Tagged: Gravitational wave astrophysics Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:54 pm on January 18, 2022 Permalink | Reply
    Tags: "There are 40 billion billions of Black Holes in the Universe!", A remarkable amount-around 1% of the overall ordinary (baryonic) matter of the Universe-is locked up in stellar mass black holes., , , , , Gravitational wave astrophysics, How many black holes are out there in the Universe? This is one of the most relevant and pressing questions in modern astrophysics and cosmology., , The International School for Advanced Studies [Scuola Internazionale Superiore di Studi Avanzati](IT), With a new computational approach SISSA researchers have been able to make the fascinating calculation.   

    From The International School for Advanced Studies [Scuola Internazionale Superiore di Studi Avanzati](IT): “There are 40 billion billions of Black Holes in the Universe!” 


    From The International School for Advanced Studies [Scuola Internazionale Superiore di Studi Avanzati](IT)


    Nico Pitrelli
    T +39 040 3787462
    M +39 339 1337950

    Donato Ramani
    T +39 040 3787513
    M +39 342 8022237

    There are 40 billion billions of Black Holes in the Universe!

    Image by PIxabay

    With a new computational approach SISSA researchers have been able to
    make the fascinating calculation. Moreover, according to their work, around
    1% of the overall ordinary (baryonic) matter is locked up in stellar mass
    black holes. Their results have just been published in the prestigious The
    Astrophysical Journal

    How many black holes are out there in the Universe? This is one of the most
    relevant and pressing questions in modern astrophysics and cosmology. The
    intriguing issue has recently been addressed by the SISSA Ph.D. student Alex
    Sicilia, supervised by Prof. Andrea Lapi and Dr. Lumen Boco, together with other
    collaborators from SISSA and from other national and international institutions. In
    a first paper of a series just published in The Astrophysical Journal, the authors have investigated the demographics of stellar mass black holes, which are black
    holes with masses between a few to some hundred solar masses, that originated
    at the end of the life of massive stars. According to the new research, a
    remarkable amount around 1% of the overall ordinary (baryonic) matter of
    the Universe is locked up in stellar mass black holes. Astonishingly, the
    researchers have found that the number of black holes within the
    observable Universe (a sphere of diameter around 90 billions light years) at
    present time is about 40 trillions, 40 billion billions (i.e., about 40 x 1018, i.e.
    4 followed by 19 zeros!).

    A new method to calculate the number of black holes

    As the authors of the research explain: “This important result has been obtained
    thanks to an original approach which combines the state-of-the-art stellar and
    binary evolution code SEVN developed by SISSA researcher Dr. Mario Spera to
    empirical prescriptions for relevant physical properties of galaxies, especially the
    rate of star formation, the amount of stellar mass and the metallicity of the
    interstellar medium (which are all important elements to define the number and
    the masses of stellar black holes). Exploiting these crucial ingredients in a self-
    consistent approach, thanks to their new computation approach, the researchers
    have then derived the number of stellar black holes and their mass distribution
    across the whole history of the Universe. Alex Sicilia, first author of the study,
    comments: “The innovative character of this work is in the coupling of a detailed
    model of stellar and binary evolution with advanced recipes for star formation and
    metal enrichment in individual galaxies. This is one of the first, and one of the
    most robust, ab initio computation of the stellar black hole mass function across
    cosmic history.”

    What’s the origin of most massive stellar black holes?

    The estimate of the number of black holes in the observable Universe is not the
    only issue investigated by the scientists in this piece of research. In collaboration
    with Dr. Ugo Di Carlo and Prof. Michela Mapelli from The University of Padua [Università degli Studi di Padova](IT),they
    have also explored the various formation channels for black holes of different
    masses, like isolated stars, binary systems and stellar clusters. According to their
    work, the most massive stellar black holes originate mainly from dynamical
    events in stellar clusters. Specifically, the researchers have shown that such
    events are required to explain the mass function of coalescing black holes as
    estimated from gravitational wave observations by the LIGO/Virgo collaboration.

    Caltech/MIT Advanced aLigo at Hanford, WA(US), Livingston, LA(US) and VIRGO Gravitational Wave interferometer, near Pisa(IT).

    Lumen Boco, co-author of the paper, comments: “Our work provides a robust
    theory for the generation of light seeds for (super)massive black holes at high
    redshift, and can constitute a starting point to investigate the origin of ‘heavy
    seeds’, that we will pursue in a forthcoming paper.

    A multidisciplinary work carried out in the context of “BiD4BESt – Big Data
    Application for Black Hole Evolution Studies”

    Prof. Andrea Lapi, Sicilia’s supervisor and coordinator of the Ph.D. in
    Astrophysics and Cosmology at SISSA, adds: “This research is really
    multidisciplinary, covering aspects of, and requiring expertise in stellar
    astrophysics, galaxy formation and evolution, gravitational wave and multi-messenger astrophysics; as such it needs collaborative efforts from various
    members of the SISSA Astrophysics and Cosmology group, and a strong
    networking with external collaborators.”

    Alex Sicilia’s work occurs in the context of a prestigious Innovative Training
    Network Project “BiD4BESt – Big Data Application for Black Hole Evolution
    Studies” co-PIed by Prof. Andrea Lapi from SISSA (H2020-MSCAITN-2019
    Project 860744), that has been funded by the European Union with about 3.5
    million Euros overall; it involves several academic and industrial partners, to
    provide Ph.D. training to 13 early stage researchers in the area of black hole
    formation and evolution, by exploiting advanced data science techniques.

    See the full article here.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    International School for Advanced Studies, Trieste. Credit: Mike Peel (http://www.mikepeel.net)

    The International School for Advanced Studies [Scuola Internazionale Superiore di Studi Avanzati] (IT) (SISSA) is an international, state-supported, post-graduate-education and research institute, located in Trieste, Italy.

    SISSA is active in the fields of mathematics, physics, and neuroscience, offering both undergraduate and post-graduate courses. Each year, about 70 PhD students are admitted to SISSA based on their scientific qualifications. SISSA also runs master’s programs in the same areas, in collaboration with both Italian and other European universities.


    SISSA was founded in 1978, as a part of the reconstruction following the Friuli earthquake of 1976. Although the city of Trieste itself did not suffer any damage, physicist Paolo Budinich asked and obtained from the Italian government to include in the interventions the institution of a new, post-graduate teaching and research institute, modeled on the Scuola Normale Superiore di Pisa(IT). The school became operative with a PhD course in theoretical physics, and Budinich himself was appointed as general director. In 1986, Budinich left his position to Daniele Amati, who at the time was at the head of the theoretical division at The European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire](CH)[CERN]. Under his leadership, SISSA expanded its teaching and research activity towards the field of neuroscience, and instituted a new interdisciplinary laboratory aiming at connecting humanities and scientific studies. From 2001 to 2004, the director was the Italian geneticist Edoardo Boncinelli, who fostered the development of the existing research areas. Other directors were appointed in the following years, which saw the strengthening of SISSA collaboration with other Italian and European universities in offering master’s degree programs in the three areas of the School (mathematics, physics and neuroscience). The physicist Stefano Ruffo, the current director, was appointed in 2015. He signed a partnership with the International Centre for Genetic Engineering and Biotechnology to set up a new PhD program in Molecular Biology, with teaching activity organized by both institutions.


    SISSA houses the following research groups:

    Astroparticle Physics
    Condensed Matter
    Molecular and Statistical Biophysics
    Statistical Physics
    Theoretical Particle Physics
    Cognitive Neuroscience
    Molecular Biology
    Applied Mathematics
    Mathematical Analysis
    Mathematical Physics

    In addition, there is the Interdisciplinary Laboratory for Natural and Humanistic Sciences (now LISNU – Laboratorio Interdisciplinare Scienze Naturali e Umanistiche), which is endowed with the task of making connections between science, humanities, and the public. It currently offers a course in Scientific Communication and Scientific journalism.

    SISSA also enjoys special teaching and scientific links with the International Centre for Theoretical Physics, the International Centre for Genetic Engineering and Biotechnology and the Elettra Synchrotron Light Laboratory.

  • richardmitnick 1:35 pm on August 28, 2021 Permalink | Reply
    Tags: "Collaborations sets new constraints on cosmic strings", , , Gravitational wave astrophysics, KAGRA Collaboration, ,   

    From Caltech/MIT aLIGO, VIRGO and KAGRA via Phys.org: “Collaborations sets new constraints on cosmic strings” 

    From Caltech/MIT aLIGO, VIRGO Collaboration and KAGRA Collaboration



    From phys.org

    August 27, 2021

    Credit: Unsplash/CC0 Public Domain

    The LIGO/Virgo/KAGRA Collaboration, a large group of researchers at different institutes worldwide, has recently set the strongest constraints on cosmic strings to date, using the Advanced LIGO/Virgo full O3 dataset. This dataset contains the latest gravitational waves data detected by a network of three interferometers located in United States and in Italy.

    “We wanted to use the most current data of the third observing run (O3 dataset) to put constraints on cosmic strings,” Prof. Mairi Sakellariadou of King’s College London (UK), who is part of the LIGO-Virgo Collaboration, told Phys.org.

    Field theories predict that as the Universe expands and its temperature drops, it undergoes a series of phase transitions followed by spontaneously broken symmetries, which may leave behind topological defects, relics of the previous, more symmetrical phase of the Universe.

