Tagged: Astrophysics Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 5:26 pm on July 23, 2021 Permalink | Reply
    Tags: "Needle in a haystack-planetary nebulae in distant galaxies", As the distance of a planetary nebula increases the apparent diameter in an image shrinks and the integrated apparent brightness decreases with the square of the distance., Astrophysics, , , , Leibniz Institute for Astrophysics [Leibniz-Institut für Astrophysik](AIP)(DE), , PNLF: luminosity function of planetary nebulae, The method used-a filter algorithm in image data processing-opens up new possibilities for cosmic distance measurement – and thus also for determining the Hubble constant., With modern large telescopes and long exposure times such objects can nevertheless be imaged and measured using optical filters or imaging spectroscopy.   

    From Leibniz Institute for Astrophysics [Leibniz-Institut für Astrophysik](AIP)(DE): “Needle in a haystack-planetary nebulae in distant galaxies” 

    From Leibniz Institute for Astrophysics [Leibniz-Institut für Astrophysik](AIP)(DE)

    July 22, 2021

    Science contacts:
    Prof. Dr.
    Martin M. Roth
    Phone: +49 331 7499 313

    Dr. Peter Weilbacher
    Phone: +49 331 7499 667

    Media contact:
    Sarah Hönig
    Phone: +49 331 7499 803

    The ring galaxy NGC 474 at a distance of about 110 million light years. The ring structure was formed by merging processes of colliding galaxies.
    Credit:DOE’s Fermi National Accelerator Laboratory (US)/Dark Energy Survey (US) /National Center for Supercomputing Applications at the University of Illinois (US) & Cerro Tololo Inter-American Observatory (CL) (US)/NSF NOIRLab (US)/National Science Foundation (US)/ Association of Universities for Research in Astronomy (US).

    Using data from the MUSE instrument, researchers at the Leibniz Institute for Astrophysics Potsdam (AIP) succeeded in detecting extremely faint planetary nebulae in distant galaxies.

    The method used-a filter algorithm in image data processing-opens up new possibilities for cosmic distance measurement – and thus also for determining the Hubble constant.

    Planetary nebulae are known in the neighbourhood of the Sun as colourful objects that appear at the end of a star’s life as it evolves from the red giant to white dwarf stage: when the star has used up its fuel for nuclear fusion, it blows off its gas envelope into interstellar space, contracts, becomes extremely hot, and excites the expanding gas envelope to glow.

    Unlike the continuous spectrum of the star, the ions of certain elements in this gas envelope, such as hydrogen, oxygen, helium and neon, emit light only at certain wavelengths. Special optical filters tuned to these wavelengths can make the faint nebulae visible. The closest object of this kind in our Milky Way is the Helix Nebula, 650 light years away.

    The planetary nebula NGC 7294 (“Helix Nebula”), an object in the neighbourhood of the Sun.
    Credit: National Aeronautics Space Agency (US), NSF NOIRLab National Optical Astronomy Observatory (US), European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU), the Hubble Helix Nebula Team, M. Meixner (Space Telescope Science Institute (US)), and T.A. Rector (National Radio Astronomy Observatory (US))

    As the distance of a planetary nebula increases the apparent diameter in an image shrinks and the integrated apparent brightness decreases with the square of the distance. In our neighbouring galaxy, the Andromeda Galaxy, at a distance almost 4000 times greater, the Helix Nebula would only be visible as a dot, and its apparent brightness would be almost 15 million times fainter. With modern large telescopes and long exposure times such objects can nevertheless be imaged and measured using optical filters or imaging spectroscopy. Martin Roth, first author of the new study and head of the innoFSPEC department at AIP: “Using the PMAS instrument developed at AIP, we succeeded in doing this for the first time with integral field spectroscopy for a handful of planetary nebulae in the Andromeda Galaxy in 2001 to 2002 on the 3.5m telescope of the Calar Alto Observatory.

    However, the relatively small PMAS field-of-view did not allow yet to investigate a larger sample of objects.”

    It took a good 20 years to develop these first experiments further using a more powerful instrument with a more than 50 times larger field-of-view on a much larger telescope. MUSE [above] at the ESO Very Large Telescope in Chile [above] was developed primarily for the discovery of extremely faint objects at the edge of the universe currently observable to us – and has produced spectacular results for this purpose since the first observations. It is precisely this property that also comes into play in the detection of extremely faint PN in a distant galaxy.

    The galaxy NGC 474 is a particularly fine example of a galaxy that, through collision with other, smaller galaxies, has formed a conspicuous ring structure from the stars scattered by gravitational effects. It lies roughly 110 million light years away, which is about 170,000 times further than the Helix Nebula. The apparent brightness of a planetary nebula in this galaxy is therefore almost 30 billion times lower than that of the Helix Nebula and is in the range of cosmologically interesting galaxies for which the team designed the MUSE instrument.

    A team of researchers at the AIP, together with colleagues from the USA, has developed a method for using MUSE to isolate and precisely measure the extremely faint signals of planetary nebulae in distant galaxies with high sensitivity. A particularly effective filter algorithm in image data processing plays an important role here. For the ring galaxy NGC 474, ESO archive data were available, based on two very deep MUSE exposures with 5 hours of observation time each. The result of the data processing: after applying the filter algorithm, a total of 15 extremely faint planetary nebulae became visible.

    MUSE image data in the two marked fields in the above image of the ring structure of NGC 474. Left: Image in the continuum with the band of unresolved stars as well as globular clusters marked by circles. Right: filtered image in the redshifted oxygen emission line, from which the planetary nebulae emerge as point sources from the noise. The artefacts created by instrumental effects have completely disappeared.
    Credit: AIP/M. Roth.

    This highly sensitive procedure opens up a new method for distance measurement that is suitable for contributing to the solution of the currently discussed discrepancy in the determination of the Hubble constant. Planetary nebulae have the property that, physically, a certain maximum luminosity cannot be exceeded. The distribution function of the luminosities of a sample in a galaxy, i.e. the luminosity function of planetary nebulae (PNLF), breaks off at the bright end. This property is that of a standard candle, which can be used to calculate a distance by statistical methods.

    The PNLF method has been developed already in 1989 by team members George Jacoby (NSF’s NOIRLab) and Robin Ciardullo (Penn State University (US)). It has been successfully applied to more than 50 galaxies over the past 30 years, but was limited by the filter measurements used so far. Galaxies with distances greater than that of the Virgo or Fornax clusters were beyond the range. The study, now published in The Astrophysical Journal, shows that MUSE can achieve more than twice the range, allowing an independent measurement of the Hubble constant.

    See the full article here.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Leibniz Institute for Astrophysics Potsdam (AIP)(DE) is a German research institute. It is the successor of the Berlin Observatory founded in 1700 and of the Astrophysical Observatory Potsdam (AOP) founded in 1874. The latter was the world’s first observatory to emphasize explicitly the research area of astrophysics. The AIP was founded in 1992, in a re-structuring following the German reunification.

    The AIP is privately funded and member of the Leibniz Association. It is located in Babelsberg in the state of Brandenburg, just west of Berlin, though the Einstein Tower solar observatory and the great refractor telescope on Telegrafenberg in Potsdam belong to the AIP.

    The key topics of the AIP are cosmic magnetic fields (magnetohydrodynamics) on various scales and extragalactic astrophysics. Astronomical and astrophysical fields studied at the AIP range from solar and stellar physics to stellar and galactic evolution to cosmology.

    The institute also develops research technology in the fields of spectroscopy and robotic telescopes. It is a partner of the Large Binocular Telescope in Arizona, has erected robotic telescopes in Tenerife and the Antarctic, develops astronomical instrumentation for large telescopes such as the VLT of the ESO. Furthermore, work on several e-Science projects are carried out at the AIP.

    Main research areas

    Magnetohydrodynamics (MHD): Magnetic fields and turbulence in stars, accretion disks and galaxies; computer simulations ao dynamos, magnetic instabilities and magnetic convection
    Solar physics: Observation of sunspots and of solar magnetic field with spectro-polarimetry; Helioseismology and hydrodynamic numerical models; Study of coronal plasma processes by means of radio astronomy; Operation of the Observatory for Solar Radio Astronomy[7] (OSRA) in Tremsdorf, with four radio antennas in different frequency bands from 40 MHz to 800 MHz
    Stellar physics: Numerical simulations of convection in stellar atmospheres, determination of stellar surface parameters and chemical abundances, winds and dust shells of red giants; Doppler tomography of stellar surface structures, development of robotic telescopes, as well as simulation of magnetic flux tubes
    Star formation and the interstellar medium: Brown dwarfs and low-mass stars, circumstellar disks, Origin of double and multiple-star systems
    Galaxies and quasars: Mother galaxies and surroundings of quasars, development of quasars and active galactic cores, structure and the story of the origin of the Milky Way, numerical computer simulations of the origin and development of galaxies
    Cosmology: Numerical simulation of the formation of large-scale structures. Semi-analytic models of galaxy formation and evolution. Predictions for future large observational surveys.

  • richardmitnick 10:45 pm on July 22, 2021 Permalink | Reply
    Tags: "New Study Reveals Previously Unseen Star Formation in Milky Way", Astrophysics, , , GLOSTAR (Global view of the Star formation in the Milky Way), , ,   

    From National Radio Astronomy Observatory (US) and MPG Institute for Radio Astronomy[MPG Institut für Radioastronomie](DE): “New Study Reveals Previously Unseen Star Formation in Milky Way” 

    NRAO Banner

    From National Radio Astronomy Observatory (US)


    MPG Institute for Radio Astronomy[MPG Institut für Radioastronomie](DE)

    July 22, 2021

    Dave Finley, Public Information Officer
    (505) 241-9210

    Credit: Brunthaler et al., Sophia Dagnello, NRAO/Associated Universities Inc (US)/National Science Foundation (US).

    Astronomers using two of the world’s most powerful radio telescopes have made a detailed and sensitive survey of a large segment of our home galaxy — the Milky Way — detecting previously unseen tracers of massive star formation, a process that dominates galactic ecosystems. The scientists combined the capabilities of the National Science Foundation’s Karl G. Jansky Very Large Array (VLA) and the 100-meter Effelsberg Telescope in Germany to produce high-quality data that will serve researchers for years to come.

    Stars with more than about ten times the mass of our Sun are important components of the Galaxy and strongly affect their surroundings. However, understanding how these massive stars are formed has proved challenging for astronomers. In recent years, this problem has been tackled by studying the Milky Way at a variety of wavelengths, including radio and infrared. This new survey, called GLOSTAR (Global view of the Star formation in the Milky Way), was designed to take advantage of the vastly improved capabilities that an upgrade project completed in 2012 gave the VLA to produce previously unobtainable data.

    GLOSTAR has excited astronomers with new data on the birth and death processes of massive stars, as well on the tenuous material between the stars. The GLOSTAR team of researchers has published a series of papers in the journal Astronomy & Astrophysics reporting initial results of their work, including detailed studies of several individual objects.

    “A Global View on Star Formation: The GLOSTAR Galactic Plane Survey. I. Overview and first results for the Galactic longitude range 28°< l < 36°”

    “A Global View on Star Formation: The GLOSTAR Galactic Plane Survey. II. Supernova remnants in the first quadrant of the Milky Way?”

    “A Global View on Star Formation: The GLOSTAR Galactic Plane Survey. III. 6.7 GHz Methanol maser survey in Cygnus X”

    “A Global View on Star Formation: The GLOSTAR Galactic Plane Survey. IV. Radio continuum detections of young stellar objects in the Galactic Centre Region”

    Observations continue and more results will be published later.

    The survey detected telltale tracers of the early stages of massive star formation, including compact regions of hydrogen gas ionized by the powerful radiation from young stars, and radio emission from methanol (wood alcohol) molecules that can pinpoint the location of very young stars still deeply shrouded by the clouds of gas and dust in which they are forming.

    The survey also found many new remnants of supernova explosions — the dramatic deaths of massive stars. Previous studies had found fewer than a third of the expected number of supernova remnants in the Milky Way. In the region it studied, GLOSTAR more than doubled the number found using the VLA data alone, with more expected to appear in the Effelsberg data.

    “This is an important step to solve this longstanding mystery of the missing supernova remnants,” said Rohit Dokara, a Ph.D student at the MPG Institute for Radio Astronomy[MPG Institut für Radioastronomie](DE) and lead author on a paper about the remnants.

    The GLOSTAR team combined data from the VLA and the Effelsberg telescope to obtain a complete view of the region they studied. The multi-antenna VLA — an interferometer — combines the signals from widely-separated antennas to make images with very high resolution that show small details. However, such a system often cannot also detect large-scale structures. The 100-meter-diameter Effelsberg telescope provided the data on structures larger than those the VLA could detect, making the image complete.

    “This clearly demonstrates that the Effelberg telescope is still very crucial, even after 50 years of operation,” said Andreas Brunthaler of MPIfR, project leader and first author of the survey’s overview paper.

    Visible light is strongly absorbed by dust, which radio waves can readily penetrate. Radio telescopes are essential to revealing the dust-shrouded regions in which young stars form.

    The results from GLOSTAR, combined with other radio and infrared surveys, “offers astronomers a nearly complete census of massive star-forming clusters at various stages of formation, and this will have lasting value for future studies,” said team member William Cotton, of the National Radio Astronomy Observatory (NRAO), who is an expert in combining interferometer and single-telescope data.

    “GLOSTAR is the first map of the Galactic Plane at radio wavelengths that detects many of the important star formation tracers at high spatial resolution. The detection of atomic and molecular spectral lines is critical to determine the location of star formation and to better understand the structure of the Galaxy,” said Dana Balser, also of NRAO.

    The initiator of GLOSTAR, the MPIfR’s Karl Menten, added, “It’s great to see the beautiful science resulting from two of our favorite radio telescopes joining forces.”

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The MPG Institute for Radio Astronomy [MPG Institut für Radioastronomie] (DE) is located in Bonn, Germany. It is one of 80 institutes in the MPG Society.

    By combining the already existing radio astronomy faculty of the University of Bonn led by Otto Hachenberg with the new MPG institute the MPG Institute for Radio Astronomy was formed. In 1972 the 100-m radio telescope in Effelsberg was opened. The institute building was enlarged in 1983 and 2002.

    The institute was founded in 1966 by the MPG Society as the “MPG Institut für Radioastronomie (MPIfR) (DE)”.

    The foundation of the institute was closely linked to plans in the German astronomical community to construct a competitive large radio telescope in (then) West Germany. In 1964, Professors Friedrich Becker, Wolfgang Priester and Otto Hachenberg of the Astronomische Institute der Universität Bonn submitted a proposal to the Stiftung Volkswagenwerk for the construction of a large fully steerable radio telescope.

    In the same year the Stiftung Volkswagenwerk approved the funding of the telescope project but with the condition that an organization should be found, which would guarantee the operations. It was clear that the operation of such a large instrument was well beyond the possibilities of a single university institute.

    Already in 1965 the MPG Society decided in principle to found the MPG Institut für Radioastronomie. Eventually, after a series of discussions, the institute was officially founded in 1966.

    a href=”https://sciencesprings.wordpress.com/2016/08/26/from-mpg-visualization-of-newly-formed-synapses-with-unprecedented-resolution/mpg-bloc/&#8221; rel=”attachment wp-att-47599″>

    MPG Institute for the Advancement of Science [MPG zur Förderung der Wissenschaften e. V](DE) is Germany’s most successful research organization. Since its establishment in 1948, no fewer than 18 Nobel laureates have emerged from the ranks of its scientists, putting it on a par with the best and most prestigious research institutions worldwide. The more than 15,000 publications each year in internationally renowned scientific journals are proof of the outstanding research work conducted at MPG Institutes – and many of those articles are among the most-cited publications in the relevant field.

    What is the basis of this success? The scientific attractiveness of the MPG Society is based on its understanding of research: MPG institutes are built up solely around the world’s leading researchers. They themselves define their research subjects and are given the best working conditions, as well as free reign in selecting their staff. This is the core of the Harnack principle, which dates back to Adolph von Harnack, the first president of the Kaiser Wilhelm Society, which was established in 1911. This principle has been successfully applied for nearly one hundred years. The MPG Society continues the tradition of its predecessor institution with this structural principle of the person-centered research organization.

    The currently 83 MPG Institutes and facilities conduct basic research in the service of the general public in the natural sciences, life sciences, social sciences, and the humanities. MPG Institutes focus on research fields that are particularly innovative, or that are especially demanding in terms of funding or time requirements. And their research spectrum is continually evolving: new institutes are established to find answers to seminal, forward-looking scientific questions, while others are closed when, for example, their research field has been widely established at universities. This continuous renewal preserves the scope the Max Planck Society needs to react quickly to pioneering scientific developments.

    MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the MPG Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.

    According to its primary goal, the MPG Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014) MPG institutes. The society has a total staff of approximately 17,000 permanent employees, including 5,470 scientists, plus around 4,600 non-tenured scientists and guests. Society budget for 2015 was about €1.7 billion.

    The MPG Institutes focus on excellence in research. The MPG Society has a world-leading reputation as a science and technology research organization, with 33 Nobel Prizes awarded to their scientists, and is generally regarded as the foremost basic research organization in Europe and the world. In 2013, the Nature Publishing Index placed the MPG institutes fifth worldwide in terms of research published in Nature journals (after Harvard University (US), Massachusetts Institute of Technology (US), Stanford University (US) and the National Institutes of Health (US)). In terms of total research volume (unweighted by citations or impact), the MPG Society is only outranked by the Chinese Academy of Sciences [中国科学院] (CN), the Russian Academy of Sciences [Росси́йская акаде́мия нау́к](RU) and Harvard University. The Thomson Reuters-Science Watch website placed the Max Planck Society as the second leading research organization worldwide following Harvard University, in terms of the impact of the produced research over science fields.

    [The blog owner wishes to editorialize: I do not think all of this boasting is warranted when the combined forces of the MPG Society are being weighed against individual universities and institutions. It is not the combined forces of the cited schools and institutions, that could make some sense. No, it is each separate institution standing on its own.]

    The MPG Society and its predecessor Kaiser Wilhelm Society hosted several renowned scientists in their fields, including Otto Hahn, Werner Heisenberg, and Albert Einstein.


    The organization was established in 1911 as the Kaiser Wilhelm Society, or Kaiser-Wilhelm-Gesellschaft (KWG), a non-governmental research organization named for the then German emperor. The KWG was one of the world’s leading research organizations; its board of directors included scientists like Walther Bothe, Peter Debye, Albert Einstein, and Fritz Haber. In 1946, Otto Hahn assumed the position of President of KWG, and in 1948, the society was renamed the MPG Society after its former President (1930–37) Max Planck, who died in 1947.

    The MPG Society has a world-leading reputation as a science and technology research organization. In 2006, the Times Higher Education Supplement rankings of non-university research institutions (based on international peer review by academics) placed the MPG Society as No.1 in the world for science research, and No.3 in technology research (behind AT&T Corporation and the DOE’s Argonne National Laboratory (US).

    The domain mpg.de attracted at least 1.7 million visitors annually by 2008 according to a Compete.com study.

    MPG Institutes and research groups

    The MPG Society consists of over 80 research institutes. In addition, the society funds a number of MPG Research Groups (MPRG) and International MPG Research Schools (IMPRS). The purpose of establishing independent research groups at various universities is to strengthen the required networking between universities and institutes of the MPG Society.

    The research units are primarily located across Europe with a few in South Korea and the U.S. In 2007, the Society established its first non-European centre, with an institute on the Jupiter campus of Florida Atlantic University (US) focusing on neuroscience.

    The MPG Institutes operate independently from, though in close cooperation with, the universities, and focus on innovative research which does not fit into the university structure due to their interdisciplinary or transdisciplinary nature or which require resources that cannot be met by the state universities.

    Internally, MPG Institutes are organized into research departments headed by directors such that each MPG institute has several directors, a position roughly comparable to anything from full professor to department head at a university. Other core members include Junior and Senior Research Fellows.

    In addition, there are several associated institutes:

    International Max Planck Research Schools
    Together with the Association of Universities and other Education Institutions in Germany, the MPG Society established numerous International Max Planck Research Schools (IMPRS) to promote junior scientists:

    Cologne Graduate School of Ageing Research, Cologne
    International Max Planck Research School for Intelligent Systems, at the MPG Institute for Intelligent Systems (DE) located in Tübingen and Stuttgart
    International Max Planck Research School on Adapting Behavior in a Fundamentally Uncertain World (Uncertainty School), at the Max Planck Institutes for Economics, for Human Development, and/or Research on Collective Goods
    International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering, Magdeburg
    International Max Planck Research School for Astronomy and Cosmic Physics, Heidelberg at the MPG for Astronomy
    International Max Planck Research School for Astrophysics, Garching at the MPG Institute for Astrophysics
    International Max Planck Research School for Complex Surfaces in Material Sciences, Berlin
    International Max Planck Research School for Computer Science, Saarbrücken
    International Max Planck Research School for Earth System Modeling, Hamburg
    International Max Planck Research School for Elementary Particle Physics, Munich, at the MPG Institute for Physics
    International Max Planck Research School for Environmental, Cellular and Molecular Microbiology, Marburg at the MPG Institute for Terrestrial Microbiology
    International Max Planck Research School for Evolutionary Biology, Plön at the Max Planck Institute for Evolutionary Biology
    International Max Planck Research School “From Molecules to Organisms”, Tübingen at the MPG Institute for Developmental Biology
    International Max Planck Research School for Global Biogeochemical Cycles, Jena at the Max Planck Institute for Biogeochemistry
    International Max Planck Research School on Gravitational Wave Astronomy, Hannover and Potsdam MPG Institute for Gravitational Physics
    International Max Planck Research School for Heart and Lung Research, Bad Nauheim at the MPG Institute for Heart and Lung Research
    International Max Planck Research School for Infectious Diseases and Immunity, Berlin at the Max Planck Institute for Infection Biology
    International Max Planck Research School for Language Sciences, Nijmegen
    International Max Planck Research School for Neurosciences, Göttingen
    International Max Planck Research School for Cognitive and Systems Neuroscience, Tübingen
    International Max Planck Research School for Marine Microbiology (MarMic), joint program of the MPG Institute for Marine Microbiology in Bremen, the University of Bremen [Universität Bremen](DE), the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, and the Jacobs University Bremen [Jacobs Universität Bremen] (DE)
    International Max Planck Research School for Maritime Affairs, Hamburg
    International Max Planck Research School for Molecular and Cellular Biology, Freiburg
    International Max Planck Research School for Molecular and Cellular Life Sciences, Munich
    International Max Planck Research School for Molecular Biology, Göttingen
    International Max Planck Research School for Molecular Cell Biology and Bioengineering, Dresden
    International Max Planck Research School Molecular Biomedicine, program combined with the ‘Graduate Programm Cell Dynamics And Disease’ at the University of Münster (DE) and the MPG Institute for Molecular Biomedicine (DE)
    International Max Planck Research School on Multiscale Bio-Systems, Potsdam
    International Max Planck Research School for Organismal Biology, at the University of Konstanz [Universität Konstanz] (DE) and the MPG Institute for Ornithology (DE)
    International Max Planck Research School on Reactive Structure Analysis for Chemical Reactions (IMPRS RECHARGE), Mülheim an der Ruhr, at the Max Planck Institute for Chemical Energy Conversion (DE)
    International Max Planck Research School for Science and Technology of Nano-Systems, Halle at MPG Institute of Microstructure Physics (DE)
    International Max Planck Research School for Solar System Science at the University of Göttingen – Georg-August-Universität Göttingen (DE) hosted by MPG Institute for Solar System Research [Max-Planck-Institut für Sonnensystemforschung] (DE)
    International Max Planck Research School for Astronomy and Astrophysics, Bonn, at the MPG Institute for Radio Astronomy [MPG Institut für Radioastronomie] (DE) (formerly the International Max Planck Research School for Radio and Infrared Astronomy)
    International Max Planck Research School for the Social and Political Constitution of the Economy, Cologne
    International Max Planck Research School for Surface and Interface Engineering in Advanced Materials, Düsseldorf at MPG Institute for Iron Research [MPG Institut für Eisenforschung] (DE)
    International Max Planck Research School for Ultrafast Imaging and Structural Dynamics, Hamburg

    The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

    Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).

    *The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It’s the world’s largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

  • richardmitnick 8:00 pm on July 22, 2021 Permalink | Reply
    Tags: "Research Snapshot- Astrophysicist outlines ambitious plans for the first gravitational wave observatory on the moon", , Astrophysics, , , , ,   

    From Vanderbilt University (US) : “Research Snapshot- Astrophysicist outlines ambitious plans for the first gravitational wave observatory on the moon” 

    Vanderbilt U Bloc

    From Vanderbilt University (US)

    Jul. 21, 2021
    Marissa Shapiro

    Vanderbilt Astrophysicist outlines plans for the first gravitational wave observatory on the moon.

    Vanderbilt astrophysicist Karan Jani has led a series of studies that make the first case for a gravitational wave infrastructure on the surface of the moon. The experiment, dubbed Gravitational-Wave Lunar Observatory for Cosmology [GLOC}, uses the moon’s environment and geocentric orbit to analyze mergers of black holes, neuron stars and dark matter candidates within almost 70 percent of the entire observable volume of the universe, he said.

    “By tapping into the natural conditions on the moon, we showed that one of the most challenging spectrum of gravitational waves can be measured better from the lunar surface, which so far seems impossible from Earth or space,” Jani said.

    Karan Jani (Vanderbilt University.)


    “The moon offers an ideal backdrop for the ultimate gravitational wave observatory, since it lacks an atmosphere and noticeable seismic noise, which we must mitigate at great cost for laser interferometers on Earth,” said Avi Loeb, professor of science at Harvard University (US) and bestselling author of books about black holes, the first stars, the search for extraterrestrial life and the future of the universe. “A lunar observatory would provide unprecedented sensitivity for discovering sources that we do not anticipate and that could inform us of new physics. GLOC could be the jewel in the crown of science on the surface of the moon.”

    This work comes as NASA revives its Artemis program, which aims to send the first woman and the next man to the moon as early as 2024. Ongoing commercial work by aerospace companies, including SpaceX and BlueOrigin, also has added to the momentum behind planning for ambitious scientific infrastructure on the surface of the moon.

    Conceptual design of Gravitational-wave Lunar Observatory for Cosmology [GLOC} on the surface of the moon. Credit: Karan Jani.


    “In the coming years, we hope to develop a pathfinder mission on the moon to test the technologies of GLOC,” Jani said. “Unlike space missions that last only a few years, the great investment benefit of GLOC is it establishes a permanent base on the moon from where we can study the universe for generations, quite literally the entirety of this century.” Currently the observatory is theoretical, with Jani and Loeb receiving a strong endorsement from the international gravitational-wave community.

    “It was a great privilege to collaborate with an innovative young thinker like Karan Jani,” Loeb said. “He may live long enough to witness the project come to fruition.”

    The work was funded by the Stevenson Chair endowment funds at Vanderbilt University and the Black Hole Initiative at Harvard University, which is funded by grants from the John Templeton Foundation and the Gordon and Betty Moore Foundation.

    Science paper:
    Journal of Cosmology and Astroparticle Physics

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Commodore Cornelius Vanderbilt was in his 79th year when he decided to make the gift that founded Vanderbilt University (US) in the spring of 1873.
    The $1 million that he gave to endow and build the university was the commodore’s only major philanthropy. Methodist Bishop Holland N. McTyeire of Nashville, husband of Amelia Townsend who was a cousin of the commodore’s young second wife Frank Crawford, went to New York for medical treatment early in 1873 and spent time recovering in the Vanderbilt mansion. He won the commodore’s admiration and support for the project of building a university in the South that would “contribute to strengthening the ties which should exist between all sections of our common country.”

    McTyeire chose the site for the campus, supervised the construction of buildings and personally planted many of the trees that today make Vanderbilt a national arboretum. At the outset, the university consisted of one Main Building (now Kirkland Hall), an astronomical observatory and houses for professors. Landon C. Garland was Vanderbilt’s first chancellor, serving from 1875 to 1893. He advised McTyeire in selecting the faculty, arranged the curriculum and set the policies of the university.

    For the first 40 years of its existence, Vanderbilt was under the auspices of the Methodist Episcopal Church, South. The Vanderbilt Board of Trust severed its ties with the church in June 1914 as a result of a dispute with the bishops over who would appoint university trustees.

    From the outset, Vanderbilt met two definitions of a university: It offered work in the liberal arts and sciences beyond the baccalaureate degree and it embraced several professional schools in addition to its college. James H. Kirkland, the longest serving chancellor in university history (1893-1937), followed Chancellor Garland. He guided Vanderbilt to rebuild after a fire in 1905 that consumed the main building, which was renamed in Kirkland’s honor, and all its contents. He also navigated the university through the separation from the Methodist Church. Notable advances in graduate studies were made under the third chancellor, Oliver Cromwell Carmichael (1937-46). He also created the Joint University Library, brought about by a coalition of Vanderbilt, Peabody College and Scarritt College.

    Remarkable continuity has characterized the government of Vanderbilt. The original charter, issued in 1872, was amended in 1873 to make the legal name of the corporation “The Vanderbilt University.” The charter has not been altered since.

    The university is self-governing under a Board of Trust that, since the beginning, has elected its own members and officers. The university’s general government is vested in the Board of Trust. The immediate government of the university is committed to the chancellor, who is elected by the Board of Trust.

    The original Vanderbilt campus consisted of 75 acres. By 1960, the campus had spread to about 260 acres of land. When George Peabody College for Teachers merged with Vanderbilt in 1979, about 53 acres were added.

    Vanderbilt’s student enrollment tended to double itself each 25 years during the first century of the university’s history: 307 in the fall of 1875; 754 in 1900; 1,377 in 1925; 3,529 in 1950; 7,034 in 1975. In the fall of 1999 the enrollment was 10,127.

    In the planning of Vanderbilt, the assumption seemed to be that it would be an all-male institution. Yet the board never enacted rules prohibiting women. At least one woman attended Vanderbilt classes every year from 1875 on. Most came to classes by courtesy of professors or as special or irregular (non-degree) students. From 1892 to 1901 women at Vanderbilt gained full legal equality except in one respect — access to dorms. In 1894 the faculty and board allowed women to compete for academic prizes. By 1897, four or five women entered with each freshman class. By 1913 the student body contained 78 women, or just more than 20 percent of the academic enrollment.

    National recognition of the university’s status came in 1949 with election of Vanderbilt to membership in the select Association of American Universities (US). In the 1950s Vanderbilt began to outgrow its provincial roots and to measure its achievements by national standards under the leadership of Chancellor Harvie Branscomb. By its 90th anniversary in 1963, Vanderbilt for the first time ranked in the top 20 private universities in the United States.

    Vanderbilt continued to excel in research, and the number of university buildings more than doubled under the leadership of Chancellors Alexander Heard (1963-1982) and Joe B. Wyatt (1982-2000), only the fifth and sixth chancellors in Vanderbilt’s long and distinguished history. Heard added three schools (Blair, the Owen Graduate School of Management and Peabody College) to the seven already existing and constructed three dozen buildings. During Wyatt’s tenure, Vanderbilt acquired or built one-third of the campus buildings and made great strides in diversity, volunteerism and technology.

    The university grew and changed significantly under its seventh chancellor, Gordon Gee, who served from 2000 to 2007. Vanderbilt led the country in the rate of growth for academic research funding, which increased to more than $450 million and became one of the most selective undergraduate institutions in the country.

    On March 1, 2008, Nicholas S. Zeppos was named Vanderbilt’s eighth chancellor after serving as interim chancellor beginning Aug. 1, 2007. Prior to that, he spent 2002-2008 as Vanderbilt’s provost, overseeing undergraduate, graduate and professional education programs as well as development, alumni relations and research efforts in liberal arts and sciences, engineering, music, education, business, law and divinity. He first came to Vanderbilt in 1987 as an assistant professor in the law school. In his first five years, Zeppos led the university through the most challenging economic times since the Great Depression, while continuing to attract the best students and faculty from across the country and around the world. Vanderbilt got through the economic crisis notably less scathed than many of its peers and began and remained committed to its much-praised enhanced financial aid policy for all undergraduates during the same timespan. The Martha Rivers Ingram Commons for first-year students opened in 2008 and College Halls, the next phase in the residential education system at Vanderbilt, is on track to open in the fall of 2014. During Zeppos’ first five years, Vanderbilt has drawn robust support from federal funding agencies, and the Medical Center entered into agreements with regional hospitals and health care systems in middle and east Tennessee that will bring Vanderbilt care to patients across the state.

    Today, Vanderbilt University is a private research university of about 6,500 undergraduates and 5,300 graduate and professional students. The university comprises 10 schools, a public policy center and The Freedom Forum First Amendment Center. Vanderbilt offers undergraduate programs in the liberal arts and sciences, engineering, music, education and human development as well as a full range of graduate and professional degrees. The university is consistently ranked as one of the nation’s top 20 universities by publications such as U.S. News & World Report, with several programs and disciplines ranking in the top 10.

    Cutting-edge research and liberal arts, combined with strong ties to a distinguished medical center, creates an invigorating atmosphere where students tailor their education to meet their goals and researchers collaborate to solve complex questions affecting our health, culture and society.

    Vanderbilt, an independent, privately supported university, and the separate, non-profit Vanderbilt University Medical Center share a respected name and enjoy close collaboration through education and research. Together, the number of people employed by these two organizations exceeds that of the largest private employer in the Middle Tennessee region.

  • richardmitnick 12:55 pm on July 22, 2021 Permalink | Reply
    Tags: , , Astrophysics, , , , Moon-forming disc surrounding exoplanet PDS 70c., , The star PDS 70, Two planets have been found in the system-PDS 70c and PDS 70b   

    From ALMA (CL): “Astronomers make first clear detection of a moon-forming disc around an exoplanet” 

    From ALMA (CL)

    22 July, 2021

    Valeria Foncea
    Education and Public Outreach Officer
    Joint ALMA Observatory Santiago – Chile
    Phone: +56 2 2467 6258
    Cell phone: +56 9 7587 1963
    Email: valeria.foncea@alma.cl

    Masaaki Hiramatsu
    Education and Public Outreach Officer, NAOJ Chile
, Tokyo – Japan
    Phone: +81 422 34 3630
    Email: hiramatsu.masaaki@nao.ac.jp

    Bárbara Ferreira
    ESO Public Information Officer
    Garching bei München, Germany
    Phone: +49 89 3200 6670
    Email: pio@eso.org

    Amy C. Oliver
    Public Information & News Manager
    National Radio Astronomical Observatory (NRAO), USA
    Phone: +1 434 242 9584
    Email: aoliver@nrao.edu

    All general references:
    ALMA Observatory (CL)
    European Southern Observatory(EU)
    National Astronomical Observatory of Japan(JP)
    National Radio Astronomy Observatory(US)

    This image, taken with the Atacama Large Millimeter/submillimeter Array (ALMA) shows wide (left) and close-up (right) views of the moon-forming disc surrounding PDS 70c, a young Jupiter-like planet nearly 400 light-years away. The close-up view shows PDS 70c and its circumplanetary disc centre-front, with the larger circumstellar ring-like disc taking up most of the right-hand side of the image. The star PDS 70 is at the centre of the wide-view image on the left. Two planets have been found in the system-PDS 70c and PDS 70b, the latter not being visible in this image. They have carved a cavity in the circumstellar disc as they gobbled up material from the disc itself, growing in size. In this process, PDS 70c acquired its own circumplanetary disc, which contributes to the growth of the planet and where moons can form. This circumplanetary disc is as large as the Sun-Earth distance and has enough mass to form up to three satellites the size of the Moon. Credit: Benisty et al. /ALMA (ESO/NAOJ/NRAO).

    Using the Atacama Large Millimeter /submillimeter Array (ALMA), in which the European Southern Observatory (ESO) is a partner, astronomers have unambiguously detected the presence of a disc around a planet outside our Solar System for the first time. The observations will shed new light on how moons and planets form in young stellar systems.

    “Our work presents a clear detection of a disc in which satellites could be forming,” says Myriam Benisty, a researcher at the University of Grenoble Alpes [Université Grenoble Alpes] (FR), and at the University of Chile [Universidad de Chile] (CL), who led the new research published today in The Astrophysical Journal Letters. “Our ALMA observations were obtained at such exquisite resolution that we could clearly identify that the disc is associated with the planet and we are able to constrain its size for the first time,” she adds.

    The disc in question, called a circumplanetary disc, surrounds the exoplanet PDS 70c, one of two giant, Jupiter-like planets orbiting a star nearly 400 light-years away. Astronomers had found hints of a “moon-forming” disc around this exoplanet before but, since they could not clearly tell the disc apart from its surrounding environment, they could not confirm its detection — until now.

    In addition, with the help of ALMA, Benisty and her team found that the disc has about the same diameter as the distance from our Sun to the Earth and enough mass to form up to three satellites the size of the Moon.

    But the results are not only key to finding out how moons arise. “These new observations are also extremely important to prove theories of planet formation that could not be tested until now,” says Jaehan Bae, a researcher from the Earth and Planets Laboratory of the Carnegie Institution for Science (US), and author on the study.

    Planets form in dusty discs around young stars, carving out cavities as they gobble up material from this circumstellar disc to grow. In this process, a planet can acquire its own circumplanetary disc, which contributes to the growth of the planet by regulating the amount of material falling onto it. At the same time, the gas and dust in the circumplanetary disc can come together into progressively larger bodies through multiple collisions, ultimately leading to the birth of moons.

    But astronomers do not yet fully understand the details of these processes. “In short, it is still unclear when, where, and how planets and moons form,” explains ESO Research Fellow Stefano Facchini, also involved in the research.

    “More than 4000 exoplanets have been found until now, but all of them were detected in mature systems. PDS 70b and PDS 70c, which form a system reminiscent of the Jupiter-Saturn pair, are the only two exoplanets detected so far that are still in the process of being formed,” explains Miriam Keppler, researcher at the MPG Institute for Astronomy [MPG Institut für Astronomie](DE) and one of the co-authors of the study [1].

    “This system therefore offers us a unique opportunity to observe and study the processes of planet and satellite formation,” Facchini adds.

    PDS 70b and PDS 70c, the two planets making up the system, were first discovered using ESO’s Very Large Telescope (VLT) in 2018 and 2019 respectively, and their unique nature means they have been observed with other telescopes and instruments many times since [2].

    The latest high resolution ALMA observations have now allowed astronomers to gain further insights into the system. In addition to confirming the detection of the circumplanetary disc around PDS 70c and studying its size and mass, they found that PDS 70b does not show clear evidence of such a disc, indicating that it was starved of dust material from its birth environment by PDS 70c.

    An even deeper understanding of the planetary system will be achieved with ESO’s Extremely Large Telescope (ELT), currently under construction on Cerro Armazones in the Chilean Atacama desert.

    “The ELT will be key for this research since, with its much higher resolution, we will be able to map the system in great detail,” says co-author Richard Teague, a researcher at the Center for Astrophysics | Harvard & Smithsonian, USA. In particular, by using the ELT’s Mid-infrared ELT Imager and Spectrograph (METIS), the team will be able to look at the gas motions surrounding PDS 70c to get a full 3D picture of the system.


    [1] Despite the similarity with the Jupiter-Saturn pair, note that the disc around PDS 70c is about 500 times larger than Saturn’s rings.

    [2] PDS 70b was discovered using the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument, while PDS 70c was found using the VLT’s Multi Unit Spectroscopic Explorer (MUSE). The two-planet system has been investigated using the X-shooter instrument too, also installed on ESO’s VLT.

    The team is composed of Myriam Benisty (Joint Franco-Chilean International Astronomy Unit [Unidad Mixta franco chilena de astronomía], National Centre for Scientific Research [Centre national de la recherche scientifique, [CNRS] (FR), Departamento de Astronomía, University of Chile [Universidad de Chile] (CL), Santiago de Chile, Chile and University of Grenoble Alpes [Université Grenoble Alpes] (FR), CNRS, Grenoble, France [UGA]), Jaehan Bae (Earth and Planets Laboratory, Carnegie Institution for Science (US), Washington DC, USA), Stefano Facchini (European Southern Observatory, Garching bei München, Germany), Miriam Keppler (MPG Institute for Astronomy [MPG Institut für Astronomie](DE), Heidelberg, Germany [MPIA]), Richard Teague (Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA [CfA]), Andrea Isella (Department of Physics and Astronomy, Rice University (US), Houston, TX, USA), Nicolas T. Kurtovic (MPIA), Laura M. Perez (Departamento de Astronomía, Universidad de Chile, Santiago de Chile, Chile [UCHILE]), Anibal Sierra (UCHILE), Sean M. Andrews (CfA), John Carpenter (Joint ALMA Observatory, Santiago de Chile, Chile), Ian Czekala (Department of Astronomy and Astrophysics, Pennsylvania State University (US), PA, USA, Center for Exoplanets and Habitable Worlds, Davey Laboratory, Pennsylvania State University, PA, USA, Center for Astrostatistics, Davey Laboratory, Pennsylvania State University, PA, USA and Institute for Computational & Data Sciences, Pennsylvania State University, PA, USA), Carsten Dominik (Anton Pannekoek Institute for Astronomy, University of Amsterdam [Universiteit van Amsterdam] (NL), The Netherlands), Thomas Henning (MPIA), Francois Menard (UGA), Paola Pinilla (MPIA and Mullard Space Science Laboratory, University College London (UK), Holmbury St Mary, Dorking, UK) and Alice Zurlo (Núcleo de Astronomía, Facultad de Ingeniería y Ciencias, Diego Portales University [Universidad Diego Portales] (CL), Santiago de Chile, Chile and Escuela de Ingeniería Industrial, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Santiago de Chile, Chile).

    See the full article here.

    See the full ESO blog post here.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA) (CL) , an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO) (EU), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) (CA) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large

    ALMA is a time machine!

    ALMA-In Search of our Cosmic Origins

  • richardmitnick 11:47 am on July 22, 2021 Permalink | Reply
    Tags: "A large tidal stream observed in the Sombrero galaxy", Amateur Astronomy, , Astrophysics, , , ,   

    From IAC Institute of Astrophysics of the Canary Islands [Instituto de Astrofísica de Canarias] (ES) : “A large tidal stream observed in the Sombrero galaxy” 

    Instituto de Astrofísica de Andalucía

    From IAC Institute of Astrophysics of the Canary Islands [Instituto de Astrofísica de Canarias] (ES)


    Sombrero galaxy. Credits: National Aeronautics Space Agency (US) and the Hubble Heritage Team (Space Telescope Science Institute (US)/ Association of Universities for Research in Astronomy (US) (US))

    According to the latest cosmological models, large spiral galaxies such as the Milky Way grew by absorbing smaller galaxies, by a sort of galactic cannibalism. Evidence for this is given by very large structures, the tidal stellar streams, which are observed around them, which are the remains of these satellite galaxies. But the full histories of the majority of these cases are hard to study, because these flows of stars are very faint, and only the remains of the most recent mergers have been detected.

    A study led by the Institute of Astrophysics of Andalusia [Instituto de Astrofísica de Andalucía] (ES), with the participation of the Institute of Astrophysics of the Canaries[Instituto de Astrofísica de Canarias] (ES), has made detailed observations of a large tidal flow around the Sombrero galaxy, whose strange morphology has still not been definitively explained. The results are published today in the journal MNRAS.

    The Sombrero galaxy (Messier 104) is a galaxy some thirty million light years away, which is part of the Local Supercluster (a group of galaxies which includes the Virgo cluster and the Local Group containing the Milky Way).

    It has roughly one third of the diameter of the Milky Way, and shows characteristics of both of the dominant types of galaxies in the Universe, the spirals and the ellipticals. It has spiral arms, and a very large bright central bulge, which makes it look like a hybrid of the two types.

    “Our motive for obtaining these very deep images of the Sombrero galaxy (Messier 104) was to look for the remains of its merger with a very massive galaxy. This possible collision was recently suggested on the basis of studies of the stellar population of its strange halo obtained with the Hubble Space Telescope”, says David Martínez-Delgado, a researcher at the IAA-CSIC and first author of the paper reporting the work.

    The observations with the Hubble, in 2020, showed that the halo, an extensive and faint region surrounding the Sombrero galaxy, shows many stars rich in metals, elements heavier than hydrogen and helium. This is a feature typical of new generations of stars, which are normally found in the discs of galaxies, and are quite unusual in galactic halos, which are populated by old stars. To explain their presence astronomers suggested what is known as “a wet merger”, a scenario in which a large elliptical galaxy is rejuvenated by large quantities of gas and dust from another massive galaxy, which went into the formation of the disc which we now observe.

    “In our images we have not found any evidence to support this hypothesis, although we cannot rule out that it could have happened several thousand million years ago, and the debris is completely dissipated by now -explains David Martínez-Delgado-. In our search we have in fact been able to trace for the first time the complete tidal stream which surrounds the disc of this galaxy, and our theoretical simulations have let us reconstruct its formation in the last three thousand million years, by cannibalism of a satellite dwarf galaxy”.

    “Observational techniques in present day Astrophysics need advanced image processing. Our modelling of the bright stars around the Sombrero galaxy, and at the same time of the halo light of the galaxy itself has enabled us to unveil the nature of this tidal stream. It is remarkable that thanks to these advanced photometric techniques we have been able to do front line science with a Messier object using only an 18 cm (diameter) telescope”, explains Javier Román, a postdoctoral researcher at the IAC and a co-author of the study.

    The research team rejects the idea that the large stellar tidal stream, known for more than three decades, could be related to the event which produced the strange morphology of the Sombrero galaxy which, if it was caused by a wet merger, would need the interaction of two galaxies with large masses.

    The work has been possible thanks to the collaboration between professional and amateur astronomers. “We have collaborated with the Spanish astrophotographer Manuel Jiménez, who took the images with a robotic telescope of 18 centimetre diameter, and the well-known australian astrophotographer David Malin, who discovered this tidal stream on photographic plates taken in the 90’s of the last century. This collaboration shows the potential of amateur telescopes to take deep images of nearby galaxies which give important clues about the process of their assembly which is continuing until the present epoch”, concludes Martínez-Delgado.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    IAC Institute of Astrophysics of the Canary Islands [Instituto de Astrofísica de Canarias] (ES) operates two astronomical observatories in the Canary Islands:

    Roque de los Muchachos Observatory on La Palma
    Teide Observatory on Tenerife.

    The seeing statistics at ORM make it the second-best location for optical and infrared astronomy in the Northern Hemisphere, after Mauna Kea Observatory Hawaii (US).

    Maunakea Observatories Hawai’i (US) altitude 4,213 m (13,822 ft)

    The site also has some of the most extensive astronomical facilities in the Northern Hemisphere; its fleet of telescopes includes the 10.4 m Gran Telescopio Canarias, the world’s largest single-aperture optical telescope as of July 2009, the William Herschel Telescope (second largest in Europe), and the adaptive optics corrected Swedish 1-m Solar Telescope.

    Gran Telescopio Canarias [Instituto de Astrofísica de Canarias ](ES) sited on a volcanic peak 2,267 metres (7,438 ft) above sea level.

    The observatory was established in 1985, after 15 years of international work and cooperation of several countries with the Spanish island hosting many telescopes from Britain, The Netherlands, Spain, and other countries. The island provided better seeing conditions for the telescopes that had been moved to Herstmonceux by the Royal Greenwich Observatory, including the 98 inch aperture Isaac Newton Telescope (the largest reflector in Europe at that time). When it was moved to the island it was upgraded to a 100-inch (2.54 meter), and many even larger telescopes from various nations would be hosted there.

    Teide Observatory [Observatorio del Teide], IAU code 954, is an astronomical observatory on Mount Teide at 2,390 metres (7,840 ft), located on Tenerife, Spain. It has been operated by the Instituto de Astrofísica de Canarias since its inauguration in 1964. It became one of the first major international observatories, attracting telescopes from different countries around the world because of the good astronomical seeing conditions. Later the emphasis for optical telescopes shifted more towards Roque de los Muchachos Observatory on La Palma.

  • richardmitnick 10:14 pm on July 21, 2021 Permalink | Reply
    Tags: "Planetary shields will buckle under stellar winds from their dying stars", All stars eventually run out of available hydrogen that fuels the nuclear fusion in their cores., Any life identified on planets orbiting white dwarf stars almost certainly evolved after the star’s death., , Astrophysics, , , In our solar system the habitable zone of the red giant sun would move from about 150 million km from the Sun-where Earth is currently positioned-up to 6 billion km or beyond Neptune., It is nearly impossible for life to survive cataclysmic stellar evolution unless the planet has an intensely strong magnetic field – or magnetosphere - that can shield it from the worst effects., Once the white dwarf star reaches this stage the danger to surviving planets has passed., , the loss of mass in the red giant star means it has a weaker gravitational pull so the remaining planets move further away., The process of stellar evolution also results in a shift in a star’s habitable zone which is the distance that would allow a planet to be the right temperature to support liquid water., The scientists found that the habitable zone moves outward more quickly than the planet posing additional challenges to any existing life hoping to survive the process., The Sun will then stretch to a diameter of tens of millions of kilometres as a red giant swallowing the inner planets possibly including the Earth., Two known gas giants are close enough to their white dwarf star’s habitable zone to suggest that life on such a planet could exist., ,   

    From University of Warwick (UK) : “Planetary shields will buckle under stellar winds from their dying stars” 

    From University of Warwick (UK)

    21 July 2021

    Peter Thorley
    Media Relations Manager (Warwick Medical School and Department of Physics) | Press & Media Relations | University of Warwick
    Email: peter.thorley@warwick.ac.uk
    Mob: +44 (0) 7824 540863

    An illustration of material being ejected from the Sun (left) interacting with the magnetosphere of the Earth (right). When the Sun evolves to become a red giant star, the Earth may be swallowed by our star’s atmosphere, and with a much more unstable solar wind, even the resilient and protective magnetospheres of the giant outer planets may be stripped away.NASA Marshall Space Flight Center (US) / National Aeronautics Space Agency (US).

    Any life identified on planets orbiting white dwarf stars almost certainly evolved after the star’s death, says a new study led by the University of Warwick that reveals the consequences of the intense and furious stellar winds that will batter a planet as its star is dying.

    The research is published in MNRAS, and lead author Dr Dimitri Veras of the University of Warwick will present it today (21 July) at the online National Astronomy Meeting (NAM 2021).

    The research provides new insight for astronomers searching for signs of life around these dead stars by examining the impact that their winds will have on orbiting planets during the star’s transition to the white dwarf stage. The study concludes that it is nearly impossible for life to survive cataclysmic stellar evolution unless the planet has an intensely strong magnetic field – or magnetosphere – that can shield it from the worst effects.

    In the case of Earth, solar wind particles can erode the protective layers of the atmosphere that shield humans from harmful ultraviolet radiation. The terrestrial magnetosphere acts like a shield to divert those particles away through its magnetic field. Not all planets have a magnetosphere, but Earth’s is generated by its iron core, which rotates like a dynamo to create its magnetic field.

    All stars eventually run out of available hydrogen that fuels the nuclear fusion in their cores. In the Sun the core will then contract and heat up, driving an enormous expansion of the outer atmosphere of the star into a ‘red giant’. The Sun will then stretch to a diameter of tens of millions of kilometres, swallowing the inner planets, possibly including the Earth. At the same time the loss of mass in the star means it has a weaker gravitational pull so the remaining planets move further away.

    The Sun will then stretch to a diameter of tens of millions of kilometres, swallowing the inner planets, possibly including the Earth. At the same time the loss of mass in the star means it has a weaker gravitational pull, so the remaining planets move further away.

    During the red giant phase, the solar wind will be far stronger than today, and it will fluctuate dramatically. Veras and Vidotto modelled the winds from 11 different types of stars, with masses ranging from one to seven times the mass of our Sun.

    Their model demonstrated how the density and speed of the stellar wind, combined with an expanding planetary orbit, conspires to alternatively shrink and expand the magnetosphere of a planet over time. For any planet to maintain its magnetosphere throughout all stages of stellar evolution, its magnetic field needs to be at least one hundred times stronger than Jupiter’s current magnetic field.

    The process of stellar evolution also results in a shift in a star’s habitable zone which is the distance that would allow a planet to be the right temperature to support liquid water. In our solar system the habitable zone would move from about 150 million km from the Sun-where Earth is currently positioned-up to 6 billion km or beyond Neptune. Although an orbiting planet would also change position during the giant branch phases, the scientists found that the habitable zone moves outward more quickly than the planet posing additional challenges to any existing life hoping to survive the process.

    Eventually the red giant sheds its entire outer atmosphere, leaving behind the dense hot white dwarf remnant. These do not emit stellar winds, so once the star reaches this stage the danger to surviving planets has passed.

    Dr Dimitri Veras of the University of Warwick Department of Physics said: “This study demonstrates the difficulty of a planet maintaining its protective magnetosphere throughout the entirety of the giant branch phases of stellar evolution.”

    “One conclusion is that life on a planet in the habitable zone around a white dwarf would almost certainly develop during the white dwarf phase unless that life was able to withstand multiple extreme and sudden changes in its environment.”

    “We know that the solar wind in the past eroded the Martian atmosphere, which, unlike Earth, does not have a large-scale magnetosphere. What we were not expecting to find is that the solar wind in the future could be as damaging even to those planets that are protected by a magnetic field”, says Dr Aline Vidotto of Trinity College Dublin, the University of Dublin(IE), the co-author of the study.

    Future missions like the James Webb Space Telescope due to be launched later this year should reveal more about planets that orbit white dwarf stars, including whether planets within their habitable zones show biomarkers that indicate the presence of life, so the study provides valuable context to any potential discoveries.

    So far no terrestrial planet that could support life around a white dwarf has been found, but two known gas giants are close enough to their star’s habitable zone to suggest that such a planet could exist. These planets likely moved in closer to the white dwarf as a result of interactions with other planets further out.

    Dr Veras adds: “These examples show that giant planets can approach very close to the habitable zone. The habitable zone for a white dwarf is very close to the star because they emit much less light than a Sun-like star. However, white dwarfs are also very steady stars as they have no winds. A planet that’s parked in the white dwarf habitable zone could remain there for billions of years, allowing time for life to develop provided that the conditions are suitable.”

    See the full article here.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The establishment of the The University of Warwick (UK) was given approval by the government in 1961 and received its Royal Charter of Incorporation in 1965.

    The idea for a university in Coventry was mooted shortly after the conclusion of the Second World War but it was a bold and imaginative partnership of the City and the County which brought the University into being on a 400-acre site jointly granted by the two authorities. Since then, the University has incorporated the former Coventry College of Education in 1978 and has extended its land holdings by the purchase of adjoining farm land.

    The University initially admitted a small intake of graduate students in 1964 and took its first 450 undergraduates in October 1965. In October 2013, the student population was over 23,000 of which 9,775 are postgraduates. Around a third of the student body comes from overseas and over 120 countries are represented on the campus.

    The University of Warwick is a public research university on the outskirts of Coventry between the West Midlands and Warwickshire, England. The University was founded in 1965 as part of a government initiative to expand higher education. The Warwick Business School was established in 1967, the Warwick Law School in 1968, Warwick Manufacturing Group (WMG) in 1980, and Warwick Medical School in 2000. Warwick incorporated Coventry College of Education in 1979 and Horticulture Research International in 2004.

    Warwick is primarily based on a 290 hectares (720 acres) campus on the outskirts of Coventry, with a satellite campus in Wellesbourne and a central London base at the Shard. It is organised into three faculties — Arts, Science Engineering and Medicine, and Social Sciences — within which there are 32 departments. As of 2019, Warwick has around 26,531 full-time students and 2,492 academic and research staff. It had a consolidated income of £679.9 million in 2019/20, of which £131.7 million was from research grants and contracts. Warwick Arts Centre is a multi-venue arts complex in the university’s main campus and is the largest venue of its kind in the UK, which is not in London.

    Warwick has an average intake of 4,950 undergraduates out of 38,071 applicants (7.7 applicants per place).

    Warwick is a member of Association of Commonwealth Universities (UK), the Association of MBAs, EQUIS, the European University Association (EU), the Midlands Innovation group, the Russell Group (UK), Sutton 13. It is the only European member of the Center for Urban Science and Progress, a collaboration with New York University (US). The university has extensive commercial activities, including the University of Warwick Science Park and Warwick Manufacturing Group.

    Warwick’s alumni and staff include winners of the Nobel Prize, Turing Award, Fields Medal, Richard W. Hamming Medal, Emmy Award, Grammy, and the Padma Vibhushan, and are fellows to the British Academy, the Royal Society of Literature, the Royal Academy of Engineering, and the Royal Society. Alumni also include heads of state, government officials, leaders in intergovernmental organisations, and the current chief economist at the Bank of England. Researchers at Warwick have also made significant contributions such as the development of penicillin, music therapy, Washington Consensus, Second-wave feminism, computing standards, including ISO and ECMA, complexity theory, contract theory, and the International Political Economy as a field of study.

    Twentieth century

    The idea for a university in Warwickshire was first mooted shortly after World War II, although it was not founded for a further two decades. A partnership of the city and county councils ultimately provided the impetus for the university to be established on a 400-acre (1.6 km^2) site jointly granted by the two authorities. There was some discussion between local sponsors from both the city and county over whether it should be named after Coventry or Warwickshire. The name “University of Warwick” was adopted, even though Warwick, the county town, lies some 8 miles (13 km) to its southwest and Coventry’s city centre is only 3.5 miles (5.6 km) northeast of the campus. The establishment of the University of Warwick was given approval by the government in 1961 and it received its Royal Charter of Incorporation in 1965. Since then, the university has incorporated the former Coventry College of Education in 1979 and has extended its land holdings by the continuing purchase of adjoining farm land. The university also benefited from a substantial donation from the family of John ‘Jack’ Martin, a Coventry businessman who had made a fortune from investment in Smirnoff vodka, and which enabled the construction of the Warwick Arts Centre.

    The university initially admitted a small intake of graduate students in 1964 and took its first 450 undergraduates in October 1965. Since its establishment Warwick has expanded its grounds to 721 acres (2.9 km^2), with many modern buildings and academic facilities, lakes, and woodlands. In the 1960s and 1970s, Warwick had a reputation as a politically radical institution.

    Under Vice-Chancellor Lord Butterworth, Warwick was the first UK university to adopt a business approach to higher education, develop close links with the business community and exploit the commercial value of its research. These tendencies were discussed by British historian and then-Warwick lecturer, E. P. Thompson, in his 1970 edited book Warwick University Ltd.

    The Leicester Warwick Medical School, a new medical school based jointly at Warwick and University of Leicester (UK), opened in September 2000.

    On the recommendation of Tony Blair, Bill Clinton chose Warwick as the venue for his last major foreign policy address as US President in December 2000. Sandy Berger, Clinton’s National Security Advisor, explaining the decision in a press briefing on 7 December 2000, said that: “Warwick is one of Britain’s newest and finest research universities, singled out by Prime Minister Blair as a model both of academic excellence and independence from the government.”

    Twenty-first century
    The university was seen as a favoured institution of the Labour government during the New Labour years (1997 to 2010). It was academic partner for a number of flagship Government schemes including the National Academy for Gifted and Talented Youth and the NHS University (now defunct). Tony Blair described Warwick as “a beacon among British universities for its dynamism, quality and entrepreneurial zeal”. In a 2012 study by Virgin Media Business, Warwick was described as the most “digitally-savvy” UK university.

    In February 2001, IBM donated a new S/390 computer and software worth £2 million to Warwick, to form part of a “Grid” enabling users to remotely share computing power. In April 2004 Warwick merged with the Wellesbourne and Kirton sites of Horticulture Research International. In July 2004 Warwick was the location for an important agreement between the Labour Party and the trade unions on Labour policy and trade union law, which has subsequently become known as the “Warwick Agreement”.

    In June 2006 the new University Hospital Coventry opened, including a 102,000 sq ft (9,500 m^2) university clinical sciences building. Warwick Medical School was granted independent degree-awarding status in 2007, and the School’s partnership with the University of Leicester was dissolved in the same year. In February 2010, Lord Bhattacharyya, director and founder of the WMG unit at Warwick, made a £1 million donation to the university to support science grants and awards.

    In February 2012 Warwick and Melbourne-based Monash University (AU) announced the formation of a strategic partnership, including the creation of 10 joint senior academic posts, new dual master’s and joint doctoral degrees, and co-ordination of research programmes. In March 2012 Warwick and Queen Mary, University of London announced the creation of a strategic partnership, including research collaboration, some joint teaching of English, history and computer science undergraduates, and the creation of eight joint post-doctoral research fellowships.

    In April 2012 it was announced that Warwick would be the only European university participating in the Center for Urban Science and Progress, an applied science research institute to be based in New York consisting of an international consortium of universities and technology companies led by New York University and NYU Tandon School of Engineering (US). In August 2012, Warwick and five other Midlands-based universities — Aston University (UK), the University of Birmingham (UK), the University of Leicester (UK), Loughborough University (UK) and the University of Nottingham — formed the M5 Group, a regional bloc intended to maximise the member institutions’ research income and enable closer collaboration.

    In September 2013 it was announced that a new National Automotive Innovation Centre would be built by WMG at Warwick’s main campus at a cost of £100 million, with £50 million to be contributed by Jaguar Land Rover and £30 million by Tata Motors.

    In July 2014, the government announced that Warwick would be the host for the £1 billion Advanced Propulsion Centre, a joint venture between the Automotive Council and industry. The ten-year programme intends to position the university and the UK as leaders in the field of research into the next generation of automotive technology.

    In September 2015, Warwick celebrated its 50th anniversary (1965–2015) and was designated “University of the Year” by The Times and The Sunday Times.


    In 2013/14 Warwick had a total research income of £90.1 million, of which £33.9 million was from Research Councils; £25.9 million was from central government, local authorities and public corporations; £12.7 million was from the European Union; £7.9 million was from UK industry and commerce; £5.2 million was from UK charitable bodies; £4.0 million was from overseas sources; and £0.5 million was from other sources.

    In the 2014 UK Research Excellence Framework (REF), Warwick was again ranked 7th overall (as 2008) amongst multi-faculty institutions and was the top-ranked university in the Midlands. Some 87% of the University’s academic staff were rated as being in “world-leading” or “internationally excellent” departments with top research ratings of 4* or 3*.

    Warwick is particularly strong in the areas of decision sciences research (economics, finance, management, mathematics and statistics). For instance, researchers of the Warwick Business School have won the highest prize of the prestigious European Case Clearing House (ECCH: the equivalent of the Oscars in terms of management research).

    Warwick has established a number of stand-alone units to manage and extract commercial value from its research activities. The four most prominent examples of these units are University of Warwick Science Park; Warwick HRI; Warwick Ventures (the technology transfer arm of the University); and WMG.

  • richardmitnick 8:30 am on July 21, 2021 Permalink | Reply
    Tags: "Stellar explosion could be a failed supernova giving birth to a black hole", , Astrophysics, , , , ,   

    From Science Magazine: “Stellar explosion could be a failed supernova giving birth to a black hole” 

    From Science Magazine

    Jul. 20, 2021
    Jonathan O’Callaghan

    The strange “Cow” explosion, the right hand of two bright spots below and to the right of the galactic center, may be an odd variety of supernova.
    R. MARGUTTI/W. M. Keck Observatory, MaunaKea, Hawai’i (US)/Wikimedia Commons (CC-BY)

    When a massive star reaches the end of its life, it can explode as a supernova, leaving behind a dense remnant in the form of a neutron star or black hole. We typically can’t see these objects because supernovae tend to occur in distant galaxies, making their remnants hard to spot. But astronomers now say they’ve seen one inside a rare failed stellar explosion.

    The result hasn’t yet been peer reviewed. If the finding is correct, it would be “one of the very first times we’ve seen direct evidence for a star collapsing and forming one of these compact objects,” says Anna Ho, an astrophysicist at the University of California-Berkeley (US), who was not involved in the work.

    In 2018, astronomers spotted a new type of stellar explosion inside a comparatively close galaxy, 200 million light-years away. Dubbed AT2018cow, but informally known as “the Cow,” the event was both much brighter and faster—reaching its peak brightness in just days before dimming 3 weeks later—than a regular supernova, defying explanation. Scientists’ best guess for the cause of the bright blip, known as a fast blue optical transient (FBOT), was that the interior of a star collapsed to become a neutron star or black hole before a true supernova could form. The result was a “central engine”—a rapidly spinning object inside the outer layers of the star. Scientists think powerful jets of matter coming from the neutron star or black hole burst through the outer shells of material, making the object appear extremely bright.

    Now, in a preprint on the server Research Square, scientists report spotting such an object inside the Cow. Using a telescope on the International Space Station called the Neutron Star Interior Composition Explorer [NICER], the scientists observed x-ray light emitted by the Cow for 60 days following the explosion.

    After precisely timing the arrival of the photons, they calculated that the object producing the light was spinning once every 4.4 milliseconds.

    “This rapid periodicity is hinting that the x-ray source is compact and small,” says Brian Metzger, an astrophysicist at Columbia University (US) and a co-author on the study. Because the rotation stayed constant at 4.4 milliseconds, even after billions of observed spins, a black hole explanation is more likely than a neutron star, he adds, because a neutron star’s rotation speed would be expected to decrease over time.

    Daniel Perley, an astrophysicist at Liverpool John Moores University (UK), calls the finding “very exciting.” If correct, it would rule out other possible explanations for the Cow, including the idea that its light comes from a larger, intermediate-mass black hole devouring a star. “Whatever is producing these x-rays must be extremely compact, on the scale of kilometers, which essentially rules out a large black hole and points strongly in favor of the central engine models,” he says.

    Three events similar to the Cow have been spotted since 2018, most recently “the Camel” in 2020, but none is as close or bright as the Cow, making comparison difficult. Metzger calls the Cow a “Rosetta Stone event” that could be useful in interpreting more of these failed supernovae. “It’s a nearby event that we can hope to understand,” he says. “And if this is telling us this is a black hole, then every time we see an FBOT in the distant universe, we will know that was a black hole that formed.”

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

  • richardmitnick 8:11 am on July 21, 2021 Permalink | Reply
    Tags: "SURP Student Spotlight: Nicole Gromek", , Astrophysics, , ,   

    From Dunlap Institute for Astronomy and Astrophysics (CA) : “SURP Student Spotlight: Nicole Gromek” 

    From Dunlap Institute for Astronomy and Astrophysics (CA)


    University of Toronto (CA)

    Credit: Nicole Gromek.

    Nicole just completed her undergraduate studies at the University of Toronto with a double major in Astronomy and Physics and a minor in Chemistry. Living in Mississauga, she studies the polarization of supernova remnants at radio wavelengths alongside supervisor Dr. Jennifer West.

    What made you decide to participate in SURP?

    SURP is the perfect opportunity for students to dip their toes into what it feels like to do research, while getting first-hand experience in a supportive environment, working alongside world-renowned academics. Combine that with so many fascinating research projects to choose from and learning research skills beyond those which you learn in the classroom, and the choice was clear for me.

    What is your favourite thing about SURP?

    The people within the Astro community at U of T are absolutely delightful. Everyone has been incredibly friendly throughout my time here and their passion shines through in what they do. It’s inspiring to be able to learn from them and you meet so many people you otherwise would have never gotten the chance to. Most of all, Dr. West as my supervisor and mentor has been nothing but wonderful in supporting and encouraging me, as well as answering my many, many questions in an insightful manner.

    Can you tell us about your research project?

    Of course! My research project focuses on one supernova remnant in particular, called the Cygnus Loop. We’re interested in its magnetic field structure, which we measure using Faraday rotation based on the polarized synchrotron radiation that’s being emitted. Synchrotron emission is brighter at lower frequencies so different features will be visible in different wavelength ranges. To make use of this, we study data taken using several telescopes, such as LOFAR, DRAO and Arecibo. Based on the radio polarization data, we’re investigating the exciting hypothesis that the southern breakout region is actually a second supernova remnant. Next, we plan on generating a spectral index to determine whether the relation between brightness and frequency differs significantly between the northern and southern regions, which would further support the double supernova remnant possibility.

    Can you explain how SURP has perhaps been different from your undergrad work?

    Throughout most of my time as an undergraduate, the focus was on learning the theory and doing the rigorous math that followed. However, in my experience here, the math is replaced with code and the best method to solve a problem isn’t always as straightforward. You have much more freedom to work on the project how you see fit. To be honest, this was a strange mentality to adapt to, having been used to the rigidity and deadlines in typical undergraduate courses. You explore the possibilities, you follow a lead and sometimes it doesn’t pan out. But when you do finally make a breakthrough, it feels amazing. Furthermore, the projects that are taking place within SURP aren’t just lab reports that have been done thousands of times before, but rather something that is actively contributing to the scientific community as a whole.

    What are your plans for the future?

    The exposure to research through SURP has inspired me to delve further into my understanding of astronomy. In the next few years, I’d like to explore my research interests and hope to pursue graduate studies in astronomy, doing either data analysis or observational work. If you want to know for certain though, you’ll have to find me again in 10 years.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Dunlap Institute campus

    The Dunlap Institute for Astronomy & Astrophysics (CA) at University of Toronto (CA) is an endowed research institute with nearly 70 faculty, postdocs, students and staff, dedicated to innovative technology, ground-breaking research, world-class training, and public engagement. The research themes of its faculty and Dunlap Fellows span the Universe and include: optical, infrared and radio instrumentation; Dark Energy; large-scale structure; the Cosmic Microwave Background; the interstellar medium; galaxy evolution; cosmic magnetism; and time-domain science.

    The Dunlap Institute (CA), University of Toronto Department of Astronomy & Astrophysics (CA), Canadian Institute for Theoretical Astrophysics (CA), and Centre for Planetary Sciences (CA) comprise the leading centre for astronomical research in Canada, at the leading research university in the country, the University of Toronto (CA).

    The Dunlap Institute (CA) is committed to making its science, training and public outreach activities productive and enjoyable for everyone, regardless of gender, sexual orientation, disability, physical appearance, body size, race, nationality or religion.

    Our work is greatly enhanced through collaborations with the Department of Astronomy & Astrophysics (CA), Canadian Institute for Theoretical Astrophysics (CA), David Dunlap Observatory (CA), Ontario Science Centre (CA), Royal Astronomical Society of Canada (CA), the Toronto Public Library (CA), and many other partners.

    NIROSETI team from left to right Rem Stone UCO Lick Observatory Dan Werthimer, University of California-Berkeley (US); Jérôme Maire, U Toronto; Shelley Wright, University of California-San Diego (US); Patrick Dorval, U Toronto; Richard Treffers, Starman Systems. (Image by Laurie Hatch).

    The University of Toronto(CA) is a public research university in Toronto, Ontario, Canada, located on the grounds that surround Queen’s Park. It was founded by royal charter in 1827 as King’s College, the oldest university in the province of Ontario.

    Originally controlled by the Church of England, the university assumed its present name in 1850 upon becoming a secular institution.

    As a collegiate university, it comprises eleven colleges each with substantial autonomy on financial and institutional affairs and significant differences in character and history. The university also operates two satellite campuses located in Scarborough and Mississauga.

    University of Toronto has evolved into Canada’s leading institution of learning, discovery and knowledge creation. We are proud to be one of the world’s top research-intensive universities, driven to invent and innovate.

    Our students have the opportunity to learn from and work with preeminent thought leaders through our multidisciplinary network of teaching and research faculty, alumni and partners.

    The ideas, innovations and actions of more than 560,000 graduates continue to have a positive impact on the world.

    Academically, the University of Toronto is noted for movements and curricula in literary criticism and communication theory, known collectively as the Toronto School.

    The university was the birthplace of insulin and stem cell research, and was the site of the first electron microscope in North America; the identification of the first black hole Cygnus X-1; multi-touch technology, and the development of the theory of NP-completeness.

    The university was one of several universities involved in early research of deep learning. It receives the most annual scientific research funding of any Canadian university and is one of two members of the Association of American Universities (US) outside the United States, the other being McGill(CA).

    The Varsity Blues are the athletic teams that represent the university in intercollegiate league matches, with ties to gridiron football, rowing and ice hockey. The earliest recorded instance of gridiron football occurred at University of Toronto’s University College in November 1861.

    The university’s Hart House is an early example of the North American student centre, simultaneously serving cultural, intellectual, and recreational interests within its large Gothic-revival complex.

    The University of Toronto has educated three Governors General of Canada, four Prime Ministers of Canada, three foreign leaders, and fourteen Justices of the Supreme Court. As of March 2019, ten Nobel laureates, five Turing Award winners, 94 Rhodes Scholars, and one Fields Medalist have been affiliated with the university.

    Early history

    The founding of a colonial college had long been the desire of John Graves Simcoe, the first Lieutenant-Governor of Upper Canada and founder of York, the colonial capital. As an University of Oxford (UK)-educated military commander who had fought in the American Revolutionary War, Simcoe believed a college was needed to counter the spread of republicanism from the United States. The Upper Canada Executive Committee recommended in 1798 that a college be established in York.

    On March 15, 1827, a royal charter was formally issued by King George IV, proclaiming “from this time one College, with the style and privileges of a University … for the education of youth in the principles of the Christian Religion, and for their instruction in the various branches of Science and Literature … to continue for ever, to be called King’s College.” The granting of the charter was largely the result of intense lobbying by John Strachan, the influential Anglican Bishop of Toronto who took office as the college’s first president. The original three-storey Greek Revival school building was built on the present site of Queen’s Park.

    Under Strachan’s stewardship, King’s College was a religious institution closely aligned with the Church of England and the British colonial elite, known as the Family Compact. Reformist politicians opposed the clergy’s control over colonial institutions and fought to have the college secularized. In 1849, after a lengthy and heated debate, the newly elected responsible government of the Province of Canada voted to rename King’s College as the University of Toronto and severed the school’s ties with the church. Having anticipated this decision, the enraged Strachan had resigned a year earlier to open Trinity College as a private Anglican seminary. University College was created as the nondenominational teaching branch of the University of Toronto. During the American Civil War the threat of Union blockade on British North America prompted the creation of the University Rifle Corps which saw battle in resisting the Fenian raids on the Niagara border in 1866. The Corps was part of the Reserve Militia lead by Professor Henry Croft.

    Established in 1878, the School of Practical Science was the precursor to the Faculty of Applied Science and Engineering which has been nicknamed Skule since its earliest days. While the Faculty of Medicine opened in 1843 medical teaching was conducted by proprietary schools from 1853 until 1887 when the faculty absorbed the Toronto School of Medicine. Meanwhile the university continued to set examinations and confer medical degrees. The university opened the Faculty of Law in 1887, followed by the Faculty of Dentistry in 1888 when the Royal College of Dental Surgeons became an affiliate. Women were first admitted to the university in 1884.

    A devastating fire in 1890 gutted the interior of University College and destroyed 33,000 volumes from the library but the university restored the building and replenished its library within two years. Over the next two decades a collegiate system took shape as the university arranged federation with several ecclesiastical colleges including Strachan’s Trinity College in 1904. The university operated the Royal Conservatory of Music from 1896 to 1991 and the Royal Ontario Museum from 1912 to 1968; both still retain close ties with the university as independent institutions. The University of Toronto Press was founded in 1901 as Canada’s first academic publishing house. The Faculty of Forestry founded in 1907 with Bernhard Fernow as dean was Canada’s first university faculty devoted to forest science. In 1910, the Faculty of Education opened its laboratory school, the University of Toronto Schools.

    World wars and post-war years

    The First and Second World Wars curtailed some university activities as undergraduate and graduate men eagerly enlisted. Intercollegiate athletic competitions and the Hart House Debates were suspended although exhibition and interfaculty games were still held. The David Dunlap Observatory in Richmond Hill opened in 1935 followed by the University of Toronto Institute for Aerospace Studies in 1949. The university opened satellite campuses in Scarborough in 1964 and in Mississauga in 1967. The university’s former affiliated schools at the Ontario Agricultural College and Glendon Hall became fully independent of the University of Toronto and became part of University of Guelph (CA) in 1964 and York University (CA) in 1965 respectively. Beginning in the 1980s reductions in government funding prompted more rigorous fundraising efforts.

    Since 2000

    In 2000 Kin-Yip Chun was reinstated as a professor of the university after he launched an unsuccessful lawsuit against the university alleging racial discrimination. In 2017 a human rights application was filed against the University by one of its students for allegedly delaying the investigation of sexual assault and being dismissive of their concerns. In 2018 the university cleared one of its professors of allegations of discrimination and antisemitism in an internal investigation after a complaint was filed by one of its students.

    The University of Toronto was the first Canadian university to amass a financial endowment greater than c. $1 billion in 2007. On September 24, 2020 the university announced a $250 million gift to the Faculty of Medicine from businessman and philanthropist James C. Temerty- the largest single philanthropic donation in Canadian history. This broke the previous record for the school set in 2019 when Gerry Schwartz and Heather Reisman jointly donated $100 million for the creation of a 750,000-square foot innovation and artificial intelligence centre.


    Since 1926 the University of Toronto has been a member of the Association of American Universities (US) a consortium of the leading North American research universities. The university manages by far the largest annual research budget of any university in Canada with sponsored direct-cost expenditures of $878 million in 2010. In 2018 the University of Toronto was named the top research university in Canada by Research Infosource with a sponsored research income (external sources of funding) of $1,147.584 million in 2017. In the same year the university’s faculty averaged a sponsored research income of $428,200 while graduate students averaged a sponsored research income of $63,700. The federal government was the largest source of funding with grants from the Canadian Institutes of Health Research; the Natural Sciences and Engineering Research Council; and the Social Sciences and Humanities Research Council amounting to about one-third of the research budget. About eight percent of research funding came from corporations- mostly in the healthcare industry.

    The first practical electron microscope was built by the physics department in 1938. During World War II the university developed the G-suit- a life-saving garment worn by Allied fighter plane pilots later adopted for use by astronauts.Development of the infrared chemiluminescence technique improved analyses of energy behaviours in chemical reactions. In 1963 the asteroid 2104 Toronto was discovered in the David Dunlap Observatory (CA) in Richmond Hill and is named after the university. In 1972 studies on Cygnus X-1 led to the publication of the first observational evidence proving the existence of black holes. Toronto astronomers have also discovered the Uranian moons of Caliban and Sycorax; the dwarf galaxies of Andromeda I, II and III; and the supernova SN 1987A. A pioneer in computing technology the university designed and built UTEC- one of the world’s first operational computers- and later purchased Ferut- the second commercial computer after UNIVAC I. Multi-touch technology was developed at Toronto with applications ranging from handheld devices to collaboration walls. The AeroVelo Atlas which won the Igor I. Sikorsky Human Powered Helicopter Competition in 2013 was developed by the university’s team of students and graduates and was tested in Vaughan.

    The discovery of insulin at the University of Toronto in 1921 is considered among the most significant events in the history of medicine. The stem cell was discovered at the university in 1963 forming the basis for bone marrow transplantation and all subsequent research on adult and embryonic stem cells. This was the first of many findings at Toronto relating to stem cells including the identification of pancreatic and retinal stem cells. The cancer stem cell was first identified in 1997 by Toronto researchers who have since found stem cell associations in leukemia; brain tumors; and colorectal cancer. Medical inventions developed at Toronto include the glycaemic index; the infant cereal Pablum; the use of protective hypothermia in open heart surgery; and the first artificial cardiac pacemaker. The first successful single-lung transplant was performed at Toronto in 1981 followed by the first nerve transplant in 1988; and the first double-lung transplant in 1989. Researchers identified the maturation promoting factor that regulates cell division and discovered the T-cell receptor which triggers responses of the immune system. The university is credited with isolating the genes that cause Fanconi anemia; cystic fibrosis; and early-onset Alzheimer’s disease among numerous other diseases. Between 1914 and 1972 the university operated the Connaught Medical Research Laboratories- now part of the pharmaceutical corporation Sanofi-Aventis. Among the research conducted at the laboratory was the development of gel electrophoresis.

    The University of Toronto is the primary research presence that supports one of the world’s largest concentrations of biotechnology firms. More than 5,000 principal investigators reside within 2 kilometres (1.2 mi) from the university grounds in Toronto’s Discovery District conducting $1 billion of medical research annually. MaRS Discovery District is a research park that serves commercial enterprises and the university’s technology transfer ventures. In 2008, the university disclosed 159 inventions and had 114 active start-up companies. Its SciNet Consortium operates the most powerful supercomputer in Canada.

  • richardmitnick 7:30 am on July 21, 2021 Permalink | Reply
    Tags: "Instrument Ready to Discover New Planets", Astrophysics, , , NEID spectrometer on the 3.5 meter WIYN telescope in the U Arizona Steward Observatory at Kitt Peak., , ,   

    From University of Arizona (US) and Pennsylvania State University (US) : “Instrument Ready to Discover New Planets” 

    From University of Arizona (US)


    Penn State Bloc

    Pennsylvania State University (US)


    Media contact:
    Mikayla Mace Kelley
    Science Writer, University Communications

    Researcher contact:
    Chad Bender
    Steward Observatory

    As the NEID spectrometer on Kitt Peak begins its scientific mission of discovering Earth-like planets elsewhere in the Milky Way, a University of Arizona team is providing the software hub that allows the instrument to probe stars for telltale signs of invisible planets.

    After successfully passing final review by National Aeronautics Space Agency (US) and the National Science Foundation (US), the NEID spectrometer – a new tool for discovering planets outside of our solar system – has begun its scientific mission at Kitt Peak Observatory in Arizona. The newest and one of the most precise tools ever built to detect exoplanets, NEID will discover new planets by measuring the minute gravitational tug they make on their host stars.

    Over the past year, researchers at the University of Arizona have led instrument commissioning and demonstrated that the tool meets the technical and scientific requirements for operation. The university also serves as the hub for NEID’s software pipeline, which translates subtle shifts in the spectrum of starlight into data that tell astronomers about any planets orbiting a star that would be impossible to observe directly.

    NEID detects exoplanets by measuring the subtle effect these planets have on their parent stars. Planets tug gravitationally on the star they orbit, producing a small “wobble” – a periodic shift in the velocity of the star that can be measured. Jupiter, for example, induces a 29 mph wobble on the sun. Smaller planets induce smaller wobbles; Earth induces a wobble of 0.23 mph – about as fast as a desert tortoise.

    Existing instruments can measure speeds as low as just over 2 mph, which is a slow walking pace, but NEID was built to be more than twice as precise, so that it can detect the wobble of Earth-mass exoplanets.

    “The instrument is performing exceptionally well, more than beating our precision requirement, and we believe it is sensitive to planets only slightly larger than the Earth,” said Chad Bender, NEID’s instrument scientist and an associate astronomer at the University of Arizona’s Steward Observatory (US).

    The seething convection on the surface of stars, threaded by invisible lines of magnetic force and marred by ever-changing active regions and dark starspots, can pose a substantial challenge to NEID’s measurements. This stellar activity is one of the major impediments to detecting rocky planets like Earth.

    For very small signals, it is difficult to separate the signal caused by a small planet from signals caused by stellar activity. To better understand this problem, the NEID team uses a small solar telescope to point the instrument at the sun during the daytime.

    “We can use observations of the sun to better understand stellar activity and then apply that knowledge to other stars that are similar to the sun, where we are looking for Earth-like planets,” Bender said.

    The NEID spectrometer derives its name from the Tohono O’odham word ñeid which means “to see,” a name selected after consultation with the Tohono O’odham Nation. The researchers are honored to be able to conduct their research on Iolkam Du’ag, or Kitt Peak, in Arizona – a site with cultural significance to the Tohono O’odham Nation.

    NEID also stands for NN-EXPLORE Exoplanet Investigations with Doppler spectroscopy. (NN-EXPLORE is a joint NASA/NSF Exoplanet Exploration Program.) The new instrument, an extreme precision radial velocity spectrometer, is collecting starlight on the 3.5-meter WIYN telescope at Kitt Peak National Observatory, a program of the National Science Foundation’s National Optical-Infrared Astronomy Research Laboratory, or NOIRLab. NEID’s solar telescope marks the return of solar observations to the peak.

    “The sun points the way,” said Suvrath Mahadevan, professor of astronomy and astrophysics at Pennsylvania State University (US) and NEID principal investigator. “For decades, the iconic and now decommissioned McMath Pierce telescope at Kitt Peak was the premier facility for studying the sun. NEID is now the bridge that connects exoplanet science to solar observations, the sun to the stars, and a bridge that connects Kitt Peak’s history to its present and future.”

    All data from NEID’s observations of the sun are being released publicly.

    “We’ve already released more than 40,000 solar spectra to the public and add several hundred new spectra each day. This archive provides a wealth of information about stellar activity and also NEID’s underlying performance,” said Taran Esplin, a postdoctoral researcher at Steward Observatory and NEID team member.

    The NEID instrument is funded by the joint NASA/NSF Exoplanet Exploration Program, NN-EXPLORE. The 3.5-meter WIYN Telescope is a partnership of Indiana University (US), the University of Wisconsin (US); Pennsylvania State University (US); the University of Missouri (US), Columbia University (US); Purdue University (US); the National Science Foundation (US) and National Aeronautics Space Agency (US).

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Penn State Campus

    The Pennsylvania State University (US) is a public state-related land-grant research university with campuses and facilities throughout Pennsylvania. Founded in 1855 as the Farmers’ High School of Pennsylvania, Penn State became the state’s only land-grant university in 1863. Today, Penn State is a major research university which conducts teaching, research, and public service. Its instructional mission includes undergraduate, graduate, professional and continuing education offered through resident instruction and online delivery. In addition to its land-grant designation, it also participates in the sea-grant, space-grant, and sun-grant research consortia; it is one of only four such universities (along with Cornell University(US), Oregon State University(US), and University of Hawaiʻi at Mānoa(US)). Its University Park campus, which is the largest and serves as the administrative hub, lies within the Borough of State College and College Township. It has two law schools: Penn State Law, on the school’s University Park campus, and Dickinson Law, in Carlisle. The College of Medicine is in Hershey. Penn State is one university that is geographically distributed throughout Pennsylvania. There are 19 commonwealth campuses and 5 special mission campuses located across the state. The University Park campus has been labeled one of the “Public Ivies,” a publicly funded university considered as providing a quality of education comparable to those of the Ivy League.

    Annual enrollment at the University Park campus totals more than 46,800 graduate and undergraduate students, making it one of the largest universities in the United States. It has the world’s largest dues-paying alumni association. The university offers more than 160 majors among all its campuses.

    Annually, the university hosts the Penn State IFC/Panhellenic Dance Marathon (THON), which is the world’s largest student-run philanthropy. This event is held at the Bryce Jordan Center on the University Park campus. The university’s athletics teams compete in Division I of the NCAA and are collectively known as the Penn State Nittany Lions, competing in the Big Ten Conference for most sports. Penn State students, alumni, faculty and coaches have received a total of 54 Olympic medals.

    Early years

    The school was sponsored by the Pennsylvania State Agricultural Society and founded as a degree-granting institution on February 22, 1855, by Pennsylvania’s state legislature as the Farmers’ High School of Pennsylvania. The use of “college” or “university” was avoided because of local prejudice against such institutions as being impractical in their courses of study. Centre County, Pennsylvania, became the home of the new school when James Irvin of Bellefonte, Pennsylvania, donated 200 acres (0.8 km2) of land – the first of 10,101 acres (41 km^2) the school would eventually acquire. In 1862, the school’s name was changed to the Agricultural College of Pennsylvania, and with the passage of the Morrill Land-Grant Acts, Pennsylvania selected the school in 1863 to be the state’s sole land-grant college. The school’s name changed to the Pennsylvania State College in 1874; enrollment fell to 64 undergraduates the following year as the school tried to balance purely agricultural studies with a more classic education.

    George W. Atherton became president of the school in 1882, and broadened the curriculum. Shortly after he introduced engineering studies, Penn State became one of the ten largest engineering schools in the nation. Atherton also expanded the liberal arts and agriculture programs, for which the school began receiving regular appropriations from the state in 1887. A major road in State College has been named in Atherton’s honor. Additionally, Penn State’s Atherton Hall, a well-furnished and centrally located residence hall, is named not after George Atherton himself, but after his wife, Frances Washburn Atherton. His grave is in front of Schwab Auditorium near Old Main, marked by an engraved marble block in front of his statue.

    Early 20th century

    In the years that followed, Penn State grew significantly, becoming the state’s largest grantor of baccalaureate degrees and reaching an enrollment of 5,000 in 1936. Around that time, a system of commonwealth campuses was started by President Ralph Dorn Hetzel to provide an alternative for Depression-era students who were economically unable to leave home to attend college.

    In 1953, President Milton S. Eisenhower, brother of then-U.S. President Dwight D. Eisenhower, sought and won permission to elevate the school to university status as The Pennsylvania State University. Under his successor Eric A. Walker (1956–1970), the university acquired hundreds of acres of surrounding land, and enrollment nearly tripled. In addition, in 1967, the Penn State Milton S. Hershey Medical Center, a college of medicine and hospital, was established in Hershey with a $50 million gift from the Hershey Trust Company.

    Modern era

    In the 1970s, the university became a state-related institution. As such, it now belongs to the Commonwealth System of Higher Education. In 1975, the lyrics in Penn State’s alma mater song were revised to be gender-neutral in honor of International Women’s Year; the revised lyrics were taken from the posthumously-published autobiography of the writer of the original lyrics, Fred Lewis Pattee, and Professor Patricia Farrell acted as a spokesperson for those who wanted the change.

    In 1989, the Pennsylvania College of Technology in Williamsport joined ranks with the university, and in 2000, so did the Dickinson School of Law. The university is now the largest in Pennsylvania. To offset the lack of funding due to the limited growth in state appropriations to Penn State, the university has concentrated its efforts on philanthropy.

    As of 2019, the University of Arizona (US) enrolled 45,918 students in 19 separate colleges/schools, including the UArizona College of Medicine in Tucson and Phoenix and the James E. Rogers College of Law, and is affiliated with two academic medical centers (Banner – University Medical Center Tucson and Banner – University Medical Center Phoenix). UArizona is one of three universities governed by the Arizona Board of Regents. The university is part of the Association of American Universities and is the only member from Arizona, and also part of the Universities Research Association(US). The university is classified among “R1: Doctoral Universities – Very High Research Activity”.

    Known as the Arizona Wildcats (often shortened to “Cats”), the UArizona’s intercollegiate athletic teams are members of the Pac-12 Conference of the NCAA. UArizona athletes have won national titles in several sports, most notably men’s basketball, baseball, and softball. The official colors of the university and its athletic teams are cardinal red and navy blue.

    After the passage of the Morrill Land-Grant Act of 1862, the push for a university in Arizona grew. The Arizona Territory’s “Thieving Thirteenth” Legislature approved the UArizona in 1885 and selected the city of Tucson to receive the appropriation to build the university. Tucson hoped to receive the appropriation for the territory’s mental hospital, which carried a $100,000 allocation instead of the $25,000 allotted to the territory’s only university (Arizona State University(US) was also chartered in 1885, but it was created as Arizona’s normal school, and not a university). Flooding on the Salt River delayed Tucson’s legislators, and by they time they reached Prescott, back-room deals allocating the most desirable territorial institutions had been made. Tucson was largely disappointed with receiving what was viewed as an inferior prize.

    With no parties willing to provide land for the new institution, the citizens of Tucson prepared to return the money to the Territorial Legislature until two gamblers and a saloon keeper decided to donate the land to build the school. Construction of Old Main, the first building on campus, began on October 27, 1887, and classes met for the first time in 1891 with 32 students in Old Main, which is still in use today. Because there were no high schools in Arizona Territory, the university maintained separate preparatory classes for the first 23 years of operation.


    UArizona is classified among “R1: Doctoral Universities – Very high research activity”. UArizona is the fourth most awarded public university by National Aeronautics and Space Administration(US) for research. UArizona was awarded over $325 million for its Lunar and Planetary Laboratory (LPL) to lead NASA’s 2007–08 mission to Mars to explore the Martian Arctic, and $800 million for its OSIRIS-REx mission, the first in U.S. history to sample an asteroid.

    The LPL’s work in the Cassini spacecraft orbit around Saturn is larger than any other university globally. The UArizona laboratory designed and operated the atmospheric radiation investigations and imaging on the probe. UArizona operates the HiRISE camera, a part of the Mars Reconnaissance Orbiter. While using the HiRISE camera in 2011, UArizona alumnus Lujendra Ojha and his team discovered proof of liquid water on the surface of Mars—a discovery confirmed by NASA in 2015. UArizona receives more NASA grants annually than the next nine top NASA/JPL-Caltech(US)-funded universities combined. As of March 2016, the UArizona’s Lunar and Planetary Laboratory is actively involved in ten spacecraft missions: Cassini VIMS; Grail; the HiRISE camera orbiting Mars; the Juno mission orbiting Jupiter; Lunar Reconnaissance Orbiter (LRO); Maven, which will explore Mars’ upper atmosphere and interactions with the sun; Solar Probe Plus, a historic mission into the Sun’s atmosphere for the first time; Rosetta’s VIRTIS; WISE; and OSIRIS-REx, the first U.S. sample-return mission to a near-earth asteroid, which launched on September 8, 2016.

    UArizona students have been selected as Truman, Rhodes, Goldwater, and Fulbright Scholars. According to The Chronicle of Higher Education, UArizona is among the top 25 producers of Fulbright awards in the U.S.

    UArizona is a member of the Association of Universities for Research in Astronomy(US), a consortium of institutions pursuing research in astronomy. The association operates observatories and telescopes, notably Kitt Peak National Observatory(US) just outside Tucson. Led by Roger Angel, researchers in the Steward Observatory Mirror Lab at UArizona are working in concert to build the world’s most advanced telescope. Known as the Giant Magellan Telescope(CL), it will produce images 10 times sharper than those from the Earth-orbiting Hubble Telescope.

    Giant Magellan Telescope, 21 meters, to be at the NOIRLab(US) National Optical Astronomy Observatory(US) Carnegie Institution for Science’s(US) Las Campanas Observatory(CL), some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.

    The telescope is set to be completed in 2021. GMT will ultimately cost $1 billion. Researchers from at least nine institutions are working to secure the funding for the project. The telescope will include seven 18-ton mirrors capable of providing clear images of volcanoes and riverbeds on Mars and mountains on the moon at a rate 40 times faster than the world’s current large telescopes. The mirrors of the Giant Magellan Telescope will be built at UArizona and transported to a permanent mountaintop site in the Chilean Andes where the telescope will be constructed.

    Reaching Mars in March 2006, the Mars Reconnaissance Orbiter contained the HiRISE camera, with Principal Investigator Alfred McEwen as the lead on the project. This National Aeronautics and Space Administration(US) mission to Mars carrying the UArizona-designed camera is capturing the highest-resolution images of the planet ever seen. The journey of the orbiter was 300 million miles. In August 2007, the UArizona, under the charge of Scientist Peter Smith, led the Phoenix Mars Mission, the first mission completely controlled by a university. Reaching the planet’s surface in May 2008, the mission’s purpose was to improve knowledge of the Martian Arctic. The Arizona Radio Observatory(US), a part of UArizona Department of Astronomy Steward Observatory(US), operates the Submillimeter Telescope on Mount Graham.

    The National Science Foundation(US) funded the iPlant Collaborative in 2008 with a $50 million grant. In 2013, iPlant Collaborative received a $50 million renewal grant. Rebranded in late 2015 as “CyVerse”, the collaborative cloud-based data management platform is moving beyond life sciences to provide cloud-computing access across all scientific disciplines.
    In June 2011, the university announced it would assume full ownership of the Biosphere 2 scientific research facility in Oracle, Arizona, north of Tucson, effective July 1. Biosphere 2 was constructed by private developers (funded mainly by Texas businessman and philanthropist Ed Bass) with its first closed system experiment commencing in 1991. The university had been the official management partner of the facility for research purposes since 2007.

    U Arizona mirror lab-Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

    University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why the UA is a university unlike any other.

  • richardmitnick 6:03 am on July 21, 2021 Permalink | Reply
    Tags: "Tail without a comet-the dusty remains of Comet ATLAS", Astrophysics, , , , ,   

    From Royal Astronomical Society (UK) : “Tail without a comet-the dusty remains of Comet ATLAS” 

    From Royal Astronomical Society (UK)


    Media contacts:
    Dr. Robert Massey
    Royal Astronomical Society
    Mob: +44 (0)7802 877 699

    Dr. Morgan Hollis
    Royal Astronomical Society
    Mob: +44 (0)7802 877 700

    Anita Heward
    Royal Astronomical Society
    Mob: +44 (0)7756 034 243

    Vittoria D’Alessio
    PR and Media Manager
    University of Bath
    Tel: +44 (0)1225 383 135

    Science contact:
    Dr. Lorenzo Matteini
    Space and Atmospheric Physics group
    Imperial College London

    A serendipitous flythrough of the tail of a disintegrated comet has offered scientists a unique opportunity to study these remarkable structures, in new research presented today at the National Astronomy Meeting 2021.

    Hubble Space Telescope image of comet C/2019 Y4 (ATLAS), taken on April 20 2020, providing the sharpest view to date of the breakup of the solid nucleus of the comet. Hubble’s eagle-eye view identifies as many as 30 separate fragments, and distinguishes pieces that are roughly the size of a house. Before the breakup, the entire nucleus of the comet may have been the length of one or two football fields. The comet was approximately 91 million miles (146 million kilometres) from Earth when the image was taken. Credit: National Aeronautics Space Agency (US) / European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU) / Space Telescope Science Institute (US) / D. Jewitt (University of California-Los Angeles (US)). Licence type Attribution (CC BY 4.0)

    Comet ATLAS fragmented just before its closest approach to the Sun last year, leaving its former tail trailing through space in the form of wispy clouds of dust and charged particles. The disintegration was observed by the Hubble Space Telescope in April 2020 [see story below], but more recently the ESA spacecraft Solar Orbiter has flown close to the tail remnants in the course of its ongoing mission.

    ESA-United Space for Europe

    European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU)
    “Solar Orbiter to pass through the tails of Comet ATLAS”

    ESA’s Solar Orbiter will cross through the tails of Comet ATLAS during the next few days. Although the recently launched spacecraft was not due to be taking science data at this time, mission experts have worked to ensure that the four most relevant instruments will be switched on during the unique encounter.

    Solar Orbiter was launched on 10 February 2020. Since then, and with the exception of a brief shutdown due to the coronavirus pandemic, scientists and engineers have been conducting a series of tests and set-up routines known as commissioning.

    The completion date for this phase was set at 15 June, so that the spacecraft could be fully functional for its first close pass of the Sun, or perihelion, in mid-June. However, the discovery of the chance encounter with the comet made things more urgent.

    Serendipitously flying through a comet’s tail is a rare event for a space mission, something scientists know to have happened only six times before for missions that were not specifically chasing comets. All such encounters have been discovered in the spacecraft data after the event. Solar Orbiter’s upcoming crossing is the first to be predicted in advance.

    It was noticed by Geraint Jones of the UCL Mullard Space Science Laboratory (UK), who has a 20-year history of investigating such encounters. He discovered the first accidental tail crossing in 2000, while investigating a strange disturbance in data recorded by the ESA/NASA Ulysses Sun-studying spacecraft in 1996. This study revealed that the spacecraft had passed through the tail of Comet Hyakutake, also known as ‘The Great Comet of 1996’. Soon after the announcement, Ulysses crossed the tail of another comet, and then a third one in 2007.

    Earlier this month, realising that Solar Orbiter was going to be 44 million kilometres downstream of Comet C/2019 Y4 (ATLAS) in just a matter of weeks, Geraint immediately alerted the ESA team.

    Solar Orbiter is equipped with a suite of 10 in-situ and remote-sensing instruments to investigate the Sun and the flow of charged particles it releases into space – the solar wind. Fortuitously, the four in-situ instruments are also perfect for detecting the comet’s tails because they measure the conditions around the spacecraft, and so they could return data about the dust grains and the electrically charged particles given off by the comet. These emissions create the comet’s two tails: the dust tail that is left behind in the comet’s orbit and the ion tail that points straight away from the Sun.

    Solar Orbiter will cross the ion tail of Comet ATLAS on 31 May–1 June, and the dust tail on 6 June. If the ion tail is dense enough, Solar Orbiter’s magnetometer (MAG) might detect the variation of the interplanetary magnetic field because of its interaction with ions in the comet’s tail, while the Solar Wind Analyser (SWA) could directly capture some of the tail particles.

    When Solar Orbiter crosses the dust tail, depending on its density – which is extremely difficult to predict – it is possible that one or more tiny dust grains may hit the spacecraft at speeds of tens of kilometres per second. While there is no significant risk to the spacecraft from this, the dust grains themselves will be vaporised on impact, forming tiny clouds of electrically charged gas, or plasma, which could be detected by the Radio and Plasma Waves (RPW) instrument.

    “An unexpected encounter like this provides a mission with unique opportunities and challenges, but that’s good! Chances like this are all part of the adventure of science,” says Günther Hasinger, ESA Director of Science.

    One of those challenges was that the instruments seemed unlikely to all be ready in time because of the commissioning. Now, thanks to a special effort by the instrument teams and ESA’s mission operations team, all four in-situ instruments will be on and collecting data, even though at certain times the instruments will need to be switched back into commissioning mode to ensure that the 15 June deadline is met.

    “With these caveats, we are ready for whatever Comet ATLAS has to tell us,” says Daniel Müller, ESA Project Scientist for Solar Orbiter.

    Expect the unexpected

    Hubble captures breakup of Comet ATLAS in April 2020.

    Another challenge entails the comet’s behaviour. Comet ATLAS was discovered on 28 December 2019. During the next few months, it brightened so much that astronomers wondered whether it would become visible to the naked eye in May.

    Unfortunately, in early April the comet fragmented. As a result, its brightness dropped significantly too, robbing sky watchers of the view. A further fragmentation in mid-May has diminished the comet even more, making it less likely to be detectable by Solar Orbiter.

    Although the chances of detection have reduced, the effort is still worth making according to Geraint.

    “With each encounter with a comet, we learn more about these intriguing objects. If Solar Orbiter detects Comet ATLAS’s presence, then we’ll learn more about how comets interact with the solar wind, and we can check, for example, whether our expectations of dust tail behaviour agree with our models,” he explains. “All missions that encounter comets provide pieces of the jigsaw puzzle.”

    Geraint is the principal investigator of ESA’s future Comet Interceptor mission, which consists of three spacecraft and is scheduled for launch in 2028. It will make a much closer flyby of an as yet unknown comet that will be selected from the newly discovered comets nearer the time of launch (or even after that).

    Grazing the Sun

    Solar Orbiter: journey around the Sun.

    Solar Orbiter is currently circling our parent star between the orbits of Venus and Mercury, with its first perihelion to take place on 15 June, around 77 million kilometres from the Sun. In coming years, it will get much closer, within the orbit of Mercury, around 42 million kilometres from the solar surface. Meanwhile, Comet ATLAS is already there, approaching its own perihelion, which is expected on 31 May, around 37 million kilometres from the Sun.

    “This tail crossing is also exciting because it will happen for the first time at such close distances from the Sun, with the comet nucleus being inside the orbit of Mercury,” says Yannis Zouganelis, ESA Deputy Project Scientist for Solar Orbiter.

    Understanding the dust environment in the innermost region of the Solar System is one of Solar Orbiter’s scientific objectives.

    “Near-Sun comets like Comet ATLAS are sources of dust in the inner heliosphere and so this study will not only help us understand the comet, but also the dust environment of our star,” adds Yannis.

    Looking at an icy object rather than the scorching Sun is certainly an exciting – and unexpected – way for Solar Orbiter to start its scientific mission, but that’s the nature of science.

    “Scientific discovery is built on good planning and serendipity. In the three months since launch, the Solar Orbiter team has already proved that it’s ready for both,” says Daniel.

    Science paper:
    Research Notes of the AAS

    See the full article here .

    National Aeronautics and Space Administration(US)/European Space Agency [Agence spatiale européenne] [Europäische Weltraumorganisation] (EU) Hubble Space Telescope

    European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/National Aeronautics and Space Administration (US) Solar Orbiter

    His lucky encounter has presented researchers with a unique opportunity to investigate the structure of an isolated cometary tail. Using combined measurements from all of Solar Orbiter’s in-situ instruments, the scientists have reconstructed the encounter with ATLAS’s tail. The resulting model indicates that the ambient interplanetary magnetic field carried by the solar wind ‘drapes’ around the comet, and surrounds a central tail region with a weaker magnetic field.

    Comets are typically characterized by two separate tails; one is the well-known bright and curved dust tail, the other – typically fainter – is the ion tail. The ion tail originates from the interaction between the cometary gas and the surrounding solar wind, the hot gas of charged particles that constantly blows from the Sun and permeates the whole Solar System.

    When the solar wind interacts with a solid obstacle, like a comet, its magnetic field is thought to bend and ‘drape’ around it. The simultaneous presence of magnetic field draping and cometary ions released by the melting of the icy nucleus then produces the characteristic second ion tail, which can extend for large distances downstream from the comet’s nucleus.

    Lorenzo Matteini, a solar physicist at Imperial College London and leader of the work, says: “This is quite a unique event, and an exciting opportunity for us to study the makeup and structure of comet tails in unprecedented detail. Hopefully with the Parker Solar Probe and Solar Orbiter now orbiting the Sun closer than ever before, these events may become much more common in future!”

    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker.

    This is the first comet tail detection occurring so close to the Sun – well inside the orbit of Venus. It is also one of the very few cases where scientists have been able to make direct measurements from a fragmented comet. Data from this encounter is expected to contribute greatly to our understanding of the interaction of comets with the solar wind and the structure and formation of their ion tails.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition


    The Royal Astronomical Society is a learned society and charity that encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. Its headquarters are in Burlington House, on Piccadilly in London. The society has over 4,000 members (“Fellows”), most of them professional researchers or postgraduate students. Around a quarter of Fellows live outside the UK.

    The society holds monthly scientific meetings in London, and the annual National Astronomy Meeting at varying locations in the British Isles. The Royal Astronomical Society publishes the scientific journals MNRAS and Geophysical Journal International, along with the trade magazine Astronomy & Geophysics.

    The Royal Astronomical Society maintains an astronomy research library, engages in public outreach and advises the UK government on astronomy education. The society recognises achievement in Astronomy and Geophysics by issuing annual awards and prizes, with its highest award being the Gold Medal of the Royal Astronomical Society. The RAS is the UK adhering organisation to the International Astronomical Union and a member of the UK Science Council.

    The society was founded in 1820 as the Astronomical Society of London to support astronomical research. At that time, most members were ‘gentleman astronomers’ rather than professionals. It became the Royal Astronomical Society in 1831 on receiving a Royal Charter from William IV. A Supplemental Charter in 1915 opened up the fellowship to women.

    Associated groups

    The RAS sponsors topical groups, many of them in interdisciplinary areas where the group is jointly sponsored by another learned society or professional body:

    The Astrobiology Society of Britain (with the NASA Astrobiology Institute)
    The Astroparticle Physics Group (with the Institute of Physics)
    The Astrophysical Chemistry Group (with the Royal Society of Chemistry)
    The British Geophysical Association (with the Geological Society of London)
    The Magnetosphere Ionosphere and Solar-Terrestrial group (generally known by the acronym MIST)
    The UK Planetary Forum
    The UK Solar Physics group

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: