From AAS NOVA: “Warning: Neutron Star Collision Imminent”

AASNOVA

From AAS NOVA

6 January 2021
Susanna Kohler

1
Artist’s impression of a binary neutron star and the gravitational waves the system emits. [R. Hurt/Caltech-JPL]

On 17 August 2017, an alert went out roughly 40 minutes after the LIGO observatory detected gravitational waves from a pair of colliding neutron stars. This alert sent telescopes worldwide slewing rapidly in an all-hands-on-deck effort to image the fireworks show accompanying the merger.


But what if that alert had gone out before the collision?

When Stars Collide

2
Artist’s now iconic impression of the electromagnetic signal from the merger of two neutron stars. Credit: NSF / LIGO / Sonoma State University / A. Simonnet.

When neutron stars merge, they are expected to produce both a gravitational-wave signal from their inspiral and a host of spectrum-spanning electromagnetic signatures from before, during, and after the collision.

The event captured in August 2017, known as GW170817, is one of just two binary neutron star mergers we’ve observed with LIGO and its European sister observatory Virgo so far. But these collisions are likely to become a common detection in the future, particularly as LIGO and Virgo continue to upgrade and approach their design sensitivity.

Reducing the Lag

In the case of GW170817, interferometer glitches and data transfer issues prevented an alert from going out until 40 minutes after the merger. By the time follow-up telescopes had been advised where to search for the collision, the relevant region of the sky was below the horizon; the first manual follow-up couldn’t be conducted until nearly 8 hours after the merger.

To capture a neutron star merger without this delay, we’ll clearly need reduce the alert lag time — but could LIGO send out alerts even before the neutron stars collide? A study led by Surabhi Sachdev (The Pennsylvania State University) has recently demonstrated that a LIGO data analysis pipeline will be capable of providing advance warning for some future mergers.

Early Warning

Sachdev and collaborators analyze the performance of GstLAL, an early warning gravitational-wave detection pipeline for LIGO/Virgo that looks for signals of neutron star binaries approaching merger.

3
Cumulative distributions of the sky localizations of injected binary neutron star merger signals recovered by the authors’ pipeline. Results show that at least one event per year will be detected before merger and localized to within 100 deg^2. [Sachdev et al. 2020]

By injecting merger signals into a simulated dataset, the authors show that the pipeline is able to recover many of these signals 10–60 seconds before the merger occurs. These early detections are made possible when mergers happen nearby, so that a large signal-to-noise ratio can accumulate as the neutron stars inspiral in their last few moments collision.

A Well-Notified Future

Sachdev and collaborators predict that when LIGO and Virgo reach their design sensitivity, nearly 50% of total detectable mergers will be spotted at least 10 seconds before merger — a total that amounts to perhaps 6 to 60 events per year, depending on the neutron star merger rate.

With rapid localization and quick relay times for alerts, this early-warning system could provide follow-up telescopes with the opportunity to capture neutron-star mergers in real time, as they happen. Such observations would provide insight into what magnetic conditions are like around the neutron stars, how heavy elements are synthesized, and whether binary neutron stars are the source of fast radio bursts.

Citation

“An Early-warning System for Electromagnetic Follow-up of Gravitational-wave Events,” Surabhi Sachdev et al 2020 ApJL 905 L25.

https://iopscience.iop.org/article/10.3847/2041-8213/abc753

See the full article here .


five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

1

AAS Mission and Vision Statement

The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

Adopted June 7, 2009