    “Just to give you an example, if you take water in its liquid form and you decrease the temperature below zero degrees Celcius, it will solidify,” Sakellariadou said. “Inside an ice cube, you can see filaments where the water is in the liquid form. This phenomenon may also happen in the Universe.” One-dimensional topological defects are referred to as cosmic strings. While particle physics models predict the existence of cosmic strings, there is currently no observational confirmation of their existence.

    “The heavier cosmic strings are, the stronger their gravitational effects will be,” Sakellariadou said. By analyzing observational data, we can put constraints on the parameter that tells us how heavy these objects are, in other words the epoch of cosmic string formation.”

    Setting constraints on cosmic strings also allows researchers to constraint particle physics models and cosmological scenarios. Using gravitational wave data, researchers are able to test particle physics models at energy scales that cannot be reached by accelerators like the Large Hadron Collider at CERN.

    “Constraints also depend on which model of cosmic strings we are using for the string loop distribution, which is dictated by involved numerical simulations” Sakellariadou said.

    So far, researchers have developed two possible numerical simulations. The first one was put forward several years ago by Bouchet, Lorenz, Ringeval and Sakellariadou, while the second was developed by Blanco-Pillado, Olum and Shlaer.

    Recently, Auclair, Ringeval, Sakellariadou and Steer developed a new analytic string loop model that interpolates between the two developed in the past with numerical simulations. This new model has been used for the first time in putting constraints on cosmic strings using gravitational wave data from the last observing run of the LIGO/Virgo/KAGRA collaboration.

    Remarkably, the recent constraints set by the LIGO/Virgo/KAGRA collaboration are stronger than the ones put by Big Bang nucleosynthesis, pulsar-timing array, or cosmic microwave background data. They have also improved on previous constraints set by LIGO/Virgo by 1 to 2 orders of magnitude.

    “As more data becomes available, we will be able to put even stronger constraints. From a theoretical point of view, however, it is also important to build and investigate new cosmic string models, and examine the implications of our work for particle physics beyond the Standard Model and cosmological scenarios”, Sakellariadou said.

    The research was published in Physical Review Letters.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

  • richardmitnick 12:41 pm on August 21, 2021 Permalink | Reply
    Tags: "Addressing a Gap in Our Knowledge of Black Holes", , , , Gravitational wave astrophysics, ,   

    From AAS NOVA : “Addressing a Gap in Our Knowledge of Black Holes” 


    From AAS NOVA

    Artist’s by now iconic conception of two merging black holes similar to those detected by LIGO. Credit: Aurore Simonnet /Caltech MIT Advanced aLIGO(US)/Sonoma State University (US).

    One way for black holes to form is in supernovae, or the deaths of massive stars. However, our current knowledge of stellar evolution and supernovae suggests that black holes with masses between 55 and 120 solar masses can’t be produced via supernovae. Gravitational-wave signals from black hole mergers offer us an observational test of this “gap” in black hole masses.

    Black Hole Boundaries

    You need a massive star to go supernova to produce a black hole. Unfortunately, extremely massive stars explode so violently they leave nothing behind! This scenario can occur with pair-instability supernovae, which happens in stars with core masses between 40 and 135 solar masses. The “pair” in “pair-instability” refers to the electron–positron pairs that are produced by gamma rays interacting with nuclei in the star’s core. Energy is lost in this process, meaning that there’s less resistance to gravitational collapse.

    As the star collapses further, two things can happen. If the star is sufficiently massive, its core ignites in an explosion that tears the star apart, leaving no remnant. If the star is less massive, the core ignition causes the star to pulse and shed mass till it leaves the pair-production stage and its core collapses normally into black hole. The most massive black hole that can be produced in this scenario is roughly 55 solar masses, forming the lower end of the black hole mass gap.

    On the other side of the mass gap, it’s theoretically possible for certain massive stars to collapse normally without entering the pair-production state, thus evolving into black holes with masses greater than 120 solar masses. The unique thing about these massive stars is that they are low metallicity, containing practically no elements that are heavier than helium.

    So the bottom line is that we’re unlikely to observe any black holes with masses between 55 and 120 solar masses. But how can we test this prediction? Gravitational-wave signals are an option! Properties of merging black holes are coded into the gravitational waves produced by the merger, including the black hole masses. So, a recent study led by Bruce Edelman (University of Oregon (US)) looked at our current catalog of black hole merger signals to see if the mass gap would emerge from the data.

    Mind the Gap, If There Is a Gap

    Edelman and collaborators used two established model distributions of black hole masses to approach the problem. They also altered the models so the gap was explicitly allowed and so higher black hole masses could be explored without artificially inflating the rate of mergers above the gap. Edelman and collaborators then fit their models to data from 46 binary black hole mergers observed by the Laser Interferometer Gravitational-Wave Observatory and the Virgo interferometer.

    Masses in the Stellar Graveyard GWTC-2 plot v1.0 BY LIGO-Virgo. Credit: Frank Elavsky and Aaron Geller at Northwestern University(US)

    Caltech/MIT Advanced aLigo at Hanford, WA(US), Livingston, LA(US) and VIRGO Gravitational Wave interferometer, near Pisa(IT).

    Interestingly, the existence of the gap is rather ambiguous! One factor is the inclusion of the merger associated with the signal GW190521, which was likely a high mass merger whose component black holes straddle the mass gap. If the gap doesn’t exist, it’s possible that the unexpected black holes are formed by the merging of smaller black holes. On the whole, this result points to many avenues of study when it comes to pair-instability supernovae and black hole formation!


    “Poking Holes: Looking for Gaps in LIGO/Virgo’s Black Hole Population,” Bruce Edelman et al 2021 ApJL 913 L23.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition


    AAS Mission and Vision Statement

    The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

    The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
    The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
    The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
    The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
    The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

    Adopted June 7, 2009

    The society was founded in 1899 through the efforts of George Ellery Hale. The constitution of the group was written by Hale, George Comstock, Edward Morley, Simon Newcomb and Edward Charles Pickering. These men, plus four others, were the first Executive Council of the society; Newcomb was the first president. The initial membership was 114. The AAS name of the society was not finally decided until 1915, previously it was the “Astronomical and Astrophysical Society of America”. One proposed name that preceded this interim name was “American Astrophysical Society”.

    The AAS today has over 7,000 members and six divisions – the Division for Planetary Sciences (1968); the Division on Dynamical Astronomy (1969); the High Energy Astrophysics Division (1969); the Solar Physics Division (1969); the Historical Astronomy Division (1980); and the Laboratory Astrophysics Division (2012). The membership includes physicists, mathematicians, geologists, engineers and others whose research interests lie within the broad spectrum of subjects now comprising contemporary astronomy.

    In 2019 three AAS members were selected into the tenth anniversary class of TED Fellows.

    The AAS established the AAS Fellows program in 2019 to “confer recognition upon AAS members for achievement and extraordinary service to the field of astronomy and the American Astronomical Society.” The inaugural class was designated by the AAS Board of Trustees and includes an initial group of 232 Legacy Fellows.

  • richardmitnick 10:01 am on August 13, 2021 Permalink | Reply
    Tags: "$3.4 million NSF grant aims to make LIGO multimessenger discoveries commonplace", Gravitational wave astrophysics, ,   

    From Pennsylvania State University (US) : “$3.4 million NSF grant aims to make LIGO multimessenger discoveries commonplace” 

    Penn State Bloc

    From Pennsylvania State University (US)

    August 12, 2021
    Matt Swayne

    A $3.4 million grant from the National Science Foundation (US) will help develop software and services to discover gravitational waves from black holes and neutron stars in real-time in order to facilitate the detection of prompt electromagnetic counterparts.

    The investment is aimed at the NSF-funded Laser Interferometer Gravitational-wave Observatory — or LIGO, a critical tool that has powered a flurry of recent scientific discoveries and enriched our knowledge of the universe through gravitational waves detected from merging neutron stars and black holes, according to Chad Hanna, an associate professor of physics & astronomy and astrophysics in Penn State’s Eberly College of Science and an Institute for Computational and Data Sciences co-hire.


    Specifically, the funds will be used to develop robust signal processing software and the creation of a suite of cyberinfrastructure services that will allow scientists to analyze LIGO data in real time. The goal is to allow scientists to make more discoveries, as well as be able to easily share those discoveries with the scientific community, which ultimately, will improve our understanding of the universe, Hanna added.

    “We hope that this grant will benefit the entire scientific community and that, with it, we’ll make robust detections of increasingly more gravitational waves from neutron star mergers, and other signals that might have electromagnetic or neutrino counterparts,” said Hanna.

    In 2017, LIGO kicked off a new era in astronomical observation, providing astronomers and astrophysicists with evidence of the first detection of gravitational waves from colliding neutron stars, as well as helping researchers settle the origin of mysterious gamma ray bursts, a phenomenon that has been debated by scientists for decades.

    However, Hanna said that these impressive discoveries may be just the initial set of breakthroughs that LIGO can enable.

    “We want more — we want to enable as many discoveries as possible because we learned so much from each one,” said Hanna. “And this grant is really trying to support the cyberinfrastructure that can help to make those discoveries more commonplace.”

    Hanna’s group leads efforts to detect gravitational waves in real-time to support multi-messenger astrophysics. The group is also involved with developing detection algorithms and software to identify the neutron star mergers in the gravitational wave data and using machine learning to cut through noisy data gathered during the gravitational wave observations. Both are integral to the real-time infrastructure and improvements will help facilitate future LIGO research, added Hanna.

    Hanna credited the support he receives from the ICDS team in both helping his own research, as well as the hardware and software that is helping a large part of the astronomical community involved in research boosted by LIGO.

    ICDS also provided initial funding through a seed grant for Hanna’s team to begin research on using machine learning to manage noise in data collected by LIGO.

    The LIGO era

    Astronomers have relied on LIGO, which has been termed a “marvel of precision engineering,” to peer into the universe in ways that were once impossible. LIGO is two detectors spread nearly 1,900 miles apart. One detector is in Hanford, Washington, and the other in Livingston, Louisiana [above].

    Scientists using LIGO have produced some of the biggest astronomical breakthroughs of the 21st century and, arguably, of all time. In 2016, astronomers used LIGO data, along with other scientific instruments and equipment, to identify evidence of gravitational waves, the ripples of spacetime predicted more than a century ago by Albert Einstein. These findings also led to the 2017 Nobel Prize for Physics.

    LIGO also detected the merger of two neutron stars that created a black hole and an explosion of light in 2017. Even more recently, researchers used LIGO to confirm the detection collisions between a black hole and a neutron star, not once but twice within 10 days.

    The award was part of NSF’s Physics at the Information Frontier program, which supports the enablement of advanced computational technologies to address important scientific goals.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Penn State Campus

    The Pennsylvania State University (US) is a public state-related land-grant research university with campuses and facilities throughout Pennsylvania. Founded in 1855 as the Farmers’ High School of Pennsylvania, Penn State became the state’s only land-grant university in 1863. Today, Penn State is a major research university which conducts teaching, research, and public service. Its instructional mission includes undergraduate, graduate, professional and continuing education offered through resident instruction and online delivery. In addition to its land-grant designation, it also participates in the sea-grant, space-grant, and sun-grant research consortia; it is one of only four such universities (along with Cornell University(US), Oregon State University(US), and University of Hawaiʻi at Mānoa(US)). Its University Park campus, which is the largest and serves as the administrative hub, lies within the Borough of State College and College Township. It has two law schools: Penn State Law, on the school’s University Park campus, and Dickinson Law, in Carlisle. The College of Medicine is in Hershey. Penn State is one university that is geographically distributed throughout Pennsylvania. There are 19 commonwealth campuses and 5 special mission campuses located across the state. The University Park campus has been labeled one of the “Public Ivies,” a publicly funded university considered as providing a quality of education comparable to those of the Ivy League.

    Annual enrollment at the University Park campus totals more than 46,800 graduate and undergraduate students, making it one of the largest universities in the United States. It has the world’s largest dues-paying alumni association. The university offers more than 160 majors among all its campuses.

    Annually, the university hosts the Penn State IFC/Panhellenic Dance Marathon (THON), which is the world’s largest student-run philanthropy. This event is held at the Bryce Jordan Center on the University Park campus. The university’s athletics teams compete in Division I of the NCAA and are collectively known as the Penn State Nittany Lions, competing in the Big Ten Conference for most sports. Penn State students, alumni, faculty and coaches have received a total of 54 Olympic medals.

    Early years

    The school was sponsored by the Pennsylvania State Agricultural Society and founded as a degree-granting institution on February 22, 1855, by Pennsylvania’s state legislature as the Farmers’ High School of Pennsylvania. The use of “college” or “university” was avoided because of local prejudice against such institutions as being impractical in their courses of study. Centre County, Pennsylvania, became the home of the new school when James Irvin of Bellefonte, Pennsylvania, donated 200 acres (0.8 km2) of land – the first of 10,101 acres (41 km^2) the school would eventually acquire. In 1862, the school’s name was changed to the Agricultural College of Pennsylvania, and with the passage of the Morrill Land-Grant Acts, Pennsylvania selected the school in 1863 to be the state’s sole land-grant college. The school’s name changed to the Pennsylvania State College in 1874; enrollment fell to 64 undergraduates the following year as the school tried to balance purely agricultural studies with a more classic education.

    George W. Atherton became president of the school in 1882, and broadened the curriculum. Shortly after he introduced engineering studies, Penn State became one of the ten largest engineering schools in the nation. Atherton also expanded the liberal arts and agriculture programs, for which the school began receiving regular appropriations from the state in 1887. A major road in State College has been named in Atherton’s honor. Additionally, Penn State’s Atherton Hall, a well-furnished and centrally located residence hall, is named not after George Atherton himself, but after his wife, Frances Washburn Atherton. His grave is in front of Schwab Auditorium near Old Main, marked by an engraved marble block in front of his statue.

    Early 20th century

    In the years that followed, Penn State grew significantly, becoming the state’s largest grantor of baccalaureate degrees and reaching an enrollment of 5,000 in 1936. Around that time, a system of commonwealth campuses was started by President Ralph Dorn Hetzel to provide an alternative for Depression-era students who were economically unable to leave home to attend college.

    In 1953, President Milton S. Eisenhower, brother of then-U.S. President Dwight D. Eisenhower, sought and won permission to elevate the school to university status as The Pennsylvania State University. Under his successor Eric A. Walker (1956–1970), the university acquired hundreds of acres of surrounding land, and enrollment nearly tripled. In addition, in 1967, the Penn State Milton S. Hershey Medical Center, a college of medicine and hospital, was established in Hershey with a $50 million gift from the Hershey Trust Company.

    Modern era

    In the 1970s, the university became a state-related institution. As such, it now belongs to the Commonwealth System of Higher Education. In 1975, the lyrics in Penn State’s alma mater song were revised to be gender-neutral in honor of International Women’s Year; the revised lyrics were taken from the posthumously-published autobiography of the writer of the original lyrics, Fred Lewis Pattee, and Professor Patricia Farrell acted as a spokesperson for those who wanted the change.

    In 1989, the Pennsylvania College of Technology in Williamsport joined ranks with the university, and in 2000, so did the Dickinson School of Law. The university is now the largest in Pennsylvania. To offset the lack of funding due to the limited growth in state appropriations to Penn State, the university has concentrated its efforts on philanthropy.

  • richardmitnick 11:41 am on August 5, 2021 Permalink | Reply
    Tags: "A bounty of potential gravitational wave events hints at exciting possibilities", , Gravitational wave astrophysics,   

    From “Science News (US) : “A bounty of potential gravitational wave events hints at exciting possibilities” 

    From “Science News (US)

    August 4, 2021
    Emily Conover

    One way that gravitational waves (shown in this illustration) are stirred up is when two black holes spiral around one another and collide. Credit: MARK GARLICK/

    A new crew of potential ripples in spacetime has just debuted — emphasis on the word “potential.”

    By loosening the criteria for what qualifies as evidence for gravitational waves, physicists identified 1,201 possible tremors. Most are probably fakes, spurious jitters in the data that can mimic the cosmic vibrations, the team reports August 2 at arXiv.org. But by allowing in more false alarms, the new tally may also include some weak but genuine signals that would otherwise be missed, potentially revealing exciting new information about the sources of gravitational waves.

    Scientists can now look for signs that may corroborate some of the uncertain detections, such as flashes of light in the sky that flared from the cosmic smashups that set off the ripples. Gravitational waves are typically spawned by collisions of dense, massive objects, such as black holes or neutron stars, the remnants of dead stars (SN: 1/21/21).

    To come up with the new census, physicists reanalyzed six months of data from the Advanced Laser Interferometer Gravitational-Wave Observatory, or LIGO, and Virgo gravitational wave observatories. Scientists had already identified 39 of the events as likely gravitational waves in earlier analyses.

    Eight events that hadn’t been previously identified stand a solid chance of being legitimate — with greater than a 50 percent probability of coming from an actual collision.

    The physicists analyzed the data from those eight events to see how they might have occurred. In one, two black holes may have slammed together, melding into a whopper black hole with about 180 times the mass of the sun, which would make it the biggest black hole merger seen yet (SN: 9/2/20). Another event could be a rare sighting of a black hole swallowing a neutron star (SN: 6/29/21).

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

  • richardmitnick 4:12 pm on July 28, 2021 Permalink | Reply
    Tags: "On the hunt for 'hierarchical' black holes", Black holes-detected by their gravitational wave signal as they collide with other black holes-could be the product of much earlier parent collisions., , Gravitational wave astrophysics, , , ,   

    From University of Birmingham (UK) : “On the hunt for ‘hierarchical’ black holes” 

    From University of Birmingham (UK)

    27 July 2021

    Beck Lockwood,
    Press Office, University of Birmingham,
    Tel: +44 (0)781 3343348.

    Black holes-detected by their gravitational wave signal as they collide with other black holes-could be the product of much earlier parent collisions.

    Credit: Riccardo Buscicchio.

    Credit: CC0 Public Domain.

    Such an event has only been hinted at so far, but scientists at the University of Birmingham in the UK, and Northwestern University (US), believe we are getting close to tracking down the first of these so-called ‘hierarchical’ black holes.

    In a review paper, published in Nature Astronomy, Dr Davide Gerosa, of the University of Birmingham, and Dr Maya Fishbach of Northwestern University (US), suggest that recent theoretical findings together with astrophysical modelling and recorded gravitational wave data will enable scientists to accurately interpret gravitational wave signals from these events.

    Since the first gravitational wave was detected by the LIGO and Virgo detectors in September 2015, scientists have produced increasingly nuanced and sophisticated interpretations of these signals.

    There is now fervent activity to prove the existence of so-called ‘hierarchical mergers’ although the detection of GW190521 in 2019 – the most massive black hole merger yet detected – is thought to be the most promising candidate so far.

    “We believe that most of the gravitational waves so far detected are the result of first generation black holes colliding,” says Dr Gerosa. “But we think there’s a good chance that others will contain the remnants of previous mergers. These events will have distinctive gravitational wave signatures suggesting higher masses, and an unusual spin caused by the parent collision.”

    Understanding the characteristics of the environment in which such objects might be produced will also help narrow the search. This must be an environment with a large number of black holes, and one that is sufficiently dense to retain the black holes after they have merged, so they can go on and merge again.

    These could be, for example, nuclear star clusters, or accretion disks – containing a flow of gas, plasma and other particles – surrounding the compact regions at the centre of galaxies.

    “The LIGO and Virgo collaboration has already discovered more than 50 gravitational wave events,” says Dr Fishbach. “This will expand to thousands over the next few years, giving us so many more opportunities to discover and confirm unusual objects like hierarchical black holes in the universe.”

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    University of Birmingham (UK) has been challenging and developing great minds for more than a century. Characterised by a tradition of innovation, research at the University has broken new ground, pushed forward the boundaries of knowledge and made an impact on people’s lives. We continue this tradition today and have ambitions for a future that will embed our work and recognition of the Birmingham name on the international stage.

    The University of Birmingham is a public research university located in Edgbaston, Birmingham, United Kingdom. It received its royal charter in 1900 as a successor to Queen’s College, Birmingham (founded in 1825 as the Birmingham School of Medicine and Surgery), and Mason Science College (established in 1875 by Sir Josiah Mason), making it the first English civic or ‘red brick’ university to receive its own royal charter. It is a founding member of both the Russell Group (UK) of British research universities and the international network of research universities, Universitas 21.

    The student population includes 23,155 undergraduate and 12,605 postgraduate students, which is the 7th largest in the UK (out of 169). The annual income of the institution for 2019–20 was £737.3 million of which £140.4 million was from research grants and contracts, with an expenditure of £667.4 million.

    The university is home to the Barber Institute of Fine Arts, housing works by Van Gogh, Picasso and Monet; the Shakespeare Institute; the Cadbury Research Library, home to the Mingana Collection of Middle Eastern manuscripts; the Lapworth Museum of Geology; and the 100-metre Joseph Chamberlain Memorial Clock Tower, which is a prominent landmark visible from many parts of the city. Academics and alumni of the university include former British Prime Ministers Neville Chamberlain and Stanley Baldwin, the British composer Sir Edward Elgar and eleven Nobel laureates.

    Scientific discoveries and inventions

    The university has been involved in many scientific breakthroughs and inventions. From 1925 until 1948, Sir Norman Haworth was Professor and Director of the Department of Chemistry. He was appointed Dean of the Faculty of Science and acted as Vice-Principal from 1947 until 1948. His research focused predominantly on carbohydrate chemistry in which he confirmed a number of structures of optically active sugars. By 1928, he had deduced and confirmed the structures of maltose, cellobiose, lactose, gentiobiose, melibiose, gentianose, raffinose, as well as the glucoside ring tautomeric structure of aldose sugars. His research helped to define the basic features of the starch, cellulose, glycogen, inulin and xylan molecules. He also contributed towards solving the problems with bacterial polysaccharides. He was a recipient of the Nobel Prize in Chemistry in 1937.

    The cavity magnetron was developed in the Department of Physics by Sir John Randall, Harry Boot and James Sayers. This was vital to the Allied victory in World War II. In 1940, the Frisch–Peierls memorandum, a document which demonstrated that the atomic bomb was more than simply theoretically possible, was written in the Physics Department by Sir Rudolf Peierls and Otto Frisch. The university also hosted early work on gaseous diffusion in the Chemistry department when it was located in the Hills building.

    Physicist Sir Mark Oliphant made a proposal for the construction of a proton-synchrotron in 1943, however he made no assertion that the machine would work. In 1945, phase stability was discovered; consequently, the proposal was revived, and construction of a machine that could surpass proton energies of 1 GeV began at the university. However, because of lack of funds, the machine did not start until 1953. The DOE’s Brookhaven National Laboratory (US) managed to beat them; they started their Cosmotron in 1952, and had it entirely working in 1953, before the University of Birmingham.

    In 1947, Sir Peter Medawar was appointed Mason Professor of Zoology at the university. His work involved investigating the phenomenon of tolerance and transplantation immunity. He collaborated with Rupert E. Billingham and they did research on problems of pigmentation and skin grafting in cattle. They used skin grafting to differentiate between monozygotic and dizygotic twins in cattle. Taking the earlier research of R. D. Owen into consideration, they concluded that actively acquired tolerance of homografts could be artificially reproduced. For this research, Medawar was elected a Fellow of the Royal Society. He left Birmingham in 1951 and joined the faculty at University College London (UK), where he continued his research on transplantation immunity. He was a recipient of the Nobel Prize in Physiology or Medicine in 1960.

  • richardmitnick 8:00 pm on July 22, 2021 Permalink | Reply
    Tags: "Research Snapshot- Astrophysicist outlines ambitious plans for the first gravitational wave observatory on the moon", , , , , Gravitational wave astrophysics, ,   

    From Vanderbilt University (US) : “Research Snapshot- Astrophysicist outlines ambitious plans for the first gravitational wave observatory on the moon” 

    Vanderbilt U Bloc

    From Vanderbilt University (US)

    Jul. 21, 2021
    Marissa Shapiro

    Vanderbilt Astrophysicist outlines plans for the first gravitational wave observatory on the moon.

    Vanderbilt astrophysicist Karan Jani has led a series of studies that make the first case for a gravitational wave infrastructure on the surface of the moon. The experiment, dubbed Gravitational-Wave Lunar Observatory for Cosmology [GLOC}, uses the moon’s environment and geocentric orbit to analyze mergers of black holes, neuron stars and dark matter candidates within almost 70 percent of the entire observable volume of the universe, he said.

    “By tapping into the natural conditions on the moon, we showed that one of the most challenging spectrum of gravitational waves can be measured better from the lunar surface, which so far seems impossible from Earth or space,” Jani said.

    Karan Jani (Vanderbilt University.)


    “The moon offers an ideal backdrop for the ultimate gravitational wave observatory, since it lacks an atmosphere and noticeable seismic noise, which we must mitigate at great cost for laser interferometers on Earth,” said Avi Loeb, professor of science at Harvard University (US) and bestselling author of books about black holes, the first stars, the search for extraterrestrial life and the future of the universe. “A lunar observatory would provide unprecedented sensitivity for discovering sources that we do not anticipate and that could inform us of new physics. GLOC could be the jewel in the crown of science on the surface of the moon.”

    This work comes as NASA revives its Artemis program, which aims to send the first woman and the next man to the moon as early as 2024. Ongoing commercial work by aerospace companies, including SpaceX and BlueOrigin, also has added to the momentum behind planning for ambitious scientific infrastructure on the surface of the moon.

    Conceptual design of Gravitational-wave Lunar Observatory for Cosmology [GLOC} on the surface of the moon. Credit: Karan Jani.


    “In the coming years, we hope to develop a pathfinder mission on the moon to test the technologies of GLOC,” Jani said. “Unlike space missions that last only a few years, the great investment benefit of GLOC is it establishes a permanent base on the moon from where we can study the universe for generations, quite literally the entirety of this century.” Currently the observatory is theoretical, with Jani and Loeb receiving a strong endorsement from the international gravitational-wave community.

    “It was a great privilege to collaborate with an innovative young thinker like Karan Jani,” Loeb said. “He may live long enough to witness the project come to fruition.”

    The work was funded by the Stevenson Chair endowment funds at Vanderbilt University and the Black Hole Initiative at Harvard University, which is funded by grants from the John Templeton Foundation and the Gordon and Betty Moore Foundation.

    Science paper:
    Journal of Cosmology and Astroparticle Physics

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Commodore Cornelius Vanderbilt was in his 79th year when he decided to make the gift that founded Vanderbilt University (US) in the spring of 1873.
    The $1 million that he gave to endow and build the university was the commodore’s only major philanthropy. Methodist Bishop Holland N. McTyeire of Nashville, husband of Amelia Townsend who was a cousin of the commodore’s young second wife Frank Crawford, went to New York for medical treatment early in 1873 and spent time recovering in the Vanderbilt mansion. He won the commodore’s admiration and support for the project of building a university in the South that would “contribute to strengthening the ties which should exist between all sections of our common country.”

    McTyeire chose the site for the campus, supervised the construction of buildings and personally planted many of the trees that today make Vanderbilt a national arboretum. At the outset, the university consisted of one Main Building (now Kirkland Hall), an astronomical observatory and houses for professors. Landon C. Garland was Vanderbilt’s first chancellor, serving from 1875 to 1893. He advised McTyeire in selecting the faculty, arranged the curriculum and set the policies of the university.

    For the first 40 years of its existence, Vanderbilt was under the auspices of the Methodist Episcopal Church, South. The Vanderbilt Board of Trust severed its ties with the church in June 1914 as a result of a dispute with the bishops over who would appoint university trustees.

    From the outset, Vanderbilt met two definitions of a university: It offered work in the liberal arts and sciences beyond the baccalaureate degree and it embraced several professional schools in addition to its college. James H. Kirkland, the longest serving chancellor in university history (1893-1937), followed Chancellor Garland. He guided Vanderbilt to rebuild after a fire in 1905 that consumed the main building, which was renamed in Kirkland’s honor, and all its contents. He also navigated the university through the separation from the Methodist Church. Notable advances in graduate studies were made under the third chancellor, Oliver Cromwell Carmichael (1937-46). He also created the Joint University Library, brought about by a coalition of Vanderbilt, Peabody College and Scarritt College.

    Remarkable continuity has characterized the government of Vanderbilt. The original charter, issued in 1872, was amended in 1873 to make the legal name of the corporation “The Vanderbilt University.” The charter has not been altered since.

    The university is self-governing under a Board of Trust that, since the beginning, has elected its own members and officers. The university’s general government is vested in the Board of Trust. The immediate government of the university is committed to the chancellor, who is elected by the Board of Trust.

    The original Vanderbilt campus consisted of 75 acres. By 1960, the campus had spread to about 260 acres of land. When George Peabody College for Teachers merged with Vanderbilt in 1979, about 53 acres were added.

    Vanderbilt’s student enrollment tended to double itself each 25 years during the first century of the university’s history: 307 in the fall of 1875; 754 in 1900; 1,377 in 1925; 3,529 in 1950; 7,034 in 1975. In the fall of 1999 the enrollment was 10,127.

    In the planning of Vanderbilt, the assumption seemed to be that it would be an all-male institution. Yet the board never enacted rules prohibiting women. At least one woman attended Vanderbilt classes every year from 1875 on. Most came to classes by courtesy of professors or as special or irregular (non-degree) students. From 1892 to 1901 women at Vanderbilt gained full legal equality except in one respect — access to dorms. In 1894 the faculty and board allowed women to compete for academic prizes. By 1897, four or five women entered with each freshman class. By 1913 the student body contained 78 women, or just more than 20 percent of the academic enrollment.

    National recognition of the university’s status came in 1949 with election of Vanderbilt to membership in the select Association of American Universities (US). In the 1950s Vanderbilt began to outgrow its provincial roots and to measure its achievements by national standards under the leadership of Chancellor Harvie Branscomb. By its 90th anniversary in 1963, Vanderbilt for the first time ranked in the top 20 private universities in the United States.

    Vanderbilt continued to excel in research, and the number of university buildings more than doubled under the leadership of Chancellors Alexander Heard (1963-1982) and Joe B. Wyatt (1982-2000), only the fifth and sixth chancellors in Vanderbilt’s long and distinguished history. Heard added three schools (Blair, the Owen Graduate School of Management and Peabody College) to the seven already existing and constructed three dozen buildings. During Wyatt’s tenure, Vanderbilt acquired or built one-third of the campus buildings and made great strides in diversity, volunteerism and technology.

    The university grew and changed significantly under its seventh chancellor, Gordon Gee, who served from 2000 to 2007. Vanderbilt led the country in the rate of growth for academic research funding, which increased to more than $450 million and became one of the most selective undergraduate institutions in the country.

    On March 1, 2008, Nicholas S. Zeppos was named Vanderbilt’s eighth chancellor after serving as interim chancellor beginning Aug. 1, 2007. Prior to that, he spent 2002-2008 as Vanderbilt’s provost, overseeing undergraduate, graduate and professional education programs as well as development, alumni relations and research efforts in liberal arts and sciences, engineering, music, education, business, law and divinity. He first came to Vanderbilt in 1987 as an assistant professor in the law school. In his first five years, Zeppos led the university through the most challenging economic times since the Great Depression, while continuing to attract the best students and faculty from across the country and around the world. Vanderbilt got through the economic crisis notably less scathed than many of its peers and began and remained committed to its much-praised enhanced financial aid policy for all undergraduates during the same timespan. The Martha Rivers Ingram Commons for first-year students opened in 2008 and College Halls, the next phase in the residential education system at Vanderbilt, is on track to open in the fall of 2014. During Zeppos’ first five years, Vanderbilt has drawn robust support from federal funding agencies, and the Medical Center entered into agreements with regional hospitals and health care systems in middle and east Tennessee that will bring Vanderbilt care to patients across the state.

    Today, Vanderbilt University is a private research university of about 6,500 undergraduates and 5,300 graduate and professional students. The university comprises 10 schools, a public policy center and The Freedom Forum First Amendment Center. Vanderbilt offers undergraduate programs in the liberal arts and sciences, engineering, music, education and human development as well as a full range of graduate and professional degrees. The university is consistently ranked as one of the nation’s top 20 universities by publications such as U.S. News & World Report, with several programs and disciplines ranking in the top 10.

    Cutting-edge research and liberal arts, combined with strong ties to a distinguished medical center, creates an invigorating atmosphere where students tailor their education to meet their goals and researchers collaborate to solve complex questions affecting our health, culture and society.

    Vanderbilt, an independent, privately supported university, and the separate, non-profit Vanderbilt University Medical Center share a respected name and enjoy close collaboration through education and research. Together, the number of people employed by these two organizations exceeds that of the largest private employer in the Middle Tennessee region.

  • richardmitnick 8:13 pm on July 20, 2021 Permalink | Reply
    Tags: , , , Gravitational wave astrophysics, , The ASKAP team found a source known as AT2019osy that had nearly doubled in brightness over the course of a week. The smoking gun of a radio afterglow?   

    From CSIROscope (AU): “ASKAP searches for afterglow of gravitational wave” 

    CSIRO bloc

    From CSIROscope (AU)


    CSIRO (AU)-Commonwealth Scientific and Industrial Research Organisation

    24 Jun, 2020 [Just found this anchored to another article in social media]
    Annabelle Young

    Scientists have made a new gravitational waves discovery. Image credit: C. Knox/ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav).

    Scientists are puzzled by a new gravitational waves discovery. Have they discovered the heaviest neutron star or the lightest black hole ever observed?

    More than a century ago, Albert Einstein predicted massive objects like neutron stars and black holes produce ripples in space as they orbit one another and eventually merge in a violent clash.

    Gravitational waves from a black hole merger were first detected in 2015. Two years later researchers found not only gravitational waves but gamma-rays, light and radio waves from the merger of a pair of neutron stars.

    The Laser Interferometer Gravitational-Wave Observatory (LIGO) discovered these gravitational waves or ‘ripples’ in space. It bagged three of its founders the 2017 Nobel prize in physics.

    October 3, 2017
    The LIGO Laboratory, comprising LIGO Hanford, LIGO Livingston, Caltech, and MIT are excited to announce that LIGO’s three longest-standing and greatest champions have been awarded the 2017 Nobel Prize in Physics: Barry Barish and Kip Thorne of California Institute of Technology (US) and Rainer Weiss of Massachusetts Institute of Technology (US).

    The announcement was made this morning by the Nobel Committee in Stockholm Sweden. First broadcast live, you can watch the recording here: Nobel Prize in Physics Announcement.


    Caltech /MIT Advanced aLigo .


    LIGO’s system of lasers, mirrors and vacuum tubes make it the most precise ‘ruler’ on Earth. It’s capable of detecting these previously invisible ripples in space, which are smaller than the diameter of a proton.

    In August 2019, astronomers received an alert that LIGO had detected gravitational waves from a new type of event. The long-awaited merger of a suspected neutron star and a black hole!

    ASKAP on patrol for a gravitational waves discovery.

    Within minutes of receiving the alert, a team led by Professor Tara Murphy at The University of Sydney (AU) activated plans to use our ASKAP radio telescope [below]. They were searching for the afterglow produced by the merger.

    Because gravitational waves are so hard to detect, LIGO can’t pinpoint where these mergers occur. So, they send the astronomy community a ‘sky map’ indicating a region where the event happened. Often these maps cover as much as a quarter of the sky. This takes hundreds of hours to search using a regular telescope.

    ASKAP is equipped with novel receivers that give it a wide-angle lens on the sky. In one pointing, ASKAP can view an area of sky about the size of the Southern Cross.

    Coincidentally, the sky map sent by LIGO for the detection of this merger was about the same size as ASKAP’s field of view. This allowed Tara’s team to observe almost the whole area of the map at once.

    Nine days after the merger, the ASKAP team found a source known as AT2019osy that had nearly doubled in brightness over the course of a week. The smoking gun of a radio afterglow?

    “We immediately alerted thousands of astronomers involved in the gravitational wave follow-up effort, and telescopes across the world, and in space, began slewing to observe our candidate,” team member Dougal Dobie, a co-supervised PhD student at The University of Sydney and CSIRO said.

    False start but the tide’s rising.

    “Unfortunately, these observations suggested AT2019osy was produced by normal activity from the black hole at the centre of a galaxy and unrelated to the merger,” Dougal said.

    Continued ASKAP searches didn’t find any other candidates. This might seem disappointing but the ASKAP team say the effort was not wasted. A non-detection rules out several scenarios and helps place limits on the energy released during the merger.

    Hints of a deeper mystery

    Ongoing analysis of the LIGO data has shown the lack of a radio counterpart may even support the idea something unexpected is happening. The signal received by LIGO when a merger occurs depends on the mass of the two objects involved. Initial analysis suggested the merger of a neutron star and a black hole. But a recent announcement suggests this may not be the entire story.

    In August of 2019, the LIGO-Virgo gravitational-wave network witnessed the merger of a black hole with 23 times the mass of our sun and a mystery object 2.6 times the mass of the sun. Scientists do not know if the mystery object was a neutron star or black hole, but either way it set a record as being either the heaviest known neutron star or the lightest known black hole. Image credit: R. Hurt (Caltech IPAC-Infrared Processing and Analysis Center (US)) Caltech/ MIT Advanced aLIGO (US)/California Institute of Technology (US)/Massachusetts Institute of Technology (US).

    “We may have discovered either the heaviest neutron star or the lightest black hole ever observed. If it really is a heavy neutron star, this will radically alter our understanding of nuclear matter in the densest, most extreme environments in the Universe,” Rory Smith from OzGrav-Monash University said.

    The presence or absence of a radio counterpart may help tip the balance one way or another.

    Catching the next wave

    The era of gravitational wave research is still young. As the sensitivity of LIGO improves, it will detect more mergers at even greater distances.

    “This is just the tip of the iceberg. ASKAP’s fast survey capability will enable us to probe the sky deeper and wider than ever before, playing a key role in understanding these mergers,” Tara said.

    We acknowledge the Wajarri Yamatji as the traditional owners of the Murchison Radio-astronomy Observatory site.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    CSIRO campus

    CSIRO (AU)-Commonwealth Scientific and Industrial Research Organisation , is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

    CSIRO works with leading organisations around the world. From its headquarters in Canberra, CSIRO maintains more than 50 sites across Australia and in France, Chile and the United States, employing about 5,500 people.

    Federally funded scientific research began in Australia 104 years ago. The Advisory Council of Science and Industry was established in 1916 but was hampered by insufficient available finance. In 1926 the research effort was reinvigorated by establishment of the Council for Scientific and Industrial Research (CSIR), which strengthened national science leadership and increased research funding. CSIR grew rapidly and achieved significant early successes. In 1949 further legislated changes included renaming the organisation as CSIRO.

    Notable developments by CSIRO have included the invention of atomic absorption spectroscopy; essential components of Wi-Fi technology; development of the first commercially successful polymer banknote; the invention of the insect repellent in Aerogard and the introduction of a series of biological controls into Australia, such as the introduction of myxomatosis and rabbit calicivirus for the control of rabbit populations.

    Research and focus areas

    Research Business Units

    As at 2019, CSIRO’s research areas are identified as “Impact science” and organised into the following Business Units:

    Agriculture and Food
    Health and Biosecurity
    Data 61
    Land and Water
    Mineral Resources
    Oceans and Atmosphere

    National Facilities

    CSIRO manages national research facilities and scientific infrastructure on behalf of the nation to assist with the delivery of research. The national facilities and specialized laboratories are available to both international and Australian users from industry and research. As at 2019, the following National Facilities are listed:

    Australian Animal Health Laboratory (AAHL)
    Australia Telescope National Facility – radio telescopes included in the Facility include the Australia Telescope Compact Array, the Parkes Observatory, Mopra Observatory and the Australian Square Kilometre Array Pathfinder.


    CSIRO Pawsey Supercomputing Centre AU)

    Others not shown


    SKA- Square Kilometer Array


  • richardmitnick 10:38 pm on July 7, 2021 Permalink | Reply
    Tags: "Scientists use artificial intelligence to detect gravitational waves", , , Gravitational wave astrophysics,   

    From DOE’s Argonne National Laboratory (US) : “Scientists use artificial intelligence to detect gravitational waves” 

    Argonne Lab

    From DOE’s Argonne National Laboratory (US)

    July 6, 2021
    Jared Sagoff

    Scientists can now process months’ worth of gravitational wave data in minutes.

    Scientific visualization of a numerical relativity simulation that describes the collision of two black holes consistent with the binary black hole merger GW170814. The simulation was done on the Theta supercomputer using the open source, numerical relativity, community software Einstein Toolkit (https://einsteintoolkit.org/). (Image by Argonne Leadership Computing Facility, Visualization and Data Analytics Group [Janet Knowles, Joseph Insley, Victor Mateevitsi, Silvio Rizzi].)

    When gravitational waves were first detected in 2015 by the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), they sent a ripple through the scientific community, as they confirmed another of Einstein’s theories and marked the birth of gravitational wave astronomy. Five years later, numerous gravitational wave sources have been detected, including the first observation of two colliding neutron stars in gravitational and electromagnetic waves.

    As LIGO and its international partners continue to upgrade their detectors’ sensitivity to gravitational waves, they will be able to probe a larger volume of the universe, thereby making the detection of gravitational wave sources a daily occurrence.


    MIT /Caltech Advanced aLigo .

    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA.

    Caltech/MIT Advanced aLigo Hanford, WA, USA installation.

    VIRGO Gravitational Wave interferometer, near Pisa, Italy

    KAGRA Large-scale Cryogenic Gravitational Wave Telescope Project (JP)

    This discovery deluge will launch the era of precision astronomy that takes into consideration extrasolar messenger phenomena, including electromagnetic radiation, gravitational waves, neutrinos and cosmic rays. Realizing this goal, however, will require a radical re-thinking of existing methods used to search for and find gravitational waves.

    Recently, computational scientist and lead for translational artificial intelligence (AI), Eliu Huerta of the U.S. Department of Energy’s (DOE) Argonne National Laboratory, in conjunction with collaborators from Argonne, the University of Chicago (US), the University of Illinois at Urbana-Champaign (US), NVIDIA and IBM, has developed a new production-scale AI framework that allows for accelerated, scalable and reproducible detection of gravitational waves.

    This new framework indicates that AI models could be as sensitive as traditional template matching algorithms, but orders of magnitude faster. Furthermore, these AI algorithms would only require an inexpensive graphics processing unit (GPU), like those found in video gaming systems, to process advanced LIGO data faster than real time.

    The AI ensemble used for this study processed an entire month — August 2017 — of advanced LIGO data in less than seven minutes, distributing the dataset over 64 NVIDIA V100 GPUs. The AI ensemble used by the team for this analysis identified all four binary black hole mergers previously identified in that dataset, and reported no misclassifications.

    “As a computer scientist, what’s exciting to me about this project,” said Ian Foster, director of Argonne’s Data Science and Learning (DSL) division, ​“is that it shows how, with the right tools, AI methods can be integrated naturally into the workflows of scientists — allowing them to do their work faster and better — augmenting, not replacing, human intelligence.”

    Bringing disparate resources to bear, this interdisciplinary and multi-institutional team of collaborators has published a paper in Nature Astronomy showcasing a data-driven approach that combines the team’s collective supercomputing resources to enable reproducible, accelerated, AI-driven gravitational wave detection.

    “In this study, we’ve used the combined power of AI and supercomputing to help solve timely and relevant big-data experiments. We are now making AI studies fully reproducible, not merely ascertaining whether AI may provide a novel solution to grand challenges,” Huerta said.

    Building upon the interdisciplinary nature of this project, the team looks forward to new applications of this data-driven framework beyond big-data challenges in physics.

    “This work highlights the significant value of data infrastructure to the scientific community,” said Ben Blaiszik, a research scientist at Argonne and the University of Chicago. ​“The long-term investments that have been made by Department of Energy (US), the National Science Foundation (US), the National Institutes of Standards and Technology (US) and others have created a set of building blocks. It is possible for us to bring these building blocks together in new and exciting ways to scale this analysis and to help deliver these capabilities to others in the future.”

    Huerta and his research team developed their new framework through the support of the NSF, Argonne’s Laboratory Directed Research and Development (LDRD) program and DOE’s Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program.

    “These NSF investments contain original, innovative ideas that hold significant promise of transforming the way scientific data arriving in fast streams are processed. The planned activities are bringing accelerated and heterogeneous computing technology to many scientific communities of practice,” said Manish Parashar, director of the Office of Advanced Cyberinfrastructure at NSF.

    The new framework builds off of a framework originally proposed by Huerta and his colleagues in 2017. The team further advanced their use of AI for astrophysics research by leveraging Argonne supercomputing resources through a two-year award from the Argonne Leadership Computing Facility’s (ALCF) Data Science Program. This led to the team’s current INCITE project on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF) (US).

    ORNL OLCF IBM AC922 SUMMIT supercomputer, was No.1 on the TOP500..

    The ALCF and OLCF are DOE Office of Science (US) User Facilities.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    DOE’s Argonne National Laboratory (US) seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their is a science and engineering research national laboratory operated by UChicago Argonne LLC for the United States Department of Energy. The facility is located in Lemont, Illinois, outside of Chicago, and is the largest national laboratory by size and scope in the Midwest.

    Argonne had its beginnings in the Metallurgical Laboratory of the University of Chicago, formed in part to carry out Enrico Fermi’s work on nuclear reactors for the Manhattan Project during World War II. After the war, it was designated as the first national laboratory in the United States on July 1, 1946. In the post-war era the lab focused primarily on non-weapon related nuclear physics, designing and building the first power-producing nuclear reactors, helping design the reactors used by the United States’ nuclear navy, and a wide variety of similar projects. In 1994, the lab’s nuclear mission ended, and today it maintains a broad portfolio in basic science research, energy storage and renewable energy, environmental sustainability, supercomputing, and national security.

    UChicago Argonne, LLC, the operator of the laboratory, “brings together the expertise of the University of Chicago (the sole member of the LLC) with Jacobs Engineering Group Inc.” Argonne is a part of the expanding Illinois Technology and Research Corridor. Argonne formerly ran a smaller facility called Argonne National Laboratory-West (or simply Argonne-West) in Idaho next to the Idaho National Engineering and Environmental Laboratory. In 2005, the two Idaho-based laboratories merged to become the DOE’s Idaho National Laboratory.
    What would become Argonne began in 1942 as the Metallurgical Laboratory at the University of Chicago, which had become part of the Manhattan Project. The Met Lab built Chicago Pile-1, the world’s first nuclear reactor, under the stands of the University of Chicago sports stadium. Considered unsafe, in 1943, CP-1 was reconstructed as CP-2, in what is today known as Red Gate Woods but was then the Argonne Forest of the Cook County Forest Preserve District near Palos Hills. The lab was named after the surrounding forest, which in turn was named after the Forest of Argonne in France where U.S. troops fought in World War I. Fermi’s pile was originally going to be constructed in the Argonne forest, and construction plans were set in motion, but a labor dispute brought the project to a halt. Since speed was paramount, the project was moved to the squash court under Stagg Field, the football stadium on the campus of the University of Chicago. Fermi told them that he was sure of his calculations, which said that it would not lead to a runaway reaction, which would have contaminated the city.

    Other activities were added to Argonne over the next five years. On July 1, 1946, the “Metallurgical Laboratory” was formally re-chartered as Argonne National Laboratory for “cooperative research in nucleonics.” At the request of the U.S. Atomic Energy Commission, it began developing nuclear reactors for the nation’s peaceful nuclear energy program. In the late 1940s and early 1950s, the laboratory moved to a larger location in unincorporated DuPage County, Illinois and established a remote location in Idaho, called “Argonne-West,” to conduct further nuclear research.

    In quick succession, the laboratory designed and built Chicago Pile 3 (1944), the world’s first heavy-water moderated reactor, and the Experimental Breeder Reactor I (Chicago Pile 4), built-in Idaho, which lit a string of four light bulbs with the world’s first nuclear-generated electricity in 1951. A complete list of the reactors designed and, in most cases, built and operated by Argonne can be viewed in the, Reactors Designed by Argonne page. The knowledge gained from the Argonne experiments conducted with these reactors 1) formed the foundation for the designs of most of the commercial reactors currently used throughout the world for electric power generation and 2) inform the current evolving designs of liquid-metal reactors for future commercial power stations.

    Conducting classified research, the laboratory was heavily secured; all employees and visitors needed badges to pass a checkpoint, many of the buildings were classified, and the laboratory itself was fenced and guarded. Such alluring secrecy drew visitors both authorized—including King Leopold III of Belgium and Queen Frederica of Greece—and unauthorized. Shortly past 1 a.m. on February 6, 1951, Argonne guards discovered reporter Paul Harvey near the 10-foot (3.0 m) perimeter fence, his coat tangled in the barbed wire. Searching his car, guards found a previously prepared four-page broadcast detailing the saga of his unauthorized entrance into a classified “hot zone”. He was brought before a federal grand jury on charges of conspiracy to obtain information on national security and transmit it to the public, but was not indicted.

    Not all nuclear technology went into developing reactors, however. While designing a scanner for reactor fuel elements in 1957, Argonne physicist William Nelson Beck put his own arm inside the scanner and obtained one of the first ultrasound images of the human body. Remote manipulators designed to handle radioactive materials laid the groundwork for more complex machines used to clean up contaminated areas, sealed laboratories or caves. In 1964, the “Janus” reactor opened to study the effects of neutron radiation on biological life, providing research for guidelines on safe exposure levels for workers at power plants, laboratories and hospitals. Scientists at Argonne pioneered a technique to analyze the moon’s surface using alpha radiation, which launched aboard the Surveyor 5 in 1967 and later analyzed lunar samples from the Apollo 11 mission.

    In addition to nuclear work, the laboratory maintained a strong presence in the basic research of physics and chemistry. In 1955, Argonne chemists co-discovered the elements einsteinium and fermium, elements 99 and 100 in the periodic table. In 1962, laboratory chemists produced the first compound of the inert noble gas xenon, opening up a new field of chemical bonding research. In 1963, they discovered the hydrated electron.

    High-energy physics made a leap forward when Argonne was chosen as the site of the 12.5 GeV Zero Gradient Synchrotron, a proton accelerator that opened in 1963. A bubble chamber allowed scientists to track the motions of subatomic particles as they zipped through the chamber; in 1970, they observed the neutrino in a hydrogen bubble chamber for the first time.

    Meanwhile, the laboratory was also helping to design the reactor for the world’s first nuclear-powered submarine, the U.S.S. Nautilus, which steamed for more than 513,550 nautical miles (951,090 km). The next nuclear reactor model was Experimental Boiling Water Reactor, the forerunner of many modern nuclear plants, and Experimental Breeder Reactor II (EBR-II), which was sodium-cooled, and included a fuel recycling facility. EBR-II was later modified to test other reactor designs, including a fast-neutron reactor and, in 1982, the Integral Fast Reactor concept—a revolutionary design that reprocessed its own fuel, reduced its atomic waste and withstood safety tests of the same failures that triggered the Chernobyl and Three Mile Island disasters. In 1994, however, the U.S. Congress terminated funding for the bulk of Argonne’s nuclear programs.

    Argonne moved to specialize in other areas, while capitalizing on its experience in physics, chemical sciences and metallurgy. In 1987, the laboratory was the first to successfully demonstrate a pioneering technique called plasma wakefield acceleration, which accelerates particles in much shorter distances than conventional accelerators.[18] It also cultivated a strong battery research program.

    Following a major push by then-director Alan Schriesheim, the laboratory was chosen as the site of the Advanced Photon Source, a major X-ray facility which was completed in 1995 and produced the brightest X-rays in the world at the time of its construction.

    On 19 March 2019, it was reported in the Chicago Tribune that the laboratory was constructing the world’s most powerful supercomputer. Costing $500 million it will have the processing power of 1 quintillion flops. Applications will include the analysis of stars and improvements in the power grid.

    With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    About the Advanced Photon Source

    The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

    With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    About the Advanced Photon Source

    The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

    Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science

    Argonne Lab Campus

  • richardmitnick 7:45 pm on June 29, 2021 Permalink | Reply
    Tags: "LIGO–Virgo–KAGRA finds elusive mergers of black holes with neutron stars", , Gravitational wave astrophysics,   

    From California Institute of Technology (US) : “LIGO–Virgo–KAGRA finds elusive mergers of black holes with neutron stars” 

    Caltech Logo

    From California Institute of Technology (US)

    June 29, 2021

    Whitney Clavin
    (626) 395‑1944

    Credit: Caltech.

    For the first time, researchers have confirmed the detection of a collision between a black hole and a neutron star. In fact, the scientists detected not one but two such events occurring just 10 days apart in January 2020. The extreme events made splashes in space that sent gravitational waves rippling across at least 900 million light-years to reach Earth. In each case, the neutron star was likely swallowed whole by its black hole partner.

    Gravitational waves are disturbances in the curvature of space-time created by massive objects in motion. During the five years since the waves were first measured, a finding that led to the 2017 Nobel Prize in Physics, researchers have identified more than 50 gravitational-wave signals from the merging of pairs of black holes and of pairs of neutron stars. Both black holes and neutron stars are the corpses of massive stars, with black holes being even more massive than neutron stars.

    Now, in a new study, scientists have announced the detection of gravitational waves from two rare events, each involving the collision of a black hole and a neutron star. The gravitational waves were detected by the National Science Foundation’s (NSF) Laser Interferometer Gravitational-wave Observatory (LIGO) in the United States and by the Virgo detector in Italy. The KAGRA detector in Japan joined the LIGO–Virgo network in 2020 but was not online during these detections.


    MIT /Caltech Advanced aLigo .

    “We suspected that these systems existed, but they had eluded us until now,” says Ryan Magee, a postdoctoral scholar at Caltech who helped in analyzing the LIGO signals. “Continued observations of these binaries will reveal their formation channels and could one day help us understand how matter behaves at the extreme densities these processes probe.”

    The first merger, detected on January 5, 2020, involved a black hole about nine times the mass of our sun, or 9 solar masses, and a 1.9-solar-mass neutron star. The second merger was detected on January 15, and involved a 6-solar-mass black hole and a 1.5-solar-mass neutron star. The results were published today, June 29, in The Astrophysical Journal Letters.

    Neutron star-black hole merger. Artistic animation showing a black hole eating a neutron star whole. Credit: Carl Knox, OzGrav-ARC CENTRE OF EXCELLENCE FOR GRAVITATIONAL WAVE DISCOVERY (AU)-Swinburne University of Technology (AU).

    Astronomers have spent decades searching for neutron stars orbiting black holes in the Milky Way, our home galaxy, but have found none so far. “With this new discovery of neutron star–black hole mergers outside our galaxy, we have found the missing binary. We can finally begin to understand how many of these systems exist, how often they merge, and why we have not yet seen examples in the Milky Way,” says Astrid Lamberts, National Centre for Scientific Research [Centre national de la recherche scientifique, [CNRS](FR)researcher of the Virgo collaboration at Artemis and Lagrange laboratories (FR), in Nice, France, and formerly a Caltech postdoctoral scholar.

    The first of the two events, GW200105, was observed by the LIGO Livingston and Virgo detectors. It produced a strong signal in the LIGO detector but had a small signal-to-noise detection by Virgo. The other LIGO detector, located in Hanford, Washington, was temporarily offline. Given the nature of the gravitational waves, the team inferred that the signal was caused by a black hole colliding with a compact object, later identified as a neutron star. This merger took place 900 million light-years away.

    “Even though we see a strong signal in only one detector, we are certain that it is real and not just detector noise. It passes all our stringent quality checks and sticks out from all noise events we see in the third observing run,” says Harald Pfeiffer, group leader in the Astrophysical and Cosmological Relativity department at the MPG Institute for Gravitational Physics [MPG Institut für Gravitationsphysik] [Albert Einstein Institute] (DE), and formerly a postdoctoral scholar at Caltech.

    Because the signal was strong in only one detector, the location of the merger on the sky remains uncertain, lying somewhere in an area that is 34,000 times the size of a full moon.

    “While the gravitational waves alone don’t reveal the structure of the lighter object, we can infer its maximum mass. By combining this information with theoretical predictions of expected neutron star masses in such a binary system, we conclude that a neutron star is the most likely explanation,” says Bhooshan Gadre, a postdoctoral researcher at the Max Planck Institute (DE).

    The second event, GW200115, was detected by both LIGO detectors and the Virgo detector. GW200115 comes from the merger of a black hole with a neutron star that took place roughly 1 billion light-years from Earth. Using information from all three instruments, scientists were better able to narrow down the part of the sky where this event occurred. Nevertheless, the localized area is almost 3,000 times the size of a full moon.

    Astronomers were alerted to both events soon after they were detected in gravitational waves and subsequently searched the skies for associated flashes of light. None were found, but this is not surprising due to the very large distance between Earth and these mergers, which means that any light coming from them would be very dim and hard to detect with even the most powerful telescopes. Previously, in 2017, astronomers detected light from a collision between two neutron stars, first spotted in gravitational waves.

    Additionally, researchers think that these neutron star–black holes mergers did not give off a light show because their black holes are big enough that they likely swallowed the neutron stars whole.

    “These were not events where the black holes munched on the stars like the Cookie Monster and flung bits and pieces about. That ‘flinging about’ is what would produce light, and we don’t think that happened in these cases,” says Patrick Brady, a professor at the University of Wisconsin-Milwaukee and spokesperson for the LIGO Scientific Collaboration.

    Previously, the LIGO–Virgo network found two other candidate neutron star–black hole mergers. One event called GW190814, detected on August 14, 2019, involved a collision of a 23-solar-mass black hole with an object of about 2.6 solar masses, which could be either the heaviest known neutron star or the lightest known black hole. Another candidate event, called GW190426, and detected on April 26, 2019, was thought to possibly be a neutron star–black hole merger, but researchers have since concluded that it was more likely the result of detector noise.

    Having confidently observed two examples of gravitational waves from black holes merging with neutron stars, researchers now estimate that within 1 billion light-years of Earth roughly one such merger happens per month.

    “The detector groups at LIGO, Virgo, and KAGRA are improving their detectors in preparation for the next observing run scheduled to begin in summer 2022,” says Brady. “With the improved sensitivity, we hope to detect merger waves up to once per day and to better measure the properties of black holes and super-dense matter that makes up neutron stars.”

    Additional information about the gravitational-wave observatories:

    This research is supported by National Science Foundation (US)‘s LIGO Laboratory, which is a major facility funded by the NSF. LIGO is operated by Caltech and Massachusetts Institute of Technology (US), which conceived of LIGO and led the Advanced LIGO detector project. Financial support for the Advanced LIGO project was principally from the NSF with Germany (MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] (DE)), the U.K. (Science and Technology Facilities Council), and Australia (Australian Research Council-ARC Centre of Excellence (AU)OzGrav-ARC CENTRE OF EXCELLENCE FOR GRAVITATIONAL WAVE DISCOVERY (AU)) making significant commitments and contributions to the project. Approximately 1,400 scientists from around the world participate in the effort to analyze the data and develop detector designs through the LIGO Scientific Collaboration (US), which includes the GEO Collaboration. A list of additional partners is available at my.ligo.org/census.php.

    The Virgo detector is located near Pisa, Italy. The Virgo Collaboration is currently composed of approximately 650 members from 119 institutions in 14 different countries including Belgium, France, Germany, Hungary, Italy, the Netherlands, Poland, and Spain. The European Gravitational Observatory (EGO) hosts the Virgo detector and is funded by the National Centre for Scientific Research [Centre national de la recherche scientifique, [CNRS] (FR) in France, the Istituto Nazionale di Fisica Nucleare (INFN) in Italy, and Nikhef in the Netherlands. A list of the Virgo Collaboration groups and more information can be found at http://www.virgo-gw.eu.

    The KAGRA is located in Kamioka, Gifu, Japan. The host institute is the Institute of Cosmic Ray Research (ICRR) at the University of Tokyo, and the project is co-hosted by the National Astronomical Observatory of Japan (NAOJ) and the High Energy Accelerator Research Organization (KEK). KAGRA completed its construction in 2019 and later joined the international gravitational-wave network of LIGO and Virgo. The actual data-taking started in February 2020 during the final stage of the run called “O3b.” KAGRA Scientific Congress is composed of more than 460 members from 115 institutes in 14 countries/regions. The list of researchers is available from gwwiki.icrr.u-tokyo.ac.jp/JGWwiki/KAGRA/KSC/Researchers. KAGRA information is at the website gwcenter.icrr.u-tokyo.ac.jp/en/.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Caltech campus

    The California Institute of Technology (US) is a private research university in Pasadena, California. The university is known for its strength in science and engineering, and is one among a small group of institutes of technology in the United States which is primarily devoted to the instruction of pure and applied sciences.

    Caltech was founded as a preparatory and vocational school by Amos G. Throop in 1891 and began attracting influential scientists such as George Ellery Hale, Arthur Amos Noyes, and Robert Andrews Millikan in the early 20th century. The vocational and preparatory schools were disbanded and spun off in 1910 and the college assumed its present name in 1920. In 1934, Caltech was elected to the Association of American Universities, and the antecedents of National Aeronautics and Space Administration (US)’s Jet Propulsion Laboratory, which Caltech continues to manage and operate, were established between 1936 and 1943 under Theodore von Kármán.

    Caltech has six academic divisions with strong emphasis on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. First-year students are required to live on campus, and 95% of undergraduates remain in the on-campus House System at Caltech. Although Caltech has a strong tradition of practical jokes and pranks, student life is governed by an honor code which allows faculty to assign take-home examinations. The Caltech Beavers compete in 13 intercollegiate sports in the NCAA Division III’s Southern California Intercollegiate Athletic Conference (SCIAC).

    As of October 2020, there are 76 Nobel laureates who have been affiliated with Caltech, including 40 alumni and faculty members (41 prizes, with chemist Linus Pauling being the only individual in history to win two unshared prizes). In addition, 4 Fields Medalists and 6 Turing Award winners have been affiliated with Caltech. There are 8 Crafoord Laureates and 56 non-emeritus faculty members (as well as many emeritus faculty members) who have been elected to one of the United States National Academies. Four Chief Scientists of the U.S. Air Force and 71 have won the United States National Medal of Science or Technology. Numerous faculty members are associated with the Howard Hughes Medical Institute(US) as well as National Aeronautics and Space Administration(US). According to a 2015 Pomona College(US) study, Caltech ranked number one in the U.S. for the percentage of its graduates who go on to earn a PhD.


    Caltech is classified among “R1: Doctoral Universities – Very High Research Activity”. Caltech was elected to the Association of American Universities in 1934 and remains a research university with “very high” research activity, primarily in STEM fields. The largest federal agencies contributing to research are National Aeronautics and Space Administration(US); National Science Foundation(US); Department of Health and Human Services(US); Department of Defense(US), and Department of Energy(US).

    In 2005, Caltech had 739,000 square feet (68,700 m^2) dedicated to research: 330,000 square feet (30,700 m^2) to physical sciences, 163,000 square feet (15,100 m^2) to engineering, and 160,000 square feet (14,900 m^2) to biological sciences.

    In addition to managing JPL, Caltech also operates the Caltech Palomar Observatory(US); the Owens Valley Radio Observatory(US);the Caltech Submillimeter Observatory(US); the W. M. Keck Observatory at the Mauna Kea Observatory(US); the Laser Interferometer Gravitational-Wave Observatory at Livingston, Louisiana and Richland, Washington; and Kerckhoff Marine Laboratory(US) in Corona del Mar, California. The Institute launched the Kavli Nanoscience Institute at Caltech in 2006; the Keck Institute for Space Studies in 2008; and is also the current home for the Einstein Papers Project. The Spitzer Science Center(US), part of the Infrared Processing and Analysis Center(US) located on the Caltech campus, is the data analysis and community support center for NASA’s Spitzer Infrared Space Telescope [no longer in service].

    Caltech partnered with University of California at Los Angeles(US) to establish a Joint Center for Translational Medicine (UCLA-Caltech JCTM), which conducts experimental research into clinical applications, including the diagnosis and treatment of diseases such as cancer.

    Caltech operates several Total Carbon Column Observing Network(US) stations as part of an international collaborative effort of measuring greenhouse gases globally. One station is on campus.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: