Tagged: The NASA/ESA/CSA James Webb Space Telescope Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:24 am on May 26, 2022 Permalink | Reply
    Tags: , , , , , , , , The NASA/ESA/CSA James Webb Space Telescope, "Geology from 50 Light Years- Webb Gets Ready to Study Rocky Worlds", Exoplanet LHS 3844 b   

    From The NASA/ESA/CSA James Webb Space Telescope: “Geology from 50 Light Years- Webb Gets Ready to Study Rocky Worlds” 

    NASA Webb Header

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) James Webb Infrared Space Telescope annotated, finally launched December 25, 2021, ten years late.

    From The NASA/ESA/CSA James Webb Space Telescope

    May 26, 2022

    MEDIA CONTACT:

    Margaret W. Carruthers
    Space Telescope Science Institute, Baltimore, Maryland

    Christine Pulliam
    Space Telescope Science Institute, Baltimore, Maryland

    1
    Illustration of Exoplanet 55 Cancri e and Its Star.
    About This Image

    Illustration showing what exoplanet 55 Cancri e could look like, based on current understanding of the planet.

    55 Cancri e is a rocky planet with a diameter almost twice that of Earth orbiting just 0.015 astronomical units from its Sun-like star. Because of its tight orbit, the planet is extremely hot, with dayside temperatures reaching 4,400 degrees Fahrenheit (about 2,400 degrees Celsius).

    Although previous studies have ruled out a thick hydrogen, carbon dioxide, or water atmosphere, it is possible that the planet has a substantial atmosphere made of oxygen or nitrogen, or a very thin atmosphere of mineral vapor, such as silicon oxide.

    Researchers think that if the planet is tidally locked, the lit surface must be permanently molten. If the planet is not locked, it would experience day-night cycles, with the surface heating up and melting during the day, and cooling and solidifying at night. The extreme heat during the day would also cause some of the molten rock to vaporize, forming a very tenuous mineral vapor atmosphere. In the evening, this vapor would condense and fall as a rain of lava back onto the surface, where it would turn solid overnight.

    Spectroscopic observations using Webb’s Near-Infrared Camera (NIRCam) and Mid-Infrared Instrument (MIRI) will help determine whether or not the planet has an atmosphere, and if so, what that atmosphere is made of. The observations will also help determine whether or not the planet is tidally locked. Credits: ARTWORK: NASA, ESA, CSA, Dani Player (STScI).

    2
    Illustration of Exoplanet LHS 3844 b and Its Star.

    About This Image

    Illustration showing what exoplanet LHS 3844 b could look like, based on current understanding of the planet.

    LHS 3844 b is a rocky planet with a diameter 1.3 times that of Earth orbiting 0.006 astronomical units from its cool red dwarf star. The planet is hot, with dayside temperatures calculated to be greater than 1,000 degrees Fahrenheit (greater than about 525 degrees Celsius).

    Previous studies show that the planet is unlikely to have a substantial atmosphere and that the surface may be composed of dark, perhaps basaltic, rock.

    Observations of the planet’s thermal emission spectrum using Webb’s Mid-Infrared Instrument (MIRI) will provide more evidence to help determine what the surface is made of. Credits: ARTWORK: NASA, ESA, CSA, Dani Player (STScI).

    3
    Simulated Thermal Emission Spectrum of Exoplanet LHS 3844 b.

    About This Image

    Possible thermal emission spectrum of the hot super-Earth exoplanet LHS 3844 b, as measured by Webb’s Mid-Infrared Instrument. A thermal emission spectrum shows the amount of light of different infrared wavelengths (colors) that are emitted by the planet. Researchers use computer models to predict what a planet’s thermal emission spectrum will look like assuming certain conditions, such as whether or not there is an atmosphere and what the surface of the planet is made of.

    This particular simulation assumes that LHS 3844 b has no atmosphere and the day side is covered in the dark volcanic rock basalt. (Basalt is the most common volcanic rock in our solar system, making up volcanic islands like Hawaii and most of Earth’s ocean floor, as well as large portions of the surfaces of the Moon and Mars.)

    For comparison, the gray line represents a model spectrum of basaltic rock based on laboratory measurements. The pink line is the spectrum of granite, the most common igneous rock found on Earth’s continents. The two types of rock have very different spectra because they are made of different minerals, which absorb and emit different amounts of different wavelengths of light.

    After Webb observes the planet, researchers will compare the actual spectrum to model spectra of various rock types like these to figure out what the surface of the planet is made of. Credits: ILLUSTRATION: NASA, ESA, CSA, Dani Player (STScI)
    SCIENCE: Laura Kreidberg (MPI-A), Renyu Hu (NASA-JPL).

    Summary

    Researchers will train Webb’s high-precision spectrographs on two intriguing rocky exoplanets: 55 Cancri e and LHS 3844 b.

    4
    Comparison of Exoplanets 55 Cancri e and LHS 3844 b to Earth and Neptune.

    About This Image

    Illustration comparing rocky exoplanets LHS 3844 b and 55 Cancri e to Earth and Neptune. Both 55 Cancri e and LHS 3844 b are between Earth and Neptune in terms of size and mass, but they are more similar to Earth in terms of composition.

    The planets are arranged from left to right in order of increasing radius.

    Image of Earth from the Deep Space Climate Observatory: Earth is a warm, rocky planet with a solid surface, water oceans, and a dynamic atmosphere.

    Illustration of LHS 3844 b: LHS 3844 b is a hot, rocky exoplanet with a solid, rocky surface. The planet is too hot for oceans to exist and does not appear to have any significant atmosphere.

    Illustration of 55 Cancri e: 55 Cancri e is a rocky exoplanet whose dayside temperature is high enough for the surface to be molten. The planet may or may not have an atmosphere.

    Image of Neptune from Voyager 2: Neptune is a cold ice giant with a thick, dense atmosphere.

    The illustration shows the planets to scale in terms of radius, but not location in space or distance from their stars. While Earth and Neptune orbit the Sun, LHS 3844 b orbits a small, cool red dwarf star about 49 light-years from Earth, and 55 Cancri e orbits a Sun-like star roughly 41 light-years away. Both are extremely close to their stars, completing one orbit in less than a single Earth day. Credits: ILLUSTRATION: NASA, ESA, CSA, Dani Player (STScI).

    Imagine if Earth were much, much closer to the Sun. So close that an entire year lasts only a few hours. So close that gravity has locked one hemisphere in permanent searing daylight and the other in endless darkness. So close that the oceans boil away, rocks begin to melt, and the clouds rain lava.

    While nothing of the sort exists in our own solar system, planets like this—rocky, roughly Earth-sized, extremely hot and close to their stars—are not uncommon in the Milky Way galaxy.

    What are the surfaces and atmospheres of these planets really like? NASA’s James Webb Space Telescope is about to provide some answers.
    _______________________________________________
    With its mirror segments beautifully aligned and its scientific instruments undergoing calibration, NASA’s James Webb Space Telescope is just weeks away from full operation. Soon after the first observations are revealed this summer, Webb’s in-depth science will begin.

    Among the investigations planned for the first year are studies of two hot exoplanets classified as “super-Earths” for their size and rocky composition: the lava-covered 55 Cancri e and the airless LHS 3844 b. Researchers will train Webb’s high-precision spectrographs on these planets with a view to understanding the geologic diversity of planets across the galaxy, and the evolution of rocky planets like Earth.

    Super-Hot Super-Earth 55 Cancri e

    55 Cancri e orbits less than 1.5 million miles from its Sun-like star (one twenty-fifth of the distance between Mercury and the Sun), completing one circuit in less than 18 hours. With surface temperatures far above the melting point of typical rock-forming minerals, the day side of the planet is thought to be covered in oceans of lava.

    Planets that orbit this close to their star are assumed to be tidally locked, with one side facing the star at all times. As a result, the hottest spot on the planet should be the one that faces the star most directly, and the amount of heat coming from the day side should not change much over time.

    But this doesn’t seem to be the case. Observations of 55 Cancri e from NASA’s Spitzer Space Telescope suggest that the hottest region is offset from the part that faces the star most directly, while the total amount of heat detected from the day side does vary.

    Does 55 Cancri e Have a Thick Atmosphere?

    One explanation for these observations is that the planet has a dynamic atmosphere that moves heat around. “55 Cancri e could have a thick atmosphere dominated by oxygen or nitrogen,” explained Renyu Hu of NASA’s Jet Propulsion Laboratory in Southern California, who leads a team that will use Webb’s Near-Infrared Camera (NIRCam) [below] and Mid-Infrared Instrument (MIRI) [below] to capture the thermal emission spectrum of the day side of the planet. “If it has an atmosphere, [Webb] has the sensitivity and wavelength range to detect it and determine what it is made of,” Hu added.

    Or Is It Raining Lava in the Evening on 55 Cancri e?

    Another intriguing possibility, however, is that 55 Cancri e is not tidally locked. Instead, it may be like Mercury, rotating three times for every two orbits (what’s known as a 3:2 resonance). As a result, the planet would have a day-night cycle.

    “That could explain why the hottest part of the planet is shifted,” explained Alexis Brandeker, a researcher from Stockholm University who leads another team studying the planet. “Just like on Earth, it would take time for the surface to heat up. The hottest time of the day would be in the afternoon, not right at noon.”

    Brandeker’s team plans to test this hypothesis using NIRCam to measure the heat emitted from the lit side of 55 Cancri e during four different orbits. If the planet has a 3:2 resonance, they will observe each hemisphere twice and should be able to detect any difference between the hemispheres.

    In this scenario, the surface would heat up, melt, and even vaporize during the day, forming a very thin atmosphere that Webb could detect. In the evening, the vapor would cool and condense to form droplets of lava that would rain back to the surface, turning solid again as night falls.

    Somewhat Cooler Super-Earth LHS 3844 b

    While 55 Cancri e will provide insight into the exotic geology of a world covered in lava, LHS 3844 b affords a unique opportunity to analyze the solid rock on an exoplanet surface.

    Like 55 Cancri e, LHS 3844 b orbits extremely close to its star, completing one revolution in 11 hours. However, because its star is relatively small and cool, the planet is not hot enough for the surface to be molten. Additionally, Spitzer observations indicate that the planet is very unlikely to have a substantial atmosphere.

    What Is the Surface of LHS 3844 b Made of?

    While we won’t be able to image the surface of LHS 3844 b directly with Webb, the lack of an obscuring atmosphere makes it possible to study the surface with spectroscopy.

    “It turns out that different types of rock have different spectra,” explained Laura Kreidberg at the Max Planck Institute for Astronomy. “You can see with your eyes that granite is lighter in color than basalt. There are similar differences in the infrared light that rocks give off.”

    Kreidberg’s team will use MIRI to capture the thermal emission spectrum of the day side of LHS 3844 b, and then compare it to spectra of known rocks, like basalt and granite, to determine its composition. If the planet is volcanically active, the spectrum could also reveal the presence of trace amounts of volcanic gases.

