Tagged: Black Hole science Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:50 pm on October 11, 2021 Permalink | Reply
    Tags: , Black Hole science, , ,   

    From AAS NOVA : ” Merging Black Holes vs. Gas and Stars” 

    AASNOVA

    From AAS NOVA

    11 October 2021
    Kerry Hensley

    1
    This simulated image shows a massive black hole at the center of a galaxy. Some massive black holes may be the result of mergers between the black holes hosted by two or more galaxies. Credit: D. Coe, J. Anderson,The National Aeronautics and Space Agency (US), The European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU), and and R. van der Marel (Space Telescope Science Institute (US))]

    When galaxies merge, what happens to the massive black holes at their centers? Today’s article explores the math behind the merger.

    2
    When galaxies merge, it shakes up star formation and sets the stage for a massive black hole merger. [NASA, ESA, the Hubble Heritage (STScI/The Association of Universities for Research in Astronomy (AURA)(US))-ESA/Hubble Collaboration, and A. Evans (The University of Virginia (US), Charlottesville/National Radio Astronomy Observatory (US)/Stony Brook University-SUNY (US))]

    An Emerging Question

    Two galaxies, adrift in the universe, pass near one another. If they become gravitationally entangled, the billion-year process of merging begins as they gradually coalesce into a single galaxy. As part of this process, the massive black holes at the centers of the colliding galaxies undergo a merger of their own.

    As these massive black holes begin their death spiral, they encounter other galactic material like stars and gas. While simulations have shown that interacting with nearby stars causes the black-hole binary to spiral inward more quickly, the results aren’t as clear when it comes to gaseous material. Some studies have found that the presence of gas hastens the merger, while others suggest that it delays the merger instead.

    The rate at which massive black holes merge has implications for upcoming gravitational-wave observatories, like the Laser Interferometer Space Antenna (LISA).

    Massive black-hole mergers at the centers of colliding galaxies are expected to be the loudest source of low-frequency gravitational waves in upcoming surveys — but if some process prevents these mergers, there may be nothing to listen to.

    Black Holes on Paper

    Elisa Bortolas (The University of Milano-Bicocca [Università degli Studi di Milano-Bicocca](IT)) and collaborators used a mathematical model of a black-hole merger to understand how interactions with stars and the presence of gas affect the inspiraling of the binary. Unlike most previous work, the set of differential equations developed by Bortolas and coauthors allowed for the effects of stars and gas to be considered simultaneously rather than separately.

    The authors find that stars and gas tend to compete with one another as the black holes merge. If the black-hole pair accretes only a little mass from the surrounding material, gravitational interactions with nearby stars cause the black-hole pair to tighten inward. If the accretion rate is higher, the presence of a gaseous disk works to expand the binary pair, delaying the merger. Eventually, though, the stars win out, and the binary pair draws close enough to shed massive amounts of energy in the form of gravitational waves, sending the black holes on a collision course.

    Looking Ahead to Future Detections

    The results from Bortolas and coauthors showed that while the presence of gas can delay a merger, it won’t prevent it altogether. Under the conditions the authors explored, the presence of gas increased the time to the merger by a factor of a few, but all mergers occurred within a few hundred million years.

    This is good news for LISA and other gravitational-wave detectors, and there are implications for the non-gravitational-wave detections of these events as well; the presence of gas in the black holes’ surroundings seems to make them pause with just a few light-years between them, increasing the chance that a survey might detect them in this phase.

    Citation

    “The Competing Effect of Gas and Stars in the Evolution of Massive Black Hole Binaries,” Elisa Bortolas et al 2021 ApJL 918 L15.

    https://iopscience.iop.org/article/10.3847/2041-8213/ac1c0c

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    1

    AAS Mission and Vision Statement

    The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

    The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
    The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
    The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
    The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
    The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

    Adopted June 7, 2009

    The society was founded in 1899 through the efforts of George Ellery Hale. The constitution of the group was written by Hale, George Comstock, Edward Morley, Simon Newcomb and Edward Charles Pickering. These men, plus four others, were the first Executive Council of the society; Newcomb was the first president. The initial membership was 114. The AAS name of the society was not finally decided until 1915, previously it was the “Astronomical and Astrophysical Society of America”. One proposed name that preceded this interim name was “American Astrophysical Society”.

    The AAS today has over 7,000 members and six divisions – the Division for Planetary Sciences (1968); the Division on Dynamical Astronomy (1969); the High Energy Astrophysics Division (1969); the Solar Physics Division (1969); the Historical Astronomy Division (1980); and the Laboratory Astrophysics Division (2012). The membership includes physicists, mathematicians, geologists, engineers and others whose research interests lie within the broad spectrum of subjects now comprising contemporary astronomy.

    In 2019 three AAS members were selected into the tenth anniversary class of TED Fellows.

    The AAS established the AAS Fellows program in 2019 to “confer recognition upon AAS members for achievement and extraordinary service to the field of astronomy and the American Astronomical Society.” The inaugural class was designated by the AAS Board of Trustees and includes an initial group of 232 Legacy Fellows.

     
  • richardmitnick 11:27 am on September 23, 2021 Permalink | Reply
    Tags: "How to weigh a quasar", , , Black Hole science, BLR: “broad emission-line region” - a zone in which ionised gas clouds orbit the central black hole at speeds of several thousand kilometres per second., , Quasars contain supermassive black holes in the centres of galaxies and are among the brightest cosmic objects., Quasars: beacons of the Universe, RM: “Reverberation Mapping” - this method has decisive disadvantages compared to spectroastrometry., Spectroastrometry   

    From MPG Institute for Astronomy [MPG Institut für Astronomie] (DE) : “How to weigh a quasar” 

    Max Planck Institut für Astronomie (DE)

    From MPG Institute for Astronomy [MPG Institut für Astronomie] (DE)

    September 22, 2021

    Dr. Markus Nielbock
    Press and public relations officer
    Tel +49 6221 528-134
    pr@mpia.de
    Max Planck Institute for Astronomy, Heidelberg

    Dr. Felix Bosco
    Tel +49 6221 528-347
    bosco@mpia.de
    Max Planck Institute for Astronomy, Heidelberg

    Dr. Jörg-Uwe Pott
    Tel +49 6221 528-202
    jpott@mpia.de
    Max Planck Institute for Astronomy, Heidelberg

    Testing a new, direct method for determining the masses of supermassive black holes.

    Astronomers of the Max Planck Institute for Astronomy have, for the first time, successfully tested a new method for determining the masses of extreme black holes in quasars. This method is called spectroastrometry and is based on the measurement of radiation emitted by gas in the vicinity of supermassive black holes. This measurement simultaneously determines the rotational velocity of the radiating gas and its distance from the centre of the accretion disk from which material flows into the black hole. Compared to other methods, spectroastrometry is relatively straightforward and efficient if performed with modern large telescopes. The high sensitivity of this method permits investigating the surroundings of luminous quasars and supermassive black holes in the early Universe.

    1
    Schematic representation of a quasar. The hot accretion disk in the centre surrounds the black hole, which is invisible here. A dense distribution of gas and dust surrounds it in which individual ionised gas clouds orbit the black hole at high speed. Stimulated by the intense and high-energy radiation of the accretion disk, these clouds emit radiation in the form of spectral lines, broadened due to the Doppler effect. The zone of these gas clouds is therefore called broad emission-line region (BLR). Image: Bosco/Graphics department/MPIA.

    In cosmology, determining the mass of supermassive black holes in the young Universe is an important measurement for tracking the temporal evolution of the cosmos. Now Felix Bosco, in close collaboration with Jörg-Uwe Pott, both from the Max Planck Institute for Astronomy (MPIA) in Heidelberg, and former MPIA researchers Jonathan Stern (now Tel Aviv University (IL)) and Joseph Hennawi (now The University of California-Santa Barbara (US) and Leiden University [Universiteit Leiden] (NL)), has succeeded for the first time in demonstrating the feasibility of directly determining the mass of a quasar using spectroastrometry.

    This method allows the mass of distant black holes in luminous quasars to be determined directly from optical spectra, without the need for extensive assumptions about the spatial distribution of gas. The spectacular applications of spectroastrometric measurements of quasar masses were systematically investigated at MPIA several years ago.

    Quasars: beacons of the Universe

    Quasars contain supermassive black holes in the centres of galaxies and are among the brightest cosmic objects. Therefore, they are detectable over large distances and thus enable the exploration of the early Universe.

    If there is gas near a black hole, it cannot fall into it directly. Instead, an accretion disk forms, a vortex that helps the matter flow into the black hole. High frictional forces in this stream of gas, which ultimately feeds the black hole, heat the accretion disk typically to fifty thousand degrees. The intensity of the radiation emitted in the process makes the quasars appear so bright that they outshine all the stars in the galaxy.

    Other components within quasars have been known for several decades, such as the so-called “broad emission-line region” (BLR), a zone in which ionised gas clouds orbit the central black hole at speeds of several thousand kilometres per second. The intense and energetic radiation from the accretion disk stimulates emission from the gas in the BLR, which is visible in the spectra in the form of spectral lines. However, due to the Doppler effect, they are strongly broadened by the high orbital velocities, thus giving the BLR its name.

    3
    Schematic representation of the origin of the spectroastrometry signal. If the ionised gas were at rest, we would measure the same wavelength of the spectral line throughout the BLR. However, the gas clouds orbit the black hole. Seen from the side, they come towards us on one side while they move away again on the other. As a result, the spectral signal appears blue-shifted towards shorter wavelengths on one side. On the other side, it is red-shifted towards longer wavelengths. This difference in the measured wavelength depending on the position along the BLR results in the spectroastrometry signal indicated above. From this, researchers can determine the maximum distance of the observed BLR clouds from the centre of the quasar and the prevailing velocity there. Image: Bosco/Graphics department/MPIA.

    A new method of measuring black hole masses

    Now, Felix Bosco and his colleagues have measured the optically brightest spectral line of hydrogen (Hα) in the BLR of the quasar J2123-0050 in the constellation Aquarius. Its light stems from a time when the Universe was just 2.9 billion years old. Using the method of spectroastrometry, they have determined the putative distance of the radiation source in the BLR to the centre of the accretion disk, the location of the potential supermassive black hole. At the same time, the Hα line provides the radial velocity of the hydrogen gas, i.e., that velocity component that points towards Earth. Just as the mass of the Sun determines the orbital velocities of the planets in the solar system, the mass of the black hole at the centre of the quasar can be precisely deduced from this data if the gas distribution can be spatially resolved.

    Even for today’s large telescopes, however, the extent of the BLR is far too small for this. “However, by separating spectral and spatial information in the collected light, as well as by statistically modelling the measured data, we can derive distances of much less than one image pixel from the centre of the accretion disk,” Felix Bosco explains. The duration of the observations determines the precision of the measurement.

    For J2123-0050, the astronomers calculated a black hole mass of at most 1.8 billion solar masses. “The exact mass determination was not yet the main goal of these first observations at all,” says Jörg-Uwe Pott, co-author and head of the “Black Holes and Accretion Mechanisms” working group at MPIA. “Instead, we wanted to show that the spectroastrometry method can in principle detect the kinematic signature of the central quasar masses using the 8-metre telescopes already available today.”

    Spectroastrometry could thus be a valuable addition to the tools that researchers use to determine black hole masses. Joe Hennawi adds, “With the significantly increased sensitivity of the James Webb Space Telescope (JWST) and the Extremely Large Telescope (ELT with a primary mirror diameter of 39 metres) currently under construction, we will soon be able to determine quasar masses at the highest redshifts.”

    Jörg-Uwe Pott, who also leads the Heidelberg contributions to ELT’s first near-infrared camera, MICADO, adds, “The feasibility study now published helps us to define and prepare our planned ELT research programmes.”

    Spectroastrometry valuable addition to classical methods

    Among the alternatives for surveying BLR in nearby quasars is a widely used method: “Reverberation Mapping” (RM). It employs the light transit time any brightness fluctuation in the accretion disk needs to excite the surrounding gas to increased radiation. From this, astronomers estimate the mean extent of the BLR. Besides the sometimes considerable uncertainties in the assumptions, this method has decisive disadvantages compared to spectroastrometry when investigating the most massive and distant black holes. The diameter of the BLR correlates with the mass of the central black hole. Hence, the signal delay between the accretion disk and the BLR becomes very large for massive black holes in the early Universe. The necessary series of measurements of several years become impractically long.

    Moreover, the brightness fluctuations and measurability tend to decrease with increasing black hole mass and quasar luminosity. The RM method is, therefore, rarely applicable to luminous quasars. As a result, it is not suitable for measuring quasars at large cosmological distances.

    However, the RM serves as a basis for calibrating other indirect methods first established for nearby quasars and then extended to more distant, luminous quasars with massive black holes. The quality of these indirect approaches stands and falls with the accuracy of the RM method. Here, too, spectroastrometry can help put the mass determination of massive black holes on a broader basis. For example, evaluating the data from J2123-0050 indicates that the correlation between the size of the BLR and the quasar luminosity, initially established with the RM method for rather close, faint quasars, actually seems to hold for luminous quasars as well. However, further measurements are needed here.

    The BLR can also be measured interferometrically in nearby active galaxies, such as with the GRAVITY instrument of the Very Large Telescope Interferometer (VLTI).

    The great advantage of spectroastrometry, however, is that only a single highly-sensitive observation is needed. In addition, it requires neither the technically very complex coupling of several telescopes as required by interferometry nor long series of measurements over months and years as is the case with the RM. For example, a single series of observations with an exposure time of four hours with the 8-metre-class Gemini North telescope in Hawaii, supported by a correction system consisting of a laser guide star and adaptive optics, was sufficient for the research group led by Felix Bosco.

    Opening a new door to the exploration of the early Universe

    Researchers have high hopes for the next generation of large optical telescopes such as ESO’s ELT. Combining an enlarged light-collecting surface with fivefold increased image sharpness would make the observation presented here possible in just a few minutes at the ELT. Felix Bosco explains, “We will use the ELT to astrometrically measure numerous quasars at different distances in a single night, allowing us to observe the cosmological evolution of black hole masses directly.” With the successful astrometric feasibility study, the authors have pushed wide open a new door to the exploration of the early Universe.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The MPG Institute for Astronomy [MPG Institut für Astronomie] (DE), MPIA) is a research institute of the MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] (DE). It is located in Heidelberg, Baden-Württemberg, Germany near the top of the Königstuhl, adjacent to the historic Landessternwarte Heidelberg-Königstuhl astronomical observatory. The institute primarily conducts basic research in the natural sciences in the field of astronomy.

    In addition to its own astronomical observations and astronomical research, the Institute is also actively involved in the development of observation instruments. The instruments or parts of them are manufactured in the institute’s own workshops.

    MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the Max Planck Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.

    According to its primary goal, the Max Planck Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014) Max Planck Institutes. The society has a total staff of approximately 17,000 permanent employees, including 5,470 scientists, plus around 4,600 non-tenured scientists and guests. Society budget for 2015 was about €1.7 billion.

    The Max Planck Institutes focus on excellence in research. The Max Planck Society has a world-leading reputation as a science and technology research organization, with 33 Nobel Prizes awarded to their scientists, and is generally regarded as the foremost basic research organization in Europe and the world. In 2013, the Nature Publishing Index placed the Max Planck institutes fifth worldwide in terms of research published in Nature journals (after Harvard (US), Massachusetts Institute of Technology (US), Stanford (US) and the National Institutes of Health (US)). In terms of total research volume (unweighted by citations or impact), the Max Planck Society is only outranked by the Chinese Academy of Sciences [中国科学院] (CN), the Russian Academy of Sciences [Росси́йская акаде́мия нау́к](RU) and Harvard University. The Thomson Reuters-Science Watch website placed the Max Planck Society as the second leading research organization worldwide following Harvard University, in terms of the impact of the produced research over science fields.

    The Max Planck Society and its predecessor Kaiser Wilhelm Society hosted several renowned scientists in their fields, including Otto Hahn, Werner Heisenberg, and Albert Einstein.

    History
    The organization was established in 1911 as the Kaiser Wilhelm Society, or Kaiser-Wilhelm-Gesellschaft (KWG), a non-governmental research organization named for the then German emperor. The KWG was one of the world’s leading research organizations; its board of directors included scientists like Walther Bothe, Peter Debye, Albert Einstein, and Fritz Haber. In 1946, Otto Hahn assumed the position of President of KWG, and in 1948, the society was renamed the Max Planck Society (MPG) after its former President (1930–37) Max Planck, who died in 1947.
    The Max Planck Society has a world-leading reputation as a science and technology research organization. In 2006, the Times Higher Education Supplement rankings of non-university research institutions (based on international peer review by academics) placed the Max Planck Society as No.1 in the world for science research, and No.3 in technology research (behind AT&T Corporation and the DOE’s Argonne National Laboratory (US).
    The domain mpg.de attracted at least 1.7 million visitors annually by 2008 according to a Compete.com study.
    Max Planck Institutes and research groups
    The Max Planck Society consists of over 80 research institutes. In addition, the society funds a number of Max Planck Research Groups (MPRG) and International Max Planck Research Schools (IMPRS). The purpose of establishing independent research groups at various universities is to strengthen the required networking between universities and institutes of the Max Planck Society.
    The research units are primarily located across Europe with a few in South Korea and the U.S. In 2007, the Society established its first non-European centre, with an institute on the Jupiter campus of Florida Atlantic University (US) focusing on neuroscience.
    The Max Planck Institutes operate independently from, though in close cooperation with, the universities, and focus on innovative research which does not fit into the university structure due to their interdisciplinary or transdisciplinary nature or which require resources that cannot be met by the state universities.
    Internally, Max Planck Institutes are organized into research departments headed by directors such that each MPI has several directors, a position roughly comparable to anything from full professor to department head at a university. Other core members include Junior and Senior Research Fellows.
    In addition, there are several associated institutes:
    International Max Planck Research Schools

    Together with the Association of Universities and other Education Institutions in Germany, the Max Planck Society established numerous International Max Planck Research Schools (IMPRS) to promote junior scientists:
    Cologne Graduate School of Ageing Research, Cologne
    International Max Planck Research School for Intelligent Systems, at the MPG Institute for Intelligent Systems (DE) located in Tübingen and Stuttgart
    International Max Planck Research School on Adapting Behavior in a Fundamentally Uncertain World (Uncertainty School), at the Max Planck Institutes for Economics, for Human Development, and/or Research on Collective Goods
    International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering, Magdeburg
    International Max Planck Research School for Astronomy and Cosmic Physics, Heidelberg at the MPG for Astronomy
    International Max Planck Research School for Astrophysics, Garching at the MPG Institute for Astrophysics
    International Max Planck Research School for Complex Surfaces in Material Sciences, Berlin
    International Max Planck Research School for Computer Science, Saarbrücken
    International Max Planck Research School for Earth System Modeling, Hamburg
    International Max Planck Research School for Elementary Particle Physics, Munich, at the MPG Institute for Physics
    International Max Planck Research School for Environmental, Cellular and Molecular Microbiology, Marburg at the MPG Institute for Terrestrial Microbiology
    International Max Planck Research School for Evolutionary Biology, Plön at the Max Planck Institute for Evolutionary Biology
    International Max Planck Research School “From Molecules to Organisms”, Tübingen at the MPG Institute for Developmental Biology
    International Max Planck Research School for Global Biogeochemical Cycles, Jena at the Max Planck Institute for Biogeochemistry
    International Max Planck Research School on Gravitational Wave Astronomy, Hannover and Potsdam MPG Institute for Gravitational Physics
    International Max Planck Research School for Heart and Lung Research, Bad Nauheim at the MPG Institute for Heart and Lung Research
    International Max Planck Research School for Infectious Diseases and Immunity, Berlin at the Max Planck Institute for Infection Biology
    International Max Planck Research School for Language Sciences, Nijmegen
    International Max Planck Research School for Neurosciences, Göttingen
    International Max Planck Research School for Cognitive and Systems Neuroscience, Tübingen
    International Max Planck Research School for Marine Microbiology (MarMic), joint program of the MPG Institute for Marine Microbiology in Bremen, the University of Bremen (DE), the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, and the Jacobs University Bremen
    International Max Planck Research School for Maritime Affairs, Hamburg
    International Max Planck Research School for Molecular and Cellular Biology, Freiburg
    International Max Planck Research School for Molecular and Cellular Life Sciences, Munich[
    International Max Planck Research School for Molecular Biology, Göttingen
    International Max Planck Research School for Molecular Cell Biology and Bioengineering, Dresden
    International Max Planck Research School Molecular Biomedicine, program combined with the ‘Graduate Programm Cell Dynamics And Disease’ at the University of Münster (DE) and the MPG Institute for Molecular Biomedicine (DE)
    International Max Planck Research School on Multiscale Bio-Systems, Potsdam
    International Max Planck Research School for Organismal Biology, at the University of Konstanz (DE) and the MPG Institute for Ornithology (DE)
    International Max Planck Research School on Reactive Structure Analysis for Chemical Reactions (IMPRS RECHARGE), Mülheim an der Ruhr, at the Max Planck Institute for Chemical Energy Conversion (DE)
    International Max Planck Research School for Science and Technology of Nano-Systems, Halle at MPG Institute of Microstructure Physics (DE)
    International Max Planck Research School for Solar System Science[49] at theUniversity of Göttingen – Georg-August-Universität Göttingen (DE) hosted by MPG Institute for Solar System Research [Max-Planck-Institut für Sonnensystemforschung] (DE)
    International Max Planck Research School for Astronomy and Astrophysics, Bonn, at the MPG Institute for Radio Astronomy [MPG Institut für Radioastronomie](DE) (formerly the International Max Planck Research School for Radio and Infrared Astronomy)
    International Max Planck Research School for the Social and Political Constitution of the Economy, Cologne
    International Max Planck Research School for Surface and Interface Engineering in Advanced Materials, Düsseldorf at MPG Institute for Iron Research [MPG Institut für Eisenforschung] (DE)
    International Max Planck Research School for Ultrafast Imaging and Structural Dynamics, Hamburg

    International Max Planck Research Schools
    Together with the Association of Universities and other Education Institutions in Germany, the Max Planck Society established numerous International Max Planck Research Schools (IMPRS) to promote junior scientists:
    Cologne Graduate School of Ageing Research, Cologne
    International Max Planck Research School for Intelligent Systems, at the MPG Institute for Intelligent Systems (DE) located in Tübingen and Stuttgart
    International Max Planck Research School on Adapting Behavior in a Fundamentally Uncertain World (Uncertainty School), at the Max Planck Institutes for Economics, for Human Development, and/or Research on Collective Goods
    International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering, Magdeburg
    International Max Planck Research School for Astronomy and Cosmic Physics, Heidelberg at the MPG for Astronomy
    International Max Planck Research School for Astrophysics, Garching at the MPG Institute for Astrophysics
    International Max Planck Research School for Complex Surfaces in Material Sciences, Berlin
    International Max Planck Research School for Computer Science, Saarbrücken
    International Max Planck Research School for Earth System Modeling, Hamburg
    International Max Planck Research School for Elementary Particle Physics, Munich, at the MPG Institute for Physics
    International Max Planck Research School for Environmental, Cellular and Molecular Microbiology, Marburg at the MPG Institute for Terrestrial Microbiology
    International Max Planck Research School for Evolutionary Biology, Plön at the Max Planck Institute for Evolutionary Biology
    International Max Planck Research School “From Molecules to Organisms”, Tübingen at the MPG Institute for Developmental Biology
    International Max Planck Research School for Global Biogeochemical Cycles, Jena at the Max Planck Institute for Biogeochemistry
    International Max Planck Research School on Gravitational Wave Astronomy, Hannover and Potsdam MPG Institute for Gravitational Physics
    International Max Planck Research School for Heart and Lung Research, Bad Nauheim at the MPG Institute for Heart and Lung Research
    International Max Planck Research School for Infectious Diseases and Immunity, Berlin at the Max Planck Institute for Infection Biology
    International Max Planck Research School for Language Sciences, Nijmegen
    International Max Planck Research School for Neurosciences, Göttingen
    International Max Planck Research School for Cognitive and Systems Neuroscience, Tübingen
    International Max Planck Research School for Marine Microbiology (MarMic), joint program of the MPG Institute for Marine Microbiology in Bremen, the University of Bremen (DE), the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, and the Jacobs University Bremen
    International Max Planck Research School for Maritime Affairs, Hamburg
    International Max Planck Research School for Molecular and Cellular Biology, Freiburg
    International Max Planck Research School for Molecular and Cellular Life Sciences, Munich[
    International Max Planck Research School for Molecular Biology, Göttingen
    International Max Planck Research School for Molecular Cell Biology and Bioengineering, Dresden
    International Max Planck Research School Molecular Biomedicine, program combined with the ‘Graduate Programm Cell Dynamics And Disease’ at the University of Münster (DE) and the MPG Institute for Molecular Biomedicine (DE)
    International Max Planck Research School on Multiscale Bio-Systems, Potsdam
    International Max Planck Research School for Organismal Biology, at the University of Konstanz (DE) and the MPG Institute for Ornithology (DE)
    International Max Planck Research School on Reactive Structure Analysis for Chemical Reactions (IMPRS RECHARGE), Mülheim an der Ruhr, at the Max Planck Institute for Chemical Energy Conversion (DE)
    International Max Planck Research School for Science and Technology of Nano-Systems, Halle at MPG Institute of Microstructure Physics (DE)
    International Max Planck Research School for Solar System Science[49] at theUniversity of Göttingen – Georg-August-Universität Göttingen (DE) hosted by MPG Institute for Solar System Research [Max-Planck-Institut für Sonnensystemforschung] (DE)
    International Max Planck Research School for Astronomy and Astrophysics, Bonn, at the MPG Institute for Radio Astronomy [MPG Institut für Radioastronomie](DE) (formerly the International Max Planck Research School for Radio and Infrared Astronomy)
    International Max Planck Research School for the Social and Political Constitution of the Economy, Cologne
    International Max Planck Research School for Surface and Interface Engineering in Advanced Materials, Düsseldorf at MPG Institute for Iron Research [MPG Institut für Eisenforschung] (DE)
    International Max Planck Research School for Ultrafast Imaging and Structural Dynamics, Hamburg

     
  • richardmitnick 10:23 am on September 12, 2021 Permalink | Reply
    Tags: "Physicists’ Total Surprise-Discovery that Black Holes Exert a Pressure on Their Environment", , Black Hole science, , , The scientisats confirmed their exciting finding that quantum gravity can lead to a pressure in black holes., The University of Sussex (UK)   

    From The University of Sussex (UK) via SciTechDaily : “Physicists’ Total Surprise-Discovery that Black Holes Exert a Pressure on Their Environment” 

    From The University of Sussex (UK)

    via

    SciTechDaily

    September 12, 2021

    1
    Physicists at the University of Sussex have discovered that black holes exert a pressure on their environment, in a scientific first.

    In 1974 Stephen Hawking made the seminal discovery that black holes emit thermal radiation. Previous to that, black holes were believed to be inert, the final stages of a dying heavy star.

    The University of Sussex scientists have shown that they are in fact even more complex thermodynamic systems, with not only a temperature but also a pressure.

    The serendipitous discovery was made by Professor Xavier Calmet and Folkert Kuipers in the Department of Physics and Astronomy at the University of Sussex, and is published on September 9, 2021, in Physical Review D.

    Calmet and Kuipers were perplexed by an extra figure that was presenting in equations that they were running on quantum gravitational corrections to the entropy of a black hole.

    During a discussion on this curious result on Christmas Day 2020, the realization that what they were seeing was behaving as a pressure dawned. Following further calculations they confirmed their exciting finding that quantum gravity can lead to a pressure in black holes.

    Xavier Calmet, Professor of Physics at the University of Sussex, said: “Our finding that Schwarzschild black holes have a pressure, as well as a temperature, is even more exciting given that it was a total surprise. I’m delighted that the research that we are undertaking at the University of Sussex into quantum gravity has furthered the scientific communities’ wider understanding of the nature of black holes.

    “Hawking’s landmark intuition that black holes are not black but have a radiation spectrum that is very similar to that of a black body makes black holes an ideal laboratory to investigate the interplay between quantum mechanics, gravity, and thermodynamics.

    “If you consider black holes within only general relativity, one can show that they have a singularity in their centers where the laws of physics as we know them must breakdown. It is hoped that when quantum field theory is incorporated into general relativity, we might be able to find a new description of black holes.

    “Our work is a step in this direction, and although the pressure exerted by the black hole that we were studying is tiny, the fact that it is present opens up multiple new possibilities, spanning the study of astrophysics, particle physics, and quantum physics.”

    Folkert Kuipers, doctoral researcher in the school of Mathematical and Physical Science at the University of Sussex, said: “It is exciting to work on a discovery that furthers our understanding of black holes – especially as a research student.

    “The pin-drop moment when we realized that the mystery result in our equations was telling us that the black hole we were studying had a pressure – after months of grappling with it – was exhilarating.

    “Our result is a consequence of the cutting-edge research that we are undertaking into quantum physics at the University of Sussex and it shines a new light on the quantum nature of black holes.’’

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Sussex (UK) is a leading research-intensive university near Brighton. We have both an international and local outlook, with staff and students from more than 100 countries and frequent engagement in community activities and services.

    The University of Sussex (UK) is a public research university located in Falmer, Brighton, Sussex, England, it is mostly within the city boundaries of Brighton and Hove but spills into the Lewes District in its eastern fringe. Its large campus site is surrounded by the South Downs National Park and is around 5.5 kilometres (3.4 mi) from central Brighton. The University received its Royal Charter in August 1959, the first of the plate glass university generation,[5] and was a founding member of the 1994 Group of research-intensive universities.

    More than a third of its students are enrolled in postgraduate programmes and approximately a third of staff are from outside the United Kingdom. Sussex has a diverse community of nearly 20,000 students, with around one in three being foreign students, and over 1,000 academics, representing over 140 different nationalities. The annual income of the institution for 2019–20 was £319.6 million with an expenditure of £282 million.

    Sussex counts 5 Nobel Prize winners; 15 Fellows of the Royal Society; 10 Fellows of the British Academy; 24 fellows of the Academy of Social Sciences and a winner of the Crafoord Prize among its faculty. By 2011, many of its faculty members had also received the Royal Society of Literature Prize, the Order of the British Empire and the Bancroft Prize. Alumni include heads of states, diplomats, politicians, eminent scientists and activists.

    20th century

    In an effort to establish a university to serve Sussex, a public meeting was held in December 1911 at the Royal Pavilion in Brighton to discover ways to fund the construction of a university; the project was halted by World War I, and the money raised was used instead for books for the Municipal Technical College.

    The idea was revived in the 1950s and, in June 1958, the government approved the corporation’s scheme for a university at Brighton, to be the first of a new generation of what came to be known as plate glass universities. The University was established as a company in 1959, with a Royal Charter being granted on 16 August 1961. This was the first university to be established in the UK since the Second World War, apart from Keele University (UK). The University’s organisation broke new ground in seeing the campus divided into Schools of Study, with students able to benefit from a multidisciplinary teaching environment. Sussex would emphasise cross-disciplinary activity, so that students would emerge from the University with a range of background or ‘contextual’ knowledge to complement their specialist ‘core’ skills in a particular subject area. For example, arts students spent their first year taking sciences while science students took arts.

    The University quickly grew, starting with 52 students in 1961–62 to 3,200 in 1967–68. After starting at Knoyle Hall in Brighton, the Falmer campus was gradually built with Falmer House opening in 1962. Its campus was praised as gorgeously modernist and groundbreaking, receiving numerous awards. Its Student Union was quite active, organising events and concerts. Performers like Pink Floyd, Jimi Hendrix and Chuck Berry repeatedly performed at the University Common Room, giving the university a reputation for Rock and Roll.

    Academically, Sussex was home to figures such as Asa Lord Briggs; Helmut Pappe; Gillian Rose; Jennifer Platt and Tom Bottomore. In its first years, the university attracted a number of renowned academics such as Sir John Cornforth; John Maynard Smith; Martin Wight; David Daiches; Roger Blin-Stoyle and Colin Eaborn. Similarly, renowned scholars like Marcus Cunliffe; Gabriel Josipovici; Quentin Bell; Dame Helen Wallace; Stuart Sutherland and Marie Jahoda also became central figures at the University and founded many of its current departments. Additionally, a number of initiatives at the University were started at this time, such as the Subaltern Studies Group.

    In the late 1960s, the United Nations asked for science policy recommendations from a team of renowned academics at Sussex. The ensuing report became known as the Sussex Manifesto.

    Sussex came to be identified with student radicalism. In 1973, a mob of students physically prevented United States government adviser Samuel P. Huntington from giving a speech on campus because of his involvement in the Vietnam War. Similarly when the spokesperson for the US embassy, Robert Beers, visited to give a talk to students entitled ‘Vietnam in depth’ three students were waiting outside Falmer House and threw a bucket of red paint over the diplomat as he was leaving.

    In both 1967 and 1969, Sussex won the television quiz University Challenge.

    In 1980, Sussex edged out the University of Oxford (UK) to become the university with the highest income from research grants and contracts.

    21st century

    In an attempt to appeal to a modern audience, the University chose in 2004 to cease using its coat of arms and to replace it with the “US” logo.

    2011 marked Sussex’s 50th anniversary and saw the production of a number of works including a book on the University’s history and an oral history and photography project. The University launched its first major fundraising campaign, Making the Future, and gathered over £51.3 million.

    The University underwent a number of changes with the Sussex Strategic Plan 2009–2015, including the introduction of new academic courses, the opening of new research centres, the renovation and refurbishment of a number of its schools and buildings as well as the ongoing expansion of its student housing facilities. The University has spent over £100 million on-campus redevelopment, which is ongoing with £500 million planned to be spent by the 2021.

    Sussex is heavily involved with the larger community across England, especially in East Sussex. There are many regular community projects, such as children’s activity camps, the Neighbourhood scheme, the community ambassador programme and Street Cleans. Local residents can receive free legal advice from Sussex’s law school and get guidance on renting through Sussex’s Rent Smart program. The University also facilitates volunteering opportunities for a number of local and international organizations. The University also offers language courses for the public through its Sussex Centre for Language Studies. The University runs the Sussex Conversations program, a media platform seeking to disseminate research to the wider community.

    In 2015–16, the University generated more than £407 million to the UK economy, with over £74.9 million in tax receipts.

    In September 2017, the University appointed Saul Becker as its first Provost and Jayne Aldridge as its first permanent Director for the Student Experience. These changes come as part of a number of structural changes the University has been introducing in the past years.

    In 2018, the University moved all of its investments out of fossil fuels (known as fossil fuel divestment) after a four-year student union run campaign.

    Research

    In 2017, Sussex’s research income was around £65 million. This primarily came from funding body grants and research grants and contracts.

    Sussex research centres include SPRU [Science Policy Research Unit], which is ranked as 3rd best Science and technology Think Tank in the World out of 8,000 think tanks ranked by the University of Pennsylvania (US) Global Go To Think Tank Index Report 2017. Other notable centres include the STEPS Centre, the Centre for American Studies and the Sussex European Institute.

    The University is one of the UK ESRC’s 21 Centres for Doctoral Training, the only institutions accredited in 2010 and capable of receiving ESRC doctoral studentships and funding. The system was updated in 2016 and Doctoral Training Partnerships were established to replace the DTC. In this respect, Sussex is now a member of the Consortium of the Humanities and the Arts-South East England (CHASE) and the South East Network for Social Sciences.

    The results of the Research Excellence Framework 2014 show that 98% of research activity at Sussex is categorised as ‘world-leading’ (28%), “internationally excellent” (48%) or “internationally recognised” (22%) in terms of originality, significance and rigour.

    Sussex has a number of research collaborations with other Higher Education institutions as well as governmental and non-governmental organisations and institutes around the world. For example, the Harvard Sussex program is a long-standing research collaboration between Sussex and Harvard University (US) focusing on public policy towards chemical and biological weapons. The CBW Conventions Bulletin is a quarterly newsletter published by the HSP. Sussex-Cornell Partnership, the Sussex-Bocconi-Renmin Intrapreneurship Hub and the Sussex-Lund Partnership in Middle Eastern and North African Studies are recent examples. Sussex also co-coordinates the Consortium for the Humanities and the Arts. Sussex is also one of the eight universities of the Tyndall Centre network.

    In Europe, Sussex is one of the collaborating institutions of the Paul Scherrer Institute (CH), the largest research institute in Switzerland, focusing on issues of technology and the natural sciences.[70] Sussex is involved with many projects with the EU and with European countries. For example, BAR research is an Anglo-French collaboration between the Sussex, the East Sussex County Council and three French universities.

    Nationally, Sussex is involved in a number of partnerships including the Nexus Network (A partnership between Sussex, University of Cambridge (UK) and University of East Anglia (UK) ) and CIED (a collaboration between Sussex, Oxford University and University of Manchester (UK)). The university is also a partner of the Metropolitan Police, with Demos (UK think tank) and Palantir Technologies.

    In recent years, the institutes for the study of consciousness science, Centre for Advanced International Theory (CAIT), the institute for the study of corruption and the Middle East studies institute were opened at the University. The University also has a Genome Damage and Stability Centre; a nuclear magnetic resonance facility; and a purpose-built apparatus in cryogenic research.

    In terms of policy, Sussex is highly involved with the UK government, the UN and governments around the world. For example, the university is a UN Habitat partner. Nationally, the UK Trade Policy Observatory was set up at the University to offer the UK government, the UK industry as well as the public advice in addressing trade issues resulting from Brexit. The university is also one of the UK government’s partner institutions on the Arctic Research Program. Similarly, SPRU and IDS are involved in policy recommendations with countries on all five continents.

    In 2016, the Transformative Innovation Policy Consortium (TIPC) was set up as a collaboration between the University and the governments of Sweden, Norway, Finland, South Africa and Colombia to research social and economic issues.

    The University is also home to a number of academic journals from the IDS Bulletin to The Journal for Ethnic and Migration studies; Journal of Experimental Psychopathology; The World Trade Review; Journal of Banking and Finance; International Journal of Innovation Management; Journal of International Humanitarian Legal Studies; European Journal of International Relations; and the Child and Family Social Work Journal among many others.

     
  • richardmitnick 10:08 am on September 6, 2021 Permalink | Reply
    Tags: "New Theory for Detecting Light in the Darkness of a Vacuum", , Black Hole science, ,   

    From Dartmouth College (US) : “New Theory for Detecting Light in the Darkness of a Vacuum” 

    From Dartmouth College (US)

    9/03/2021
    David Hirsch
    david.s.hirsch@dartmouth.edu

    Dartmouth research proposes an experiment to produce “something from nothing.”

    1
    Hui Wang, Guarini ’21, a postdoctoral researcher, and Miles Blencowe, the Eleanor and A. Kelvin Smith Distinguished Professor in Physics, have described an experiment that could allow researchers to produce and detect light in a vacuum, as demonstrated in the illustration below. Photo by Robert Gill.

    Black holes are regions of space-time with huge amounts of gravity. Scientists originally thought that nothing could escape the boundaries of these massive objects, including light.

    The precise nature of black holes has been challenged ever since Albert Einstein’s general theory of relativity gave rise to the possibility of their existence. Among the most famous findings was English physicist Stephen Hawking’s prediction that some particles are actually emitted at the edge of a black hole.

    Physicists have also explored the workings of vacuums. In the early 1970s, as Hawking was describing how light can escape a black hole’s gravitational pull, Canadian physicist William Unruh proposed that a photodetector accelerated fast enough could “see” light in a vacuum.

    New research from Dartmouth advances these theories by detailing a way to produce and detect light that was previously thought to be not observable.

    2
    In the researchers’ proposed experiment, illustrated here, a postage stamp-sized synthetic diamond membrane containing nitrogen-based light detectors is suspended in a super-cooled metal box that creates a vacuum. The membrane, which acts like a tethered trampoline, is accelerated at massive rates, producing photons. Animation by LaDarius Dennison.

    “In an everyday sense, the findings seem to surprisingly suggest the ability to produce light from the empty vacuum,” says Miles Blencowe, the Eleanor and A. Kelvin Smith Distinguished Professor in Physics and the study’s senior researcher. “We have, in essence, produced something from nothing; the thought of that is just very cool.”

    In classical physics, the vacuum is thought of as the absence of matter, light, and energy. In quantum physics, the vacuum is not so empty, but filled with photons that fluctuate in and out of existence. However, such light is virtually impossible to measure.

    With science already demonstrating that observation of light in a vacuum is possible, the team set out to find a practicable way to detect the photons.

    The theory, published in Communications Physics, predicts that nitrogen-based imperfections in a rapidly accelerating diamond membrane can make the detection.

    In the proposed experiment, a postage stamp-sized synthetic diamond containing the nitrogen-based light detectors is suspended in a super-cooled metal box that creates a vacuum. The membrane, which acts like a tethered trampoline, is accelerated at massive rates.

    “The motion of the diamond produces photons,” says Hui Wang, Guarini ’21, a postdoctoral researcher who wrote the theoretical paper as a graduate student. “In essence, all you need to do is shake something violently enough to produce entangled photons.”

    The study, which was supported by The National Science Foundation (US), is the first to explore using multiple photon detectors—the diamond defects—to amplify the acceleration and increase detection sensitivity. Oscillating the diamond also allows the experiment to take place in a controllable space at intense rates of acceleration.

    “The photons detected by the diamond are produced in pairs,” says Hui. “This production of paired, entangled photons is evidence that the photons are produced in a vacuum and not from another source.”

    The detected light exists in microwave frequency, so is not visible to the human eye, but Blencowe and Wang hope that the work adds to the understanding of physical forces that contributes to society in the way other theoretical research has. In particular, the work may help shed experimental light on Hawking’s prediction for radiating black holes through the lens of Einstein’s research.

    “Part of the responsibility and joy of being theorists such as ourselves is to put ideas out there,” says Blencowe. “We are trying to show that it is feasible to do this experiment, to test something that has been until now extraordinarily difficult.”

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Dartmouth College campus

    Dartmouth College (US) is a private, Ivy League, research university in Hanover, New Hampshire, United States. Incorporated as the “Trustees of Dartmouth College”, it is one of the nine Colonial Colleges founded before the American Revolution. Dartmouth College was established in 1769 by Eleazar Wheelock, a Congregational minister. After a long period of financial and political struggles, Dartmouth emerged in the early 20th century from relative obscurity, into national prominence.

    Comprising an undergraduate population of 4,307 and a total student enrollment of 6,350 (as of 2016), Dartmouth is the smallest university in the Ivy League. Its undergraduate program, which reported an acceptance rate around 10 percent for the class of 2020, is characterized by the Carnegie Foundation and U.S. News & World Report as “most selective”. Dartmouth offers a broad range of academic departments, an extensive research enterprise, numerous community outreach and public service programs, and the highest rate of study abroad participation in the Ivy League.

    Following a liberal arts curriculum, the university provides undergraduate instruction in 40 academic departments and interdisciplinary programs, including 57 majors in the humanities, social sciences, natural sciences, and engineering, and enables students to design specialized concentrations or engage in dual degree programs. Dartmouth comprises five constituent schools: the original undergraduate college, the Geisel School of Medicine, the Thayer School of Engineering, the Tuck School of Business, and the Guarini School of Graduate and Advanced Studies. The university also has affiliations with the Dartmouth–Hitchcock Medical Center, the Rockefeller Institute for Public Policy, and the Hopkins Center for the Arts. With a student enrollment of about 6,600, Dartmouth is the smallest university in the Ivy League. Undergraduate admissions are highly selective with an admissions rate of 6.17% for the class of 2025.

    Situated on a terrace above the Connecticut River, Dartmouth’s 269-acre (109 ha) main campus is in the rural Upper Valley region of New England. The university functions on a quarter system, operating year-round on four ten-week academic terms. Dartmouth is known for its undergraduate focus, strong Greek culture, and wide array of enduring campus traditions. Its 34 varsity sports teams compete intercollegiately in the Ivy League conference of the NCAA Division I.

    Dartmouth is consistently included among the highest-ranked universities in the United States by several institutional rankings, and has consistently been cited as a leading university for undergraduate teaching and research by U.S. News & World Report. In 2018, the Carnegie Classification of Institutions of Higher Education (US) listed Dartmouth as the only “majority-undergraduate”, “arts-and-sciences focused”, “doctoral university” in the country that has “some graduate coexistence” and “very high research activity”.

    In its history, the university has produced many prominent alumni, including 170 members of the U.S. Senate and the U.S. House of Representatives, 24 U.S. governors, 10 billionaire alumni, 8 U.S. Cabinet secretaries, 3 Nobel Prize laureates, 2 U.S. Supreme Court justices, and a U.S. vice president. Other notable alumni include 79 Rhodes Scholars, 26 Marshall Scholarship recipients, and 14 Pulitzer Prize winners, as well as numerous MacArthur Genius fellows, Fulbright Scholars, Schwarzman Scholars, Knight-Hennesy Scholars, Goldwater Scholars, and Truman Scholars. Dartmouth alumni also include many CEOs and founders of Fortune 500 corporations, high-ranking U.S. diplomats, scholars in academia, literary and media figures, professional athletes, and Olympic medalists.

     
  • richardmitnick 9:24 am on August 31, 2021 Permalink | Reply
    Tags: "New simulation shows how galaxies feed their supermassive black holes", Black Hole science,   

    From Northwestern University (US) : “New simulation shows how galaxies feed their supermassive black holes” 

    Northwestern U bloc

    From Northwestern University (US)

    August 17, 2021
    Amanda Morris

    First model to show how gas flows across universe into a supermassive black hole’s center.


    Zooming into simulated galaxy.

    Galaxies’ spiral arms are responsible for scooping up gas to feed to their central supermassive black holes, according to a new high-powered simulation.

    Started at Northwestern University, the simulation is the first to show, in great detail, how gas flows across the universe all the way down to the center of a supermassive black hole.

    The simulations were run at the Flatiron Institute’s Center for Computational Astrophysics.

    While other simulations have modeled black hole growth, this is the first single computer simulation powerful enough to comprehensively account for the numerous forces and factors that play into the evolution of supermassive black holes.

    The simulation also gives rare insight into the mysterious nature of quasars, which are incredibly luminous, fast-growing black holes. Some of the brightest objects in the universe, quasars often even outshine entire galaxies.

    “The light we observe from distant quasars is powered as gas falls into supermassive black holes and gets heated up in the process,” said Northwestern’s Claude-André Faucher-Giguère, one of the study’s senior authors. “Our simulations show that galaxy structures, such as spiral arms, use gravitational forces to ‘put the brakes on’ gas that would otherwise orbit galaxy centers forever. This breaking mechanism enables the gas to instead fall into black holes and the gravitational brakes, or torques, are strong enough to explain the quasars that we observe.”

    The research was published today (Aug. 17) in The Astrophysical Journal.

    Faucher-Giguère is an associate professor of physics and astronomy at Northwestern’s Weinberg College of Arts and Sciences and a member of the Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA). Daniel Anglés-Alcázar, an assistant professor at The University of Connecticut (US) and former CIERA fellow in Faucher-Giguère’s group, is the paper’s first author. (Read UConn’s interview with Daniel Anglés-Alcázar.)

    Equivalent to the mass of millions or even billions of suns, supermassive black holes can swallow 10 times the mass of a sun in just one year. But while some supermassive black holes enjoy a continuous supply of food, others go dormant for millions of years, only to reawaken abruptly with a serendipitous influx of gas. The details about how gas flows across the universe to feed supermassive black holes have remained a long-standing question.

    To address this mystery, the research team developed the new simulation, which incorporates many of the key physical processes — including the expansion of the universe and the galactic environment on large scales, gravity gas hydrodynamics and feedback from massive stars — into one model.

    “Powerful events such as supernovae inject a lot of energy into the surrounding medium, and this influences how the galaxy evolves,” Anglés-Alcázar said. “So we need to incorporate all of these details and physical processes to capture an accurate picture.”

    Building on previous work from the FIRE (“Feedback In Realistic Environments”) project, the new technology greatly increases model resolution and allows for following the gas as it flows across the galaxy with more than 1,000 times better resolution than previously possible.

    “Other models can tell you a lot of details about what’s happening very close to the black hole, but they don’t contain information about what the rest of the galaxy is doing or even less about what the environment around the galaxy is doing,” Anglés-Alcázar said. “It turns out, it is very important to connect all these processes at the same time.”

    “The very existence of supermassive black holes is quite amazing, yet there is no consensus on how they formed,” Faucher-Giguère said. “The reason supermassive black holes are so difficult to explain is that forming them requires cramming a huge amount of matter into a tiny space. How does the universe manage to do that? Until now, theorists developed explanations relying on patching together different ideas for how matter in galaxies gets crammed into the innermost one millionth of a galaxy’s size.”

    With the new simulations, researchers can finally model how this happens. For example, the new simulation will help researchers understand the origin of the supermassive black hole at the center of our own Milky Way galaxy as well as the supermassive black hole at the center of the Messier 87 galaxy, which was famously captured by the Event Horizon Telescope in 2019. Next, the researchers aim to study large statistical populations of galaxies and their central black holes to better understand how black holes can form and grow under various conditions.

    The study, was supported by the Simons Foundation, the National Science Foundation and NASA.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Northwestern South Campus
    South Campus

    Northwestern University (US) is a private research university in Evanston, Illinois. Founded in 1851 to serve the former Northwest Territory, the university is a founding member of the Big Ten Conference.

    On May 31, 1850, nine men gathered to begin planning a university that would serve the Northwest Territory.

    Given that they had little money, no land and limited higher education experience, their vision was ambitious. But through a combination of creative financing, shrewd politicking, religious inspiration and an abundance of hard work, the founders of Northwestern University were able to make that dream a reality.

    In 1853, the founders purchased a 379-acre tract of land on the shore of Lake Michigan 12 miles north of Chicago. They established a campus and developed the land near it, naming the surrounding town Evanston in honor of one of the University’s founders, John Evans. After completing its first building in 1855, Northwestern began classes that fall with two faculty members and 10 students.
    Twenty-one presidents have presided over Northwestern in the years since. The University has grown to include 12 schools and colleges, with additional campuses in Chicago and Doha, Qatar.

    Northwestern is known for its focus on interdisciplinary education, extensive research output, and student traditions. The university provides instruction in over 200 formal academic concentrations, including various dual degree programs. The university is composed of eleven undergraduate, graduate, and professional schools, which include the Kellogg School of Management, the Pritzker School of Law, the Feinberg School of Medicine, the Weinberg College of Arts and Sciences, the Bienen School of Music, the McCormick School of Engineering and Applied Science, the Medill School of Journalism, the School of Communication, the School of Professional Studies, the School of Education and Social Policy, and The Graduate School. As of fall 2019, the university had 21,946 enrolled students, including 8,327 undergraduates and 13,619 graduate students.

    Valued at $12.2 billion, Northwestern’s endowment is among the largest university endowments in the United States. Its numerous research programs bring in nearly $900 million in sponsored research each year.

    Northwestern’s main 240-acre (97 ha) campus lies along the shores of Lake Michigan in Evanston, 12 miles north of Downtown Chicago. The university’s law, medical, and professional schools, along with its nationally ranked Northwestern Memorial Hospital, are located on a 25-acre (10 ha) campus in Chicago’s Streeterville neighborhood. The university also maintains a campus in Doha, Qatar and locations in San Francisco, California, Washington, D.C. and Miami, Florida.

    As of October 2020, Northwestern’s faculty and alumni have included 1 Fields Medalist, 22 Nobel Prize laureates, 40 Pulitzer Prize winners, 6 MacArthur Fellows, 17 Rhodes Scholars, 27 Marshall Scholars, 23 National Medal of Science winners, 11 National Humanities Medal recipients, 84 members of the American Academy of Arts and Sciences, 10 living billionaires, 16 Olympic medalists, and 2 U.S. Supreme Court Justices. Northwestern alumni have founded notable companies and organizations such as the Mayo Clinic, The Blackstone Group, Kirkland & Ellis, U.S. Steel, Guggenheim Partners, Accenture, Aon Corporation, AQR Capital, Booz Allen Hamilton, and Melvin Capital.

    The foundation of Northwestern University can be traced to a meeting on May 31, 1850, of nine prominent Chicago businessmen, Methodist leaders, and attorneys who had formed the idea of establishing a university to serve what had been known from 1787 to 1803 as the Northwest Territory. On January 28, 1851, the Illinois General Assembly granted a charter to the Trustees of the North-Western University, making it the first chartered university in Illinois. The school’s nine founders, all of whom were Methodists (three of them ministers), knelt in prayer and worship before launching their first organizational meeting. Although they affiliated the university with the Methodist Episcopal Church, they favored a non-sectarian admissions policy, believing that Northwestern should serve all people in the newly developing territory by bettering the economy in Evanston.

    John Evans, for whom Evanston is named, bought 379 acres (153 ha) of land along Lake Michigan in 1853, and Philo Judson developed plans for what would become the city of Evanston, Illinois. The first building, Old College, opened on November 5, 1855. To raise funds for its construction, Northwestern sold $100 “perpetual scholarships” entitling the purchaser and his heirs to free tuition. Another building, University Hall, was built in 1869 of the same Joliet limestone as the Chicago Water Tower, also built in 1869, one of the few buildings in the heart of Chicago to survive the Great Chicago Fire of 1871. In 1873 the Evanston College for Ladies merged with Northwestern, and Frances Willard, who later gained fame as a suffragette and as one of the founders of the Woman’s Christian Temperance Union (WCTU), became the school’s first dean of women (Willard Residential College, built in 1938, honors her name). Northwestern admitted its first female students in 1869, and the first woman was graduated in 1874.

    Northwestern fielded its first intercollegiate football team in 1882, later becoming a founding member of the Big Ten Conference. In the 1870s and 1880s, Northwestern affiliated itself with already existing schools of law, medicine, and dentistry in Chicago. Northwestern University Pritzker School of Law is the oldest law school in Chicago. As the university’s enrollments grew, these professional schools were integrated with the undergraduate college in Evanston; the result was a modern research university combining professional, graduate, and undergraduate programs, which gave equal weight to teaching and research. By the turn of the century, Northwestern had grown in stature to become the third largest university in the United States after Harvard University(US) and the University of Michigan(US).

    Under Walter Dill Scott’s presidency from 1920 to 1939, Northwestern began construction of an integrated campus in Chicago designed by James Gamble Rogers, noted for his design of the Yale University(US) campus, to house the professional schools. The university also established the Kellogg School of Management and built several prominent buildings on the Evanston campus, including Dyche Stadium, now named Ryan Field, and Deering Library among others. In the 1920s, Northwestern became one of the first six universities in the United States to establish a Naval Reserve Officers Training Corps (NROTC). In 1939, Northwestern hosted the first-ever NCAA Men’s Division I Basketball Championship game in the original Patten Gymnasium, which was later demolished and relocated farther north, along with the Dearborn Observatory, to make room for the Technological Institute.

    After the golden years of the 1920s, the Great Depression in the United States (1929–1941) had a severe impact on the university’s finances. Its annual income dropped 25 percent from $4.8 million in 1930-31 to $3.6 million in 1933-34. Investment income shrank, fewer people could pay full tuition, and annual giving from alumni and philanthropists fell from $870,000 in 1932 to a low of $331,000 in 1935. The university responded with two salary cuts of 10 percent each for all employees. It imposed hiring and building freezes and slashed appropriations for maintenance, books, and research. Having had a balanced budget in 1930-31, the university now faced deficits of roughly $100,000 for the next four years. Enrollments fell in most schools, with law and music suffering the biggest declines. However, the movement toward state certification of school teachers prompted Northwestern to start a new graduate program in education, thereby bringing in new students and much needed income. In June 1933, Robert Maynard Hutchins, president of the University of Chicago(US), proposed a merger of the two universities, estimating annual savings of $1.7 million. The two presidents were enthusiastic, and the faculty liked the idea; many Northwestern alumni, however, opposed it, fearing the loss of their Alma Mater and its many traditions that distinguished Northwestern from Chicago. The medical school, for example, was oriented toward training practitioners, and alumni feared it would lose its mission if it were merged into the more research-oriented University of Chicago Medical School. The merger plan was ultimately dropped. In 1935, the Deering family rescued the university budget with an unrestricted gift of $6 million, bringing the budget up to $5.4 million in 1938-39. This allowed many of the previous spending cuts to be restored, including half of the salary reductions.

    Like other American research universities, Northwestern was transformed by World War II (1939–1945). Regular enrollment fell dramatically, but the school opened high-intensity, short-term programs that trained over 50,000 military personnel, including future president John F. Kennedy. Northwestern’s existing NROTC program proved to be a boon to the university as it trained over 36,000 sailors over the course of the war, leading Northwestern to be called the “Annapolis of the Midwest.” Franklyn B. Snyder led the university from 1939 to 1949, and after the war, surging enrollments under the G.I. Bill drove dramatic expansion of both campuses. In 1948, prominent anthropologist Melville J. Herskovits founded the Program of African Studies at Northwestern, the first center of its kind at an American academic institution. J. Roscoe Miller’s tenure as president from 1949 to 1970 saw an expansion of the Evanston campus, with the construction of the Lakefill on Lake Michigan, growth of the faculty and new academic programs, and polarizing Vietnam-era student protests. In 1978, the first and second Unabomber attacks occurred at Northwestern University. Relations between Evanston and Northwestern became strained throughout much of the post-war era because of episodes of disruptive student activism, disputes over municipal zoning, building codes, and law enforcement, as well as restrictions on the sale of alcohol near campus until 1972. Northwestern’s exemption from state and municipal property-tax obligations under its original charter has historically been a source of town-and-gown tension.

    Although government support for universities declined in the 1970s and 1980s, President Arnold R. Weber was able to stabilize university finances, leading to a revitalization of its campuses. As admissions to colleges and universities grew increasingly competitive in the 1990s and 2000s, President Henry S. Bienen’s tenure saw a notable increase in the number and quality of undergraduate applicants, continued expansion of the facilities and faculty, and renewed athletic competitiveness. In 1999, Northwestern student journalists uncovered information exonerating Illinois death-row inmate Anthony Porter two days before his scheduled execution. The Innocence Project has since exonerated 10 more men. On January 11, 2003, in a speech at Northwestern School of Law’s Lincoln Hall, then Governor of Illinois George Ryan announced that he would commute the sentences of more than 150 death-row inmates.

    In the 2010s, a 5-year capital campaign resulted in a new music center, a replacement building for the business school, and a $270 million athletic complex. In 2014, President Barack Obama delivered a seminal economics speech at the Evanston campus.

    Organization and administration

    Governance

    Northwestern is privately owned and governed by an appointed Board of Trustees, which is composed of 70 members and, as of 2011, has been chaired by William A. Osborn ’69. The board delegates its power to an elected president who serves as the chief executive officer of the university. Northwestern has had sixteen presidents in its history (excluding interim presidents). The current president, economist Morton O. Schapiro, succeeded Henry Bienen whose 14-year tenure ended on August 31, 2009. The president maintains a staff of vice presidents, directors, and other assistants for administrative, financial, faculty, and student matters. Kathleen Haggerty assumed the role of interim provost for the university in April 2020.

    Students are formally involved in the university’s administration through the Associated Student Government, elected representatives of the undergraduate students, and the Graduate Student Association, which represents the university’s graduate students.

    The admission requirements, degree requirements, courses of study, and disciplinary and degree recommendations for each of Northwestern’s 12 schools are determined by the voting members of that school’s faculty (assistant professor and above).

    Undergraduate and graduate schools

    Evanston Campus:

    Weinberg College of Arts and Sciences (1851)
    School of Communication (1878)
    Bienen School of Music (1895)
    McCormick School of Engineering and Applied Science (1909)
    Medill School of Journalism (1921)
    School of Education and Social Policy (1926)
    School of Professional Studies (1933)

    Graduate and professional

    Evanston Campus

    Kellogg School of Management (1908)
    The Graduate School

    Chicago Campus

    Feinberg School of Medicine (1859)
    Kellogg School of Management (1908)
    Pritzker School of Law (1859)
    School of Professional Studies (1933)

    Northwestern University had a dental school from 1891 to May 31, 2001, when it closed.

    Endowment

    In 1996, Princess Diana made a trip to Evanston to raise money for the university hospital’s Robert H. Lurie Comprehensive Cancer Center at the invitation of then President Bienen. Her visit raised a total of $1.5 million for cancer research.

    In 2003, Northwestern finished a five-year capital campaign that raised $1.55 billion, exceeding its fundraising goal by $550 million.

    In 2014, Northwestern launched the “We Will” campaign with a fundraising goal of $3.75 billion. As of December 31, 2019, the university has received $4.78 billion from 164,026 donors.

    Sustainability

    In January 2009, the Green Power Partnership (sponsored by the EPA) listed Northwestern as one of the top 10 universities in the country in purchasing energy from renewable sources. The university matches 74 million kilowatt hours (kWh) of its annual energy use with Green-e Certified Renewable Energy Certificates (RECs). This green power commitment represents 30 percent of the university’s total annual electricity use and places Northwestern in the EPA’s Green Power Leadership Club. The Initiative for Sustainability and Energy at Northwestern (ISEN), supporting research, teaching and outreach in these themes, was launched in 2008.

    Northwestern requires that all new buildings be LEED-certified. Silverman Hall on the Evanston campus was awarded Gold LEED Certification in 2010; Wieboldt Hall on the Chicago campus was awarded Gold LEED Certification in 2007, and the Ford Motor Company Engineering Design Center on the Evanston campus was awarded Silver LEED Certification in 2006. New construction and renovation projects will be designed to provide at least a 20% improvement over energy code requirements where feasible. At the beginning of the 2008–09 academic year, the university also released the Evanston Campus Framework Plan, which outlines plans for future development of the university’s Evanston campus. The plan not only emphasizes sustainable building construction, but also focuses on reducing the energy costs of transportation by optimizing pedestrian and bicycle access. Northwestern has had a comprehensive recycling program in place since 1990. The university recycles over 1,500 tons of waste, or 30% of all waste produced on campus, each year. All landscape waste at the university is composted.

    Academics

    Education and rankings

    Northwestern is a large, residential research university, and is frequently ranked among the top universities in the United States. The university is a leading institution in the fields of materials engineering, chemistry, business, economics, education, journalism, and communications. It is also prominent in law and medicine. Accredited by the Higher Learning Commission and the respective national professional organizations for chemistry, psychology, business, education, journalism, music, engineering, law, and medicine, the university offers 124 undergraduate programs and 145 graduate and professional programs. Northwestern conferred 2,190 bachelor’s degrees, 3,272 master’s degrees, 565 doctoral degrees, and 444 professional degrees in 2012–2013. Since 1951, Northwestern has awarded 520 honorary degrees. Northwestern also has chapters of academic honor societies such as Phi Beta Kappa (Alpha of Illinois), Eta Kappa Nu, Tau Beta Pi, Eta Sigma Phi (Beta Chapter), Lambda Pi Eta, and Alpha Sigma Lambda (Alpha Chapter).

    The four-year, full-time undergraduate program comprises the majority of enrollments at the university. Although there is no university-wide core curriculum, a foundation in the liberal arts and sciences is required for all majors; individual degree requirements are set by the faculty of each school. The university heavily emphasizes interdisciplinary learning, with 72% of undergrads combining two or more areas of study. Northwestern’s full-time undergraduate and graduate programs operate on an approximately 10-week academic quarter system with the academic year beginning in late September and ending in early June. Undergraduates typically take four courses each quarter and twelve courses in an academic year and are required to complete at least twelve quarters on campus to graduate. Northwestern offers honors, accelerated, and joint degree programs in medicine, science, mathematics, engineering, and journalism. The comprehensive doctoral graduate program has high coexistence with undergraduate programs.

    Despite being a mid-sized university, Northwestern maintains a relatively low student to faculty ratio of 6:1.

    Research

    Northwestern was elected to the Association of American Universities (US)in 1917 and is classified as an R1 university, denoting “very high” research activity. Northwestern’s schools of management, engineering, and communication are among the most academically productive in the nation. The university received $887.3 million in research funding in 2019 and houses over 90 school-based and 40 university-wide research institutes and centers. Northwestern also supports nearly 1,500 research laboratories across two campuses, predominately in the medical and biological sciences.

    Northwestern is home to the Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern Institute for Complex Systems, Nanoscale Science and Engineering Center, Materials Research Center, Center for Quantum Devices, Institute for Policy Research, International Institute for Nanotechnology, Center for Catalysis and Surface Science, Buffet Center for International and Comparative Studies, the Initiative for Sustainability and Energy at Northwestern, and the Argonne/Northwestern Solar Energy Research Center among other centers for interdisciplinary research.

    Student body

    Northwestern enrolled 8,186 full-time undergraduate, 9,904 full-time graduate, and 3,856 part-time students in the 2019–2020 academic year. The freshman retention rate for that year was 98%. 86% of students graduated after four years and 92% graduated after five years. These numbers can largely be attributed to the university’s various specialized degree programs, such as those that allow students to earn master’s degrees with a one or two year extension of their undergraduate program.

    The undergraduate population is drawn from all 50 states and over 75 foreign countries. 20% of students in the Class of 2024 were Pell Grant recipients and 12.56% were first-generation college students. Northwestern also enrolls the 9th-most National Merit Scholars of any university in the nation.

    In Fall 2014, 40.6% of undergraduate students were enrolled in the Weinberg College of Arts and Sciences, 21.3% in the McCormick School of Engineering and Applied Science, 14.3% in the School of Communication, 11.7% in the Medill School of Journalism, 5.7% in the Bienen School of Music, and 6.4% in the School of Education and Social Policy. The five most commonly awarded undergraduate degrees are economics, journalism, communication studies, psychology, and political science. The Kellogg School of Management’s MBA, the School of Law’s JD, and the Feinberg School of Medicine’s MD are the three largest professional degree programs by enrollment. With 2,446 students enrolled in science, engineering, and health fields, the largest graduate programs by enrollment include chemistry, integrated biology, material sciences, electrical and computer engineering, neuroscience, and economics.

    Athletics

    Northwestern is a charter member of the Big Ten Conference. It is the conference’s only private university and possesses the smallest undergraduate enrollment (the next-smallest member, the University of Iowa, is roughly three times as large, with almost 22,000 undergraduates).

    Northwestern fields 19 intercollegiate athletic teams (8 men’s and 11 women’s) in addition to numerous club sports. 12 of Northwestern’s varsity programs have had NCAA or bowl postseason appearances. Northwestern is one of five private AAU members to compete in NCAA Power Five conferences (the other four being Duke, Stanford, USC, and Vanderbilt) and maintains a 98% NCAA Graduation Success Rate, the highest among Football Bowl Subdivision schools.

    In 2018, the school opened the Walter Athletics Center, a $270 million state of the art lakefront facility for its athletics teams.

    Nickname and mascot

    Before 1924, Northwestern teams were known as “The Purple” and unofficially as “The Fighting Methodists.” The name Wildcats was bestowed upon the university in 1924 by Wallace Abbey, a writer for the Chicago Daily Tribune, who wrote that even in a loss to the University of Chicago, “Football players had not come down from Evanston; wildcats would be a name better suited to “[Coach Glenn] Thistletwaite’s boys.” The name was so popular that university board members made “Wildcats” the official nickname just months later. In 1972, the student body voted to change the official nickname to “Purple Haze,” but the new name never stuck.

    The mascot of Northwestern Athletics is “Willie the Wildcat”. Prior to Willie, the team mascot had been a live, caged bear cub from the Lincoln Park Zoo named Furpaw, who was brought to the playing field on game days to greet the fans. After a losing season however, the team decided that Furpaw was to blame for its misfortune and decided to select a new mascot. “Willie the Wildcat” made his debut in 1933, first as a logo and then in three dimensions in 1947, when members of the Alpha Delta fraternity dressed as wildcats during a Homecoming Parade.

    Traditions

    Northwestern’s official motto, “Quaecumque sunt vera,” was adopted by the university in 1890. The Latin phrase translates to “Whatsoever things are true” and comes from the Epistle of Paul to the Philippians (Philippians 4:8), in which St. Paul admonishes the Christians in the Greek city of Philippi. In addition to this motto, the university crest features a Greek phrase taken from the Gospel of John inscribed on the pages of an open book, ήρης χάριτος και αληθείας or “the word full of grace and truth” (John 1:14).
    Alma Mater is the Northwestern Hymn. The original Latin version of the hymn was written in 1907 by Peter Christian Lutkin, the first dean of the School of Music from 1883 to 1931. In 1953, then Director-of-Bands John Paynter recruited an undergraduate music student, Thomas Tyra (’54), to write an English version of the song, which today is performed by the Marching Band during halftime at Wildcat football games and by the orchestra during ceremonies and other special occasions.
    Purple became Northwestern’s official color in 1892, replacing black and gold after a university committee concluded that too many other universities had used these colors. Today, Northwestern’s official color is purple, although white is something of an official color as well, being mentioned in both the university’s earliest song, Alma Mater (1907) (“Hail to purple, hail to white”) and in many university guidelines.
    The Rock, a 6-foot high quartzite boulder donated by the Class of 1902, originally served as a water fountain. It was painted over by students in the 1940s as a prank and has since become a popular vehicle of self-expression on campus.
    Armadillo Day, commonly known as Dillo Day, is the largest student-run music festival in the country. The festival is hosted every Spring on Northwestern’s Lakefront.
    Primal Scream is held every quarter at 9 p.m. on the Sunday before finals week. Students lean out of windows or gather in courtyards and scream to help relieve stress.
    In the past, students would throw marshmallows during football games, but this tradition has since been discontinued.

    Philanthropy

    One of Northwestern’s most notable student charity events is Dance Marathon, the most established and largest student-run philanthropy in the nation. The annual 30-hour event is among the most widely-attended events on campus. It has raised over $1 million for charity ever year since 2011 and has donated a total of $13 million to children’s charities since its conception.

    The Northwestern Community Development Corps (NCDC) is a student-run organization that connects hundreds of student volunteers to community development projects in Evanston and Chicago throughout the year. The group also holds a number of annual community events, including Project Pumpkin, a Halloween celebration that provides over 800 local children with carnival events and a safe venue to trick-or-treat each year.

    Many Northwestern students participate in the Freshman Urban Program, an initiative for students interested in community service to work on addressing social issues facing the city of Chicago, and the university’s Global Engagement Studies Institute (GESI) programs, including group service-learning expeditions in Asia, Africa, or Latin America in conjunction with the Foundation for Sustainable Development.

    Several internationally recognized non-profit organizations were established at Northwestern, including the World Health Imaging, Informatics and Telemedicine Alliance, a spin-off from an engineering student’s honors thesis.
    Media

    Print

    Established in 1881, The Daily Northwestern is the university’s main student newspaper and is published on weekdays during the academic year. It is directed entirely by undergraduate students and owned by the Students Publishing Company. Although it serves the Northwestern community, the Daily has no business ties to the university and is supported wholly by advertisers.
    North by Northwestern is an online undergraduate magazine established in September 2006 by students at the Medill School of Journalism. Published on weekdays, it consists of updates on news stories and special events throughout the year. It also publishes a quarterly print magazine.
    Syllabus is the university’s undergraduate yearbook. It is distributed in late May and features a culmination of the year’s events at Northwestern. First published in 1885, the yearbook is published by Students Publishing Company and edited by Northwestern students.
    Northwestern Flipside is an undergraduate satirical magazine. Founded in 2009, it publishes a weekly issue both in print and online.
    Helicon is the university’s undergraduate literary magazine. Established in 1979, it is published twice a year: a web issue is released in the winter and a print issue with a web complement is released in the spring.
    The Protest is Northwestern’s quarterly social justice magazine.
    The Northwestern division of Student Multicultural Affairs supports a number of publications for particular cultural groups including Ahora, a magazine about Hispanic and Latino/a culture and campus life; Al Bayan, published by the Northwestern Muslim-cultural Student Association; BlackBoard Magazine, a magazine centered around African-American student life; and NUAsian, a magazine and blog on Asian and Asian-American culture and issues.
    The Northwestern University Law Review is a scholarly legal publication and student organization at Northwestern University School of Law. Its primary purpose is to publish a journal of broad legal scholarship. The Law Review publishes six issues each year. Student editors make the editorial and organizational decisions and select articles submitted by professors, judges, and practitioners, as well as student pieces. The Law Review also publishes scholarly pieces weekly on the Colloquy.
    The Northwestern Journal of Technology and Intellectual Property is a law review published by an independent student organization at Northwestern University School of Law.
    The Northwestern Interdisciplinary Law Review is a scholarly legal publication published annually by an editorial board of Northwestern undergraduates. Its mission is to publish interdisciplinary legal research, drawing from fields such as history, literature, economics, philosophy, and art. Founded in 2008, the journal features articles by professors, law students, practitioners, and undergraduates. It is funded by the Buffett Center for International and Comparative Studies and the Office of the Provost.

    Web-based

    Established in January 2011, Sherman Ave is a humor website that often publishes content on Northwestern student life. Most of its staff writers are current Northwestern undergraduates writing under various pseudonyms. The website is popular among students for its interviews of prominent campus figures, Freshman Guide, and live-tweeting coverage of football games. In Fall 2012, the website promoted a satiric campaign to end the Vanderbilt University football team’s custom of clubbing baby seals.
    Politics & Policy is dedicated to the analysis of current events and public policy. Established in 2010 by students at the Weinberg College of Arts and Sciences, School of Communication, and Medill School of Journalism, the publication reaches students on more than 250 college campuses around the world. Run entirely by undergraduates, it is published several times a week and features material ranging from short summaries of events to extended research pieces. The publication is financed in part by the Buffett Center.
    Northwestern Business Review is a campus source for business news. Founded in 2005, it has an online presence as well as a quarterly print schedule.
    TriQuarterly Online (formerly TriQuarterly) is a literary magazine published twice a year featuring poetry, fiction, nonfiction, drama, literary essays, reviews, blog posts, and art.
    The Queer Reader is Northwestern’s first radical feminist and LGBTQ+ publication.

    Radio, film, and television

    WNUR (89.3 FM) is a 7,200-watt radio station that broadcasts to the city of Chicago and its northern suburbs. WNUR’s programming consists of music (jazz, classical, and rock), literature, politics, current events, varsity sports (football, men’s and women’s basketball, baseball, softball, and women’s lacrosse), and breaking news on weekdays.
    Studio 22 is a student-run production company that produces roughly ten films each year. The organization financed the first film Zach Braff directed, and many of its films have featured students who would later go into professional acting, including Zach Gilford of Friday Night Lights.
    Applause for a Cause is currently the only student-run production company in the nation to create feature-length films for charity. It was founded in 2010 and has raised over $5,000 to date for various local and national organizations across the United States.
    Northwestern News Network is a student television news and sports network, serving the Northwestern and Evanston communities. Its studios and newsroom are located on the fourth floor of the McCormick Tribune Center on Northwestern’s Evanston campus. NNN is funded by the Medill School of Journalism.

     
  • richardmitnick 10:03 pm on August 24, 2021 Permalink | Reply
    Tags: "This Physicist Discovered an Escape From Hawking’s Black Hole Paradox", Black Hole science, In 1974 Stephen Hawking calculated that black holes’ secrets die with them., , ,   

    From Quanta Magazine (US) : “This Physicist Discovered an Escape From Hawking’s Black Hole Paradox” 

    From Quanta Magazine (US)

    August 23, 2021
    Natalie Wolchover

    1
    Netta Engelhardt puzzles over the fates of black holes in her office at the Massachusetts Institute of Technology. Credit: Tira Khan for Quanta Magazine.

    In 1974 Stephen Hawking calculated that black holes’ secrets die with them. Random quantum jitter on the spherical outer boundary, or “event horizon,” of a black hole will cause the hole to radiate particles and slowly shrink to nothing. Any record of the star whose violent contraction formed the black hole — and whatever else got swallowed up after — then seemed to be permanently lost.

    Hawking’s calculation posed a paradox — the infamous “black hole information paradox” — that has motivated research in fundamental physics ever since. On the one hand, quantum mechanics, the rulebook for particles, says that information about particles’ past states gets carried forward as they evolve — a bedrock principle called “unitarity.” But black holes take their cues from general relativity, the theory that space and time form a bendy fabric and gravity is the fabric’s curves. Hawking had tried to apply quantum mechanics to particles near a black hole’s periphery, and saw unitarity break down.

    So do evaporating black holes really destroy information, meaning unitarity is not a true principle of nature? Or does information escape as a black hole evaporates? Solving the information paradox quickly came to be seen as a route to discovering the true, quantum theory of gravity, which general relativity approximates well everywhere except black holes.

    In the past two years, a network of quantum gravity theorists, mostly millennials, has made enormous progress on Hawking’s paradox. One of the leading researchers is Netta Engelhardt, a 32-year-old theoretical physicist at The Massachusetts Institute of Technology (US). She and her colleagues have completed a new calculation that corrects Hawking’s 1974 formula; theirs indicates that information does, in fact, escape black holes via their radiation. She and Aron Wall identified an invisible surface that lies inside a black hole’s event horizon, called the “quantum extremal surface.” In 2019, Engelhardt and others showed that this surface seems to encode the amount of information that has radiated away from the black hole, evolving over the hole’s lifetime exactly as expected if information escapes.

    Engelhardt received a 2021 New Horizons in Physics Prize “for calculating the quantum information content of a black hole and its radiation.” Ahmed Almheiri of The Institute for Advanced Study (US), a frequent collaborator, noted her “deeply rooted intuition for the intricate workings of gravity,” particularly in the discovery of quantum extremal surfaces.

    Engelhardt set her sights on quantum gravity when she was 9 years old. She moved to Boston from Israel that year with her family, and, not knowing any English, read every book in Hebrew she could find in her house. The last was Hawking’s A Brief History of Time. “What that book did for me was trigger a desire to understand the fundamental building blocks of the universe,” she said. “From then on, I was sort of finding my own way, watching different popular science videos and asking questions of anybody who might have the answers, and narrowing down what I wanted to work on.” She ultimately found her way to Hawking’s paradox.

    When Quanta Magazine caught up with Engelhardt in a recent video call, she emphasized that the full solution to the paradox — and the quantum theory of gravity — is a work in progress. We discussed that progress, which centrally involves the concept of entropy, and the search for a “reverse algorithm” that would allow someone to reconstruct a black hole’s past. The conversation has been condensed and edited for clarity.

    Would you say you and your colleagues have solved the black hole information paradox?

    Not yet. We’ve made a lot of progress toward a resolution. That’s part of what makes the field so exciting; we’re moving forward — and we’re not doing it so slowly, either — but there’s still a lot that we have to uncover and understand.

    Could you summarize what you’ve figured out so far?

    Certainly. Along the way there have been a number of very important developments. One I will mention is a 1993 paper by Don Page [Physical Review Letters]. Page said, suppose that information is conserved. Then the entropy of everything outside of a black hole starts out at some value, increases, then has to go back down to the original value once the black hole has evaporated altogether. Whereas Hawking’s calculation predicts that the entropy increases, and once the black hole is evaporated completely, it just plateaus at some value and that’s it.

    3
    Samuel Velasco/Quanta Magazine.

    So the question became, which entropy curve is right. Normally, entropy is the number of possible indistinguishable configurations of a system. What’s the best way to understand entropy in this black hole context?

    You could think of this entropy as ignorance of the state of affairs in the black hole interior. The more possibilities there are for what could be going on in the black hole interior, the more ignorant you will be about which configuration the system is in. So this entropy measures ignorance.

    Page’s discovery was that if you assume that the evolution of the universe doesn’t lose information, then, if you start out with zero ignorance about the universe before a black hole forms, eventually you’re going to end up with zero ignorance once the black hole is gone, since all the information that went in has come back out. That’s in conflict with what Hawking derived, which was that eventually you end up with ignorance.

    You characterize Page’s insight and all other work on the information paradox prior to 2019 as “understanding the problem better.” What happened in 2019?

    The activity that started in 2019 is the steps towards actually resolving the problem. The two papers that kicked this off were work by myself, Ahmed Almheiri, Don Marolf and Henry Maxfield3 and, in parallel, the second paper, which came out at the same time, by Geoff Penington. We submitted our papers on the same day and coordinated because we knew we were both onto the same thing.

    The idea was to calculate the entropy in a different way. This is where Don Page’s calculation was very important for us. If we use Hawking’s method and his assumptions, we get a formula for the entropy which is not consistent with unitarity. Now we want to understand how we could possibly do a calculation that would give us the curve of the entropy that Page proposed, which goes up then comes back down.

    And for this we relied on a proposal that Aron Wall and I gave in 2014: the quantum extremal surface proposal, which essentially states that the so-called quantum-corrected area of a certain surface inside the black hole is what computes the entropy. We said, maybe that’s a way to do the quantum gravity calculation that gives us a unitary result. And I will say: It was kind of a shot in the dark.

    When did you realize that it worked?

    This entire time is a bit of a daze in my mind, it was so exciting; I think I slept maybe two hours a night for weeks. The calculation came together over a period of three weeks, I want to say. I was at Princeton University (US) at the time. We just had a meeting on campus. I have a very distinct memory of driving home, and I was thinking to myself, wow, this could be it.

    The crux of the matter was, there’s more than one quantum extremal surface in the problem. There’s one quantum extremal surface that gives you the wrong answer — the Hawking answer. To correctly calculate the entropy, you have to pick the right one, and the right one is always the one with the smallest quantum-corrected area. And so what was really exciting — I think the moment we realized this might really actually work out — is when we found that exactly at the time when the entropy curve needs to “turn over” [go from increasing to decreasing], there’s a jump. At that time, the quantum extremal surface with the smallest quantum-corrected area goes from being the surface that would give you Hawking’s answer to a new and unexpected one. And that one reproduces the Page curve.

    What are these quantum extremal surfaces, exactly?

    Let me try to intuit a little bit what a classical, non-quantum extremal surface feels like. Let me begin with just a sphere. Imagine that you place a light bulb inside of it, and you follow the light rays as they move outward through the sphere. As the light rays get farther and farther away from the light bulb, the area of the spheres that they pass through will be getting larger and larger. We say that the cross-sectional area of the light rays is getting larger.

    That’s an intuition that works really well in approximately flat space where we live. But when you consider very curved space-time like you find inside a black hole, what can happen is that even though you’re firing your light rays outwards from the light bulb, and you’re looking at spheres that are progressively farther away from the bulb, the cross-sectional area is actually shrinking. And this is because space-time is very violently curved. It’s something that we call focusing of light rays, and it’s a very fundamental concept in gravity and general relativity.

    The extremal surface straddles this line between the very violent situation where the area is decreasing, and a normal situation where the area increases. The area of the surface is neither increasing nor decreasing, and so intuitively you can think of an extremal surface as kind of lying right at the cusp of where you’d expect strong curvature to start kicking in. A quantum extremal surface is the same idea, but instead of area, now you’re looking at quantum-corrected area. This is a sum of area and entropy, which is neither increasing nor decreasing.

    What does the quantum extremal surface mean? What’s the difference between things that are inside versus outside?

    Recall that when the Page curve turns over, we expect that our ignorance of what the black hole contains starts to decrease, as we have access to more and more of its radiation. So the radiation emitted by the hole must start to “learn” about the black hole interior.

    It’s the quantum extremal surface that divides the space-time in two: Everything inside the surface, the radiation can already decode. Everything outside of it is what remains hidden in the black hole system, what’s not contained in the information of the radiation. As the black hole emits more radiation, the quantum extremal surface moves outwards and encompasses an ever-larger volume of the black hole interior. By the time that black hole evaporates altogether, the radiation has to be able to decode everything that way.

    Now that we have an explicit calculation that gives us a unitary answer, that gives us so many tools to start asking questions that we could never ask before, like where does this formula come from, what does it mean about what type of theory quantum gravity is? Also, what is the mechanism in quantum gravity that restores unitarity? It has something to do with the quantum extremal surface formula.

    Most of the justification for the quantum extremal surface formula comes from studying black holes in “Anti-de Sitter” (AdS) space — saddle-shaped space with an outer boundary. Whereas our universe has approximately flat space, and no boundary. Why should we think that these calculations apply to our universe?

    First, we can’t really get around the fact that our universe contains both quantum mechanics and gravity. It contains black holes. So our understanding of the universe is going to be incomplete until we have a description of what happens inside a black hole. The information problem is such a difficult problem to solve that any progress — whether it’s in a toy model or not — is making progress towards understanding phenomena that happen in our universe.

    Now at a more technical level, quantum extremal surfaces can be computed in different kinds of space-times, including flat space like in our universe. And in fact there already have been papers written on the behavior of quantum extremal surfaces within different kinds of space-times and what types of entropy curves they would give rise to.

    We have a very firm interpretation of the quantum extremal surface in AdS space. We can extrapolate and say that in flat space there exists some interpretation of the quantum extremal surface which is analogous, and I think that’s probably true. It has many nice properties; it looks like it’s the right thing. We get really interesting behavior and we expect to get unitarity as well, and so, yes, we do expect that this phenomenon does translate, although the interpretation is going to be harder.

    You said at the beginning of our conversation that we don’t know the solution to the information paradox yet. Can you explain what a solution looks like?

    A full resolution of the information paradox would have to tell us exactly how the black hole information comes out. If I’m an observer that’s sitting outside of a black hole and I have extremely sophisticated technology and all the time in the world — a quantum computer taking incredibly sophisticated measurements, all the radiation of that black hole — what does it take for me to actually decode the radiation to reconstruct, for instance, the star that collapsed and formed the black hole? What process do I need to put my quantum computer through? We need to answer that question.

    So you want to find the reverse algorithm that unscrambles the information in the radiation. What’s the connection between that algorithm and quantum gravity?

    This algorithm that decodes the Hawking radiation is coming from the process in which quantum gravity encodes the radiation as it evaporates at the black hole horizon. The emergence of the black hole interior from quantum gravity and the dynamics of the black hole interior, the experience of an object that falls into the black hole — all of that is encoded in this reverse algorithm that quantum gravity has to spit out. All of those are tied up in the question of “how does the information get encoded in the Hawking radiation?”

    You’ve lately been writing papers about something called “a python’s lunch”. What’s that?

    It’s one thing to ask how can you decode the Hawking radiation; you also might ask, how complex is the task of decoding the Hawking radiation. And, as it turns out, extremely complex. So maybe the difference between Hawking’s calculation and the quantum extremal surface calculation that gives unitarity is that Hawking’s calculation is just dropping the high-complexity operations.

    It’s important to understand the complexity geometrically. And in 2019 there was a paper by some of my colleagues that proposed that whenever you have more than one quantum extremal surface, the one that would be wrong for the entropy can be used to calculate the complexity of decoding the black hole radiation. The two quantum extremal surfaces can be thought of as sort of constrictions in the space-time geometry, and those of us who have read Le Petit Prince see an elephant inside a python, and so it has become known as a python’s lunch.

    We proposed that multiple quantum extremal surfaces are the exclusive source of high complexity. And these two papers that you’re referring to are essentially an argument for this “strong python’s lunch” proposal. That is very insightful for us because it identifies the part of the geometry that Hawking’s calculation knows about and part of the geometry that Hawking’s calculation doesn’t know about. It’s working towards putting his and our calculations in the same language so that we know why one is right, and the other is wrong.

    Where would you say we currently stand in our effort to understand the quantum nature of gravity?

    I like to think of this as a puzzle, where we have all the edge pieces and we’re missing the center. We have many different insights about quantum gravity. There are many ways in which people are trying to understand it. Some by constraining it: What are things that it can’t do? Some by trying to construct aspects of it: things that it must do. My personal preferred approach is more to do with the information paradox, because it’s so pivotal; it’s such an acute problem. It’s clearly telling us: Here’s where you messed up. And to me that says, here’s a place where we can begin to fix our pillars, one of which must be wrong, of our understanding of quantum gravity.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Formerly known as Simons Science News, Quanta Magazine (US) is an editorially independent online publication launched by the Simons Foundation to enhance public understanding of science. Why Quanta? Albert Einstein called photons “quanta of light.” Our goal is to “illuminate science.” At Quanta Magazine, scientific accuracy is every bit as important as telling a good story. All of our articles are meticulously researched, reported, edited, copy-edited and fact-checked.

     
  • richardmitnick 10:29 am on August 23, 2021 Permalink | Reply
    Tags: "A Huge Number of Rogue Supermassive Black Holes Are Wandering The Universe", , Black Hole science, , ,   

    From Harvard-Smithsonian Center for Astrophysics (US) via Science Alert (US) : “A Huge Number of Rogue Supermassive Black Holes Are Wandering The Universe” 

    From Harvard-Smithsonian Center for Astrophysics (US)

    via

    Science Alert (US)

    23 AUGUST 2021
    MICHELLE STARR

    1
    Artist’s impression of a supermassive black hole. (Naeblys/iStock/Getty Images Plus)

    Messier 87*, The first image of the event horizon of a black hole. This is the supermassive black hole at the center of the galaxy Messier 87. Image via The Event Horizon Telescope Collaboration released on 10 April 2019 via National Science Foundation(US).

    Supermassive black holes tend to sit, more or less stationary, at the centers of galaxies. But not all of these awesome cosmic objects stay put; some may be knocked askew, wobbling around galaxies like cosmic nomads.

    We call such black holes ‘wanderers’, and they’re largely theoretical, because they are difficult (but not impossible) to observe, and therefore quantify. But a new set of simulations has allowed a team of scientists to work out how many wanderers there should be, and whereabouts – which in turn could help us identify them out there in the Universe.

    This could have important implications for our understanding of how supermassive black holes – monsters millions to billions of times the mass of our Sun – form and grow, a process that is shrouded in mystery.

    Cosmologists think that supermassive black holes (SMBHs) reside at the nuclei of all – or at least most – galaxies in the Universe. These objects’ masses are usually roughly proportional to the mass of the central galactic bulge around them, which suggests that the evolution of the black hole and its galaxy are somehow linked.

    But the formation pathways of supermassive black holes are unclear. We know that stellar-mass black holes form from the core collapse of massive stars, but that mechanism doesn’t work for black holes over about 55 times the mass of the Sun.

    Astronomers think that SMBHs grow via the accretion of stars and gas and dust, and mergers with other black holes (very chunky ones at nuclei of other galaxies, when those galaxies collide).

    But cosmological timescales are very different from our human timescales, and the process of two galaxies colliding can take a very long time. This makes the potential window for the merger to be disrupted quite large, and the process could be delayed or even prevented entirely, resulting in these black hole ‘wanderers’.

    A team of astronomers led by Angelo Ricarte of the Harvard & Smithsonian Center for Astrophysics has used the Romulus cosmological simulations to estimate how frequently this ought to have occurred in the past, and how many black holes would still be wandering today.

    This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications.

    NCSA University of Illinois Urbana-Champaign Blue Waters Cray Linux XE/XK hybrid machine supercomputer,at the National Center for Supercomputing Applications.

    These simulations self-consistently track the orbital evolution of pairs of supermassive black holes, which means they are able to predict which black holes are likely to make it to the center of their new galactic home, and how long this process should take – as well as how many never get there.
    “Romulus predicts that many supermassive black hole binaries form after several billions of years of orbital evolution, while some SMBHs will never make it to the center,” the researchers wrote in their paper.

    “As a result, Milky Way-mass galaxies in Romulus are found to host an average of 12 supermassive black holes, which typically wander the halo far from the galactic center.”

    In the early Universe, before about 2 billion years after the Big Bang, the team found, wanderers both outnumber and outshine the supermassive black holes in galactic nuclei. This means they would produce most of the light we would expect to see shining from the material around active SMBHs, glowing brightly as it orbits and accretes onto the black hole.

    They remain close to their seed mass – that is, the mass at which they formed – and probably originate in smaller satellite galaxies that orbit larger ones.

    And some wanderers should still be around today, according to the simulations. In the local Universe, there should actually be quite a few hanging around.

    “We find that the number of wandering black holes scales roughly linearly with the halo mass, such that we expect thousands of wandering black holes in galaxy cluster halos,” the researchers wrote.

    “Locally, these wanderers account for around 10 percent of the local black hole mass budget once seed masses are accounted for.”

    These black holes may not necessarily be active, and therefore would be very difficult to spot. In an upcoming paper, the team will be exploring in detail the possible ways we could observe these lost wanderers.

    Then all we have to do is find the lost stellar-mass and intermediate-mass black holes…

    The research has been published in the MNRAS.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    The Harvard-Smithsonian Center for Astrophysics (US) combines the resources and research facilities of the Harvard College Observatory(US) and the Smithsonian Astrophysical Observatory(US) under a single director to pursue studies of those basic physical processes that determine the nature and evolution of the universe. The Smithsonian Astrophysical Observatory(US) is a bureau of the Smithsonian Institution(US), founded in 1890. The Harvard College Observatory, founded in 1839, is a research institution of the Faculty of Arts and Sciences, Harvard University(US), and provides facilities and substantial other support for teaching activities of the Department of Astronomy.

    Founded in 1973 and headquartered in Cambridge, Massachusetts, the CfA leads a broad program of research in astronomy, astrophysics, Earth and space sciences, as well as science education. The CfA either leads or participates in the development and operations of more than fifteen ground- and space-based astronomical research observatories across the electromagnetic spectrum, including the forthcoming Giant Magellan Telescope(CL) and the Chandra X-ray Observatory(US), one of NASA’s Great Observatories.

    Hosting more than 850 scientists, engineers, and support staff, the CfA is among the largest astronomical research institutes in the world. Its projects have included Nobel Prize-winning advances in cosmology and high energy astrophysics, the discovery of many exoplanets, and the first image of a black hole. The CfA also serves a major role in the global astrophysics research community: the CfA’s Astrophysics Data System(ADS)(US), for example, has been universally adopted as the world’s online database of astronomy and physics papers. Known for most of its history as the “Harvard-Smithsonian Center for Astrophysics”, the CfA rebranded in 2018 to its current name in an effort to reflect its unique status as a joint collaboration between Harvard University and the Smithsonian Institution. The CfA’s current Director (since 2004) is Charles R. Alcock, who succeeds Irwin I. Shapiro (Director from 1982 to 2004) and George B. Field (Director from 1973 to 1982).

    The Center for Astrophysics | Harvard & Smithsonian is not formally an independent legal organization, but rather an institutional entity operated under a Memorandum of Understanding between Harvard University and the Smithsonian Institution. This collaboration was formalized on July 1, 1973, with the goal of coordinating the related research activities of the Harvard College Observatory (HCO) and the Smithsonian Astrophysical Observatory (SAO) under the leadership of a single Director, and housed within the same complex of buildings on the Harvard campus in Cambridge, Massachusetts. The CfA’s history is therefore also that of the two fully independent organizations that comprise it. With a combined lifetime of more than 300 years, HCO and SAO have been host to major milestones in astronomical history that predate the CfA’s founding.

    History of the Smithsonian Astrophysical Observatory (SAO)

    Samuel Pierpont Langley, the third Secretary of the Smithsonian, founded the Smithsonian Astrophysical Observatory on the south yard of the Smithsonian Castle (on the U.S. National Mall) on March 1,1890. The Astrophysical Observatory’s initial, primary purpose was to “record the amount and character of the Sun’s heat”. Charles Greeley Abbot was named SAO’s first director, and the observatory operated solar telescopes to take daily measurements of the Sun’s intensity in different regions of the optical electromagnetic spectrum. In doing so, the observatory enabled Abbot to make critical refinements to the Solar constant, as well as to serendipitously discover Solar variability. It is likely that SAO’s early history as a solar observatory was part of the inspiration behind the Smithsonian’s “sunburst” logo, designed in 1965 by Crimilda Pontes.

    In 1955, the scientific headquarters of SAO moved from Washington, D.C. to Cambridge, Massachusetts to affiliate with the Harvard College Observatory (HCO). Fred Lawrence Whipple, then the chairman of the Harvard Astronomy Department, was named the new director of SAO. The collaborative relationship between SAO and HCO therefore predates the official creation of the CfA by 18 years. SAO’s move to Harvard’s campus also resulted in a rapid expansion of its research program. Following the launch of Sputnik (the world’s first human-made satellite) in 1957, SAO accepted a national challenge to create a worldwide satellite-tracking network, collaborating with the United States Air Force on Project Space Track.

    With the creation of National Aeronautics and Space Administration(US) the following year and throughout the space race, SAO led major efforts in the development of orbiting observatories and large ground-based telescopes, laboratory and theoretical astrophysics, as well as the application of computers to astrophysical problems.

    History of Harvard College Observatory (HCO)

    Partly in response to renewed public interest in astronomy following the 1835 return of Halley’s Comet, the Harvard College Observatory was founded in 1839, when the Harvard Corporation appointed William Cranch Bond as an “Astronomical Observer to the University”. For its first four years of operation, the observatory was situated at the Dana-Palmer House (where Bond also resided) near Harvard Yard, and consisted of little more than three small telescopes and an astronomical clock. In his 1840 book recounting the history of the college, then Harvard President Josiah Quincy III noted that “…there is wanted a reflecting telescope equatorially mounted…”. This telescope, the 15-inch “Great Refractor”, opened seven years later (in 1847) at the top of Observatory Hill in Cambridge (where it still exists today, housed in the oldest of the CfA’s complex of buildings). The telescope was the largest in the United States from 1847 until 1867. William Bond and pioneer photographer John Adams Whipple used the Great Refractor to produce the first clear Daguerrotypes of the Moon (winning them an award at the 1851 Great Exhibition in London). Bond and his son, George Phillips Bond (the second Director of HCO), used it to discover Saturn’s 8th moon, Hyperion (which was also independently discovered by William Lassell).

    Under the directorship of Edward Charles Pickering from 1877 to 1919, the observatory became the world’s major producer of stellar spectra and magnitudes, established an observing station in Peru, and applied mass-production methods to the analysis of data. It was during this time that HCO became host to a series of major discoveries in astronomical history, powered by the Observatory’s so-called “Computers” (women hired by Pickering as skilled workers to process astronomical data). These “Computers” included Williamina Fleming; Annie Jump Cannon; Henrietta Swan Leavitt; Florence Cushman; and Antonia Maury, all widely recognized today as major figures in scientific history. Henrietta Swan Leavitt, for example, discovered the so-called period-luminosity relation for Classical Cepheid variable stars, establishing the first major “standard candle” with which to measure the distance to galaxies. Now called “Leavitt’s Law”, the discovery is regarded as one of the most foundational and important in the history of astronomy; astronomers like Edwin Hubble, for example, would later use Leavitt’s Law to establish that the Universe is expanding, the primary piece of evidence for the Big Bang model.

    Upon Pickering’s retirement in 1921, the Directorship of HCO fell to Harlow Shapley (a major participant in the so-called “Great Debate” of 1920). This era of the observatory was made famous by the work of Cecelia Payne-Gaposchkin, who became the first woman to earn a Ph.D. in astronomy from Radcliffe College (a short walk from the Observatory). Payne-Gapochkin’s 1925 thesis proposed that stars were composed primarily of hydrogen and helium, an idea thought ridiculous at the time. Between Shapley’s tenure and the formation of the CfA, the observatory was directed by Donald H. Menzel and then Leo Goldberg, both of whom maintained widely recognized programs in solar and stellar astrophysics. Menzel played a major role in encouraging the Smithsonian Astrophysical Observatory to move to Cambridge and collaborate more closely with HCO.

    Joint history as the Center for Astrophysics (CfA)

    The collaborative foundation for what would ultimately give rise to the Center for Astrophysics began with SAO’s move to Cambridge in 1955. Fred Whipple, who was already chair of the Harvard Astronomy Department (housed within HCO since 1931), was named SAO’s new director at the start of this new era; an early test of the model for a unified Directorship across HCO and SAO. The following 18 years would see the two independent entities merge ever closer together, operating effectively (but informally) as one large research center.

    This joint relationship was formalized as the new Harvard–Smithsonian Center for Astrophysics on July 1, 1973. George B. Field, then affiliated with UC Berkeley(US), was appointed as its first Director. That same year, a new astronomical journal, the CfA Preprint Series was created, and a CfA/SAO instrument flying aboard Skylab discovered coronal holes on the Sun. The founding of the CfA also coincided with the birth of X-ray astronomy as a new, major field that was largely dominated by CfA scientists in its early years. Riccardo Giacconi, regarded as the “father of X-ray astronomy”, founded the High Energy Astrophysics Division within the new CfA by moving most of his research group (then at American Sciences and Engineering) to SAO in 1973. That group would later go on to launch the Einstein Observatory (the first imaging X-ray telescope) in 1976, and ultimately lead the proposals and development of what would become the Chandra X-ray Observatory. Chandra, the second of NASA’s Great Observatories and still the most powerful X-ray telescope in history, continues operations today as part of the CfA’s Chandra X-ray Center. Giacconi would later win the 2002 Nobel Prize in Physics for his foundational work in X-ray astronomy.

    Shortly after the launch of the Einstein Observatory, the CfA’s Steven Weinberg won the 1979 Nobel Prize in Physics for his work on electroweak unification. The following decade saw the start of the landmark CfA Redshift Survey (the first attempt to map the large scale structure of the Universe), as well as the release of the Field Report, a highly influential Astronomy & Astrophysics Decadal Survey chaired by the outgoing CfA Director George Field. He would be replaced in 1982 by Irwin Shapiro, who during his tenure as Director (1982 to 2004) oversaw the expansion of the CfA’s observing facilities around the world.

    CfA-led discoveries throughout this period include canonical work on Supernova 1987A, the “CfA2 Great Wall” (then the largest known coherent structure in the Universe), the best-yet evidence for supermassive black holes, and the first convincing evidence for an extrasolar planet.

    The 1990s also saw the CfA unwittingly play a major role in the history of computer science and the internet: in 1990, SAO developed SAOImage, one of the world’s first X11-based applications made publicly available (its successor, DS9, remains the most widely used astronomical FITS image viewer worldwide). During this time, scientists at the CfA also began work on what would become the Astrophysics Data System (ADS), one of the world’s first online databases of research papers. By 1993, the ADS was running the first routine transatlantic queries between databases, a foundational aspect of the internet today.

    The CfA Today

    Research at the CfA

    Charles Alcock, known for a number of major works related to massive compact halo objects, was named the third director of the CfA in 2004. Today Alcock overseas one of the largest and most productive astronomical institutes in the world, with more than 850 staff and an annual budget in excess of $100M. The Harvard Department of Astronomy, housed within the CfA, maintains a continual complement of approximately 60 Ph.D. students, more than 100 postdoctoral researchers, and roughly 25 undergraduate majors in astronomy and astrophysics from Harvard College. SAO, meanwhile, hosts a long-running and highly rated REU Summer Intern program as well as many visiting graduate students. The CfA estimates that roughly 10% of the professional astrophysics community in the United States spent at least a portion of their career or education there.

    The CfA is either a lead or major partner in the operations of the Fred Lawrence Whipple Observatory, the Submillimeter Array, MMT Observatory, the South Pole Telescope, VERITAS, and a number of other smaller ground-based telescopes. The CfA’s 2019-2024 Strategic Plan includes the construction of the Giant Magellan Telescope as a driving priority for the Center.

    CFA Harvard Smithsonian Submillimeter Array on MaunaKea, Hawaii, USA, Altitude 4,205 m (13,796 ft).

    South Pole Telescope SPTPOL. The SPT collaboration is made up of over a dozen (mostly North American) institutions, including The University of Chicago (US); The University of California Berkeley (US); Case Western Reserve University (US); Harvard/Smithsonian Astrophysical Observatory (US); The University of Colorado, Boulder; McGill(CA) University, The University of Illinois, Urbana-Champaign;The University of California, Davis; Ludwig Maximilians Universität München(DE); DOE’s Argonne National Laboratory; and The National Institute for Standards and Technology. The University of California, Davis; Ludwig Maximilians Universität München(DE); DOE’s Argonne National Laboratory; and The National Institute for Standards and Technology. It is funded by the National Science Foundation(US).

    Along with the Chandra X-ray Observatory, the CfA plays a central role in a number of space-based observing facilities, including the recently launched Parker Solar Probe, Kepler Space Telescope, the Solar Dynamics Observatory (SDO), and HINODE. The CfA, via the Smithsonian Astrophysical Observatory, recently played a major role in the Lynx X-ray Observatory, a NASA-Funded Large Mission Concept Study commissioned as part of the 2020 Decadal Survey on Astronomy and Astrophysics (“Astro2020”). If launched, Lynx would be the most powerful X-ray observatory constructed to date, enabling order-of-magnitude advances in capability over Chandra.

    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker.

    SAO is one of the 13 stakeholder institutes for the Event Horizon Telescope Board, and the CfA hosts its Array Operations Center. In 2019, the project revealed the first direct image of a black hole.

    The result is widely regarded as a triumph not only of observational radio astronomy, but of its intersection with theoretical astrophysics. Union of the observational and theoretical subfields of astrophysics has been a major focus of the CfA since its founding.

    In 2018, the CfA rebranded, changing its official name to the “Center for Astrophysics | Harvard & Smithsonian” in an effort to reflect its unique status as a joint collaboration between Harvard University and the Smithsonian Institution. Today, the CfA receives roughly 70% of its funding from NASA, 22% from Smithsonian federal funds, and 4% from the National Science Foundation. The remaining 4% comes from contributors including the United States Department of Energy, the Annenberg Foundation, as well as other gifts and endowments.

     
  • richardmitnick 12:41 pm on August 21, 2021 Permalink | Reply
    Tags: "Addressing a Gap in Our Knowledge of Black Holes", , Black Hole science, , , ,   

    From AAS NOVA : “Addressing a Gap in Our Knowledge of Black Holes” 

    AASNOVA

    From AAS NOVA

    Artist’s by now iconic conception of two merging black holes similar to those detected by LIGO. Credit: Aurore Simonnet /Caltech MIT Advanced aLIGO(US)/Sonoma State University (US).

    One way for black holes to form is in supernovae, or the deaths of massive stars. However, our current knowledge of stellar evolution and supernovae suggests that black holes with masses between 55 and 120 solar masses can’t be produced via supernovae. Gravitational-wave signals from black hole mergers offer us an observational test of this “gap” in black hole masses.

    Black Hole Boundaries

    You need a massive star to go supernova to produce a black hole. Unfortunately, extremely massive stars explode so violently they leave nothing behind! This scenario can occur with pair-instability supernovae, which happens in stars with core masses between 40 and 135 solar masses. The “pair” in “pair-instability” refers to the electron–positron pairs that are produced by gamma rays interacting with nuclei in the star’s core. Energy is lost in this process, meaning that there’s less resistance to gravitational collapse.

    As the star collapses further, two things can happen. If the star is sufficiently massive, its core ignites in an explosion that tears the star apart, leaving no remnant. If the star is less massive, the core ignition causes the star to pulse and shed mass till it leaves the pair-production stage and its core collapses normally into black hole. The most massive black hole that can be produced in this scenario is roughly 55 solar masses, forming the lower end of the black hole mass gap.

    On the other side of the mass gap, it’s theoretically possible for certain massive stars to collapse normally without entering the pair-production state, thus evolving into black holes with masses greater than 120 solar masses. The unique thing about these massive stars is that they are low metallicity, containing practically no elements that are heavier than helium.

    So the bottom line is that we’re unlikely to observe any black holes with masses between 55 and 120 solar masses. But how can we test this prediction? Gravitational-wave signals are an option! Properties of merging black holes are coded into the gravitational waves produced by the merger, including the black hole masses. So, a recent study led by Bruce Edelman (University of Oregon (US)) looked at our current catalog of black hole merger signals to see if the mass gap would emerge from the data.

    Mind the Gap, If There Is a Gap

    Edelman and collaborators used two established model distributions of black hole masses to approach the problem. They also altered the models so the gap was explicitly allowed and so higher black hole masses could be explored without artificially inflating the rate of mergers above the gap. Edelman and collaborators then fit their models to data from 46 binary black hole mergers observed by the Laser Interferometer Gravitational-Wave Observatory and the Virgo interferometer.

    Masses in the Stellar Graveyard GWTC-2 plot v1.0 BY LIGO-Virgo. Credit: Frank Elavsky and Aaron Geller at Northwestern University(US)

    Caltech/MIT Advanced aLigo at Hanford, WA(US), Livingston, LA(US) and VIRGO Gravitational Wave interferometer, near Pisa(IT).

    Interestingly, the existence of the gap is rather ambiguous! One factor is the inclusion of the merger associated with the signal GW190521, which was likely a high mass merger whose component black holes straddle the mass gap. If the gap doesn’t exist, it’s possible that the unexpected black holes are formed by the merging of smaller black holes. On the whole, this result points to many avenues of study when it comes to pair-instability supernovae and black hole formation!

    Citation

    “Poking Holes: Looking for Gaps in LIGO/Virgo’s Black Hole Population,” Bruce Edelman et al 2021 ApJL 913 L23.
    https://iopscience.iop.org/article/10.3847/2041-8213/abfdb3

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    1

    AAS Mission and Vision Statement

    The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

    The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
    The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
    The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
    The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
    The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

    Adopted June 7, 2009

    The society was founded in 1899 through the efforts of George Ellery Hale. The constitution of the group was written by Hale, George Comstock, Edward Morley, Simon Newcomb and Edward Charles Pickering. These men, plus four others, were the first Executive Council of the society; Newcomb was the first president. The initial membership was 114. The AAS name of the society was not finally decided until 1915, previously it was the “Astronomical and Astrophysical Society of America”. One proposed name that preceded this interim name was “American Astrophysical Society”.

    The AAS today has over 7,000 members and six divisions – the Division for Planetary Sciences (1968); the Division on Dynamical Astronomy (1969); the High Energy Astrophysics Division (1969); the Solar Physics Division (1969); the Historical Astronomy Division (1980); and the Laboratory Astrophysics Division (2012). The membership includes physicists, mathematicians, geologists, engineers and others whose research interests lie within the broad spectrum of subjects now comprising contemporary astronomy.

    In 2019 three AAS members were selected into the tenth anniversary class of TED Fellows.

    The AAS established the AAS Fellows program in 2019 to “confer recognition upon AAS members for achievement and extraordinary service to the field of astronomy and the American Astronomical Society.” The inaugural class was designated by the AAS Board of Trustees and includes an initial group of 232 Legacy Fellows.

     
  • richardmitnick 9:09 pm on August 19, 2021 Permalink | Reply
    Tags: "Scientists detect never-before-seen radio waves from nearby stars and distant galaxies", , , , Black Hole science, , Evolutionary Map of the Universe (EMU),   

    From University of Keele (UK): “Scientists detect never-before-seen radio waves from nearby stars and distant galaxies” 

    From University of Keele (UK)

    19 August 2021

    1
    Scientists have measured thousands of nearby stars and far away galaxies that have never been identified before at radio wavelengths, while studying a galactic body that neighbours our own Milky Way galaxy – the Large Magellanic Cloud.

    Led by Led by University of Keele (UK PhD student Clara M. Pennock and Reader in Astrophysics, Dr Jacco van Loon, the international team of researchers used the Australian Square Kilometre Array Pathfinder (ASKAP) telescope to “photograph” the Cloud at radio wavelengths and study the stellar structures within, taking some of the sharpest radio images of the Cloud ever recorded.

    The Large Magellanic Cloud is a galaxy which borders our own, the Milky Way, and is known as a satellite dwarf spiral galaxy. It is around 158,200 light years away from Earth and is home to tens of millions of stars.

    Due to its proximity to the Milky Way, it provides an excellent benchmark for researchers studying fundamental questions, such as how stars form and how galaxies are structured.

    The researchers not only took the sharpest radio images of the Cloud ever recorded, but during their analysis they also studied the stars themselves which form the Cloud’s structure, including the Tarantula Nebula, the most active star-formation region in the Local Group.

    Furthermore, newly detected radio emission has also been studied from distant galaxies in the background as well as stars in the foreground from our own Milky Way.

    This study, published in MNRAS, forms part of the Evolutionary Map of the Universe (EMU) Early Science Project, which will observe the entire Southern sky and is predicted to detect around 40 million galaxies. The data will ultimately be used to give researchers a clearer picture of how galaxies, and their stars, have evolved throughout time.

    Lead author Clara Pennock from University of Keele (UK) said: “The sharp and sensitive new image reveals thousands of radio sources we’ve never seen before. Most of these are actually galaxies millions or even billions of light years beyond the Large Magellanic Cloud. We typically see them because of the supermassive black holes in their centres which can be detected at all wavelengths, especially radio. But we now also start finding many galaxies in which stars are forming at a tremendous rate. Combining this data with previous observations from X-ray, optical and infrared telescopes will allow us to explore these galaxies in extraordinary detail.”

    Dr Jacco van Loon, Reader in Astrophysics at University of Keele (UK) said: “With so many stars and nebulae packed together, the increased sharpness of the image has been instrumental in discovering radio emitting stars and compact nebulae in the LMC. We see all sorts of radio sources, from individual fledgling stars to planetary nebulae that result from the death of stars like the Sun.”

    Co-author Professor Andrew Hopkins, from Macquarie University(AU) in Sydney, and leader of the EMU survey, added: “It’s gratifying to see these exciting results coming from the early EMU observations. EMU is an incredibly ambitious project with scientific goals that range from understanding star and galaxy evolution to cosmological measurements of dark matter and dark energy, and much more. The discoveries from this early work demonstrate the power of the ASKAP telescope to deliver sensitive images over wide areas of sky, offering a tantalising glimpse of what the full EMU survey may reveal. This investigation has been critical in allowing us to design the main survey, which we expect will start in early 2022.”

    ASKAP is owned by the Commonwealth Scientific and Industrial Research Organisation (CSIRO). ASKAP is an array of 36 dish antennas with a largest separation of six kilometres, which when combined act like a telescope that is about 4000 square metres in size.

    ASKAP employs a novel technique called phased array feeds (PAF), and each of the 36 antennas has a PAF that allow the telescope to look at the sky in 36 directions at once, increasing the amount of sky that can be observed at once to 30 square degrees on the sky and thus, increasing survey speed.

    ASKAP is a precursor to the SKA, the world’s largest radio telescope, which is currently being built in South Africa and Australia, and is headquartered at the Jodrell Bank Observatory near Manchester, UK.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    University of Keele (UK) is situated on an estate with extensive woods, lakes and parkland, formerly owned by the Sneyd family.

    The Sneyds came into possession of the Keele estate in the mid-16th century. Before the Sneyds the area was owned by the Knights Templar, a medieval Military Order. The first Keele Hall was built in 1580 and it was rebuilt in 1860. The Hall is a major conference, wedding and banqueting venue and has Grade II listing from English Heritage for its architectural importance.

    The University itself was founded as the University College of North Staffordshire in 1949 and received its Charter as the University of Keele in 1962.

     
  • richardmitnick 8:22 pm on August 18, 2021 Permalink | Reply
    Tags: "Cracking a Mystery of Massive Black Holes and Quasars with Supercomputer Simulations", , , Black Hole science, , University of Connecticut (US)   

    From University of Connecticut (US): “Cracking a Mystery of Massive Black Holes and Quasars with Supercomputer Simulations” 

    From University of Connecticut (US)

    August 17, 2021
    Elaina Hancock

    A discovery that provides new insight into how galaxies evolve.

    1
    An illustration with elements from National Aeronautics Space Agency (US) showing a quasar – a supermassive black hole being rapidly formed Credit: Adobe Stock.

    At the center of galaxies, like our own Milky Way, lie massive black holes surrounded by spinning gas. Some shine brightly, with a continuous supply of fuel, while others go dormant for millions of years, only to reawaken with a serendipitous influx of gas. It remains largely a mystery how gas flows across the universe to feed these massive black holes.

    UConn Assistant Professor of Physics Daniel Anglés-Alcázar, lead author on a paper published today in The Astrophysical Journal, addresses some of the questions surrounding these massive and enigmatic features of the universe by using new, high-powered simulations.

    “Supermassive black holes play a key role in galaxy evolution and we are trying to understand how they grow at the centers of galaxies,” says Anglés-Alcázar. “This is very important not just because black holes are very interesting objects on their own, as sources of gravitational waves and all sorts of interesting stuff, but also because we need to understand what the central black holes are doing if we want to understand how galaxies evolve.”

    2
    Distribution of gas across scales, with the gas density increasing from purple to yellow. The top left panel shows a large region containing tens of galaxies (6 million light-years across). Subsequent panels zoom in progressively into the nuclear region of the most massive galaxy and down to the vicinity of the central supermassive black hole. Gas clumps and filaments fall from the inner edge of the central cavity occasionally feeding the black hole. Credit: Anglés-Alcázar et al. 2021, ApJ, 917, 53.

    Anglés-Alcázar, who is also an Associate Research Scientist at the Flatiron Institute (US) Center for Computational Astrophysics, says a challenge in answering these questions has been creating models powerful enough to account for the numerous forces and factors that play into the process. Previous works have looked either at very large scales or the very smallest of scales, “but it has been a challenge to study the full range of scales connected simultaneously.”

    Galaxy formation, Anglés-Alcázar says, starts with a halo of dark matter that dominates the mass and gravitational potential in the area and begins pulling in gas from its surroundings.

    Caterpillar Project A Milky-Way-size dark-matter halo and its subhalos circled, an enormous suite of simulations . Griffen et al. 2016.

    Stars form from the dense gas, but some of it must reach the center of the galaxy to feed the black hole. How does all that gas get there? For some black holes, this involves huge quantities of gas, the equivalent of ten times the mass of the sun or more swallowed in just one year, says Anglés-Alcázar.

    “When supermassive black holes are growing very fast, we refer to them as quasars,” he says. “They can have a mass well into one billion times the mass of the sun and can outshine everything else in the galaxy. How quasars look depends on how much gas they add per unit of time. How do we manage to get so much gas down to the center of the galaxy and close enough that the black hole can grab it and grow from there?”

    The new simulations provide key insights into the nature of quasars, showing that strong gravitational forces from stars can twist and destabilize the gas across scales, and drive sufficient gas influx to power a luminous quasar at the epoch of peak galaxy activity.


    Zooming in on the Growth of Black Holes.

    In visualizing this series of events, it is easy to see the complexities of modeling them, and Anglés-Alcázar says it is necessary to account for the myriad components influencing black hole evolution.

    “Our simulations incorporate many of the key physical processes, for example, the hydrodynamics of gas and how it evolves under the influence of pressure forces, gravity, and feedback from massive stars. Powerful events such as supernovae inject a lot of energy into the surrounding medium and this influences how the galaxy evolves, so we need to incorporate all of these details and physical processes to capture an accurate picture.”

    Building on previous work from the FIRE (“Feedback In Realistic Environments”) project, Anglés-Alcázar explains the new technique outlined in the paper that greatly increases model resolution and allows for following the gas as it flows across the galaxy with more than a thousand times better resolution than previously possible.

    In addition to Anglés-Alcázar, the study includes authors from the FIRE and SMAUG (“Simulating Multiscale Astrophysics to Understand Galaxies”) collaborations: Eliot Quataert (The University of California-Berkeley (US) and Princeton University (US)), Philip F. Hopkins (The California Institute of Technology (US)), Rachel S. Somerville (Flatiron Institute), Christopher C. Hayward (Flatiron Institute), Claude-André Faucher-Giguère (Northwestern University(US) ), Greg L. Bryan (Columbia University (US)), Dušan Kereš (The University of California-San Diego (US)), Lars Hernquist (Harvard University (US)), and James M. Stone (The Institute for Advanced Study (US)).

    Simulations were run on Flatiron Institute’s research computing facilities (“Gordon-Simons”, “Popeye” and “Iron”. Additional numerical calculations were run on The California Institute of Technology (US) compute cluster “Wheeler”.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Connecticut (US) is a public land-grant research university in Storrs, Connecticut. It was founded in 1881.

    The primary 4,400-acre (17.8 km2) campus is in Storrs, Connecticut, approximately a half hour’s drive from Hartford and 90 minutes from Boston. It is a flagship university that is ranked as the best public national university in New England and is tied for 23rd in “top public schools” and tied for 63rd best national university in the 2021 U.S. News & World Report rankings. University of Connecticut has been ranked by Money Magazine and Princeton Review top 18th in value. The university is classified among “R1: Doctoral Universities – Very high research activity”. The university has been recognized as a “Public Ivy”, defined as a select group of publicly funded universities considered to provide a quality of education comparable to those of the Ivy League.

    University of Connecticut is one of the founding institutions of the Hartford, Connecticut/Springfield, Massachusetts regional economic and cultural partnership alliance known as “New England’s Knowledge Corridor”. University of Connecticut was the second U.S. university invited into Universitas 21, an elite international network of 24 research-intensive universities, who work together to foster global citizenship. University of Connecticut is accredited by the New England Association of Schools and Colleges (US). University of Connecticut was founded in 1881 as the Storrs Agricultural School, named after two brothers who donated the land for the school. In 1893, the school became a land grant college. In 1939, the name was changed to the University of Connecticut. Over the next decade, social work, nursing and graduate programs were established, while the schools of law and pharmacy were also absorbed into the university. During the 1960s, University of Connecticut Health was established for new medical and dental schools. John Dempsey Hospital opened in Farmington in 1975.

    Competing in the Big East Conference as the Huskies, University of Connecticut has been particularly successful in their men’s and women’s basketball programs. The Huskies have won 21 NCAA championships. The University of Connecticut Huskies are the most successful women’s basketball program in the nation, having won a record 11 NCAA Division I National Championships (tied with the UCLA Bruins men’s basketball team) and a women’s record four in a row (2013–2016), plus over 40 conference regular season and tournament championships. University of Connecticut also owns the two longest winning streaks of any gender in college basketball history.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: