Tagged: Laser frequency combs Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:13 am on June 22, 2020 Permalink | Reply
    Tags: "Comb on a Chip: New Design for ‘Optical Ruler’ Could Revolutionize Clocks; Telescopes; Telecommunications", Laser frequency combs, , Optical microresonator,   

    From NIST and UCSB: “Comb on a Chip: New Design for ‘Optical Ruler’ Could Revolutionize Clocks, Telescopes, Telecommunications” 

    UC Santa Barbara Name bloc
    UC Santa Barbara


    From NIST

    June 22, 2020
    Media Contact

    Ben P. Stein
    benjamin.stein@nist.gov

    (301) 975-2763

    Technical Contact

    Gregory Moille
    gregory.moille@nist.gov

    (301) 975-8413

    1
    Credit: NIST

    Just as a meter stick with hundreds of tick marks can be used to measure distances with great precision, a device known as a laser frequency comb, with its hundreds of evenly spaced, sharply defined frequencies, can be used to measure the colors of light waves with great precision.

    Small enough to fit on a chip, miniature versions of these combs — so named because their set of uniformly spaced frequencies resembles the teeth of a comb — are making possible a new generation of atomic clocks, a great increase in the number of signals traveling through optical fibers, and the ability to discern tiny frequency shifts in starlight that hint at the presence of unseen planets. The newest version of these chip-based “microcombs,” created by researchers at the National Institute of Standards and Technology (NIST) and the University of California at Santa Barbara (UCSB), is poised to further advance time and frequency measurements by improving and extending the capabilities of these tiny devices.

    At the heart of these frequency microcombs lies an optical microresonator, a ring-shaped device about the width of a human hair in which light from an external laser races around thousands of times until it builds up high intensity. Microcombs, often made of glass or silicon nitride, typically require an amplifier for the external laser light, which can make the comb complex, cumbersome and costly to produce.

    The NIST scientists and their UCSB collaborators have demonstrated that microcombs created from the semiconductor aluminum gallium arsenide have two essential properties that make them especially promising. The new combs operate at such low power that they do not need an amplifier, and they can be manipulated to produce an extraordinarily steady set of frequencies — exactly what is needed to use the microchip comb as a sensitive tool for measuring frequencies with extraordinary precision. (The research is part of the NIST on a Chip program.)

    The newly developed microcomb technology can help enable engineers and scientists to make precision optical frequency measurements outside the laboratory, said NIST scientist Gregory Moille. In addition, the microcomb can be mass-produced through nanofabrication techniques similar to the ones already used to manufacture microelectronics.

    The researchers at UCSB led earlier efforts in examining microresonators composed of aluminum gallium arsenide. The frequency combs made from these microresonators require only one-hundredth the power of devices fabricated from other materials. However, the scientists had been unable to demonstrate a key property — that a discrete set of unwavering, or highly stable, frequencies could be generated from a microresonator made of this semiconductor.

    The NIST team tackled the problem by placing the microresonator within a customized cryogenic apparatus that allowed the researchers to probe the device at temperatures as low as 4 degrees above absolute zero. The low-temperature experiment revealed that the interaction between the heat generated by the laser light and the light circulating in the microresonator was the one and only obstacle preventing the device from generating the highly stable frequencies needed for successful operation.

    At low temperatures, the team demonstrated that it could reach the so-called soliton regime — where individual pulses of light that never change their shape, frequency or speed circulate within the microresonator. The researchers describe their work in the June issue of Laser and Photonics Reviews.

    With such solitons, all teeth of the frequency comb are in phase with each other, so that they can be used as a ruler to measure the frequencies employed in optical clocks, frequency synthesis, or laser-based distance measurements.

    Although some recently developed cryogenic systems are small enough that they could be used with the new microcomb outside the laboratory, the ultimate goal is to operate the device at room temperature. The new findings show that scientists will either have to quench or entirely avoid excess heating to achieve room-temperature operation.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NIST Campus, Gaitherberg, MD, USA

    NIST Mission, Vision, Core Competencies, and Core Values

    NIST’s mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.
    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.
    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

     
  • richardmitnick 1:16 pm on October 6, 2018 Permalink | Reply
    Tags: , , Laser frequency combs, , ,   

    From Science News: “A new ultrafast laser emits pulses of light 30 billion times a second” 

    From Science News

    October 5, 2018
    Emily Conover

    The devices pulsate at a higher rate than ever before, thanks to a novel technique.

    1
    FINE-TOOTH COMB An ultrafast laser pulsates faster than any of its predecessors. The new device isolates light of particular frequencies (peaks in blue curves) to create a frequency comb made up of discrete colors of light (vertical bands). Scientists had to eliminate jitter in their experiment to make the comb (progression left to right). D. Carlson/NIST

    Blazingly fast lasers have just leveled up.

    Ultrafast lasers emit short, rapid-fire bursts of light, with each pulse typically lasting tens of millionths of a billionth of a second. A new laser pulses 30 billion times a second — about 100 times as fast as most ultrafast lasers, researchers report in the Sept. 28 Science.

    The speed boost was thanks to a new technique for making ultrafast lasers. Typically, researchers use a technique called mode locking, in which light bounces back and forth in a mirrored cavity in such a way that the light waves build on each other to create short flashes. The new method takes a more “brute force” approach, says study coauthor David Carlson, a physicist at the National Institute of Standards and Technology in Boulder, Colo., by essentially carving up a continuous laser beam into individual pulses.

    Ultrafast lasers can produce what’s known as a frequency comb, light made up of discrete colors. Those evenly spaced hues look like the teeth of a comb when plotted. To make the new approach work, the scientists had to eliminate electronic jitter that would otherwise smear out the comb’s sharp teeth.

    These combs can be used as a kind of “ruler” for light, and are so useful for precisely measuring the frequency of light that part of the 2005 Nobel Prize in physics was awarded to two researchers who had developed the technique (SN: 10/8/05, p. 229). Part of the 2018 Nobel Prize in physics was also awarded to ultrafast laser research, for a method to produce very intense, short laser pulses. But that technology was not used in this work (SN Online: 10/2/2018).

    The faster pulses achieved with the new technique result in a frequency comb with more widely spaced teeth. That property could be useful for calibrating telescope instruments called spectrographs, which slice up light from stars into various colors, aiding scientists in observations such as the hunt for planets beyond the solar system. Those spectrographs can’t distinguish frequencies that are too close together, so the instruments require a wide comb.

    Faster pulses could also speed up certain kinds of imaging of biological tissues. And the laser could be useful for telecommunications, says physicist and electrical engineer Andrew Weiner of Purdue University in West Lafayette, Ind., who called the work a “tour de force.” Each color of light could carry its own stream of information in a fiber-optic cable.

    The researchers “have achieved this amazing level of performance,” says physicist Victor Torres-Company of Chalmers University of Technology in Gothenburg, Sweden. “It’s up to us to think and dream what we could do with this light source.”

    Related journal articles
    _________________________________________________
    See the full article for further references with links.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 5:35 pm on January 27, 2016 Permalink | Reply
    Tags: , , , Laser frequency combs   

    From Keck: “New Calibration Tool Will Help Astronomers Look for Habitable Exoplanets” 

    Keck Observatory

    Keck Observatory.
    Keck, with Subaru and IRTF (NASA Infrared Telescope Facility). Vadim Kurland

    Keck Observatory

    January 27, 2016
    Adam Hadhazy

    Promising new calibration tools, called laser frequency combs, could allow astronomers to take a major step in discovering and characterizing earthlike planets around other stars. These devices generate evenly spaced lines of light, much like the teeth on a comb for styling hair or the tick marks on a ruler — hence their nickname of “optical rulers.” The tick marks serve as stable reference points when making precision measurements such as those of the small shifts in starlight caused by planets pulling gravitationally on their parent stars.

    Yet today’s commercially available combs have a significant drawback. Because their tick marks are so finely spaced, the light output of these combs must be filtered to produce useful reference lines. This extra step adds complexity to the system and requires costly additional equipment.

    To resolve these kinds of issues, Caltech researchers looked to a kind of comb not previously deployed for astronomy. The novel comb produces easily resolvable lines, without any need for filtering. Furthermore, the Caltech comb is built from off-the-shelf components developed by the telecommunications industry.

    “We have demonstrated an alternative approach that is simple, reliable, and relatively inexpensive,” says paper coauthor Kerry Vahala, the Ted and Ginger Jenkins Professor of Information Science and Technology and Applied Physics as well as the executive officer for Applied Physics and Materials Science in Caltech’s Division of Engineering and Applied Science. The kind of frequency comb used by the researchers previously has been studied in the Vahala group in a different application, the generation of high-stability microwaves.

    “We believe members of the astronomical community could greatly benefit in their exoplanet hunting and characterization studies with this new laser frequency comb instrument,” says Xu Yi, a graduate student in Vahala’s lab and the lead author of a paper describing the work published in the January 27, 2016, issue of the journal Nature Communications.

    Scientists first began widely using laser frequency combs as precision rulers in the late 1990s in fields like metrology and spectroscopy; for their work, the technology’s developers (John L. Hall of JILA and the National Institute of Standards and Technology (NIST) and Theodor Hänsch of the Max Planck Institute of Quantum Optics and Ludwig Maximilians University Munich) were awarded half of the Nobel Prize in Physics in 2005. In astronomy, the combs are starting to be utilized in the radial velocity, or “wobble” method, the earliest and among the most successful methods for identifying exoplanets.

    The “wobble” refers to the periodic changes in a star’s motion, accompanied by starlight shifts owing to the Doppler effect, that are induced by the gravitational pull of an exoplanet orbiting around the star. The magnitude of the shift in the starlight’s wavelength — on the order of quadrillionths of a meter — together with the period of the wobble can be used to determine an exoplanet’s mass and orbital distance from its star. These details are critical for assessing habitability parameters such as surface temperature and the eccentricity of the exoplanet’s orbit. With exoplanets that pass directly in front of (or “transit”) their host star, allowing their radius to be determined directly, it is even possible to determine the bulk composition — for example, if the planet is built up primarily of gas, ice, or rock.

    In recent years, so-called mode-locked laser combs have proven useful in this task. These lasers generate a periodic stream of ultrashort light pulses to create the comb. With such combs, however, approximately 49 out of every 50 tick marks must be blocked out. This requires temperature- and vibration-insensitive filtering equipment.

    The new electro-optical comb that the Caltech team studied relies on microwave modulation of a continuous laser source, rather than a pulsed laser. It produces comb lines spaced by tens of gigahertz. These lines have from 10 to 100 times wider spacing than the tick marks of pulsed laser combs.

    To see how well a prototype would work in the field, the researchers took their comb to Mauna Kea in Hawaii. In September 2014, the instrument was tested at the NASA Infrared Telescope Facility (IRTF);

    NASA Infrared Telescope facility
    IRTF

    in March 2015, it was tested with the Near Infrared Spectrometer on the W. M. Keck Observatory’s Keck II telescope with the assistance of UCLA astronomer Mike Fitzgerald (BS ’00) and UCLA graduate student Emily Martin, coauthors on the paper.

    The researchers found that their simplified comb (the entire electro-optical comb apparatus requires only half of the space available on a standard 19-inch instrumentation rack) provided steady calibration at room temperature for more than five days at IRTF. The comb also operated flawlessly during the second test—despite having been disassembled, stored for six months, and reassembled.

    “From a technological maturity point of view, the frequency comb we have developed is already basically ready to go and could be installed at many telescopes,” says paper coauthor Scott Diddams of NIST.

    The Caltech comb produces spectral lines in the infrared, making it ideal for studying red dwarf stars, the most common stars in the Milky Way. Red dwarf stars are brightest in infrared wavelengths. Because red dwarfs are small, cool, and dim, planets orbiting these types of stars are easier to detect and analyze than those orbiting hotter sun-like stars. NASA’s Kepler space observatory has shown that almost all red dwarf stars host planets in the range of one to four times the size of Earth, with up to 25 percent of these planets located in the temperate, or “habitable,” zone around their host stars.

    NASA Kepler Telescope
    NASA/Kepler

    Thus, many astronomers predict that red dwarfs provide the best chance for the first discovery of a world capable of supporting life.

    “Our goal is to make these laser frequency combs simple and sturdy enough that you can slap them onto every telescope, and you don’t have to think about them anymore,” says paper coauthor Charles Beichman, senior faculty associate in astronomy and the executive director of the NASA ExoPlanet Science Institute at Caltech. “Having these combs routinely available as a modest add-on to current and future instrumentation really will expand our ability to find potentially habitable planets, particularly around very cool red dwarf stars,” he says.

    The research team is planning to double the frequency of the prototype comb’s light output — now centered around 1,550 nanometers, in the infrared—to reach into the visible light range. Doing so would allow the comb also to calibrate spectra from sun-like stars, whose light output is at shorter, visible wavelengths, and thus seek out planets that are Earth’s “twins.”

    Other authors of the paper are Jiang Li, a visitor in applied physics and materials science, graduate students Peter Gao and Michael Bottom, and scientific research assistant Elise Furlan, all from Caltech; Stephanie Leifer, Jagmit Sandhu, Gautam Vasisht, and Pin Chen of JPL; Peter Plavchan (BS ’01), formerly at Caltech and now a professor at Missouri State University; G. Ycas of NIST; Jonathan Gagne of the University of Montréal; and Greg Doppmann of the Keck Observatory.

    The paper is titled Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy. The research performed at Caltech and JPL was funded through the President’s and Director’s Fund Program, and the work at NIST was funded by the National Science Foundation.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.
    Keck UCal

    Keck NASA

    Keck Caltech

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: