From The NASA/ESA/CSA James Webb Space Telescope: “Webb Looks for Fomalhaut’s Asteroid Belt and Finds Much More”

NASA Webb Header

National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) James Webb Infrared Space Telescope annotated, finally launched December 25, 2021, ten years late.

From The NASA/ESA/CSA James Webb Space Telescope

5.8.23
MEDIA CONTACT:

Ray Villard
Space Telescope Science Institute, Baltimore, Maryland

Christine Pulliam
Space Telescope Science Institute, Baltimore, Maryland

Fomalhaut Dusty Debris Disk (MIRI Compass Image)
1

This image of the Fomalhaut system, captured by Webb’s Mid-Infrared Instrument (MIRI) [below], shows compass arrows, scale bar, and color key for reference. Labels indicate the various structures. At right, a great dust cloud is highlighted and pullouts show it in two infrared wavelengths: 23 and 25.5 microns.

The north and east compass arrows show the orientation of the image on the sky. Note that the relationship between north and east on the sky (as seen from below) is flipped relative to direction arrows on a map of the ground (as seen from above).

The scale bar is labeled in astronomical units, which is the average distance between the Earth and the Sun, or 93 million miles. The outer ring is about 240 astronomical units in diameter.

This image shows invisible mid-infrared wavelengths of light that have been translated into visible-light colors. The color key and labels show which MIRI filters were used when collecting the light.

Credits:
IMAGE: NASA, ESA, CSA
IMAGE PROCESSING: András Gáspár (University of Arizona), Alyssa Pagan (STScI)
SCIENCE: András Gáspár (University of Arizona)

Summary:
Nearby Planetary System Seen in Breathtaking Detail

A new Webb Space Telescope image of the bright, nearby star Fomalhaut reveals its planetary system with details never seen before, including nested concentric rings of dust. These belts most likely are carved by the gravitational forces produced by embedded, unseen planets. Similarly, inside our solar system Jupiter corrals the asteroid belt of leftover debris that lies between us and the giant planet. Astronomers first discovered Fomalhaut’s disk in 1983. But there has never been a view as spectacular – or as revealing – as Webb’s.
_________________________________________________________________________________________________________
Astronomers used NASA’s James Webb Space Telescope to image the warm dust around a nearby young star, Fomalhaut, in order to study the first asteroid belt ever seen outside of our solar system in infrared light. But to their surprise, the dusty structures are much more complex than the asteroid and Kuiper dust belts of our solar system. Overall, there are three nested belts extending out to 14 billion miles (23 billion kilometers) from the star; that’s 150 times the distance of Earth from the Sun. The scale of the outermost belt is roughly twice the scale of our solar system’s Kuiper Belt of small bodies and cold dust beyond Neptune. The inner belts – which had never been seen before – were revealed by Webb for the first time.

The belts encircle the young hot star, which can be seen with the naked eye as the brightest star in the southern constellation Piscis Austrinus. The dusty belts are the debris from collisions of larger bodies, analogous to asteroids and comets, and are frequently described as ‘debris disks.’ “I would describe Fomalhaut as the archetype of debris disks found elsewhere in our galaxy, because it has components similar to those we have in our own planetary system,” said András Gáspár of the University of Arizona in Tucson and lead author of a new paper describing these results. “By looking at the patterns in these rings, we can actually start to make a little sketch of what a planetary system ought to look like — if we could actually take a deep enough picture to see the suspected planets.”

The Hubble Space Telescope and the Herschel Space Observatory, as well as the Atacama Large Millimeter/submillimeter Array (ALMA), have previously taken sharp images of the outermost belt.

The National Aeronautics and Space Agency European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU) Hubble Space Telescope Instrumentation annotated.
The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU).
Herschel spacecraft active from 2009 to 2013.

The European Southern Observatory [La Observatorio Europeo Austral] [Observatoire européen austral][Europäische Südsternwarte](EU)(CL)/National Radio Astronomy Observatory/National Astronomical Observatory of Japan(JP) ALMA Observatory (CL).

However, none of them found any structure interior to it. The inner belts have been resolved for the first time by Webb in infrared light. “Where Webb really excels is that we’re able to physically resolve the thermal glow from dust in those inner regions. So you can see inner belts that we could never see before,” said Schuyler Wolff, another member of the team at the University of Arizona.

Hubble, ALMA, and Webb are tag-teaming to assemble a holistic view of the debris disks around a number of stars. “With Hubble and ALMA, we were able to image a bunch of Kuiper Belt analogs, and we’ve learned loads about how outer disks form and evolve,” said Wolff. “But we need Webb to allow us to image a dozen or so asteroid belts elsewhere. We can learn just as much about the inner warm regions of these disks as Hubble and ALMA taught us about the colder outer regions.”

These belts most likely are carved by the gravitational forces produced by unseen planets. Similarly, inside our solar system Jupiter corrals the asteroid belt, the inner edge of the Kuiper Belt is sculpted by Neptune, and the outer edge could be shepherded by as-yet-unseen bodies beyond it. As Webb images more systems, we will learn about the configurations of their planets.

Fomalhaut’s dust ring was discovered in 1983 in observations made by NASA’s Infrared Astronomical Satellite (IRAS).

NASA/UK/NL Infrared Astronomical Survey IRAS spacecraft, launched January 25, 1983 and retired December 1995

The existence of the ring has also been inferred from previous and longer-wavelength observations using submillimeter telescopes on Mauna Kea, Hawaii, NASA’s Spitzer Space Telescope, and Caltech’s Submillimeter Observatory.

National Aeronautics and Space AdministrationSpitzer Infrared Space Telescope no longer in service. Launched in 2003 and retired on 30 January 2020.
California Institute of Technology Submillimeter Observatory on Mauna Kea, Hawai’i, Altitude 4,205 m (13,796 ft).

“The belts around Fomalhaut are kind of a mystery novel: Where are the planets?” said George Rieke, another team member and U.S. science lead for Webb’s Mid-Infrared Instrument (MIRI), which made these observations. “I think it’s not a very big leap to say there’s probably a really interesting planetary system around the star.”

“We definitely didn’t expect the more complex structure with the second intermediate belt and then the broader asteroid belt,” added Wolff. “That structure is very exciting because any time an astronomer sees a gap and rings in a disk, they say, ‘There could be an embedded planet shaping the rings!’”

Webb also imaged what Gáspár dubs “the great dust cloud” that may be evidence for a collision occurring in the outer ring between two protoplanetary bodies. This is a different feature from a suspected planet first seen inside the outer ring by Hubble in 2008. Subsequent Hubble observations showed that by 2014 the object had vanished. A plausible interpretation is that this newly discovered feature, like the earlier one, is an expanding cloud of very fine dust particles from two icy bodies that smashed into each other.

The idea of a protoplanetary disk around a star goes back to the late 1700s when astronomers Immanuel Kant and Pierre-Simon Laplace independently developed the theory that the Sun and planets formed from a rotating gas cloud that collapsed and flattened due to gravity. Debris disks develop later, following the formation of planets and dispersal of the primordial gas in the systems. They show that small bodies like asteroids are colliding catastrophically and pulverizing their surfaces into huge clouds of dust and other debris. Observations of their dust provide unique clues to the structure of an exoplanetary system, reaching down to earth-sized planets and even asteroids, which are much too small to see individually.

The team’s results are being published in the journal Nature Astronomy.
https://www.nature.com/articles/s41550-023-01962-6

See the full article here .

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

The NASA/ESA/CSA James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror. Webb was finally launched December 25, 2021, ten years late. Webb will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

Webb is the world’s largest, most powerful, and most complex space science telescope ever built. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it.

Webb was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

Webb is an international collaboration between National Aeronautics and Space Administration, the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center managed the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute operates Webb.

Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

There are four science instruments on Webb: The Near InfraRed Camera (NIRCam), The Near InfraRed Spectrograph (NIRspec), The Mid-InfraRed Instrument (MIRI), and The Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS).

Webb’s instruments are designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.
National Aeronautics Space Agency Webb NIRCam.

NASA Webb NIRSpec

The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU) Webb MIRI schematic.

Canadian Space Agency [Agence Spatiale Canadienne](CA)Webb Fine Guidance Sensor-Near InfraRed Imager and Slitless Spectrograph FGS/NIRISS.

Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

Dark Ages and Re-ionization of the Universe Credit: The European Southern Observatory [La Observatorio Europeo Austral][Observatoire européen austral][Europäische Südsternwarte](EU)(CL).
Epoch of Reionization and first stars. Credit: California Institute of Technology.

Launch was December 25, 2021, ten years late on an Ariane 5 rocket. The launch was from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb is located at the second Lagrange point, about a million miles from the Earth.

LaGrange Points map. NASA.

ESA50 Logo large

Canadian Space Agency

Leave a comment