From The Graduate School of Arts and Sciences At Harvard University: “Streamlining the Search for Black Holes”
From The Graduate School of Arts and Sciences
At
3.9.23
Paul Massari
Photos by David Salafia and Shanika Galaudage
Horizons scholar Floor Broekgaarden brings data science to the study of stars.
M.Weiss/NASA/CXC//Harvard-Smithsonian Center for Astrophysics
Floor Broekgaarden was rifling through her dad’s library in the basement of her childhood home in the Netherlands. A particular volume caught her eye: A Brief History of Time by the late theoretical physicist Stephen Hawking. Curious, the 14-year-old took it with her and spent months trying to understand Hawking’s ideas about space, time, and special relativity. She became particularly interested in one cosmic phenomenon: black holes.
“They seemed like these extreme and mysterious objects in our universe,” she says. “I was fascinated.”
Floor Broekgaarden is a PhD candidate in astronomy.
Broekgaarden brings that childhood fascination with the cosmos to her research as a PhD student in astronomy at Harvard’s Graduate School of Arts and Sciences. In her 2023 Harvard Horizons project Gravitational Wave Paleontology: A New Frontier to Explore the Lives of Stars to the Edge of Our Observable Universe, she merges astrophysics and big data in her quest to provide new insights into the death—and life—of stars.
Smaller and More Challenging
Daniel Holz, a professor at the University of Chicago who sits on Broekgaarden’s dissertation committee, says that the study of black holes advances understanding of fundamental physics and the origins of the cosmos. “They provide extreme tests of the Theory of General Relativity,” he says. “They also teach us about the birth and evolution of the first stars, the age and composition of the universe, and a host of other important topics in astronomy.”
Most of the black holes identified and studied by astronomers so far are supermassive. Scientists are not sure how they form. One possibility is that when one particularly massive star collapses on itself, it accretes gas and other stars or black holes to grow to a size that can reach to millions or even billions of times its original mass. Because supermassive black holes are so immense, astronomers can infer their existence from the way that a galaxy’s stars revolve around them or from light that is produced when it accretes gas.
Broekgaarden studies stellar-mass black holes, which result from the collapse of a single star. Because they are millions of times less massive than a supermassive black hole, stellar-mass black holes are far more difficult to identify. “We’ve inferred the existence of many supermassive black holes by now,” Broekgaarden says. “Stellar-mass black holes are much more challenging to observe because they’re so small.”
The size of stellar-mass black holes belies their importance as celestial phenomena, not only because they might eventually come together in supermassive black holes, but also because they are critical for a much richer understanding of the cosmos. The stars that form stellar-mass black holes play a crucial role in enriching our universe with heavy elements like sodium, but also oxygen and others that we see on Earth today.
Until now a stellar-mass black hole could be identified only when it sheered off material from a neighboring star. As the material flows toward the black hole, it emits x-ray light from which astronomers can infer the void’s existence. In terms of efficacy, though, this method is the astronomical equivalent of finding a needle in a haystack—multiplied by a power of 10.
In 2015, scientists discovered that when two stellar-mass black holes collide, they could be observed by the gravitational waves they emitted instead of light.
Using this approach, astronomers have identified five times as many stellar black holes in the past eight years as they had in the more than 40 years before. “We are in the midst of a golden age of black hole data,” says Holz. “Observations are improving day by day, and our catalogs of black holes continue to swell.” Instruments and methods are evolving so quickly that, within the next decade, scientists expect to detect perhaps a million stellar black holes a year.
Broekgaarden’s doctoral advisor at Harvard, Professor of Astronomy Edo Berger, says that scientists can use the black holes being found through gravitational waves to decipher how they formed and evolved from their original starting point as massive stars. “In a way, this is akin to studying the fossil record to understand the behavior of animals that are now extinct, and how they lived and evolved,” he explains. “Hence ‘gravitational wave paleontology.’”
Floor Broekgaarden presenting on stage as part of the International Gravitational Wave meeting “GWPAW” in Melbourne, Australia, December 2022. This slide presents the rapid increase in gravitational-wave detections over the coming years.
A Cosmic Game of Battleship
The discovery also raised a question—one that Broekgaarden hopes to answer in her research: How is it that two stellar black holes come together and merge? It’s not unusual to find massive stars in pairs, but usually when one becomes a supernova and explodes, the other tends to drift away from, not toward, its partner. “My question is really, ‘What makes some of these stars so special?’” the Horizons scholar says. “What processes in their lives—how they were formed and how they died—makes it so that maybe one in a million of these pairs stay together, merge as black holes, and form these gravitational waves?”
A greater understanding of how massive stars live and die requires the development of computer simulations that model the universe from the Big Bang to today—an unimaginably complex task rife with uncertainties. That’s where Broekgaarden’s work comes in. A data scientist as well as an astrophysicist, the PhD student for the first time used new statistical techniques to incorporate different classes of uncertainty and look at them simultaneously. “The theoretical framework and algorithms that Floor developed provide the translation from the observed black hole properties—measured through gravitational waves—to the original stars that formed them and the full evolutionary path of that process,” says Berger.
Broekgaarden’s algorithm also addresses the key bottlenecks in complex modeling: cost and time. Modeling billions and billions of stars from the Big Bang until today is very computationally expensive and can take years to complete. Broekgaarden developed an algorithm that works a bit like the old board game Battleship where the object is to locate your opponent’s vessel in as few guesses as possible.
“Like the game, my algorithm begins with random guesses and then, once it scores a ‘hit’ and finds a pair of black holes that collide, [it] adapts and revolves the simulation around that area to look for more,” she explains. “Using this method, we can speed up simulations by more than a factor of 100. So, instead of you know, waiting 300 days—almost a year—you now have to wait only three days. It’s a huge difference.”
Holz says that Broekgaarden’s work is at the very cutting edge of human understanding of how the universe makes its black holes. “This is one of the most exciting and important topics in astrophysics, and Floor is lighting the black hole path.”
Broekgaarden says she has high hopes for her research—and her Horizons project: to advance understanding of how elements—and the universe itself—evolved.
“Massive stars drive the processes that are the basis of the cosmos,” she says. “As we study them, I think we’ll find a lot of surprises along the way. We’ve already had a few so far!”
See the full article here .
Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.
five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.
The Graduate School of Arts and Sciences (GSAS) is the largest of the twelve graduate schools of Harvard University. Formed in 1872, GSAS is responsible for most of Harvard’s graduate degree programs in the humanities, social sciences, and natural sciences. The school offers Master of Arts (AM), Master of Science (SM), and Doctor of Philosophy (PhD) degrees in approximately 58 disciplines.
Academic programs offered by the Harvard Graduate School of Arts and Sciences have consistently ranked at the top of graduate programs in the United States. The School’s graduates include a diverse set of prominent public figures and academics. The vast majority of Harvard’s Nobel Prize-winning alumni earned a degree at GSAS. In addition to scholars and scientists, GSAS graduates have become U.S. Cabinet Secretaries, Supreme Court Justices, foreign heads of state, and heads of government.
GSAS was formally created as the Graduate Department of Harvard University in 1872 and was renamed the Graduate School of Harvard University in 1890. Women were not allowed to enroll in GSAS until 1962.
The Graduate School of Arts and Sciences forms part of the Faculty of Arts and Sciences (FAS), along with Harvard College, the Harvard John A. Paulson School of Engineering and Applied Sciences, and the Harvard Division of Continuing Education. The dean of the Graduate School of Arts and Sciences, who reports to the dean of the Faculty of Arts and Sciences, is charged with the responsibility of implementing and supervising the policies of the faculty in the area of graduate education. In the administration of academic policy, the dean is guided by the Administrative Board and the Committee on Graduate Education. The dean is assisted by an administrative dean of GSAS, who has day-to-day responsibility for the operations of the school, a dean for admissions and financial aid, and a dean for student affairs. While the GSAS office oversees the processing of applications, financial aid and fellowships, thesis guidelines, and graduate student affairs, the individual departments in FAS retain considerable autonomy in the administration of their respective graduate programs.
The Faculty of Arts and Sciences oversees GSAS and is responsible for setting the conditions of admission, for providing courses of instruction for students, for directing their studies and examining them in their fields of study, for establishing and maintaining the requirements for its degrees and for making recommendations for those degrees to Harvard’s Governing Boards, for laying down regulations for the governance of the school, and for supervising all its affairs. The dean of GSAS is responsible for implementing and supervising the policies of the faculty in the area of graduate education.
In addition to its own master’s and PhD programs, GSAS nominally oversees the PhD programs in Harvard’s professional schools: Harvard Business School, Harvard Divinity School, the Harvard Graduate School of Education, Harvard Medical School, the Harvard T. H. Chan School of Public Health, the Harvard Graduate School of Design, and the John F. Kennedy School of Government.
Harvard University is the oldest institution of higher education in the United States, established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. It was named after the College’s first benefactor, the young minister John Harvard of Charlestown, who upon his death in 1638 left his library and half his estate to the institution. A statue of John Harvard stands today in front of University Hall in Harvard Yard, and is perhaps the University’s bestknown landmark.
Harvard University has 12 degree-granting Schools in addition to the Radcliffe Institute for Advanced Study. The University has grown from nine students with a single master to an enrollment of more than 20,000 degree candidates including undergraduate, graduate, and professional students. There are more than 360,000 living alumni in the U.S. and over 190 other countries.
The Massachusetts colonial legislature, the General Court, authorized Harvard University’s founding. In its early years, Harvard College primarily trained Congregational and Unitarian clergy, although it has never been formally affiliated with any denomination. Its curriculum and student body were gradually secularized during the 18th century, and by the 19th century, Harvard University (US) had emerged as the central cultural establishment among the Boston elite. Following the American Civil War, President Charles William Eliot’s long tenure (1869–1909) transformed the college and affiliated professional schools into a modern research university; Harvard became a founding member of the Association of American Universities in 1900. James B. Conant led the university through the Great Depression and World War II; he liberalized admissions after the war.
The university is composed of ten academic faculties plus the Radcliffe Institute for Advanced Study. Arts and Sciences offers study in a wide range of academic disciplines for undergraduates and for graduates, while the other faculties offer only graduate degrees, mostly professional. Harvard has three main campuses: the 209-acre (85 ha) Cambridge campus centered on Harvard Yard; an adjoining campus immediately across the Charles River in the Allston neighborhood of Boston; and the medical campus in Boston’s Longwood Medical Area. Harvard University’s endowment is valued at $41.9 billion, making it the largest of any academic institution. Endowment income helps enable the undergraduate college to admit students regardless of financial need and provide generous financial aid with no loans The Harvard Library is the world’s largest academic library system, comprising 79 individual libraries holding about 20.4 million items.
Harvard University has more alumni, faculty, and researchers who have won Nobel Prizes (161) and Fields Medals (18) than any other university in the world and more alumni who have been members of the U.S. Congress, MacArthur Fellows, Rhodes Scholars (375), and Marshall Scholars (255) than any other university in the United States. Its alumni also include eight U.S. presidents and 188 living billionaires, the most of any university. Fourteen Turing Award laureates have been Harvard affiliates. Students and alumni have also won 10 Academy Awards, 48 Pulitzer Prizes, and 108 Olympic medals (46 gold), and they have founded many notable companies.
Colonial
Harvard University was established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. In 1638, it acquired British North America’s first known printing press. In 1639, it was named Harvard College after deceased clergyman John Harvard, an alumnus of the University of Cambridge (UK) who had left the school £779 and his library of some 400 volumes. The charter creating the Harvard Corporation was granted in 1650.
A 1643 publication gave the school’s purpose as “to advance learning and perpetuate it to posterity, dreading to leave an illiterate ministry to the churches when our present ministers shall lie in the dust.” It trained many Puritan ministers in its early years and offered a classic curriculum based on the English university model—many leaders in the colony had attended the University of Cambridge—but conformed to the tenets of Puritanism. Harvard University has never affiliated with any particular denomination, though many of its earliest graduates went on to become clergymen in Congregational and Unitarian churches.
Increase Mather served as president from 1681 to 1701. In 1708, John Leverett became the first president who was not also a clergyman, marking a turning of the college away from Puritanism and toward intellectual independence.
19th century
In the 19th century, Enlightenment ideas of reason and free will were widespread among Congregational ministers, putting those ministers and their congregations in tension with more traditionalist, Calvinist parties. When Hollis Professor of Divinity David Tappan died in 1803 and President Joseph Willard died a year later, a struggle broke out over their replacements. Henry Ware was elected to the Hollis chair in 1805, and the liberal Samuel Webber was appointed to the presidency two years later, signaling the shift from the dominance of traditional ideas at Harvard to the dominance of liberal, Arminian ideas.
Charles William Eliot, president 1869–1909, eliminated the favored position of Christianity from the curriculum while opening it to student self-direction. Though Eliot was the crucial figure in the secularization of American higher education, he was motivated not by a desire to secularize education but by Transcendentalist Unitarian convictions influenced by William Ellery Channing and Ralph Waldo Emerson.
20th century
In the 20th century, Harvard University’s reputation grew as a burgeoning endowment and prominent professors expanded the university’s scope. Rapid enrollment growth continued as new graduate schools were begun and the undergraduate college expanded. Radcliffe College, established in 1879 as the female counterpart of Harvard College, became one of the most prominent schools for women in the United States. Harvard University (US) became a founding member of the Association of American Universities in 1900.
The student body in the early decades of the century was predominantly “old-stock, high-status Protestants, especially Episcopalians, Congregationalists, and Presbyterians.” A 1923 proposal by President A. Lawrence Lowell that Jews be limited to 15% of undergraduates was rejected, but Lowell did ban blacks from freshman dormitories.
President James B. Conant reinvigorated creative scholarship to guarantee Harvard University’s preeminence among research institutions. He saw higher education as a vehicle of opportunity for the talented rather than an entitlement for the wealthy, so Conant devised programs to identify, recruit, and support talented youth. In 1943, he asked the faculty to make a definitive statement about what general education ought to be, at the secondary as well as at the college level. The resulting Report, published in 1945, was one of the most influential manifestos in 20th century American education.
Between 1945 and 1960, admissions were opened up to bring in a more diverse group of students. No longer drawing mostly from select New England prep schools, the undergraduate college became accessible to striving middle class students from public schools; many more Jews and Catholics were admitted, but few blacks, Hispanics, or Asians. Throughout the rest of the 20th century, Harvard became more diverse.
Harvard University’s graduate schools began admitting women in small numbers in the late 19th century. During World War II, students at Radcliffe College (which since 1879 had been paying Harvard University professors to repeat their lectures for women) began attending Harvard University classes alongside men. Women were first admitted to the medical school in 1945. Since 1971, Harvard University has controlled essentially all aspects of undergraduate admission, instruction, and housing for Radcliffe women. In 1999, Radcliffe was formally merged into Harvard University.
21st century
Drew Gilpin Faust, previously the dean of the Radcliffe Institute for Advanced Study, became Harvard University’s first woman president on July 1, 2007. She was succeeded by Lawrence Bacow on July 1, 2018.
Reply