Arts and Sciences .

    The university was elected to the Association of American Universities in 1974.

    The University of California-Los Angeles student-athletes compete as the Bruins in the Pac-12 Conference. The Bruins have won 129 national championships, including 118 NCAA team championships- more than any other university except Stanford University, whose athletes have won 126. The University of California-Los Angeles students, coaches, and staff have won 251 Olympic medals: 126 gold; 65 silver; and 60 bronze. The University of California-Los Angeles student-athletes have competed in every Olympics since 1920 with one exception (1924) and have won a gold medal in every Olympics the U.S. participated in since 1932.

    In 1914, the school moved to a new campus on Vermont Avenue (now the site of Los Angeles City College) in East Hollywood. In 1917, UC Regent Edward Augustus Dickson, the only regent representing the Southland at the time and Ernest Carroll Moore- Director of the Normal School, began to lobby the State Legislature to enable the school to become the second University of California campus, after University of California-Berkeley. They met resistance from University of California-Berkeley alumni, Northern California members of the state legislature, and Benjamin Ide Wheeler- President of the University of California from 1899 to 1919 who were all vigorously opposed to the idea of a southern campus. However, David Prescott Barrows the new President of the University of California did not share Wheeler’s objections.

    On May 23, 1919, the Southern Californians’ efforts were rewarded when Governor William D. Stephens signed Assembly Bill 626 into law which acquired the land and buildings and transformed the Los Angeles Normal School into the Southern Branch of the University of California. The same legislation added its general undergraduate program- the Junior College. The Southern Branch campus opened on September 15 of that year offering two-year undergraduate programs to 250 Junior College students and 1,250 students in the Teachers College under Moore’s continued direction. Southern Californians were furious that their so-called “branch” provided only an inferior junior college program (mocked at the time by The University of Southern California students as “the twig”) and continued to fight Northern Californians (specifically, Berkeley) for the right to three and then four years of instruction culminating in bachelor’s degrees. On December 11, 1923 the Board of Regents authorized a fourth year of instruction and transformed the Junior College into the College of Letters and Science which awarded its first bachelor’s degrees on June 12, 1925.

    Under University of California President William Wallace Campbell, enrollment at the Southern Branch expanded so rapidly that by the mid-1920s the institution was outgrowing the 25-acre Vermont Avenue location. The Regents searched for a new location and announced their selection of the so-called “Beverly Site”—just west of Beverly Hills—on March 21, 1925 edging out the panoramic hills of the still-empty Palos Verdes Peninsula. After the athletic teams entered the Pacific Coast conference in 1926 the Southern Branch student council adopted the nickname “Bruins”, a name offered by the student council at The University of California-Berkeley. In 1927, the Regents renamed the Southern Branch the University of California at Los Angeles (the word “at” was officially replaced by a comma in 1958 in line with other UC campuses). In the same year the state broke ground in Westwood on land sold for $1 million- less than one-third its value- by real estate developers Edwin and Harold Janss for whom the Janss Steps are named. The campus in Westwood opened to students in 1929.

    The original four buildings were the College Library (now Powell Library); Royce Hall; the Physics-Biology Building (which became the Humanities Building and is now the Renee and David Kaplan Hall); and the Chemistry Building (now Haines Hall) arrayed around a quadrangular courtyard on the 400-acre (1.6 km^2) campus. The first undergraduate classes on the new campus were held in 1929 with 5,500 students. After lobbying by alumni; faculty; administration and community leaders University of California-Los Angeles was permitted to award the master’s degree in 1933 and the doctorate in 1936 against continued resistance from The University of California-Berkeley.

    Maturity as a university

    During its first 32 years University of California-Los Angeles was treated as an off-site department of The University of California. As such its presiding officer was called a “provost” and reported to the main campus in Berkeley. In 1951 University of California-Los Angeles was formally elevated to co-equal status with The University of California-Berkeley, and its presiding officer Raymond B. Allen was the first chief executive to be granted the title of chancellor. The appointment of Franklin David Murphy to the position of Chancellor in 1960 helped spark an era of tremendous growth of facilities and faculty honors. By the end of the decade The University of California-Los Angeles had achieved distinction in a wide range of subjects. This era also secured University of California-Los Angeles’s position as a proper university and not simply a branch of the University of California system. This change is exemplified by an incident involving Chancellor Murphy, which was described by him:

    “I picked up the telephone and called in from somewhere and the phone operator said, “University of California.” And I said, “Is this Berkeley?” She said, “No.” I said, “Well who have I gotten to?” ” University of California-Los Angeles.” I said, “Why didn’t you say University of California-Los Angeles?” “Oh”, she said, “we’re instructed to say University of California.” So, the next morning I went to the office and wrote a memo; I said, “Will you please instruct the operators, as of noon today, when they answer the phone to say, ‘ University of California-Los Angeles.'” And they said, “You know they won’t like it at Berkeley.” And I said, “Well, let’s just see. There are a few things maybe we can do around here without getting their permission.”

    Recent history

    On June 1, 2016 two men were killed in a murder-suicide at an engineering building in the university. School officials put the campus on lockdown as Los Angeles Police Department officers including SWAT cleared the campus.

    In 2018, a student-led community coalition known as “Westwood Forward” successfully led an effort to break The University of California-Los Angeles and Westwood Village away from the existing Westwood Neighborhood Council and form a new North Westwood Neighborhood Council with over 2,000 out of 3,521 stakeholders voting in favor of the split. Westwood Forward’s campaign focused on making housing more affordable and encouraging nightlife in Westwood by opposing many of the restrictions on housing developments and restaurants the Westwood Neighborhood Council had promoted.

    Academics

    Divisions

    Undergraduate

    College of Letters and Science
    Social Sciences Division
    Humanities Division
    Physical Sciences Division
    Life Sciences Division
    School of the Arts and Architecture
    Henry Samueli School of Engineering and Applied Science (HSSEAS)
    Herb Alpert School of Music
    School of Theater, Film and Television
    School of Nursing
    Luskin School of Public Affairs

    Graduate

    Graduate School of Education & Information Studies (GSEIS)
    School of Law
    Anderson School of Management
    Luskin School of Public Affairs
    David Geffen School of Medicine
    School of Dentistry
    Jonathan and Karin Fielding School of Public Health
    Semel Institute for Neuroscience and Human Behavior
    School of Nursing

    Research

    The University of California-Los Angeles is classified among “R1: Doctoral Universities – Very high research activity” and had $1.32 billion in research expenditures in FY 2018.

     
  • richardmitnick 7:14 pm on May 31, 2023 Permalink | Reply
    Tags: , "Simulations suggest interstellar objects could be captured by Earth's gravity", Astronomy, , , ,   

    From Carnegie Mellon University And From Harvard University Via “phys.org” : “Simulations suggest interstellar objects could be captured by Earth’s gravity” 

    From Carnegie Mellon University

    And

    From Harvard University

    Via

    “phys.org”

    5.30.23
    Bob Yirka

    1
    Visualization of trajectories of incoming particles getting scattered by the Sun-Earth-Moon system. Since there are two binary systems present, we can calculate the cross section of the whole system and that of the Earth-Moon system. Left: A particle experiencing a close encounter with the Sun. Right: A particle experiencing a close encounter with the Earth-Moon system. Image credit: NASA. Credit: MNRAS (2023) [below]

    A quartet of space scientists, two from Carnegie Mellon University and two from Harvard University, has found via simulations that it should be possible for interstellar objects to be captured by Earth’s gravity. The team, made up of Diptajyoti Mukherjee, Hy Trac, Amir Siraj and Abraham Loeb, has submitted a paper describing their work to the MNRAS [below].

    Back in 2017, an object in the solar system (subsequently named ‘Oumuamua) was discovered to have come from outside of the solar system, making it the first observed interstellar object (ISO). Two years later, comet 2I Borisov was found to have come from outside the solar system, as well.

    The two visits to our solar system generated a wave of interest in the space community surrounding ISOs. Thus far, no more have been discovered, but many in the space science community believe that it is likely that some ISOs have traveled into our solar system, but instead of escaping, became trapped either in a loop around the sun or around one of the planets. In this new effort, the research team looked into the possibility of such occurrences using numerical analysis and simulations.

    Prior research into the topic focused almost exclusively on ISOs being captured by the sun or by Jupiter. Because of that, the researchers chose to make their main focus capture of ISOs by Earth.

    Via simulations, the team found that it should be possible for an ISO to be caught in a planetary orbit around Earth, but it was 1,000 times more likely to happen to Jupiter. Their simulations also showed that if an ISO were to be captured by Earth’s gravity, it would likely have an unstable orbit, meaning its capture would likely be brief, mostly due to the pull of gravity from the other planets.

    The researchers were not willing to make any guesses based on their simulations about the likelihood of ISOs currently residing in the solar system, but suggest future work should look into the possibility. They conclude by noting such work will be extremely difficult due to the small size of such objects.

    MNRAS

    3
    This figure from the research compares Jupiter’s efficacy at capturing ISOs into near-Earth orbits compared to the Earth-Moon efficacy. The math is fairly complex, but basically, the x-axis shows excess hyperbolic velocity, and as that rises, capture efficiency decreases. (Mukherjee et al. 2023)

    4
    This figure from the research shows the distribution of orbital parameters for known small Solar System bodies vs captured ISOs. The left panel shows Astronomical Units, the middle panel shows orbital eccentricity and the right panel shows inclination. (Mukherjee et al. 2023)

    See the science paper for further instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Harvard University campus

    Harvard University is the oldest institution of higher education in the United States, established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. It was named after the College’s first benefactor, the young minister John Harvard of Charlestown, who upon his death in 1638 left his library and half his estate to the institution. A statue of John Harvard stands today in front of University Hall in Harvard Yard, and is perhaps the University’s best-known landmark.

    Harvard University has 12 degree-granting Schools in addition to the Radcliffe Institute for Advanced Study. The University has grown from nine students with a single master to an enrollment of more than 20,000 degree candidates including undergraduate, graduate, and professional students. There are more than 360,000 living alumni in the U.S. and over 190 other countries.

    The Massachusetts colonial legislature, the General Court, authorized Harvard University’s founding. In its early years, Harvard College primarily trained Congregational and Unitarian clergy, although it has never been formally affiliated with any denomination. Its curriculum and student body were gradually secularized during the 18th century, and by the 19th century, Harvard University had emerged as the central cultural establishment among the Boston elite. Following the American Civil War, President Charles William Eliot’s long tenure (1869–1909) transformed the college and affiliated professional schools into a modern research university; Harvard became a founding member of the Association of American Universities in 1900. James B. Conant led the university through the Great Depression and World War II; he liberalized admissions after the war.

    The university is composed of ten academic faculties plus the Radcliffe Institute for Advanced Study. Arts and Sciences offers study in a wide range of academic disciplines for undergraduates and for graduates, while the other faculties offer only graduate degrees, mostly professional. Harvard has three main campuses: the 209-acre (85 ha) Cambridge campus centered on Harvard Yard; an adjoining campus immediately across the Charles River in the Allston neighborhood of Boston; and the medical campus in Boston’s Longwood Medical Area. Harvard University’s endowment is valued at $41.9 billion, making it the largest of any academic institution. Endowment income helps enable the undergraduate college to admit students regardless of financial need and provide generous financial aid with no loans The Harvard Library is the world’s largest academic library system, comprising 79 individual libraries holding about 20.4 million items.

    Harvard University has more alumni, faculty, and researchers who have won Nobel Prizes (161) and Fields Medals (18) than any other university in the world and more alumni who have been members of the U.S. Congress, MacArthur Fellows, Rhodes Scholars (375), and Marshall Scholars (255) than any other university in the United States. Its alumni also include eight U.S. presidents and 188 living billionaires, the most of any university. Fourteen Turing Award laureates have been Harvard affiliates. Students and alumni have also won 10 Academy Awards, 48 Pulitzer Prizes, and 108 Olympic medals (46 gold), and they have founded many notable companies.

    Colonial

    Harvard University was established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. In 1638, it acquired British North America’s first known printing press. In 1639, it was named Harvard College after deceased clergyman John Harvard, an alumnus of the University of Cambridge(UK) who had left the school £779 and his library of some 400 volumes. The charter creating the Harvard Corporation was granted in 1650.

    A 1643 publication gave the school’s purpose as “to advance learning and perpetuate it to posterity, dreading to leave an illiterate ministry to the churches when our present ministers shall lie in the dust.” It trained many Puritan ministers in its early years and offered a classic curriculum based on the English university model—many leaders in the colony had attended the University of Cambridge—but conformed to the tenets of Puritanism. Harvard University has never affiliated with any particular denomination, though many of its earliest graduates went on to become clergymen in Congregational and Unitarian churches.

    Increase Mather served as president from 1681 to 1701. In 1708, John Leverett became the first president who was not also a clergyman, marking a turning of the college away from Puritanism and toward intellectual independence.

    19th century

    In the 19th century, Enlightenment ideas of reason and free will were widespread among Congregational ministers, putting those ministers and their congregations in tension with more traditionalist, Calvinist parties. When Hollis Professor of Divinity David Tappan died in 1803 and President Joseph Willard died a year later, a struggle broke out over their replacements. Henry Ware was elected to the Hollis chair in 1805, and the liberal Samuel Webber was appointed to the presidency two years later, signaling the shift from the dominance of traditional ideas at Harvard to the dominance of liberal, Arminian ideas.

    Charles William Eliot, president 1869–1909, eliminated the favored position of Christianity from the curriculum while opening it to student self-direction. Though Eliot was the crucial figure in the secularization of American higher education, he was motivated not by a desire to secularize education but by Transcendentalist Unitarian convictions influenced by William Ellery Channing and Ralph Waldo Emerson.

    20th century

    In the 20th century, Harvard University’s reputation grew as a burgeoning endowment and prominent professors expanded the university’s scope. Rapid enrollment growth continued as new graduate schools were begun and the undergraduate college expanded. Radcliffe College, established in 1879 as the female counterpart of Harvard College, became one of the most prominent schools for women in the United States. Harvard University became a founding member of the Association of American Universities in 1900.

    The student body in the early decades of the century was predominantly “old-stock, high-status Protestants, especially Episcopalians, Congregationalists, and Presbyterians.” A 1923 proposal by President A. Lawrence Lowell that Jews be limited to 15% of undergraduates was rejected, but Lowell did ban blacks from freshman dormitories.

    President James B. Conant reinvigorated creative scholarship to guarantee Harvard University’s preeminence among research institutions. He saw higher education as a vehicle of opportunity for the talented rather than an entitlement for the wealthy, so Conant devised programs to identify, recruit, and support talented youth. In 1943, he asked the faculty to make a definitive statement about what general education ought to be, at the secondary as well as at the college level. The resulting Report, published in 1945, was one of the most influential manifestos in 20th century American education.

    Between 1945 and 1960, admissions were opened up to bring in a more diverse group of students. No longer drawing mostly from select New England prep schools, the undergraduate college became accessible to striving middle class students from public schools; many more Jews and Catholics were admitted, but few blacks, Hispanics, or Asians. Throughout the rest of the 20th century, Harvard became more diverse.

    Harvard University’s graduate schools began admitting women in small numbers in the late 19th century. During World War II, students at Radcliffe College (which since 1879 had been paying Harvard University professors to repeat their lectures for women) began attending Harvard University classes alongside men. Women were first admitted to the medical school in 1945. Since 1971, Harvard University has controlled essentially all aspects of undergraduate admission, instruction, and housing for Radcliffe women. In 1999, Radcliffe was formally merged into Harvard University.

    21st century

    Drew Gilpin Faust, previously the dean of the Radcliffe Institute for Advanced Study, became Harvard University’s first woman president on July 1, 2007. She was succeeded by Lawrence Bacow on July 1, 2018.

    Carnegie Mellon University is a global research university with more than 12,000 students, 95,000 alumni, and 5,000 faculty and staff.

    Carnegie Mellon University has been a birthplace of innovation since its founding in 1900.

    Today, we are a global leader bringing groundbreaking ideas to market and creating successful startup businesses.

    Our award-winning faculty members are renowned for working closely with students to solve major scientific, technological and societal challenges. We put a strong emphasis on creating things—from art to robots. Our students are recruited by some of the world’s most innovative companies.

    We have campuses in Pittsburgh, Qatar and Silicon Valley, and degree-granting programs around the world, including Africa, Asia, Australia, Europe and Latin America.

    The Carnegie Mellon University was established by Andrew Carnegie as the Carnegie Technical Schools, the university became the Carnegie Institute of Technology in 1912 and began granting four-year degrees. In 1967, the Carnegie Institute of Technology merged with the Mellon Institute of Industrial Research, formerly a part of the The University of Pittsburgh. Since then, the university has operated as a single institution.

    The Carnegie Mellon University has seven colleges and independent schools, including the College of Engineering, College of Fine Arts, Dietrich College of Humanities and Social Sciences, Mellon College of Science, Tepper School of Business, Heinz College of Information Systems and Public Policy, and the School of Computer Science. The Carnegie Mellon University has its main campus located 3 miles (5 km) from Downtown Pittsburgh, and the university also has over a dozen degree-granting locations in six continents, including degree-granting campuses in Qatar and Silicon Valley.

    Past and present faculty and alumni include 20 Nobel Prize laureates, 13 Turing Award winners, 23 Members of the American Academy of Arts and Sciences, 22 Fellows of the American Association for the Advancement of Science , 79 Members of the National Academies, 124 Emmy Award winners, 47 Tony Award laureates, and 10 Academy Award winners. Carnegie Mellon enrolls 14,799 students from 117 countries and employs 1,400 faculty members.

    Research

    Carnegie Mellon University is classified among “R1: Doctoral Universities – Very High Research Activity”. For the 2006 fiscal year, the Carnegie Mellon University spent $315 million on research. The primary recipients of this funding were the School of Computer Science ($100.3 million), the Software Engineering Institute ($71.7 million), the College of Engineering ($48.5 million), and the Mellon College of Science ($47.7 million). The research money comes largely from federal sources, with a federal investment of $277.6 million. The federal agencies that invest the most money are the National Science Foundation and the Department of Defense, which contribute 26% and 23.4% of the total Carnegie Mellon University research budget respectively.

    The recognition of Carnegie Mellon University as one of the best research facilities in the nation has a long history—as early as the 1987 Federal budget Carnegie Mellon University was ranked as third in the amount of research dollars with $41.5 million, with only Massachusetts Institute of Technology and Johns Hopkins University receiving more research funds from the Department of Defense.

    The Pittsburgh Supercomputing Center is a joint effort between Carnegie Mellon University, University of Pittsburgh, and Westinghouse Electric Company. Pittsburgh Supercomputing Center was founded in 1986 by its two scientific directors, Dr. Ralph Roskies of the University of Pittsburgh and Dr. Michael Levine of Carnegie Mellon. Pittsburgh Supercomputing Center is a leading partner in the TeraGrid, The National Science Foundation’s cyberinfrastructure program.

    Scarab lunar rover is being developed by the RI.

    The Robotics Institute (RI) is a division of the School of Computer Science and considered to be one of the leading centers of robotics research in the world. The Field Robotics Center (FRC) has developed a number of significant robots, including Sandstorm and H1ghlander, which finished second and third in the DARPA Grand Challenge, and Boss, which won the DARPA Urban Challenge. The Robotics Institute has partnered with a spinoff company, Astrobotic Technology Inc., to land a CMU robot on the moon by 2016 in pursuit of the Google Lunar XPrize. The robot, known as Andy, is designed to explore lunar pits, which might include entrances to caves. The RI is primarily sited at Carnegie Mellon University ‘s main campus in Newell-Simon hall.

    The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University, with offices in Pittsburgh, Pennsylvania, USA; Arlington, Virginia, and Frankfurt, Germany. The SEI publishes books on software engineering for industry, government and military applications and practices. The organization is known for its Capability Maturity Model (CMM) and Capability Maturity Model Integration (CMMI), which identify essential elements of effective system and software engineering processes and can be used to rate the level of an organization’s capability for producing quality systems. The SEI is also the home of CERT/CC, the federally funded computer security organization. The CERT Program’s primary goals are to ensure that appropriate technology and systems management practices are used to resist attacks on networked systems and to limit damage and ensure continuity of critical services subsequent to attacks, accidents, or failures.

    The Human–Computer Interaction Institute (HCII) is a division of the School of Computer Science and is considered one of the leading centers of human–computer interaction research, integrating computer science, design, social science, and learning science. Such interdisciplinary collaboration is the hallmark of research done throughout the university.

    The Language Technologies Institute (LTI) is another unit of the School of Computer Science and is famous for being one of the leading research centers in the area of language technologies. The primary research focus of the institute is on machine translation, speech recognition, speech synthesis, information retrieval, parsing and information extraction. Until 1996, the institute existed as the Center for Machine Translation that was established in 1986. From 1996 onwards, it started awarding graduate degrees and the name was changed to Language Technologies Institute.

    Carnegie Mellon is also home to the Carnegie School of management and economics. This intellectual school grew out of the Tepper School of Business in the 1950s and 1960s and focused on the intersection of behavioralism and management. Several management theories, most notably bounded rationality and the behavioral theory of the firm, were established by Carnegie School management scientists and economists.

    Carnegie Mellon also develops cross-disciplinary and university-wide institutes and initiatives to take advantage of strengths in various colleges and departments and develop solutions in critical social and technical problems. To date, these have included the Cylab Security and Privacy Institute, the Wilton E. Scott Institute for Energy Innovation, the Neuroscience Institute (formerly known as BrainHub), the Simon Initiative, and the Disruptive Healthcare Technology Institute.

    Carnegie Mellon has made a concerted effort to attract corporate research labs, offices, and partnerships to the Pittsburgh campus. Apple Inc., Intel, Google, Microsoft, Disney, Facebook, IBM, General Motors, Bombardier Inc., Yahoo!, Uber, Tata Consultancy Services, Ansys, Boeing, Robert Bosch GmbH, and the Rand Corporation have established a presence on or near campus. In collaboration with Intel, Carnegie Mellon has pioneered research into claytronics.

     
  • richardmitnick 1:57 pm on May 31, 2023 Permalink | Reply
    Tags: "How the humble neutron can help solve some of the universe’s deepest mysteries", "Spallation": wherein high-energy particles destabilize an atom’s nucleus which in turn releases some of the neutrons found there., Astronomy, , , Currently under construction in Lund in Sweden the European Spallation Source (ESS) is expected to come online in 2027., , Newly freed neutrons can be used like X-rays to map the inner structure of materials., , , Scientists are unleashing the power of neutrons to improve understanding of everyday materials and tackle fundamental questions in physics., The ESS will have 15 different beamlines to conduct fundamental research., The European Spallation Source is set to become the most powerful and versatile neutron source for science in the world., The neutron found in the nucleus of every atom but hydrogen can shed light on everything from the climate crisis and energy to health and quantum computing.   

    From “Horizon” The EU Research and Innovation Magazine : “How the humble neutron can help solve some of the universe’s deepest mysteries” 

    From “Horizon” The EU Research and Innovation Magazine

    5.29.23
    Michael Allen

    Scientists are unleashing the power of neutrons to improve understanding of everyday materials and tackle fundamental questions in physics.

    Apart from flashbacks that the hit Netflix series Breaking Bad may have conjured up, most of us have likely happily forgotten what we learned in chemistry classes back in school.

    So here’s a quick brush-up: chemistry looks at the building blocks of our physical world, such as atoms, and the changes they undergo. An atom consists of a nucleus of protons and neutrons surrounded by a cloud of electrons.

    Free the neutrons

    Now for something high school chemistry might not have taught us: the humble neutron, found in the nucleus of every atom but hydrogen, can – if manipulated in just the right way – shed light on everything from the climate crisis and energy to health and quantum computing.

    One such way is a rather spectacular process known as “spallation” where high-energy particles destabilize an atom’s nucleus, which in turn releases some of the neutrons found there.

    When harnessed, these newly freed neutrons can be used like X-rays to map the inner structure of materials.

    Currently under construction in Lund in Sweden the European Spallation Source (ESS) is expected to come online in 2027. Once it achieves its full specifications, its unprecedented flux and spectral range is set to make it the most powerful and versatile neutron source for science in the world.

    The purpose of the facility, said Jimmy Binderup Andersen, head of innovation and industry at the ESS, ‘is to create neutrons, a neutron beam, to be used for scientific purposes.’

    Once the facility is up and running, scientists from across Europe and the rest of the world will be able to use its 15 different beamlines to conduct fundamental research.

    Not X-ray

    According to Andersen, a neutron beam “is not the same as an X-ray, but it is complementary and uses some of the same physical laws.”

    Like X-rays, neutrons can be used to probe materials and biological systems. But they interact with materials in different ways to the photons in high-energy X-ray beams and therefore provide different types of information about their targets.

    For example, neutron beams can say something about the interior dynamics of lithium-ion batteries, reveal obscured details from ancient artefacts or clarify the mechanisms of antibiotic resistance in bacteria. They can also be used to explore fundamental physics. It almost seems like a case of “what can’t they do?”

    Neutron bombardments

    As part of the EU-funded BrightnESS-2 project, partly coordinated by Andersen, technologies developed for the ESS were shared with industry in Europe, to benefit society at large. For instance, some of the power systems developed for the ESS beamlines could be useful for renewable energy technologies like wind turbines.

    Recently, the ESS was contacted by a European semiconductor manufacturer interested in the radiation fields the neutron source can generate. The world we live in is constantly bombarded with neutrons, produced when high-energy particles from outer space, such as cosmic rays from the sun, collide with Earth’s atmosphere.

    Over time, this exposure can damage electrical components.

    The ESS can mimic this neutron bombardment, but on a much faster time scale, enabling it to be used to test the durability of critical electrical components, such as those used in airplanes, wind turbines and spacecraft.

    Now ESS is teaming up with other research institutes and companies to find a possible future use of a facility like ESS to address such specific industry needs.

    ESS 2.0

    Although the ESS is still being built, scientists are already working on an upgrade to the facility.

    When the ESS first opens it will have one moderator, but the EU-funded HighNESS project is developing a second moderator system. The moderators will slow down the neutrons generated during the spallation process to an energy level that the scientific instruments can use.

    ‘The neutron energy really matters in a neutron facility, because depending on the neutron energy, you can do different kinds of physics,’ said Valentina Santoro, coordinator of the HighNESS project.

    While the first moderator will provide high-brightness, which is a very focused beam of neutrons, the source being developed by the HighNESS project will deliver a high intensity. In other words, a large number of neutrons.

    The two moderators will allow scientists to explore different aspects of the dynamics and structure of materials such as polymers, biomolecules, liquid metals and batteries.

    A fundamental mystery

    The second moderator will also enable explorations of fundamental physics to try and see a neutron become an antineutron for the first time.

    “This is very interesting, because you observe a phenomenon where matter becomes antimatter,” said Santoro, who is a particle physicist based at the ESS. ‘If you observe something like that you can understand one of the biggest unsolved mysteries – why there is more matter than antimatter in the universe.’

    This experiment can only be done at ESS, Santoro said, because it requires a huge number of neutrons and the ESS will have the highest number in the world.

    “You just need one neutron that becomes an antineutron, and that is it, you’ve found this process where matter becomes antimatter,” Santoro said.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition
    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.

     
  • richardmitnick 12:46 pm on May 31, 2023 Permalink | Reply
    Tags: "Centauris": Alpha and Beta and Proxima, "The hunt to find planets in the nearest galaxy on a shoestring budget", Astronomy, , , , , , The "TOLIMAN" telescope: (Telescope for Orbit Locus Interferometric Monitoring of our Astronomical Neighbourhood), The hunt to find planets in Alpha Centauri   

    From The University of Sydney (AU) Via “COSMOS (AU)” : “The hunt to find planets in the nearest galaxy on a shoestring budget” 

    U Sidney bloc

    From The University of Sydney (AU)

    Via

    Cosmos Magazine bloc

    “COSMOS (AU)”

    5.30.23
    Jamie Seidel

    The hunt to find planets in Alpha Centauri

    1
    A simulated binary star as observed with the conceptual design TOLIMAN pupil. Image via Peter Tuthill/ University of Sydney.

    A Sydney University team is building a low earth orbit telescope on a shoestring with the mission to find plants “next door,” at Alpha Centauri.

    “We have a small telescope because we couldn’t afford a big one,” says Professor Peter Tuthill from Sydney University’s Institute for Astronomy and School of Physics. “So we’ve had to do lots of tapdancing,”

    His team is now building the telescope which is due to be launched next year. It faces daunting challenges, not the least of which is the orbit.

    When the multi-billion dollar Cassini spacecraft turned its advanced camera back towards the central solar system after passing Saturn, Earth was just a few pixels big at 1 hour 21 minutes light speed away.

    So how can astronomy hope to find an Earth-sized planet 4.4 light years away at Alpha Centauri?

    We can’t see an Earth-sized planet. But we can measure its pull on its host star.

    “We’re trying to get this tiny signal from what’s really not an ideal orbit with its varying heat load.

    “We’ve invented a whole bunch of technologies, including (our) fancy diffractive pupils, which I think would apply to calibration of any optical system in space,” Tuthill told the Australian Space Discovery Centre in the South Australia capital, Adelaide.

    2
    EnduroSat will design and build a 16U MicroSat* to house the University of Sydney’s TOLIMAN space telescope. Credit: EnduroSat.
    *Cubesat

    “We’ve invented technologies to keep things very thermally stable, and these can be applied by anybody flying a spacecraft.

    Tuthill says Alpha Centauri helped out.

    It is actually a cluster of three stars (two sun-like and one red dwarf), and each offers a stable reference point against which to measure the movement of the others.

    “It’s a crazy, crazy difficult, tiny angle to measure,” he says. “It’s a bit like measuring a football as far away as Singapore moving by about the width of one human hair”.

    Such sensitivity is an immense technical challenge. But so is countering the distortions caused by minute movements in the satellite, the camera, and the mirror itself.

    The solution, says Tuthill, was to break the captured starlight into a “messy” diffraction pattern. So if the telescope bends, the pattern also moves. But it stays the same fingerprint-like pattern that captures the star’s movements.

    “So the error won’t affect me anymore,” he says. “I’ve made the error and the signal a common mode. “So this is the secret sauce that powers my TOLIMAN mission.”

    (Telescope for Orbit Locus Interferometric Monitoring of our Astronomical Neighbourhood.)

    But another engraving mark was needed to extract a spectrum from the starlight. Even at such a vast difference, shifts in its temperature – such as a flare – have an impact. This must be measured to compensate for its effect on the telescope.

    “If you carve the right shape into your mirror, you get this magical outcome where you preserve the message that we need – our fingerprint registration of where the star is – in the middle. And the spectrometer side lobes are perfectly diffraction limited.”

    The upshot?

    “We can find the stellar temperature, we can find the effective wavelength – and we can lock the calibration of our entire telescope,” Tuthill concludes.

    “A lot of the technologies we are building into TOLIMAN, have legs,” he says.

    “I’m really excited about where we’ve gone with the resources we have. Maybe some of these innovations might propel new initiatives and next-generation performance from tomorrow’s spacecraft”.

    One example is the optical analysis software Deluxe. It can detect and measure the tiny warps and distortions NASA could not eliminate from the James Webb Space Telescope’s mirrors. This can then be used to refine its images further.

    Another is the need to efficiently and effectively transmit the TOLIMAN camera’s trove of data back to Earth. That means optimizing any data compression to avoid losing the minute signals that would reveal an earth-size planet.

    And while TOLIMAN’s mirror system corrects for distortion, it must be given the best start-point possible. That’s why the camera will be fitted with tiny patch heaters and sensors to actively adapt to shifting heat loads.

    “If we can make it as stable as possible before we even need to implement this fancy diffractive pupil, then we’re going to be in the black,” Tuthill states.

    Finally, the satellite must be able to keep the camera pointed precisely at the Alpha Centauri.

    “We need to get Hubble-like pointing accuracy out of a CubeSat,” he adds. “So to make it point, we have our own onboard pointing system consisting of a set of piezos (actuators) around the centre of mass. That’s another innovation we’ve had to come up with in Sydney to make this mission possible.”

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Sydney (AU)
    Our founding principle as Australia’s first university, U Sydney was that we would be a modern and progressive institution. It’s an ideal we still hold dear today.

    When Charles William Wentworth proposed the idea of Australia’s first university in 1850, he imagined “the opportunity for the child of every class to become great and useful in the destinies of this country”.

    We’ve stayed true to that original value and purpose by promoting inclusion and diversity for the past 160 years.

    It’s the reason that, as early as 1881, we admitted women on an equal footing to male students. The University of Oxford (UK) didn’t follow suit until 30 years later, and Jesus College at The University of Cambridge (UK) did not begin admitting female students until 1974.
    It’s also why, from the very start, talented students of all backgrounds were given the chance to access further education through bursaries and scholarships.

    Today we offer hundreds of scholarships to support and encourage talented students, and a range of grants and bursaries to those who need a financial helping hand.

    The University of Sydney (AU) is an Australian public research university in Sydney, Australia. Founded in 1850, it is Australia’s first university and is regarded as one of the world’s leading universities. The university is known as one of Australia’s six sandstone universities. Its campus, spreading across the inner-city suburbs of Camperdown and Darlington, is ranked in the top 10 of the world’s most beautiful universities by the British Daily Telegraph and the American Huffington Post.The university comprises eight academic faculties and university schools, through which it offers bachelor, master and doctoral degrees.

    The QS World University Rankings ranked the university as one of the world’s top 25 universities for academic reputation, and top 5 in the world and first in Australia for graduate employability. It is one of the first universities in the world to admit students solely on academic merit, and opened their doors to women on the same basis as men.

    Five Nobel and two Crafoord laureates have been affiliated with the university as graduates and faculty. The university has educated seven Australian prime ministers, two governors-general of Australia, nine state governors and territory administrators, and 24 justices of the High Court of Australia, including four chief justices. The university has produced 110 Rhodes Scholars and 19 Gates Scholars.

    The University of Sydney (AU) is a member of The Group of Eight (AU), CEMS, The Association of Pacific Rim Universities and The Association of Commonwealth Universities.

     
  • richardmitnick 11:34 am on May 31, 2023 Permalink | Reply
    Tags: "The Tunguska event was the biggest asteroid impact in recorded history. How did it vanish without a trace?", , Astronomy, , During the Tunguska event over 8 million trees covering an area of 830 square miles were flattened when an asteroid entered Earth's atmosphere., ,   

    From “Live Science” : “The Tunguska event was the biggest asteroid impact in recorded history. How did it vanish without a trace?” 

    From “Live Science”

    5.29.23
    Hannah Osborne

    During the Tunguska event, over 8 million trees covering an area of 830 square miles were flattened when an asteroid entered Earth’s atmosphere.

    1
    The Tunguska event is considered to be the biggest asteroid strike in recorded history. (Image credit: solarseven/Getty Images)

    On June 30, 1908, an asteroid flattened an estimated 80 million trees in Siberia over 830 square miles (2,150 square kilometers). Dubbed the Tunguska event, it is considered the biggest asteroid impact in recorded history. Yet no one has ever found the asteroid fragments or an impact site.

    The asteroid lit up the skies in a remote, sparsely inhabited region near the Podkamennaya Tunguska River. It unleashed a 10 to 15 megaton explosion — similar in size to the 1954 Castle Bravo nuclear bomb test, the fifth-largest nuclear detonation in history. “The sky was split in two, and high above the forest the whole northern part of the sky appeared covered with fire,” an eyewitness reported.

    One popular theory is that the asteroid formed Lake Cheko, a freshwater lake about 5 miles (8 kilometers) from the explosion epicenter. The lake is about 1,640 feet (500 meters) wide and 177 feet (54 m) deep. Luca Gasperini, research director at the National Research Council of Italy, and colleagues said the lake’s cone-like shape and depth resembled an impact crater. In a study published 2012 in the journal Geochemistry, Geophysics, Geosystems [below], they estimated that the sediments at the bottom of the lake had been building for 100 years, while evidence of trees at the bottom of the lake indicate the waterhole covers an old forest.

    3
    (Image credit: UniversalImagesGroup/Getty Images)

    But some experts were not convinced. In 2017, researchers led by Denis Rogozin, from the Institute of Biophysics at the Siberian Branch of the Russian Academy of Sciences, carried out their own analysis and concluded that lake sediments were at least 280 to 390 years old, “significantly older than the 1908 Tunguska Event.”

    And in a new study published May 2 in the journal Doklady Earth Sciences [below], Rogozin and colleagues presented more evidence to refute the idea Lake Cheko is the Tunguska asteroid’s impact site.

    Previously, many researchers believed Lake Cheko’s unusual cone shape was unique in the region, giving weight to the idea that an asteroid formed it. But Rogozin and colleagues analyzed two nearby lakes — Zapovednoye and Peyungda — that sit 31 miles (50 km) and 37 miles (60 km) from the suspected impact site. Both are also cone shaped, they found.

    “The difference in the age of the lake sediments puts into question the impact origin of these lakes — this would require the arrival of three almost identical space bodies at different times, which is highly improbable given that the lakes are located in almost the same place on Earth,” the researchers wrote.

    Daniel Vondrák, who studies lake ecosystems at Charles University in Prague, told Live Science in an email that he is convinced by Rogozin’s evidence.

    However, the conical shape of the lakes isn’t the only evidence that Cheko was formed by the Tunguska event, Gasperini said.

    In a paper posted to the preprint server arxiv in 2018 (which still has not been peer reviewed), Gasperini and his team hypothesized that Tunguska was caused by a “rubble-pile” asteroid — a structurally weak mashup of fragments from a monolithic asteroid.. As a result, the asteroid split into two pieces — one around 197 feet (60 m) wide, the other around 20 to 33 feet (6 to 10 m) wide. The smaller of these two smashed into Earth, forming Lake Cheko, they wrote.

    The team detected a 33-foot-wide (10 m) anomaly at the bottom of the lake that may be a leftover fragment of the asteroid. By drilling to the lake center, someone could test the composition of the anomaly to confirm that hypothesis. However, Gasperini’s team can no longer access the site due to the war in Ukraine.

    “The Russian scientists could easily do this test, instead of continuing to publish articles showing data similar to ours with very questionable interpretations,” Gasperini told Live Science in an email.

    What could have happened to the asteroid?

    If Cheko wasn’t formed by the Tunguska impact crater, then what happened to the asteroid that set fire to the skies more than a century ago? A paper published in 2020 in the journal MNRAS [below] suggested a large iron asteroid passed through Earth’s atmosphere, then curved away from Earth without breaking up. This, the team said, would explain why no trace of the asteroid has ever been found.

    Another paper posted to arxiv last month put forward yet another hypothesis — that the asteroid broke apart and scattered across the landscape. While many fragments would have burnt up in the atmosphere, the team said smaller chunks could have survived and hit Earth over a “strewn field.”. This paper suggests rocks from the asteroid could be about 10 to 12 miles (16 to 19 km) northwest of the epicenter, “even if the mud and vegetation could have made any trace disappear.”

    Geochemistry, Geophysics, Geosystems

    Figure 1
    2
    (left) Landsat image of the Tunguska area with indicated the pattern of trees flattened after the 1908 explosion and the inferred epicenter [Longo et al., 2005]. Yellow box indicates location of topographic map. (right) Topographic map of the epicenter region. Lake Cheko and the southern and northern swamps are indicated, as well as the most probable trajectory of the cosmic body.

    Figure 2
    3
    Morphobathymetric map of the Lake Cheko obtained by Tunguska99 survey data over an aerial photograph collected during TUNGUSKA99 expedition. Note the funnel-like shape morphology, not typical of Siberian thermokarst lakes. The small prograding delta generated by the inflowing River Kimchu is also visible in the SW shore.
    See the science paper for further instructive material with images.

    Doklady Earth Sciences
    MNRAS
    See this above science paper for further instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 10:12 am on May 31, 2023 Permalink | Reply
    Tags: "People feel ownership when they help make discoveries" says RIT astrophysicist., "Rochester Institute of Technology scientists unveil Citizen Science Project to search for distant galaxies", Astronomy, , , ,   

    From The Rochester Institute of Technology: “Rochester Institute of Technology scientists unveil Citizen Science Project to search for distant galaxies” 

    From The Rochester Institute of Technology

    5.31.23
    Carl Langsenkamp

    “People feel ownership when they help make discoveries,” says RIT astrophysicist.

    1
    Citizen scientists are needed to help capture scientific information about distant galaxies and the early universe. RIT.

    Researchers at Rochester Institute of Technology want your help studying galaxies far, far away. It may seem like something out of Star Wars, but the goal is to gather scientific information to learn more about distant galaxies and the early universe.

    In collaboration with NASA, RIT unveiled a website asking for volunteers to join an effort to take critical measurements that will aid astronomers in identifying the “fingerprints” of different chemical elements present in galaxies and measuring their distances.

    NASA’s citizen science projects are collaborations between scientists and interested members of the public. These volunteers, known as citizen scientists, have helped make thousands of critical scientific discoveries, and hundreds have been named as co-authors on refereed scientific publications.

    For this project, called “Redshift Wrangler,” RIT researchers are studying the spectrum measured from galaxies, or how their light is distributed across different colors, like a rainbow. “Citizen science can often succeed where traditional science can’t,” said Sadie Coffin, a Ph.D. student in RIT’s astrophysical sciences and technology program. “With our abundance of galaxy spectra, Redshift Wrangler takes advantage of a creative method to perform our large-scale analyses while opening up scientific discourse that has historically been exclusive.”

    By looking at the spectrum of a galaxy, scientists can identify spectral features that occur at different wavelengths. Different elements have peaks and dips that always occur at the same places, like a fingerprint. They can determine which elements are present by tracking down those characteristic patterns.

    Once key features are identified in the spectra, RIT researchers can use the measurements to answer many scientific questions. For example, the volunteers’ measurements will help them understand how galaxies and their surrounding gases are related to the universe’s large-scale structure, how supermassive black holes contribute to their galaxy’s evolution, and how Dark Energy drives the acceleration of the universe’s expansion.

    “The spectra of galaxies allow us to look into the past,” said Jeyhan Kartaltepe, associate professor in RIT’s School of Physics and Astronomy and Redshift Wrangler PI. “If we’re going to understand better our early universe and how galaxies have changed over cosmic time, we need to study these far away systems. This will give us critical information about the history of our galaxy and how we fit in.”

    Working through each individual spectrum would be too time consuming for a single person, noted Kartaltepe, but with the help of citizen scientists, they can accomplish more science and work through data faster. Bringing in citizen scientists also lets the team review individual classifications, receive feedback from different scientists and non-scientists, get different perspectives on challenging data, and provide more access to becoming involved in research for participants at all levels of learning.

    For details on the project and how the community can get involved, go to the Redshift Wrangler website.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Rochester Institute of Technology is a private doctoral university within the town of Henrietta in the Rochester, New York metropolitan area.

    RIT is composed of nine academic colleges, including National Technical Institute for the Deaf(RIT). The Institute is one of only a small number of engineering institutes in the State of New York, including New York Institute of Technology, SUNY Polytechnic Institute, and Rensselaer Polytechnic Institute. It is most widely known for its fine arts, computing, engineering, and imaging science programs; several fine arts programs routinely rank in the national “Top 10” according to US News & World Report.

    The university offers undergraduate and graduate degrees, including doctoral and professional degrees and online masters as well.

    The university was founded in 1829 and is the tenth largest private university in the country in terms of full-time students. It is internationally known for its science; computer; engineering; and art programs as well as for the National Technical Institute for the Deaf- a leading deaf-education institution that provides educational opportunities to more than 1000 deaf and hard-of-hearing students. RIT is known for its Co-op program that gives students professional and industrial experience. It has the fourth oldest and one of the largest Co-op programs in the world. It is classified among “R2: Doctoral Universities – High research activity”.

    RIT’s student population is approximately 19,000 students, about 16,000 undergraduate and 3000 graduate. Demographically, students attend from all 50 states in the United States and from more than 100 countries around the world. The university has more than 4000 active faculty and staff members who engage with the students in a wide range of academic activities and research projects. It also has branches abroad, its global campuses, located in China, Croatia and United Arab Emirates (Dubai).

    Fourteen RIT alumni and faculty members have been recipients of the Pulitzer Prize.

    History

    The university began as a result of an 1891 merger between Rochester Athenæum, a literary society founded in 1829 by Colonel Nathaniel Rochester and associates and The Mechanics Institute- a Rochester school of practical technical training for local residents founded in 1885 by a consortium of local businessmen including Captain Henry Lomb- co-founder of Bausch & Lomb. The name of the merged institution at the time was called Rochester Athenæum and Mechanics Institute (RAMI). The Mechanics Institute however, was considered as the surviving school by taking over The Rochester Athenaeum’s charter. From the time of the merger until 1944 RAMI celebrated The former Mechanics Institute’s 1885 founding charter. In 1944 the school changed its name to Rochester Institute of Technology and re-established The Athenaeum’s 1829 founding charter and became a full-fledged research university.

    The university originally resided within the city of Rochester, New York, proper, on a block bounded by the Erie Canal; South Plymouth Avenue; Spring Street; and South Washington Street (approximately 43.152632°N 77.615157°W). Its art department was originally located in the Bevier Memorial Building. By the middle of the twentieth century, RIT began to outgrow its facilities, and surrounding land was scarce and expensive. Additionally in 1959 the New York Department of Public Works announced a new freeway- the Inner Loop- was to be built through the city along a path that bisected the university’s campus and required demolition of key university buildings. In 1961 an unanticipated donation of $3.27 million ($27,977,071 today) from local Grace Watson (for whom RIT’s dining hall was later named) allowed the university to purchase land for a new 1,300-acre (5.3 km^2) campus several miles south along the east bank of the Genesee River in suburban Henrietta. Upon completion in 1968 the university moved to the new suburban campus, where it resides today.

    In 1966 RIT was selected by the Federal government to be the site of the newly founded National Technical Institute for the Deaf (NTID). NTID admitted its first students in 1968 concurrent with RIT’s transition to the Henrietta campus.

    In 1979 RIT took over Eisenhower College- a liberal arts college located in Seneca Falls, New York. Despite making a 5-year commitment to keep Eisenhower open RIT announced in July 1982 that the college would close immediately. One final year of operation by Eisenhower’s academic program took place in the 1982–83 school year on the Henrietta campus. The final Eisenhower graduation took place in May 1983 back in Seneca Falls.

    In 1990 RIT started its first PhD program in Imaging Science – the first PhD program of its kind in the U.S. RIT subsequently established PhD programs in six other fields: Astrophysical Sciences and Technology; Computing and Information Sciences; Color Science; Microsystems Engineering; Sustainability; and Engineering. In 1996 RIT became the first college in the U.S to offer a Software Engineering degree at the undergraduate level.

    Colleges

    RIT has nine colleges:

    RIT College of Engineering Technology
    Saunders College of Business
    B. Thomas Golisano College of Computing and Information Sciences
    Kate Gleason College of Engineering
    RIT College of Health Sciences and Technology
    College of Art and Design
    RIT College of Liberal Arts
    RIT College of Science
    National Technical Institute for the Deaf

    There are also three smaller academic units that grant degrees but do not have full college faculties:

    RIT Center for Multidisciplinary Studies
    Golisano Institute for Sustainability
    University Studies

    In addition to these colleges, RIT operates three branch campuses in Europe, one in the Middle East and one in East Asia:

    RIT Croatia (formerly the American College of Management and Technology) in Dubrovnik and Zagreb, Croatia
    RIT Kosovo (formerly the American University in Kosovo) in Pristina, Kosovo
    RIT Dubai in Dubai, United Arab Emirates
    RIT China-Weihai Campus

    RIT also has international partnerships with the following schools:

    Yeditepe University İstanbul Eğitim ve Kültür Vakfı] (TR) in Istanbul, Turkey
    Birla Institute of Technology and Science [बिरला इंस्टिट्यूट ऑफ़ टेक्नोलॉजी एंड साइंस] (IN) in India
    Mother and Teacher Pontifical Catholic University [Pontificia Universidad Católica Madre y Maestra] (DO)
    Santo Domingo Institute of Technology[Instituto Tecnológico de Santo Domingo – INTEC] (DO) in Dominican Republic
    Central American Technological University [La universidad global de Honduras] (HN)
    University of the North [Universidad del Norte] (COL)in Colombia
    Peruvian University of Applied Sciences [Universidad Peruana de Ciencias Aplicadas] (PE) (UPC) in Peru
    Research

    RIT’s research programs are rapidly expanding. The total value of research grants to university faculty for fiscal year 2007–2008 totaled $48.5 million- an increase of more than twenty-two percent over the grants from the previous year. The university currently offers eight PhD programs: Imaging science; Microsystems Engineering; Computing and Information Sciences; Color science; Astrophysical Sciences and Technology; Sustainability; Engineering; and Mathematical modeling.

    In 1986 RIT founded the Chester F. Carlson Center for Imaging Science and started its first doctoral program in Imaging Science in 1989. The Imaging Science department also offers the only Bachelors (BS) and Masters (MS) degree programs in imaging science in the country. The Carlson Center features a diverse research portfolio; its major research areas include Digital Image Restoration; Remote Sensing; Magnetic Resonance Imaging; Printing Systems Research; Color Science; Nanoimaging; Imaging Detectors; Astronomical Imaging; Visual Perception; and Ultrasonic Imaging.

    The Center for Microelectronic and Computer Engineering was founded by RIT in 1986. The university was the first university to offer a bachelor’s degree in Microelectronic Engineering. The Center’s facilities include 50,000 square feet (4,600 m^2) of building space with 10,000 square feet (930 m^2) of clean room space. The building will undergo an expansion later this year. Its research programs include nano-imaging; nano-lithography; nano-power; micro-optical devices; photonics subsystems integration; high-fidelity modeling and heterogeneous simulation; microelectronic manufacturing; microsystems integration; and micro-optical networks for computational applications.

    The Center for Advancing the Study of CyberInfrastructure (CASCI) is a multidisciplinary center housed in the College of Computing and Information Sciences. The Departments of Computer science; Software Engineering; Information technology; Computer engineering; Imaging Science; and Bioinformatics collaborate in a variety of research programs at this center. RIT was the first university to launch a Bachelor’s program in Information technology in 1991; the first university to launch a Bachelor’s program in Software Engineering in 1996 and was also among the first universities to launch a Computer Science Bachelor’s program in 1972. RIT helped standardize the Forth programming language and developed the CLAWS software package.

    The Center for Computational Relativity and Gravitation was founded in 2007. The CCRG comprises faculty and postdoctoral research associates working in the areas of general relativity; gravitational waves; and galactic dynamics. Computing facilities in the CCRG include gravitySimulator, a novel 32-node supercomputer that uses special-purpose hardware to achieve speeds of 4TFlops in gravitational N-body calculations, and newHorizons [image N/A], a state-of-the art 85-node Linux cluster for numerical relativity simulations.

    2
    Gravity Simulator at the Center for Computational Relativity and Gravitation, RIT, Rochester, New York, USA.

    The Center for Detectors was founded in 2010. The CfD designs; develops; and implements new advanced sensor technologies through collaboration with academic researchers; industry engineers; government scientists; and university/college students. The CfD operates four laboratories and has approximately a dozen funded projects to advance detectors in a broad array of applications, e.g. astrophysics; biomedical imaging; Earth system science; and inter-planetary travel. Center members span eight departments and four colleges.

    RIT has collaborated with many industry players in the field of research as well, including IBM; Xerox; Rochester’s Democrat and Chronicle; Siemens; National Aeronautics Space Agency; and the Defense Advanced Research Projects Agency (DARPA). In 2005, it was announced by Russell W. Bessette- Executive Director New York State Office of Science Technology & Academic Research (NYSTAR), that RIT will lead the SUNY University at Buffalo and Alfred University in an initiative to create key technologies in microsystems; photonics; nanomaterials; and remote sensing systems and to integrate next generation IT systems. In addition, the collaboratory is tasked with helping to facilitate economic development and tech transfer in New York State. More than 35 other notable organizations have joined the collaboratory, including Boeing, Eastman Kodak, IBM, Intel, SEMATECH, ITT, Motorola, Xerox, and several Federal agencies, including as NASA.

    RIT has emerged as a national leader in manufacturing research. In 2017, the U.S. Department of Energy selected RIT to lead its Reducing Embodied-Energy and Decreasing Emissions (REMADE) Institute aimed at forging new clean energy measures through the Manufacturing USA initiative. RIT also participates in five other Manufacturing USA research institutes.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: