From “Science Magazine” And The NASA/ESA/CSA James Webb Space based Infrared Astronomy Telescope: “Giant black hole formed puzzlingly fast at dawn of cosmos”

From “Science Magazine”

and

NASA Webb Header

National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) James Webb Infrared Space Telescope annotated, finally launched December 25, 2021, ten years late.

The NASA/ESA/CSA James Webb Space based Infrared Astronomy Telescope

8.22.23
Daniel Clery

1
Supermassive black holes power brilliant beacons by sucking in surrounding gas. Credit: NASA/JPL-CALTECH.

Astronomers have found by far the most distant and earliest quasar ever seen, a cosmic beacon shining so soon after the big bang that standard theory can’t explain how it was built.

Among the most luminous objects in the cosmos, quasars are powered by supermassive black holes in the center of galaxies, which suck in matter so voraciously that it becomes white hot from friction and glows brightly enough to be seen across the universe. Astronomers thought the black holes formed stepwise within early galaxies, as giant stars collapsed and merged, but quasars detected from when the universe was less than 1 billion years old have challenged the idea. “We were already concerned,” says Anna-Christina Eilers of the Massachusetts Institute of Technology. The new one, dubbed UHZ-1, which blazed when the universe was less than 450 million years old, has made that scenario untenable.

It’s not just UHZ-1’s early date, confirmed in a paper posted for The Astrophysical Journal Letters [below] 5 August. The observations show its black hole is so large compared with the galaxy around it that it can’t have evolved slowly at the galaxy’s heart, but must have formed rapidly, by an entirely different process.

UHZ-1 was first seen as a tiny speck of light in an image made by JWST, NASA’s new infrared space telescope, of a megacluster of galaxies residing 4 billion light-years from Earth. The gravity of the giant cluster bends light like a giant lens, magnifying more distant objects behind it and making them easier to study. A few of the magnified dots appeared to be galaxies from when the universe was less than half a billion years old—among the earliest ever seen.

To see whether any of those galaxy candidates harbored quasars, observers viewed the area with another NASA space observatory, Chandra, which can detect the x-rays that are the most reliable signature of quasars.

The National Aeronautics and Space Administration Chandra X-ray telescope.

“One object stood out,” says team member Andy Goulding of Princeton University. “It was booming” in x-rays.

The x-ray brightness implied that the accreting black hole had a mass roughly 40 million times the mass of our Sun. The team then went back to JWST to make sure the quasar was as early as it appeared to be in the original images. By analyzing how far certain features in its spectrum are shifted toward longer, redder wavelengths by expansion of the universe, they confirmed they were seeing the quasar at between 400 million and 450 million years after the big bang.

“It’s hard to argue that it’s anything other than a black hole,” says Daniel Whalen of the University of Portsmouth—one far too big and too early for the conventional picture to explain. That scenario starts soon after the big bang, 13.7 billion years ago, as clumps of the mysterious dark matter that pervades the universe draw in primordial gases—mostly hydrogen and helium. The gases coalesce into giant “population III” stars, which swiftly burn up all their fuel and collapse into black holes with masses at most a few hundred times that of the Sun. Those early black holes would be the “seeds” for future supermassive ones. They would grow by accreting more gas, merge with other seeds, and pull in stars to form a galaxy around themselves.

Some theorists already doubted that this stepwise process could produce the earliest quasars, and that much larger seeds were needed. The same spectrum that confirmed UHZ-1’s distance suggests they were right. It allowed astronomers to estimate the mass of the galaxy: At 140 million times that of the Sun, it was only a few times the mass of the black hole at its heart. In contrast, quasars seen later in cosmic history are dwarfed by their galaxies, being 0.1% of the mass or less. To grow so large compared with its host galaxy and so soon after the big bang, the quasar must have had a head start. UHZ-1 “doesn’t put the last nail in the coffin lid” of light seeds, Whalen says. “But you really couldn’t have formed this from population III stars.”

In another paper, The Astrophysical Journal Letters [below], posted on 4 August, Goulding and others argue that UHZ-1 fits a model proposed in 2017, in which radiation from early stars prevents a giant gas cloud nearby from cooling, fragmenting, and collapsing into more stars. Eventually, that cloud becomes unstable and collapses into a single black hole tens of thousands or even hundreds of thousands of times the mass of our Sun. This hefty seed could then merge with a nearby galaxy in formation and quickly grow into an outsize black hole like UHZ-1.

Another, more exotic possibility was presented in the PNAS [below] last month by Katherine Freese of the University of Texas at Austin and colleagues: huge, puffy stars powered by dark matter. These “dark stars” would burn slowly, powered by the energy that some speculative forms of dark matter might give off, and over time would grow to 1 million times the mass of the Sun. When its dark matter power source gives out, a dark star would quickly collapse into a 1-million-solar-mass black hole—a perfect large seed ready to be adopted by a nearby protogalaxy. Freese says another JWST survey has already found three objects in the early universe that bear hallmarks of being dark stars.

Giant gas clouds and dark stars are only two of the scenarios theorists have devised for jump-starting the growth of quasars. Now, it’s up to observers to figure out which could be real. “We need more observations and for sure they will come for such a fascinating source,” says Melanie Habouzit of the MPG Institute for Astronomy.

The Astrophysical Journal Letters

Figure 1.
2
JWST/NIRCam images of UHZ1 in filters (from
top-left) F115W, F150W, F200W, F277W, F356, F410M and
F444W; photometric measurements from these calibrated
data are presented in Fig. 2. Cutout images are 1.5×1.5 arc-
seconds on a side, and are oriented in standard North-East
convention. Lower-right panel presents the NIRSpec/Prism
MSA shutter positions for UHZ1.

The Astrophysical Journal Letters
PNAS

See the full article here .

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply” at the bottom of the post.


five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

The NASA/ESA/CSA James Webb Space based Infrared Astronomy Telescope is a large infrared telescope with a 6.5-meter primary mirror. Webb was finally launched December 25, 2021, ten years late. Webb will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

Webb is the world’s largest, most powerful, and most complex space science telescope ever built. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it.

Webb was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

Webb is an international collaboration between National Aeronautics and Space Administration, the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center managed the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute operates Webb.

Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

There are four science instruments on Webb: The Near InfraRed Camera (NIRCam), The Near InfraRed Spectrograph (NIRspec), The Mid-InfraRed Instrument (MIRI), and The Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS).

Webb’s instruments are designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.

National Aeronautics Space Agency/ UArizona Webb NIRCam.
ESA Webb NIRSpec.

The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU) Webb MIRI schematic.

Canadian Space Agency [Agence Spatiale Canadienne](CA)Webb Fine Guidance Sensor-Near InfraRed Imager and Slitless Spectrograph FGS/NIRISS.

Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

Launch was December 25, 2021, ten years late, on an Ariane 5 rocket. The launch was from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb is located at the second Lagrange point, about a million miles from the Earth.

LaGrange Points map. NASA.

ESA50 Logo large

Canadian Space Agency

Leave a comment