From AAS NOVA: “A Solar System–Sized Experiment – New Proposal for Precision Cosmology and More”
5.26.23
Ben Cassese
Using a network of faraway telescopes in the outskirts of the solar system, astronomers could measure the distance to much farther away galaxies with exquisite precision. A recent study describes how this tactic works and explores what else we could learn with such a bold experiment.
Very Very Long Baselines
Distance is notoriously a tricky quantity to measure in astrophysical contexts, and astronomers have struggled to size up the universe since Hubble first drew his famous diagram.
Edwin Hubble 1929. PNAS 2003
While they have certainly made progress over the last century, it’s natural to wonder if modern technology could enable an entirely new, more precise way to measure the gaps between galaxies.
A sketch of three detectors and a fast radio burst source. Since the wavefront is slightly curved, the same emission will strike each detector at different times. Using measurements of those differences, astronomers can back out the distance to the source. [Boone and McQuinn 2023]
Figure 1. Example of a detector configuration that can be used to measure the distance to a source from the curvature of its wave front. The signal will arrive at detector B before it is seen at detectors A or C. By comparing the arrival times at the three detectors we can infer the distance to the source. Note that we can only measure the difference in arrival times, not the distances di directly. With two detectors the distance to the source is degenerate with the angular position on the sky θ. With three detectors in two dimensions, or four detectors in three dimensions, this degeneracy is broken and the distance to the source can be inferred.
This thinking led Kyle Boone and Matthew McQuinn (University of Washington) to propose a bold new experiment. Their idea, described in a recent publication in The Astrophysical Journal Letters [below], is to scatter a fleet of radio telescopes throughout the solar system and instruct them to all observe the same flashing, repeating fast radio burst at the same time. Since each flash is emitted equally in all directions at the same time, the wavefront will be slightly curved when it arrives and will strike each satellite at a very slightly different time. Add up these nanosecond delays between each, and with some geometry you can back out the distance to the source.
Such a mission would require solving numerous intense, but feasibly surmountable, engineering challenges. Chief among these, astronomers would have to know the distances between the telescopes to within just a few centimeters, a demanding requirement considering the millions of miles separating them and the many subtle forces that affect their motion. Also, each satellite would need to nurture an ultra-precise atomic clock in the face of the unforgiving vacuum of space. But, should engineers resolve these hindrances, a constellation of four or more telescopes drifting in the outer solar system could pin down the distance to each observed flash to within 1% uncertainty.
Spanning Distances and Disciplines
The uncertainty in a measurement of the distance to a source as a function of the true distance to the source for a number of different satellite configurations. Each color represents a different possible baseline separation, and the thickness of each region marks how the uncertainty changes if the resolution of their separation varies between 0.5 and 2 cm. Note that for a source closer than 100 megaparsecs (approximately 300 million light-years), a 25 AU baseline could measure its distance to better than 1%. [Boone and McQuinn 2023]
This experiment was conceived explicitly with precision cosmology in mind, and as Boone and McQuinn show, would be demonstrably revolutionary in that field. However, should astronomers be audacious enough to build a solar system–sized hammer, there are more than a few outstanding nails the same hardware could bludgeon. Take dark matter, for example: several models suggest that invisible clumps of the stuff should occasionally fly through the solar system at high speed. This experiment would necessarily be sensitive enough to notice the slight gravitational tug of such an encounter, meaning even a non-detection of occasional jostles could help constrain our theories of dark matter’s form. Similarly, the much debated “Planet 9” would be unable to evade such an exquisitely sensitive instrument: over time, even from hundreds of AU away, any large planets lurking in the outer solar system would eventually nudge these radio telescopes out of place.
While this study may never grow into more than a thought experiment, such an exercise is constructive nonetheless and gives the astronomical community a chance to reflect on its current capabilities and muse about its future. That said, a more hopeful interpretation is to take this as a starting point for a grand, exacting, colossal mission that could one day uncover secrets of the universe, and our own backyard, all at once.
Figure 2. The triangular configuration of two detectors and the source used for timing. https://www.researchgate.net
Citation
“Solar System-scale Interferometry on Fast Radio Bursts Could Measure Cosmic Distances with Subpercent Precision,” Kyle Boone and Matthew McQuinn 2023 ApJL 947 L23.
https://iopscience.iop.org/article/10.3847/2041-8213/acc947/pdf
See the full article here .
Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.
five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.
The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.
The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.
Adopted June 7, 2009
The society was founded in 1899 through the efforts of George Ellery Hale. The constitution of the group was written by Hale, George Comstock, Edward Morley, Simon Newcomb and Edward Charles Pickering. These men, plus four others, were the first Executive Council of the society; Newcomb was the first president. The initial membership was 114. The AAS name of the society was not finally decided until 1915, previously it was the “Astronomical and Astrophysical Society of America”. One proposed name that preceded this interim name was “American Astrophysical Society”.
The AAS today has over 7,000 members and six divisions – the Division for Planetary Sciences (1968); the Division on Dynamical Astronomy (1969); the High Energy Astrophysics Division (1969); the Solar Physics Division (1969); the Historical Astronomy Division (1980); and the Laboratory Astrophysics Division (2012). The membership includes physicists, mathematicians, geologists, engineers and others whose research interests lie within the broad spectrum of subjects now comprising contemporary astronomy.
In 2019 three AAS members were selected into the tenth anniversary class of TED Fellows.
The AAS established the AAS Fellows program in 2019 to “confer recognition upon AAS members for achievement and extraordinary service to the field of astronomy and the American Astronomical Society.” The inaugural class was designated by the AAS Board of Trustees and includes an initial group of 232 Legacy Fellows.
Reply