    The importance of these observations goes far beyond just two of the more than 5,000 confirmed exoplanets in the galaxy. “They will give us fantastic new perspectives on Earth-like planets in general, helping us learn what the early Earth might have been like when it was hot like these planets are today,” said Kreidberg.

    These observations of 55 Cancri e and LHS 3844 b will be conducted as part of Webb’s Cycle 1 General Observers program. General Observers programs were competitively selected using a dual-anonymous review system, the same system used to allocate time on Hubble.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The NASA/ESA/CSA James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror. Webb was finally launched December 25, 2021, ten years late. The James Webb Space Telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    The James Webb Space Telescope is the world’s largest, most powerful, and most complex space science telescope ever built. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it.

    Webb telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    Webb telescope was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

    Webb is an international collaboration between National Aeronautics and Space Administration, the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center managed the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute will operate Webb after launch.

    Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

    There are four science instruments on Webb: The Near InfraRed Camera (NIRCam), The Near InfraRed Spectrograph (NIRspec), The Mid-InfraRed Instrument (MIRI), and The Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS). Webb’s instruments are designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.
    National Aeronautics Space Agency Webb NIRCam.

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Webb NIRspec.

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Webb MIRI schematic.

    Webb Fine Guidance Sensor-Near InfraRed Imager and Slitless Spectrograph FGS/NIRISS.

    Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

    Launch was December 25, 2021 on an Ariane 5 rocket. The launch was from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb is located at the second Lagrange point, about a million miles from the Earth.

    ESA50 Logo large

    Canadian Space Agency

     
  • richardmitnick 1:24 pm on May 25, 2022 Permalink | Reply
    Tags: "Webb Nearly Set to Explore the Solar System", , The NASA/ESA/CSA James Webb Space Telescope   

    From The NASA/ESA/CSA James Webb Space Telescope: “Webb Nearly Set to Explore the Solar System” 

    NASA Webb Header

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) James Webb Infrared Space Telescope annotated, finally launched December 25, 2021, ten years late.

    From The NASA/ESA/CSA James Webb Space Telescope

    As NASA’s James Webb Space Telescope moves through the final phases of commissioning its science instruments, we have also begun working on technical operations of the observatory. While the telescope moves through space, it will constantly find distant stars and galaxies and point at them with extreme precision to acquire images and spectra. However, we also plan to observe planets and their satellites, asteroids, and comets in our solar system, which move across the background stars of our galaxy. Webb needs to be able to lock on to these objects and track them with sufficient precision to obtain images and spectra. The Webb team recently completed the first test to track a moving object. The test verified that Webb could conduct moving target science! As we move forward through commissioning, we will test other objects moving at various speeds to verify we can study objects with Webb that move throughout the solar system.

    Today, we asked Heidi Hammel, Webb interdisciplinary scientist for solar system observations, to tell us about her plans for studying Earth’s nearest neighbors:

    “I am really excited about Webb’s upcoming first year of science operations! I lead a team of equally excited astronomers eager to begin downloading data. Webb can detect the faint light of the earliest galaxies, but my team will be observing much closer to home. They will use Webb to unravel some of the mysteries that abound in our own solar system.

    “One of the questions I get asked frequently is why we need a powerful telescope like Webb to study our nearby solar system. We planetary scientists use telescopes to complement our in situ missions (missions that we send to fly by, orbit, or land on objects). One example of this is how Hubble was used to find the post-Pluto target for the New Horizons mission, Arrokoth. We also use telescopes when we don’t have in situ missions planned – like for the distant ice giants Uranus and Neptune or to make measurements of large populations of objects, such as hundreds of asteroids or Kuiper Belt Objects (small ice worlds beyond the orbits of Neptune, including Pluto), since we can only send missions to just a few of these.

    “The Webb team has already used an asteroid within our solar system to run engineering tests of the ‘moving target’ (MT) capability. The engineering team tested this capability on a small asteroid in the Main Belt: 6481 Tenzing, named after Tenzing Norgay, the famous Tibetan mountain guide who was one of the first people to reach the summit of Mount Everest. Bryan Holler, at the Space Telescope Science Institute, had a choice of about 40 possible asteroids to test the MT tracking, but, as he told our team: “Since the objects were all virtually identical otherwise, picking the one with a name linked to success seemed like a no-brainer.” We like that sort of thing.

    2
    Uranus shown within the field of view for MIRI spectroscopy. Keck image and data of Uranus courtesy L. Sromovsky, Leigh Fletcher.

    “My role with Webb as an ‘Interdisciplinary Scientist’ means that my program uses all of the capabilities of this forefront telescope! We need all of them to truly understand the solar system (and the universe!).

    “Our solar system has far more mysteries than my team had time to solve. Our programs will observe objects across the solar system: We will image the giant planets and Saturn’s rings; explore many Kuiper Belt Objects; analyze the atmosphere of Mars; execute detailed studies of Titan; and much more! There are also other teams planning observations; in its first year, 7% of Webb’s time will be focused on objects within our solar system.

    “One exciting and challenging program we plan to do is observe ocean worlds. There’s evidence from the Hubble Space Telescope that Jupiter’s moon Europa has sporadic plumes of water-rich material. We plan to take high-resolution imagery of Europa to study its surface and search for plume activity and active geologic processes. If we locate a plume, we will use Webb’s spectroscopy to analyze the plume’s composition.

    3
    Simulated spectroscopy results from the plumes of Europa. This is an example of the data the Webb telescope could return that could identify the composition of subsurface ocean of this moon. Credit: NASA-GSFC/SVS, Hubble Space Telescope, Stefanie Milam, Geronimo Villanueva.

    “I have a soft spot in my heart for Uranus and Neptune. Indeed, it was the lack of a mission to these very distant worlds that got me involved in Webb so many decades ago. The Uranus team hopes to definitively link the chemistry and dynamics of the upper atmosphere (detectable with Webb) to the deeper atmosphere that we have been studying with other facilities over many decades. I’ve spent the past 30 years using the biggest and best telescopes humanity has ever built to study these ice giants, and we will now add Webb to that list.

    “We have been planning for Webb observations for over twenty years, and that has gone into overdrive now that we are launched, deployed, and focused! I’ll note that nearly all of my team’s solar system data will be freely available to the broad planetary science community immediately. I made that choice to enable more science discoveries with Webb in future proposals.

    “I am gratified to have been able to work with the team for all this time, and I especially want to give a shout out to the thousands of people who collectively have enabled this amazing facility for the astrophysics and planetary communities. Thank you! Ad astra!”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The NASA/ESA/CSA James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror. Webb was finally launched December 25, 2021, ten years late. The James Webb Space Telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    The James Webb Space Telescope is the world’s largest, most powerful, and most complex space science telescope ever built. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it.

    Webb telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    Webb telescope was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

    Webb is an international collaboration between National Aeronautics and Space Administration, the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center managed the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute will operate Webb after launch.

    Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

    There are four science instruments on Webb: The Near InfraRed Camera (NIRCam), The Near InfraRed Spectrograph (NIRspec), The Mid-InfraRed Instrument (MIRI), and The Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS). Webb’s instruments are designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.
    National Aeronautics Space Agency Webb NIRCam.

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Webb NIRspec.

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Webb MIRI schematic.

    Webb Fine Guidance Sensor-Near InfraRed Imager and Slitless Spectrograph FGS/NIRISS.

    Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

    Launch was December 25, 2021 on an Ariane 5 rocket. The launch was from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb is located at the second Lagrange point, about a million miles from the Earth.

    ESA50 Logo large

    Canadian Space Agency

     
  • richardmitnick 10:56 am on May 14, 2022 Permalink | Reply
    Tags: "Webb fully aligned! See the new test images", , , The NASA/ESA/CSA James Webb Space Telescope   

    From EarthSky and The NASA/ESA/CSA James Webb Space Telescope: “Webb fully aligned! See the new test images” 

    1

    From EarthSky

    and

    The NASA/ESA/CSA James Webb Space Telescope

    May 8, 2022
    Paul Scott Anderson


    The Webb Telescope Completes Alignment Phase.

    The excitement of the James Webb Space Telescope mission continues. NASA announced on April 28, 2022, that the alignment process is now complete. Teams have just completed the seventh and final stage, and all the science instruments are almost ready to start imaging the cosmos this summer. NASA released a new series of test images – called an image sharpness check – to demonstrate the alignment and hint at what future images will be able to show.

    If this preview is anything to go by, the first actual science images this summer should be fantastic! The images show a portion of the Large Magellanic Cloud, a small, irregular satellite galaxy of the Milky Way.

    Webb is fully aligned – but what does it mean?

    What does NASA mean by “fully aligned?”

    “Fully aligned” means that Webb’s mirrors are now directing fully focused light collected from space down into each instrument. Each instrument is also successfully capturing images with the light being delivered to them.

    The next and final phase of preparations is science instrument commissioning, which will take about another two months. Then, Webb will finally begin its actual science mission, obtaining unprecedented new images and data of stars, galaxies, exoplanets and other objects in the universe.

    Webb’s new alignment test images are in full focus

    The new test images show that all four of Webb’s science instruments are fully aligned and in focus. It goes without saying that this testing phase is crucial to the success of the mission. As Lee Feinberg, Optical Telescope Element Manager for Webb at NASA’s Goddard Space Flight Center (GSFC), commented:

    “These remarkable test images from a successfully aligned telescope demonstrate what people across countries and continents can achieve when there is a bold scientific vision to explore the universe.”

    2
    Lee Feinberg has been the Optical Telescope Element Manager for the James Webb Space Telescope at the NASA Goddard Space Flight Center for the past 20 years. Image via Goddard/ NASA.

    Even better than expected

    The results of the test images, along with the optical performance of Webb overall, are even better than hoped for. All four instruments are capturing images exactly as they are supposed to do. In fact, the image quality is “diffraction-limited,” which means that the fineness of detail that we can see is as good as physically possible for the size of the telescope. Scientists will need to make only very small, periodic adjustments from now on.

    Scott Acton, Webb wavefront sensing and control scientist at Ball Aerospace, said:

    “With the completion of telescope alignment and half a lifetime’s worth of effort, my role on the James Webb Space Telescope mission has come to an end. These images have profoundly changed the way I see the universe. We are surrounded by a symphony of creation; there are galaxies everywhere! It is my hope that everyone in the world can see them.”

    3
    Webb took this series of images during its sharpness check. Even though these are still just test images, the detail in them is incredible. The images show a portion of the Large Magellanic Cloud, a small, irregular satellite galaxy of the Milky Way. Image via NASA/ The Space Telescope Science Institute.

    What’s next for Webb?

    Now, Webb enters a new phase, called science instrument commissioning. Basically, this involves making sure that each instrument is ready to conduct the science operations it is designed for. Each instrument is specialized with unique detectors, lenses, masks, filters and other customized equipment. The characteristics of each instrument need to be configured and operated in various combinations to ensure their readiness.

    The alignment phase is now over, but there are still some calibration activities to finish. For example, engineers will command the telescope to point to different areas in the sky where the total amount of solar radiation hitting the observatory varies. They do this to confirm the thermal stability of Webb when it is changing targets. Also, to be extra careful, engineers will conduct maintenance observations every two days. This involves monitoring the mirror alignment and, if necessary, applying corrections to keep the mirrors properly aligned.

    With this in mind, engineers must do all of the maintenance observations and other testing remotely. Webb is too far away, nearly one million miles (1.6 million km) from Earth, for astronauts to go and service it as with the Hubble Space Telescope. Unlike Hubble, Webb orbits the sun at the second Lagrange point, or L2.

    NASA released Webb’s first test image on March 16, 2022. Unlike the new images, it focused on a single star.

    4
    On March 16, 2022, NASA released another new image from Webb, the giant space telescope launched on Christmas Day and now residing at the L-2 point in the Earth-sun system.

    The telescope is now in a testing phase. Its first science images are expected this summer. This image is a taste of what’s to come. As NASA said: “While the purpose of this image was to focus on the bright star at the center for alignment evaluation, Webb’s optics and NIRCam are so sensitive that the galaxies and stars seen in the background show up.” Image via NASA.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    NASA Webb Header

    National Aeronautics Space Agency(US)/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) James Webb Infrared Space Telescope(US) annotated, finally launched December 25, 2021, ten years late.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The NASA/ESA/CSA James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror. Webb was finally launched December 25, 2021, ten years late. The James Webb Space Telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    The James Webb Space Telescope is the world’s largest, most powerful, and most complex space science telescope ever built. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it.

    Webb telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    Webb telescope was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

    Webb is an international collaboration between National Aeronautics and Space Administration, the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center managed the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute will operate Webb after launch.

    Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

    There are four science instruments on Webb: The Near InfraRed Camera (NIRCam), The Near InfraRed Spectrograph (NIRspec), The Mid-InfraRed Instrument (MIRI), and The Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS). Webb’s instruments are designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.
    National Aeronautics Space Agency Webb NIRCam.

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Webb NIRspec.

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Webb MIRI schematic.

    Webb Fine Guidance Sensor-Near InfraRed Imager and Slitless Spectrograph FGS/NIRISS.

    Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

    Launch was December 25, 2021 on an Ariane 5 rocket. The launch was from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb is located at the second Lagrange point, about a million miles from the Earth.

    ESA50 Logo large

    Canadian Space Agency

    Deborah Byrd created the EarthSky radio series in 1991 and founded EarthSky.orgin 1994. Today, she serves as Editor-in-Chief of this website. She has won a galaxy of awards from the broadcasting and science communities, including having an asteroid named 3505 Byrd in her honor. A science communicator and educator since 1976, Byrd believes in science as a force for good in the world and a vital tool for the 21st century. “Being an EarthSky editor is like hosting a big global party for cool nature-lovers,” she says.

     
  • richardmitnick 12:40 pm on February 16, 2022 Permalink | Reply
    Tags: "Studying the Next Interstellar Interloper with Webb", , The NASA/ESA/CSA James Webb Space Telescope   

    From The NASA/ESA/CSA James Webb Space Telescope: “Studying the Next Interstellar Interloper with Webb” 

    NASA Webb Header

    National Aeronautics Space Agency(US)/European Space Agency [Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) James Webb Infrared Space Telescope(US) annotated, finally launched December 25, 2021, ten years late.

    From The NASA/ESA/CSA James Webb Space Telescope

    February 16, 2022

    Credits:
    MEDIA CONTACT:

    Ann Jenkins
    Space Telescope Science Institute, Baltimore, Maryland

    Christine Pulliam
    Space Telescope Science Institute, Baltimore, Maryland

    2
    About This Image.
    This artist’s illustration shows the first identified interstellar visitor, 1I/’Oumuamua, discovered in 2017. The wayward object swung within 24 million miles of the Sun before racing out of the solar system. ‘Oumuamua still defies any simple categorization. It did not behave like a comet, and it had a variety of unusual characteristics. As the complex rotation of the object made it difficult to determine the exact shape, there are many models of what it could look like. Credits: ARTWORK: NASA, ESA, Joseph Olmsted (STScI), Frank Summers (STScI)

    3
    About This Image.
    This Hubble Space Telescope image of 2I/Borisov shows the first observed rogue comet, a comet from interstellar space that is not gravitationally bound to a star. It was discovered in 2019 and is the second identified interstellar interloper, after ‘Oumuamua. 2I/Borisov looks a lot like the traditional comets found inside our solar system, which sublimate ices and cast off dust as they are warmed by the Sun. The wandering comet provided invaluable clues to the chemical composition, structure, and dust characteristics of planetary building blocks presumably forged in an alien star system. It’s rapidly moving away from our Sun and will eventually head back into interstellar space, never to return.
    IMAGE: NASA, ESA, David Jewitt (The University of California-Los Angeles (US)) IMAGE PROCESSING: Joseph DePasquale (STScI)

    Summary:
    Scientists will learn about objects trespassing on our cosmic turf

    So far, only two interstellar objects have been spotted buzzing through our solar system, but scientists think many more are lurking. When the next one is discovered, NASA’s powerful new James Webb Space Telescope may have a ringside seat for analyzing this interloper. Webb will help astronomers learn about its composition, formation history, and home system. For the first time, scientists will get an up-close-and-personal view of something born outside our solar system.

    _________________________________________________________________________

    One of the most exciting findings in planetary science in recent years is the discovery of interstellar objects passing through our solar system. So far, astronomers have confirmed only two of these interlopers from other star systems — 1I/’Oumuamua in 2017 and 2I/Borisov in 2018 — but many, many more are thought to exist. Scientists have had only limited ability to study these objects once discovered, but all of that is about to change with NASA’s James Webb Space Telescope.

    “The supreme sensitivity and power of Webb now present us with an unprecedented opportunity to investigate the chemical composition of these interstellar objects and find out so much more about their nature: where they come from, how they were made, and what they can tell us about the conditions present in their home systems,” explained Martin Cordiner, principal investigator of a Webb Target of Opportunity program
    to study the composition of an interstellar object.

    “The ability to study one of these and find out its composition — to really see material from around another planetary system close up — is truly an amazing thing,” said Cordiner, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland and The Catholic University of America. The first two interstellar objects detected were very different: One was very comet-like, and one was not. Cordiner and his team hope to find out how unique those objects were and whether they’re representative of the broader population of interstellar objects.

    Triggering Process

    Astronomers are constantly monitoring various sources of information, ranging from amateur observers to professional observatories, in the hopes of finding the next interstellar interloper. When the next such object is first detected, scientists won’t immediately be certain if it’s an interstellar object. They’ll need additional observations over a period of days, weeks, or even months to confirm it — depending on its brightness.

    Once they have confirmation that the object came from outside the solar system based on its “hyperbolic” orbit, and they are certain the object didn’t come from the outer reaches of our own solar system or the Oort cloud, they can calculate the trajectory of the object across the sky. If that trajectory intersects with Webb’s viewing field, Cordiner and his team will make the observations.

    The Science

    The team will use Webb’s spectroscopic capabilities in both the near-infrared and mid-infrared bands to study two different aspects of the interstellar object. First, using the Near-Infrared Spectrograph (NIRSpec), they will analyze the chemical fingerprints of gases released by the object as any ices that might be present are vaporized by our Sun’s heat. Second, with the Mid-Infrared Instrument (MIRI), they will observe any dust that the object is producing — small, microscopic particles; larger grains; and even pebbles that may be lifted off the surface and surrounding the object.

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) NIRSpec

    European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Webb MIRI schematic.

    With its high spectral resolution, NIRSpec can pick out the emission from individual gases, allowing the team to detect specific molecules such as water, methanol, formaldehyde, carbon dioxide, carbon monoxide, and methane. MIRI, in the mid-infrared, is more tuned to the heat spectrum produced by solid particles, such as dust grains or the object’s nucleus.

    Powerful New Insights

    In our own solar system, comets are icy remnants from the era of planet formation around our Sun, so they can provide unique insight into the chemical conditions present in the earliest history of our solar system. This Webb program has the ability to reveal — for the first time — similarly powerful insights into the chemistry of the formation of planets around other stars.

    Astronomers don’t fully understand the exact chemical processes involved in forming planets. For example, how does a planet arise from simple chemical ingredients? Does it happen in the same way around all stars? Was there anything peculiar about the way our own planets formed around our Sun, compared with how they form around other stars elsewhere in the galaxy? If scientists can get proof of the chemical conditions present in other planetary systems by observing an interstellar object and seeing what it’s made of, then they can get a much clearer picture of the true extent of chemistry that’s possible in those other planetary systems.

    A New Window with Webb

    Interstellar objects have not been observed before in these important near- and mid-infrared wavelength ranges, so the possibilities for new discoveries are quite profound. With trillions and trillions of interstellar objects buzzing around the galaxy, the team doesn’t know what they are going to find, but they know that it will be fascinating.

    “With Webb, we can do really interesting science at much fainter magnitudes or brightnesses,” explained teammate Cristina Thomas, an assistant professor of astronomy at Northern Arizona University. “Also, we’ve never been able to observe interstellar objects in this region of the infrared. It opens a lot of opportunities for the different compositional signatures that we’re interested in. That’s going to be a huge boon for us!”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The NASA/ESA/CSA James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror. Webb was finally launched December 25, 2021, ten years late. The James Webb Space Telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    The James Webb Space Telescope is the world’s largest, most powerful, and most complex space science telescope ever built. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it.
    Webb telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    Webb telescope was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

    Webb is an international collaboration between National Aeronautics and Space Administration (US), The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center (US) is managing the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute (US) will operate Webb after launch.

    Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

    There will be four science instruments on Webb: The Near InfraRed Camera (NIRCam), The Near InfraRed Spectrograph (NIRspec), The Mid-InfraRed Instrument (MIRI), and The Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS). Webb’s instruments will be designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.
    National Aeronautics Space Agency (US) Webb NIRCam.

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Webb NIRspec.

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Webb MIRI schematic.

    Webb Fine Guidance Sensor-Near InfraRed Imager and Slitless Spectrograph FGS/NIRISS.

    Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

    Webb was launched December 25, 2022, ten years late. Webb will be located at the second Lagrange point, about a million miles from the Earth.

    LaGrange Points map. NASA.

    ESA50 Logo large

    Canadian Space Agency

     
  • richardmitnick 9:17 pm on January 24, 2022 Permalink | Reply
    Tags: "Orbital Insertion Burn a Success-Webb Arrives at L2", , The NASA/ESA/CSA James Webb Space Telescope   

    From The NASA/ESA/CSA James Webb Space Telescope: “Orbital Insertion Burn a Success-Webb Arrives at L2” 

    NASA Webb Header

    National Aeronautics Space Agency(USA)/The European Space Agency [Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) Webb Infrared Space Telescope(US) James Webb Space Telescope annotated, finally launched December 25, 2021, ten years late.

    From The NASA/ESA/CSA James Webb Space Telescope

    January 24, 2022
    Alise Fisher

    Today, at 2 p.m. EST, Webb fired its onboard thrusters for nearly five minutes (297 seconds) to complete the final postlaunch course correction to Webb’s trajectory. This mid-course correction burn inserted Webb toward its final orbit around the second Sun-Earth Lagrange point, or L2, nearly 1 million miles away from the Earth.

    LaGrange Points map. NASA.

    The final mid-course burn added only about 3.6 miles per hour (1.6 meters per second) – a mere walking pace – to Webb’s speed, which was all that was needed to send it to its preferred “halo” orbit around the L2 point.

    “Webb, welcome home!” said NASA Administrator Bill Nelson. “Congratulations to the team for all of their hard work ensuring Webb’s safe arrival at L2 today. We’re one step closer to uncovering the mysteries of the universe. And I can’t wait to see Webb’s first new views of the universe this summer!”

    2
    The final burn. Credit: Steve Sabia/NASA Goddard Space Flight Center(US).

    Webb’s orbit will allow it a wide view of the cosmos at any given moment, as well as the opportunity for its telescope optics and scientific instruments to get cold enough to function and perform optimal science. Webb has used as little propellant as possible for course corrections while it travels out to the realm of L2, to leave as much remaining propellant as possible for Webb’s ordinary operations over its lifetime: station-keeping (small adjustments to keep Webb in its desired orbit) and momentum unloading (to counteract the effects of solar radiation pressure on the huge sunshield).

    “During the past month, JWST has achieved amazing success and is a tribute to all the folks who spent many years and even decades to ensure mission success,” said Bill Ochs, Webb project manager at NASA’s Goddard Space Flight Center. “We are now on the verge of aligning the mirrors, instrument activation and commissioning, and the start of wondrous and astonishing discoveries.”

    Now that Webb’s primary mirror segments and secondary mirror have been deployed from their launch positions, engineers will begin the sophisticated three-month process of aligning the telescope’s optics to nearly nanometer precision.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The NASA/ESA/CSA James Webb Space Telescope will be a large infrared telescope with a 6.5-meter primary mirror. Webb was finally launched December 25, 2021, ten years late.

    The James Webb Space Telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    The James Webb Space Telescope is the world’s largest, most powerful, and most complex space science telescope ever built. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it.

    Webb telescope was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

    Webb is an international collaboration between National Aeronautics and Space Administration (US), the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center (US) is managing the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute (US) will operate Webb after launch.

    Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

    There will be four science instruments on Webb: The Near InfraRed Camera (NIRCam), The Near InfraRed Spectrograph (NIRspec), The Mid-InfraRed Instrument (MIRI), and The Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS). Webb’s instruments will be designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.
    National Aeronautics Space Agency (US) Webb NIRCam.

    European Space Agency [Agence spatiale européenne](EU)Webb NIRspec.

    European Space Agency [Agence spatiale européenne](EU) Webb MIRI schematic.

    Webb Fine Guidance Sensor-Near InfraRed Imager and Slitless Spectrograph FGS/NIRISS.

    Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

    ESA50 Logo large

    Canadian Space Agency

     
  • richardmitnick 10:33 am on December 27, 2021 Permalink | Reply
    Tags: "NASA's Webb Telescope Launches to See First Galaxies and Distant Worlds", Approximately 30 minutes after launch Webb unfolded its solar array and mission managers confirmed that the solar array was providing power to the observatory., At the end of commissioning Webb will deliver its first images., Engineers and ground controllers will conduct the first of three mid-course correction burns about 12 hours and 30 minutes after launch., Ground teams began receiving telemetry data from Webb about five minutes after launch., NASA’s James Webb Space Telescope launched at 7:20 a.m. EST Saturday on an Ariane 5 rocket from Europe’s Spaceport in French Guiana in South America., , The NASA/ESA/CSA James Webb Space Telescope, The world’s largest and most complex space science observatory will now begin six months of commissioning in space., Webb carries four state-of-the-art science instruments with highly sensitive infrared detectors of unprecedented resolution.   

    From The NASA/ESA/CSA James Webb Space Telescope: “NASA’s Webb Telescope Launches to See First Galaxies and Distant Worlds” 

    NASA Webb Header

    National Aeronautics Space Agency(USA)/European Space Agency [Agence spatiale européenne](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) Webb Infrared Space Telescope(US) James Webb Space Telescope annotated. Scheduled for launch in October 2021.

    From The NASA/ESA/CSA James Webb Space Telescope

    Dec 27, 2021

    Natasha Pinol
    NASA Headquarters, Washington, DC (US)
    202-358-0930
    natasha.r.pinol@nasa.gov

    Alise Fisher
    NASA Headquarters, Washington, DC (US)
    202-617-4977
    alise.m.fisher@nasa.gov

    Laura Betz
    Goddard Space Flight Center, Greenbelt, Md.
    240-357-6833
    laura.e.betz@nasa.gov

    1
    An Ariane 5 rocket launches the James Webb Space Telescope into space to begin its journey to its final science orbit some 1 million miles away from Earth. Credit: The Guiana Space Centre [Centre Spatial Guyanais; CSG)(GF) also called Europe’s Spaceport.

    2
    WST after separation from the Ariane 5 rocket above Earth. Image Credits: NASA JWST Launch Livestream.


    James Webb Space Telescope Launch — Official NASA Broadcast.
    2:17:30

    2
    The primary mirror of NASA’s James Webb Space Telescope is planned to be deployed only once more on Earth, before being packaged for delivery to South America. Credit: Chris Gunn/NASA.

    3
    Assembly of the James Webb Space Telescope in a Northrop Grumman facility in Redondo Beach, Calif., in 2019.Credi: Chris Gunn/NASA.

    NASA’s James Webb Space Telescope launched at 7:20 a.m. EST Saturday on an Ariane 5 rocket from Europe’s Spaceport in French Guiana in South America.

    A joint effort with ESA (European Space Agency) and the Canadian Space Agency, the Webb observatory is NASA’s revolutionary flagship mission to seek the light from the first galaxies in the early universe and to explore our own solar system, as well as planets orbiting other stars, called exoplanets.

    “The James Webb Space Telescope represents the ambition that NASA and our partners maintain to propel us forward into the future,” said NASA Administrator Bill Nelson. “The promise of Webb is not what we know we will discover; it’s what we don’t yet understand or can’t yet fathom about our universe. I can’t wait to see what it uncovers!”

    Ground teams began receiving telemetry data from Webb about five minutes after launch. The Arianespace Ariane 5 rocket performed as expected, separating from the observatory 27 minutes into the flight. The observatory was released at an altitude of approximately 870 miles (1,400 kilometers). Approximately 30 minutes after launch Webb unfolded its solar array and mission managers confirmed that the solar array was providing power to the observatory. After solar array deployment, mission operators will establish a communications link with the observatory via the Malindi ground station in Kenya, and ground control at the Space Telescope Science Institute in Baltimore will send the first commands to the spacecraft.

    Engineers and ground controllers will conduct the first of three mid-course correction burns about 12 hours and 30 minutes after launch, firing Webb’s thrusters to maneuver the spacecraft on an optimal trajectory toward its destination in orbit about 1 million miles from Earth.

    “I want to congratulate the team on this incredible achievement – Webb’s launch marks a significant moment not only for NASA, but for thousands of people worldwide who dedicated their time and talent to this mission over the years,” said Thomas Zurbuchen, associate administrator for the Science Mission Directorate at NASA Headquarters in Washington. “Webb’s scientific promise is now closer than it ever has been. We are poised on the edge of a truly exciting time of discovery, of things we’ve never before seen or imagined.”

    At The world’s largest and most complex space science observatory will now begin six months of commissioning in space. At the end of commissioning Webb will deliver its first images. Webb carries four state-of-the-art science instruments with highly sensitive infrared detectors of unprecedented resolution [below]. Webb will study infrared light from celestial objects with much greater clarity than ever before. The premier mission is the scientific successor to NASA’s iconic Hubble and Spitzer space telescopes, built to complement and further the scientific discoveries of these and other missions.

    National Aeronautics and Space Administration(US)/European Space Agency [Agence spatiale européenne] [Europäische Weltraumorganisation](EU) Hubble Space Telescope.

    National Aeronautics and Space Administration(US) Spitzer Infrared Space Telescope no longer in service. Launched in 2003 and retired on 30 January 2020.

    “The launch of the Webb Space Telescope is a pivotal moment – this is just the beginning for the Webb mission,” said Gregory L. Robinson, Webb’s program director at NASA Headquarters. “Now we will watch Webb’s highly anticipated and critical 29 days on the edge. When the spacecraft unfurls in space, Webb will undergo the most difficult and complex deployment sequence ever attempted in space. Once commissioning is complete, we will see awe-inspiring images that will capture our imagination.”

    The telescope’s revolutionary technology will explore every phase of cosmic history – from within our solar system to the most distant observable galaxies in the early universe, to everything in between. Webb will reveal new and unexpected discoveries and help humanity understand the origins of the universe and our place in it.

    NASA Headquarters oversees the mission for the agency’s Science Mission Directorate (US). NASA’s Goddard Space Flight Center (US) in Greenbelt, Maryland, manages Webb for the agency and oversees work on the mission performed by the Space Telescope Science Institute (US), Northrop Grumman, and other mission partners. In addition to Goddard, several NASA centers contributed to the project, including the agency’s Johnson Space Center Houston (US), JPL/Caltech-NASA(US), Marshall Space Flight Center (US), The NASA Ames Research Center (US), and others.

    For more information about the Webb mission, visit:

    https://webb.nasa.gov

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The The NASA/ESA/CSA James Webb Space Telescope will be a large infrared telescope with a 6.5-meter primary mirror. Launch is planned for October 2021.

    Webb telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    Webb telescope was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

    Webb is an international collaboration between National Aeronautics and Space Administration (US), the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center (US) is managing the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute (US) will operate Webb after launch.

    Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

    There will be four science instruments on Webb: The Near InfraRed Camera (NIRCam), The Near InfraRed Spectrograph (NIRspec), The Mid-InfraRed Instrument (MIRI), and The Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS). Webb’s instruments will be designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.
    National Aeronautics Space Agency (US) Webb NIRCam.

    European Space Agency [Agence spatiale européenne](EU)Webb NIRspec.

    European Space Agency [Agence spatiale européenne](EU) Webb MIRI schematic.

    Webb Fine Guidance Sensor-Near InfraRed Imager and Slitless Spectrograph FGS/NIRISS.

    Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

    Launch is scheduled for later in the decade on an Ariane 5 rocket. The launch will be from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb will be located at the second Lagrange point, about a million miles from the Earth.

    ESA50 Logo large

    Canadian Space Agency

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: