Tagged: Keck Observatory Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:38 am on September 24, 2021 Permalink | Reply
    Tags: "Galaxies discharge metal-tinged gases into the universe", , , , , Keck Observatory,   

    From The National Science Foundation (US) : “Galaxies discharge metal-tinged gases into the universe” 

    From The National Science Foundation (US)

    September 22, 2021

    Supernovas create interstellar emissions that seed future stars.

    1
    Galaxy emitting exhaust. Credit: James Josephides/Swinburne University of Technology (AU) Astronomical Productions.

    Astronomers at The University of California-San Diego (US) have learned more about what exhaust from galaxies is composed of and how galactic emissions are ‘recycled.’ The information will help astronomers understand more about how galaxies form stars and the forces that influence the composition, behavior and longevity of galaxies.

    In its life cycle, a star creates and releases materials that later play a role in how galaxies and stars are formed. U.S. National Science Foundation-funded scientists captured images of galactic inflow and outflow to measure the scope and state of the gases absorbed when stars are born and released when stars burn out, usually in the form of supernovas.

    Among their findings published in The Astrophysical Journal Letters, the researchers noted that when a star explodes and creates a supernova, the outflow is emitted from both ends of the star and is made up of gases that contain fragments of the star’s core. The researchers were able to accurately identify materials in the interstellar emissions and confirmed the presence of carbon, hydrogen, iron and other elements. These materials are pushed out into the universe in ejected gases after a star collapses, seeding future asteroids, planets and stars.

    Using the NSF-supported Keck Cosmic Imager, a recent advancement in imaging technology, the research team examined the composition of a galaxy named Markarian 1486.

    This endeavor marks the first time scientists have observed and documented a galactic life cycle outside the Milky Way.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Science Foundation (NSF) (US) is an independent federal agency created by Congress in 1950 “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…we are the funding source for approximately 24 percent of all federally supported basic research conducted by America’s colleges and universities. In many fields such as mathematics, computer science and the social sciences, NSF is the major source of federal backing.

    We fulfill our mission chiefly by issuing limited-term grants — currently about 12,000 new awards per year, with an average duration of three years — to fund specific research proposals that have been judged the most promising by a rigorous and objective merit-review system. Most of these awards go to individuals or small groups of investigators. Others provide funding for research centers, instruments and facilities that allow scientists, engineers and students to work at the outermost frontiers of knowledge.

    NSF’s goals — discovery, learning, research infrastructure and stewardship — provide an integrated strategy to advance the frontiers of knowledge, cultivate a world-class, broadly inclusive science and engineering workforce and expand the scientific literacy of all citizens, build the nation’s research capability through investments in advanced instrumentation and facilities, and support excellence in science and engineering research and education through a capable and responsive organization. We like to say that NSF is “where discoveries begin.”

    Many of the discoveries and technological advances have been truly revolutionary. In the past few decades, NSF-funded researchers have won some 236 Nobel Prizes as well as other honors too numerous to list. These pioneers have included the scientists or teams that discovered many of the fundamental particles of matter, analyzed the cosmic microwaves left over from the earliest epoch of the universe, developed carbon-14 dating of ancient artifacts, decoded the genetics of viruses, and created an entirely new state of matter called a Bose-Einstein condensate.

    NSF also funds equipment that is needed by scientists and engineers but is often too expensive for any one group or researcher to afford. Examples of such major research equipment include giant optical and radio telescopes, Antarctic research sites, high-end computer facilities and ultra-high-speed connections, ships for ocean research, sensitive detectors of very subtle physical phenomena and gravitational wave observatories.

    Another essential element in NSF’s mission is support for science and engineering education, from pre-K through graduate school and beyond. The research we fund is thoroughly integrated with education to help ensure that there will always be plenty of skilled people available to work in new and emerging scientific, engineering and technological fields, and plenty of capable teachers to educate the next generation.

    No single factor is more important to the intellectual and economic progress of society, and to the enhanced well-being of its citizens, than the continuous acquisition of new knowledge. NSF is proud to be a major part of that process.

    Specifically, the Foundation’s organic legislation authorizes us to engage in the following activities:

    Initiate and support, through grants and contracts, scientific and engineering research and programs to strengthen scientific and engineering research potential, and education programs at all levels, and appraise the impact of research upon industrial development and the general welfare.
    Award graduate fellowships in the sciences and in engineering.
    Foster the interchange of scientific information among scientists and engineers in the United States and foreign countries.
    Foster and support the development and use of computers and other scientific methods and technologies, primarily for research and education in the sciences.
    Evaluate the status and needs of the various sciences and engineering and take into consideration the results of this evaluation in correlating our research and educational programs with other federal and non-federal programs.
    Provide a central clearinghouse for the collection, interpretation and analysis of data on scientific and technical resources in the United States, and provide a source of information for policy formulation by other federal agencies.
    Determine the total amount of federal money received by universities and appropriate organizations for the conduct of scientific and engineering research, including both basic and applied, and construction of facilities where such research is conducted, but excluding development, and report annually thereon to the President and the Congress.
    Initiate and support specific scientific and engineering activities in connection with matters relating to international cooperation, national security and the effects of scientific and technological applications upon society.
    Initiate and support scientific and engineering research, including applied research, at academic and other nonprofit institutions and, at the direction of the President, support applied research at other organizations.
    Recommend and encourage the pursuit of national policies for the promotion of basic research and education in the sciences and engineering. Strengthen research and education innovation in the sciences and engineering, including independent research by individuals, throughout the United States.
    Support activities designed to increase the participation of women and minorities and others underrepresented in science and technology.

    At present, NSF has a total workforce of about 2,100 at its Alexandria, VA, headquarters, including approximately 1,400 career employees, 200 scientists from research institutions on temporary duty, 450 contract workers and the staff of the NSB office and the Office of the Inspector General.

    NSF is divided into the following seven directorates that support science and engineering research and education: Biological Sciences, Computer and Information Science and Engineering, Engineering, Geosciences, Mathematical and Physical Sciences, Social, Behavioral and Economic Sciences, and Education and Human Resources. Each is headed by an assistant director and each is further subdivided into divisions like materials research, ocean sciences and behavioral and cognitive sciences.

    Within NSF’s Office of the Director, the Office of Integrative Activities also supports research and researchers. Other sections of NSF are devoted to financial management, award processing and monitoring, legal affairs, outreach and other functions. The Office of the Inspector General examines the foundation’s work and reports to the NSB and Congress.

    Each year, NSF supports an average of about 200,000 scientists, engineers, educators and students at universities, laboratories and field sites all over the United States and throughout the world, from Alaska to Alabama to Africa to Antarctica. You could say that NSF support goes “to the ends of the earth” to learn more about the planet and its inhabitants, and to produce fundamental discoveries that further the progress of research and lead to products and services that boost the economy and improve general health and well-being.

    As described in our strategic plan, NSF is the only federal agency whose mission includes support for all fields of fundamental science and engineering, except for medical sciences. NSF is tasked with keeping the United States at the leading edge of discovery in a wide range of scientific areas, from astronomy to geology to zoology. So, in addition to funding research in the traditional academic areas, the agency also supports “high risk, high pay off” ideas, novel collaborations and numerous projects that may seem like science fiction today, but which the public will take for granted tomorrow. And in every case, we ensure that research is fully integrated with education so that today’s revolutionary work will also be training tomorrow’s top scientists and engineers.

    Unlike many other federal agencies, NSF does not hire researchers or directly operate our own laboratories or similar facilities. Instead, we support scientists, engineers and educators directly through their own home institutions (typically universities and colleges). Similarly, we fund facilities and equipment such as telescopes, through cooperative agreements with research consortia that have competed successfully for limited-term management contracts.

    NSF’s job is to determine where the frontiers are, identify the leading U.S. pioneers in these fields and provide money and equipment to help them continue. The results can be transformative. For example, years before most people had heard of “nanotechnology,” NSF was supporting scientists and engineers who were learning how to detect, record and manipulate activity at the scale of individual atoms — the nanoscale. Today, scientists are adept at moving atoms around to create devices and materials with properties that are often more useful than those found in nature.

    Dozens of companies are gearing up to produce nanoscale products. NSF is funding the research projects, state-of-the-art facilities and educational opportunities that will teach new skills to the science and engineering students who will make up the nanotechnology workforce of tomorrow.

    At the same time, we are looking for the next frontier.

    NSF’s task of identifying and funding work at the frontiers of science and engineering is not a “top-down” process. NSF operates from the “bottom up,” keeping close track of research around the United States and the world, maintaining constant contact with the research community to identify ever-moving horizons of inquiry, monitoring which areas are most likely to result in spectacular progress and choosing the most promising people to conduct the research.

    NSF funds research and education in most fields of science and engineering. We do this through grants and cooperative agreements to more than 2,000 colleges, universities, K-12 school systems, businesses, informal science organizations and other research organizations throughout the U.S. The Foundation considers proposals submitted by organizations on behalf of individuals or groups for support in most fields of research. Interdisciplinary proposals also are eligible for consideration. Awardees are chosen from those who send us proposals asking for a specific amount of support for a specific project.

    Proposals may be submitted in response to the various funding opportunities that are announced on the NSF website. These funding opportunities fall into three categories — program descriptions, program announcements and program solicitations — and are the mechanisms NSF uses to generate funding requests. At any time, scientists and engineers are also welcome to send in unsolicited proposals for research and education projects, in any existing or emerging field. The Proposal and Award Policies and Procedures Guide (PAPPG) provides guidance on proposal preparation and submission and award management. At present, NSF receives more than 42,000 proposals per year.

    To ensure that proposals are evaluated in a fair, competitive, transparent and in-depth manner, we use a rigorous system of merit review. Nearly every proposal is evaluated by a minimum of three independent reviewers consisting of scientists, engineers and educators who do not work at NSF or for the institution that employs the proposing researchers. NSF selects the reviewers from among the national pool of experts in each field and their evaluations are confidential. On average, approximately 40,000 experts, knowledgeable about the current state of their field, give their time to serve as reviewers each year.

    The reviewer’s job is to decide which projects are of the very highest caliber. NSF’s merit review process, considered by some to be the “gold standard” of scientific review, ensures that many voices are heard and that only the best projects make it to the funding stage. An enormous amount of research, deliberation, thought and discussion goes into award decisions.

    The NSF program officer reviews the proposal and analyzes the input received from the external reviewers. After scientific, technical and programmatic review and consideration of appropriate factors, the program officer makes an “award” or “decline” recommendation to the division director. Final programmatic approval for a proposal is generally completed at NSF’s division level. A principal investigator (PI) whose proposal for NSF support has been declined will receive information and an explanation of the reason(s) for declination, along with copies of the reviews considered in making the decision. If that explanation does not satisfy the PI, he/she may request additional information from the cognizant NSF program officer or division director.

    If the program officer makes an award recommendation and the division director concurs, the recommendation is submitted to NSF’s Division of Grants and Agreements (DGA) for award processing. A DGA officer reviews the recommendation from the program division/office for business, financial and policy implications, and the processing and issuance of a grant or cooperative agreement. DGA generally makes awards to academic institutions within 30 days after the program division/office makes its recommendation.

     
  • richardmitnick 4:14 pm on December 29, 2020 Permalink | Reply
    Tags: "Beyond the Impossible" movie released., , , , , Keck Observatory   

    From W.M. Keck Observatory: “Beyond the Impossible” 

    Keck Observatory, two 10 meter telescopes operated by Caltech and the University of California, Maunakea Hawaii USA, altitude 4,207 m (13,802 ft).

    From W.M. Keck Observatory

    December 17, 2020

    W. M. Keck Observatory presents its new film, Beyond the Impossible, [see below] which made its public debut on December 17, 2020, with over 300 people in attendance for the virtual screening.

    The documentary picks up the story after the twin Keck I and Keck II telescopes achieved first light and chronicles the exciting Hawaii astronomical discoveries that followed, including Nobel Prize-winning research, as told by some of Keck Observatory’s community of science trailblazers and technology innovators who revolutionized the field, catapulting the Observatory into becoming the most scientifically impactful optical/infrared ground-based observatory on the planet.

    Beyond the Impossible is the sequel to The Impossible Telescope, which was released in 2019 commemorating the legacy of Jerry Nelson. Known as the “Father of the Keck Observatory Telescopes,” the documentary explains how Nelson and his team pioneered the 10-meter segmented design of the primary mirrors that make up the heart of the Keck I and Keck II telescopes.

    W. M. Keck Observatory wishes to recognize and acknowledge the very significant cultural role and reverence that Maunakea has always had within the Native Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.

    Mahalo to the generous support of the Rob and Terry Ryan Foundation for helping make these films [see all three below] possible.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the
    California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.


    Keck UCal

    Instrumentation

    Keck 1

    HIRES – The largest and most mechanically complex of the Keck’s main instruments, the High Resolution Echelle Spectrometer breaks up incoming starlight into its component colors to measure the precise intensity of each of thousands of color channels. Its spectral capabilities have resulted in many breakthrough discoveries, such as the detection of planets outside our solar system and direct evidence for a model of the Big Bang theory.

    Keck High-Resolution Echelle Spectrometer (HIRES), at the Keck I telescope.

    LRIS – The Low Resolution Imaging Spectrograph is a faint-light instrument capable of taking spectra and images of the most distant known objects in the universe. The instrument is equipped with a red arm and a blue arm to explore stellar populations of distant galaxies, active galactic nuclei, galactic clusters, and quasars.

    UCO Keck LRIS on Keck 1.

    VISIBLE BAND (0.3-1.0 Micron)

    MOSFIRE – The Multi-Object Spectrograph for Infrared Exploration gathers thousands of spectra from objects spanning a variety of distances, environments and physical conditions. What makes this huge, vacuum-cryogenic instrument unique is its ability to select up to 46 individual objects in the field of view and then record the infrared spectrum of all 46 objects simultaneously. When a new field is selected, a robotic mechanism inside the vacuum chamber reconfigures the distribution of tiny slits in the focal plane in under six minutes. Eight years in the making with First Light in 2012, MOSFIRE’s early performance results range from the discovery of ultra-cool, nearby substellar mass objects, to the detection of oxygen in young galaxies only 2 billion years after the Big Bang.

    Keck/MOSFIRE on Keck 1, Mauna Kea, Hawaii, USA.

    OSIRIS – The OH-Suppressing Infrared Imaging Spectrograph is a near-infrared spectrograph for use with the Keck I adaptive optics system. OSIRIS takes spectra in a small field of view to provide a series of images at different wavelengths. The instrument allows astronomers to ignore wavelengths where the Earth’s atmosphere shines brightly due to emission from OH (hydroxl) molecules, thus allowing the detection of objects 10 times fainter than previously available.

    Keck OSIRIS on Keck 1

    Keck 2

    DEIMOS – The Deep Extragalactic Imaging Multi-Object Spectrograph is the most advanced optical spectrograph in the world, capable of gathering spectra from 130 galaxies or more in a single exposure. In ‘Mega Mask’ mode, DEIMOS can take spectra of more than 1,200 objects at once, using a special narrow-band filter.

    Keck/DEIMOS on Keck 2.

    NIRSPEC – The Near Infrared Spectrometer studies very high redshift radio galaxies, the motions and types of stars located near the Galactic Center, the nature of brown dwarfs, the nuclear regions of dusty starburst galaxies, active galactic nuclei, interstellar chemistry, stellar physics, and solar-system science.

    NIRSPEC on Keck 2.

    ESI – The Echellette Spectrograph and Imager captures high-resolution spectra of very faint galaxies and quasars ranging from the blue to the infrared in a single exposure. It is a multimode instrument that allows users to switch among three modes during a night. It has produced some of the best non-AO images at the Observatory.

    KECK Echellette Spectrograph and Imager (ESI) on Keck II.

    KCWI – The Keck Cosmic Web Imager is designed to provide visible band, integral field spectroscopy with moderate to high spectral resolution, various fields of view and image resolution formats and excellent sky-subtraction. The astronomical seeing and large aperture of the telescope enables studies of the connection between galaxies and the gas in their dark matter halos, stellar relics, star clusters and lensed galaxies.

    Keck Cosmic Web Imager on Keck 2 schematic.

    Keck Cosmic Web Imager on Keck 2.

    NEAR-INFRARED (1-5 Micron)

    ADAPTIVE OPTICS – Adaptive optics senses and compensates for the atmospheric distortions of incoming starlight up to 1,000 times per second. This results in an improvement in image quality on fairly bright astronomical targets by a factor 10 to 20.

    UCO Keck Laser Guide Star Adaptive Optics,Keck Observatory.

    LASER GUIDE STAR ADAPTIVE OPTICS – The Keck Laser Guide Star expands the range of available targets for study with both the Keck I and Keck II adaptive optics systems. They use sodium lasers to excite sodium atoms that naturally exist in the atmosphere 90 km (55 miles) above the Earth’s surface. The laser creates an “artificial star” that allows the Keck adaptive optics system to observe 70-80 percent of the targets in the sky, compared to the 1 percent accessible without the laser.

    NIRC-2/AO – The second generation Near Infrared Camera works with the Keck Adaptive Optics system to produce the highest-resolution ground-based images and spectroscopy in the 1-5 micron range. Typical programs include mapping surface features on solar system bodies, searching for planets around other stars, and analyzing the morphology of remote galaxies.

    Keck NIRC2 Camera on Keck 2.

    NIRES

    Keck Near-Infrared Echellette Spectrometer on Keck 2.

    Future Instrumentation

    KCRM – The Keck Cosmic Reionization Mapper will complete the Keck Cosmic Web Imager (KCWI), the world’s most capable spectroscopic imager. The design for KCWI includes two separate channels to detect light in the blue and the red portions of the visible wavelength spectrum. KCWI-Blue was commissioned and started routine science observations in September 2017. The red channel of KCWI is KCRM; a powerful addition that will open a window for new discoveries at high redshifts.

    KCRM – Keck Cosmic Reionization Mapper KCRM on Keck 2.

    KPF – The Keck Planet Finder (KPF) will be the most advanced spectrometer of its kind in the world. The instrument is a fiber-fed high-resolution, two-channel cross-dispersed echelle spectrometer for the visible wavelengths and is designed for the Keck II telescope. KPF allows precise measurements of the mass-density relationship in Earth-like exoplanets, which will help astronomers identify planets around other stars that are capable of supporting life.

    KPF Keck Planet Finder on Keck 2

     
  • richardmitnick 1:58 pm on November 1, 2020 Permalink | Reply
    Tags: , , , , , Keck Observatory,   

    Meet the Keck Observatory at MaunaKea Hawai’i USA 

    Keck Observatory, two 10 meter telescopes operated by Caltech and the University of California, Maunakea Hawaii USA, altitude 4,207 m (13,802 ft).

    Mauna Kea Observatory, Hawaii USA, altitude 4,213 m (13,822 ft).

    From W.M. Keck Observatory

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the
    California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.


    Keck UCal

    Instrumentation

    Keck 1

    HIRES – The largest and most mechanically complex of the Keck’s main instruments, the High Resolution Echelle Spectrometer breaks up incoming starlight into its component colors to measure the precise intensity of each of thousands of color channels. Its spectral capabilities have resulted in many breakthrough discoveries, such as the detection of planets outside our solar system and direct evidence for a model of the Big Bang theory.

    Keck High-Resolution Echelle Spectrometer (HIRES), at the Keck I telescope.

    LRIS – The Low Resolution Imaging Spectrograph is a faint-light instrument capable of taking spectra and images of the most distant known objects in the universe. The instrument is equipped with a red arm and a blue arm to explore stellar populations of distant galaxies, active galactic nuclei, galactic clusters, and quasars.

    UCO Keck LRIS on Keck 1.

    VISIBLE BAND (0.3-1.0 Micron)

    MOSFIRE – The Multi-Object Spectrograph for Infrared Exploration gathers thousands of spectra from objects spanning a variety of distances, environments and physical conditions. What makes this huge, vacuum-cryogenic instrument unique is its ability to select up to 46 individual objects in the field of view and then record the infrared spectrum of all 46 objects simultaneously. When a new field is selected, a robotic mechanism inside the vacuum chamber reconfigures the distribution of tiny slits in the focal plane in under six minutes. Eight years in the making with First Light in 2012, MOSFIRE’s early performance results range from the discovery of ultra-cool, nearby substellar mass objects, to the detection of oxygen in young galaxies only 2 billion years after the Big Bang.

    Keck/MOSFIRE on Keck 1, Mauna Kea, Hawaii, USA.

    OSIRIS – The OH-Suppressing Infrared Imaging Spectrograph is a near-infrared spectrograph for use with the Keck I adaptive optics system. OSIRIS takes spectra in a small field of view to provide a series of images at different wavelengths. The instrument allows astronomers to ignore wavelengths where the Earth’s atmosphere shines brightly due to emission from OH (hydroxl) molecules, thus allowing the detection of objects 10 times fainter than previously available.

    Keck OSIRIS on Keck 1

    Keck 2

    DEIMOS – The Deep Extragalactic Imaging Multi-Object Spectrograph is the most advanced optical spectrograph in the world, capable of gathering spectra from 130 galaxies or more in a single exposure. In ‘Mega Mask’ mode, DEIMOS can take spectra of more than 1,200 objects at once, using a special narrow-band filter.

    Keck/DEIMOS on Keck 2.

    NIRSPEC – The Near Infrared Spectrometer studies very high redshift radio galaxies, the motions and types of stars located near the Galactic Center, the nature of brown dwarfs, the nuclear regions of dusty starburst galaxies, active galactic nuclei, interstellar chemistry, stellar physics, and solar-system science.

    NIRSPEC on Keck 2.

    ESI – The Echellette Spectrograph and Imager captures high-resolution spectra of very faint galaxies and quasars ranging from the blue to the infrared in a single exposure. It is a multimode instrument that allows users to switch among three modes during a night. It has produced some of the best non-AO images at the Observatory.

    KECK Echellette Spectrograph and Imager (ESI) on Keck II.

    KCWI – The Keck Cosmic Web Imager is designed to provide visible band, integral field spectroscopy with moderate to high spectral resolution, various fields of view and image resolution formats and excellent sky-subtraction. The astronomical seeing and large aperture of the telescope enables studies of the connection between galaxies and the gas in their dark matter halos, stellar relics, star clusters and lensed galaxies.

    Keck Cosmic Web Imager on Keck 2 schematic.


    Keck Cosmic Web Imager on Keck 2.

    NEAR-INFRARED (1-5 Micron)

    ADAPTIVE OPTICS – Adaptive optics senses and compensates for the atmospheric distortions of incoming starlight up to 1,000 times per second. This results in an improvement in image quality on fairly bright astronomical targets by a factor 10 to 20.

    UCO Keck Laser Guide Star Adaptive Optics,Keck Observatory.

    LASER GUIDE STAR ADAPTIVE OPTICS – The Keck Laser Guide Star expands the range of available targets for study with both the Keck I and Keck II adaptive optics systems. They use sodium lasers to excite sodium atoms that naturally exist in the atmosphere 90 km (55 miles) above the Earth’s surface. The laser creates an “artificial star” that allows the Keck adaptive optics system to observe 70-80 percent of the targets in the sky, compared to the 1 percent accessible without the laser.

    NIRC-2/AO – The second generation Near Infrared Camera works with the Keck Adaptive Optics system to produce the highest-resolution ground-based images and spectroscopy in the 1-5 micron range. Typical programs include mapping surface features on solar system bodies, searching for planets around other stars, and analyzing the morphology of remote galaxies.

    Keck NIRC2 Camera on Keck 2.

    NIRES

    Keck Near-Infrared Echellette Spectrometer on Keck 2.

    Future Instrumentation

    Keck OSIRIS on Keck 1

    KCRM – The Keck Cosmic Reionization Mapper will complete the Keck Cosmic Web Imager (KCWI), the world’s most capable spectroscopic imager. The design for KCWI includes two separate channels to detect light in the blue and the red portions of the visible wavelength spectrum. KCWI-Blue was commissioned and started routine science observations in September 2017. The red channel of KCWI is KCRM; a powerful addition that will open a window for new discoveries at high redshifts.

    KCRM – Keck Cosmic Reionization Mapper KCRM on Keck 2.

    KPF – The Keck Planet Finder (KPF) will be the most advanced spectrometer of its kind in the world. The instrument is a fiber-fed high-resolution, two-channel cross-dispersed echelle spectrometer for the visible wavelengths and is designed for the Keck II telescope. KPF allows precise measurements of the mass-density relationship in Earth-like exoplanets, which will help astronomers identify planets around other stars that are capable of supporting life.

    KPF Keck Planet Finder on Keck 2

     
  • richardmitnick 8:55 am on September 16, 2020 Permalink | Reply
    Tags: "Unraveling a Spiral Stream of Dusty Embers from a Massive Binary Stellar Forge", A massive binary star system called Wolf-Rayet (WR) 112., , , , , , Keck Observatory,   

    From Keck Observatory: “Unraveling a Spiral Stream of Dusty Embers from a Massive Binary Stellar Forge” 

    Keck Observatory, two 10 meter telescopes operated by Caltech and the University of California, Maunakea Hawaii USA, altitude 4,207 m (13,802 ft).

    From Keck Observatory

    September 15, 2020

    Mari-Ela Chock
    Communications Officer
    W. M. Keck Observatory
    (808) 554-0567 mobile
    mchock@keck.hawaii.edu

    1
    A thermal-infrared image of wr 112 captured with keck observatory’s LWS instrument in august 2004.
    Credit: Ryan M. Lau et al./ISAS/JAXA/W. M. Keck Observatory.

    Astronomers using three Maunakea Observatories have discovered one of the most prolific dust-making Wolf-Rayet star systems known, remarkably producing an entire Earth mass of dust every year.

    With nearly two decades of images from the world’s largest observatories – including W. M. Keck Observatory, Subaru Telescope, and Gemini Observatory in Hawaii – a research team led by Ryan Lau of Honolulu, Hawaii, an ʻIolani School alumnus and astronomer with the Japan Aerospace Exploration Agency (JAXA) at the Institute of Space and Astronautical Science (ISAS), has captured the beautiful, spiral motion of newly-formed dust streaming from a massive binary star system called Wolf-Rayet (WR) 112.


    NAOJ/Subaru Telescope at Mauna Kea Hawaii, USA,4,207 m (13,802 ft) above sea level.


    NOAO Gemini/South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile, at an altitude of 7200 feet on the summit of Cerro Pachon.

    “WR 112 is incredibly hot and luminous with fast stellar winds ejecting material at high velocities – over thousands of kilometers per second,” said Lau, lead author of the study. “We’d expect dust to incinerate from the intense radiation of heat and violent winds. The fact that we see dust survive in this extreme environment is what makes WR 112 so mysterious and unusual.”

    The study published today in The Astrophysical Journal.

    Wolf-Rayet stars are one of the most extreme stars known; they are over 20 times more massive and millions of times brighter than the Sun. Because they are in the very late stage of stellar evolution, losing a large amount of mass, Wolf-Rayet stars have short lives and therefore are extremely rare.

    WR 112 is composed of a Wolf-Rayet star and a companion star that’s also much more massive than the Sun. A sequence of images taken since 2001, including observations using Keck Observatory’s Long Wavelength Spectrometer (LWS), shows this system moving over time, with the two stars orbiting around each other at timescales of about 20 years, thus causing the appearance of a spiral rotation.

    “Keck Observatory’s LWS was one of the few instruments capable of capturing high-resolution thermal-infrared images and Maunakea is an exceptional site for such observations,” said Lau. “These combined capabilities allowed us to trace the decades-long evolution of the dusty nebula around WR 112.”

    1
    Sequence of 7 mid-infrared (~10 micrometers) images of WR 112 taken between 2001 – 2019 by Gemini North, Gemini South [above], Keck Observatory [above], the Very Large Telescope (VLT), and Subaru Telescope [above].

    Frederick C Gillett Gemini North Telescope Maunakea, Hawaii, USA, Altitude 4,213 m (13,822 ft).

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo.

    The length of the white line on each image corresponds to about 6800 astronomical units. “Spurs” are the structures formed in the past 20 years showing variations between observations. “Nested shells” are expanding structures formed previously. The X-like signature in the Subaru Telescope image is an artifact due to property of the instrument. Credit: R. Lau et al./ISAS/JAXA.

    The team determined dust forms in the region where stellar winds from these two stars interact.

    “When the two winds collide, all hell breaks loose, including the release of copious shocked-gas X-rays, but also the (at first blush surprising) creation of copious amounts of carbon-based aerosol dust particles in those binaries where one of the stars has evolved to helium-burning, which produces 40% of carbon in their winds,” said co-author Anthony Moffat, emeritus professor of astronomy at the University of Montreal.

    This binary dust formation phenomenon has been revealed in other systems such as WR 104 by co-author Peter Tuthill, professor of physics at the University of Sydney. WR 104, in particular, reveals an elegant trail of dust resembling a ‘pinwheel’ that traces the orbital motion of the central binary star system.

    However, the dusty nebula around WR 112 is far more complex than a simple pinwheel pattern. Decades of multi-wavelength observations presented conflicting interpretations of its dusty outflow and orbital motion. After almost 20 years uncertainty on WR 112, images from Subaru Telescope’s COMICS instrument taken in Oct 2019 provided the final—and unexpected—piece to the puzzle.

    NAOJ Subaru COMICS (Cooled Mid Infrared Camera and Spectrometer).

    “We published a study in 2017 on WR 112 suggesting the dusty nebula was not moving at all, so I thought our COMICS observation would confirm this,” said Lau. “To my surprise, the COMICS image revealed the dusty shell had definitely moved since the last image we took with the Very Large Telescope in 2016. It confused me so much that I couldn’t sleep after the observing run—I kept flipping through the images until it finally registered in my head that the spiral looked like it was tumbling towards us.”


    Unraveling a Spiral Stream of Dusty Embers from a Massive Binary Stellar Forge. NAOJ.

    Lau collaborated with researchers at the University of Sydney, including Tuthill and undergraduate student Yinuo Han, who are experts at modeling and interpreting the motion of the dusty spirals from binary systems like WR 112.

    “I shared the images of WR 112 with Peter and Yinuo and they were able to produce an amazing preliminary model that confirmed the dusty spiral stream is in fact revolving in our direction along our line of sight,” said Lau.

    With the revised picture of WR 112, the research team was able to deduce how much dust this binary system is forming. To their surprise, the team found WR 112’s dust output rate of 3×10-6 solar mass per year was unusual given its 20-year orbital period—the most efficient dust producers in this type of WR binary star system tend to have shorter orbital periods of less than a year, like WR 104 with its 220-day period.

    WR 112 therefore demonstrates the diversity of WR binary systems capable of being highly-efficient dust factories and highlights their potential role as significant sources of dust not only in the Milky Way, but galaxies beyond our own.

    Massive binary star systems like WR 112, as well as supernova explosions, are regarded as sources of dust in the early universe, but the process of dust production and the amount of the ejected dust are still open questions. With the discovery of WR 112, astronomers now have new insight into the origin of dust in the young universe.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.


    Keck UCal

     
  • richardmitnick 9:32 am on August 27, 2020 Permalink | Reply
    Tags: "Rare Encounters Between Cosmic Heavyweights", A cosmic dance between two merging galaxies- each one containing a supermassive black hole that’s rapidly feeding on so much material it creates a phenomenon known as a quasar- is a rare find., , , , , Gemini North Observatory’s Near-Infrared Integral Field Spectrometer, Keck Observatory, Keck Observatory’s Low Resolution Imaging Spectrometer (LRIS), Luminous “dual” quasars, SDSS J141637.44+003352.2- a dual quasar at a distance for which the light reaching us was emitted 4.6 billion years ago., The Hyper Suprime-Cam (HSC) camera on the Subaru Telescope.   

    From Keck Observatory: “Rare Encounters Between Cosmic Heavyweights” 

    Keck Observatory, two 10 meter telescopes operated by Caltech and the University of California, Maunakea Hawaii USA, altitude 4,207 m (13,802 ft).


    From Keck Observatory

    August 26, 2020

    Mari-Ela Chock
    Communications Officer
    W. M. Keck Observatory
    (808) 554-0567 mobile
    mchock@keck.hawaii.edu

    1
    SDSS J141637.44+003352.2, a dual quasar at a distance for which the light reaching us was emitted 4.6 billion years ago. The two quasars are 13,000 light years apart on the sky, placing them near the center of a single massive galaxy that appears to be part of a group, as shown by the neighboring galaxies in the left panel. In the lower panels, optical spectroscopy has revealed broad emission lines associated with each of the two quasars, indicating that the gas is moving at thousands of kilometers per second in the vicinity of two distinct supermassive black holes. The two quasars are different colors, due to different amounts of dust in front of them. Credit: Silverman et al.

    A cosmic dance between two merging galaxies, each one containing a supermassive black hole that’s rapidly feeding on so much material it creates a phenomenon known as a quasar, is a rare find.

    Astronomers have discovered several pairs of such merging galaxies, or luminous “dual” quasars, using three Maunakea Observatories in Hawaii – Subaru Telescope, W. M. Keck Observatory, and Gemini Observatory. These dual quasars are so rare, a research team led by the Kavli Institute for the Physics and Mathematics of the Universe at the University of Tokyo estimates only 0.3% of all known quasars have two supermassive black holes that are on a collision course with each other.


    NAOJ/Subaru Telescope at Mauna Kea Hawaii, USA,4,207 m (13,802 ft) above sea level


    Frederick C Gillett Gemini North Telescope Maunakea, Hawaii, USA, Altitude 4,213 m (13,822 ft)

    The study is published today in the August 26, 2020 issue of The Astrophysical Journal.

    “In spite of their rarity, they represent an important stage in the evolution of galaxies, where the central giant is awakened, gaining mass, and potentially impacting the growth of its host galaxy,” said Shenli Tang, a graduate student at the University of Tokyo and co-author of the study.

    Quasars are one of the most luminous, energetic objects known in the universe, powered by supermassive black holes that are millions to billions times more massive than our Sun. As material swirls around a black hole at the center of a galaxy, it is heated to high temperatures, releasing so much light that the quasar can outshine its host galaxy. This makes a merging pair of galaxies with quasar activity hard to detect; it is difficult to separate the light from the two quasars because they are in such close proximity to each other. Also, observing a wide enough area of the sky to catch these rare events in sufficient numbers is a challenge.

    To overcome these obstacles, the team took advantage of a sensitive wide survey of the sky using the Hyper Suprime-Cam (HSC) camera on the Subaru Telescope.

    NAOJ Subaru Hyper Suprime-Cam at ATC.

    “To make our job easier, we started by looking at the 34,476 known quasars from the Sloan Digital Sky Survey with HSC imaging to identify those having two (or more) distinct centers,” said lead author John Silverman of the Kavli Institute for the Physics and Mathematics of the Universe. “Honestly, we didn’t start out looking for dual quasars. We were examining images of these luminous quasars to determine which type of galaxies they preferred to reside in when we started to see cases with two optical sources in their centers where we only expected one.”

    The team identified 421 promising cases. However, there was still the chance many of these were not bona-fide dual quasars but rather chance projections such as starlight from our own galaxy. Confirmation required detailed analysis of the light from the candidates to search for definitive signs of two distinct quasars.

    Using Keck Observatory’s Low Resolution Imaging Spectrometer (LRIS) and Gemini North Observatory’s Near-Infrared Integral Field Spectrometer, Silverman and his team identified three dual quasars, two of which were previously unknown.

    UCO Keck LRIS

    Gemini North Near-Infrared Integral-Field Spectrometer (NIFS)

    Each object in the pair showed the signature of gas moving at thousands of kilometers per second under the influence of a supermassive black hole.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.


    Keck UCal

     
  • richardmitnick 10:39 am on August 18, 2020 Permalink | Reply
    Tags: , , , , Citizen Scientists Help Locate Some Of The Coolest Brown Dwarfs Ever Discovered., , Keck Observatory,   

    From Keck Observatory: “100 Cool Worlds Found Near The Sun” 

    Keck Observatory, two 10 meter telescopes operated by Caltech and the University of California, Maunakea Hawaii USA, altitude 4,207 m (13,802 ft).

    From Keck Observatory

    August 18, 2020

    1
    Artist’s impression of one of this study’s superlative discoveries, the oldest known wide-separation white dwarf plus cold brown dwarf pair. the small white orb represents the white dwarf (the remnant of a long-dead sun-like star), while the brown/orange foreground object is the newly discovered brown dwarf companion. this faint brown dwarf was previously overlooked until it was spotted by citizen scientists because it lies right within the plane of the milky way. Credit: NOIRLab/NSF/AURA/P. Marenfeld; Acknowledgement: William Pendrill.

    Citizen Scientists Help Locate Some Of The Coolest Brown Dwarfs Ever Discovered.

    How complete is our census of the Sun’s closest neighbors? Astronomers and a team of data-sleuthing volunteers participating in Backyard Worlds: Planet 9, a citizen science project, have discovered roughly 100 cool worlds near the Sun — objects more massive than planets but lighter than stars, known as brown dwarfs.

    With the help of W. M. Keck Observatory on Maunakea in Hawaii, the research team found several of these newly discovered worlds are among the very coolest known, with a few approaching the temperature of Earth — cool enough to harbor water clouds.

    The study will be published in the August 20, 2020 issue of The Astrophysical Journal.

    Discovering and characterizing astronomical objects near the Sun is fundamental to our understanding of our place in, and the history of, the universe. Yet astronomers are still unearthing new residents of the solar neighborhood. The new Backyard Worlds discovery bridges a previously empty gap in the range of low-temperature brown dwarfs, identifying a long-sought missing link within the brown dwarf population.

    “These cool worlds offer the opportunity for new insights into the formation and atmospheres of planets beyond the solar system,” said lead author Aaron Meisner from the National Science Foundation’s NOIRLab. “This collection of cool brown dwarfs also allows us to accurately estimate the number of free-floating worlds roaming interstellar space near the Sun.

    To identify several of the faintest and coolest of the newly discovered brown dwarfs, UC San Diego’s Professor of Physics Adam Burgasser and researchers from the Cool Star Lab used Keck Observatory’s sensitive Near-Infrared Echellette Spectrometer, or NIRES, instrument.

    UCO NIRES arrives at Keck

    “We used the NIRES spectra to measure the temperature and gases present in their atmospheres. Each spectrum is essentially a fingerprint that allows us to distinguish a cool brown dwarf from other kinds of stars,” said Burgasser, a co-author of the study.

    Artist’s impression of the oldest known wide-separation white dwarf plus cold brown dwarf pair. The small white orb represents the white dwarf (the remnant of a long-dead Sun-like star), while the brown/orange foreground object is the newly discovered brown dwarf companion. This faint brown dwarf was previously overlooked until it was spotted by citizen scientists, because it lies right within the plane of the Milky Way. Credit: NOIRLab/NSF/AURA/P. Marenfeld.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.


    Keck UCal

     
  • richardmitnick 10:25 am on August 1, 2020 Permalink | Reply
    Tags: "Surprisingly Young Galaxy Breaks Low-Oxygen Record", , , , , Keck Observatory, The galaxy named HSC J1631+4426.   

    From Keck Observatory: “Surprisingly Young Galaxy Breaks Low-Oxygen Record” 

    W.M. Keck Observatory, two ten meter telescopes operated by California Institute of Technology(US) and the University of California(US), Maunakea Hawaii USA, altitude 4,207 m (13,802 ft). Credit: Caltech.


    From Keck Observatory

    July 31, 2020

    Mari-Ela Chock
    Communications Officer
    W. M. Keck Observatory
    (808) 554-0567 mobile
    mchock@keck.hawaii.edu

    Rare, Extremely Metal-Poor Nearby Galaxy Discovered With Machine Learning.

    1
    An image of the galaxy hsc j1631+4426. Credit: NAOJ/Kojima et al.

    1
    AN IMAGE OF HSC J1631+4426, AN EXTREMELY METAL-POOR NEARBY GALAXY THAT BROKE THE RECORD FOR HAVING THE LOWEST OXYGEN ABUNDANCE. Credit: NAOJ/Kojima et al.

    Astronomers using two Maunakea Observatories – Subaru Telescope [below] and W. M. Keck Observatory [above] – combined with the power of machine learning, have discovered a nearby galaxy that has broken the record for having the lowest level of oxygen ever seen.

    Mauna Kea Observatory Hawaii USA, altitude 4,207 m (13,802 ft)


    NAOJ/Subaru Telescope at Mauna Kea Hawaii, USA,4,207 m (13,802 ft) above sea level

    The researchers measured its oxygen abundance at only 1.6 percent that of the Sun, suggesting the galaxy, named HSC J1631+4426, only recently started making stars.

    The study will be published in the August 3, 2020 issue of The Astrophysical Journal.

    Young galaxies like HSC J1631+4426 are rare; most galaxies in the modern universe are already mature. Standard Cosmology predicts there may still be a few star-forming galaxies today, but they are difficult to detect.

    “To find these very faint, rare galaxies, deep, wide-field imaging data taken with the Subaru Telescope was indispensable,” said Takashi Kojima of the University of Tokyo Institute for Cosmic Ray Research and lead author of the study.

    However, the wide-field data detected 40 million objects. To comb through the vast amount of data and zero in on galaxies that are just beginning to form stars, the research team developed a new machine learning method. They ‘taught’ a computer to repeatedly learn the galaxy colors expected from theoretical models and select only galaxies in the early stage of galaxy formation.

    The computer identified 27 candidates; the research team performed follow-up observations on four of them, using Keck Observatory’s DEep Imaging and Multi-Object Spectrograph (DEIMOS) as well as Subaru Telescope’s Faint Object Camera and Spectrograph (FOCAS) to determine the candidate galaxies’ elemental abundance ratios, distances, and mass.

    Keck/DEIMOS on Keck 2

    NAOJ Subaru FOCAS Faint Object Camera and Spectrograph

    The spectroscopic data revealed that one of them, HSC J1631+4426, is an extremely metal-poor galaxy with the lowest oxygen abundance ever reported. The researchers also determined its location to be relatively close – just 430 million light-years away in the constellation Hercules – and that the galaxy is tiny.

    “What’s surprising is the stellar mass of the HSC J1631+4426 galaxy is very small, 0.8 million solar masses, which is only about 1/100,000 of our Milky Way, and comparable to the mass of a star cluster in our galaxy,” said co-author Masami Ouchi, a professor at the National Astronomical Observatory of Japan and the University of Tokyo.

    “Low-mass, young, metal-poor galaxies found near us are important because they resemble primordial galaxies, making HSC J1631+4426 one of the best local labs for studying in detail what the first galaxies were like in the early universe, shortly after the Big Bang,” said John O’Meara, chief scientist at Keck Observatory.

    The Big Bang created two main elements: hydrogen and helium. As such, the earliest galaxies are expected to have few ‘metals’ like oxygen (in astronomy, elements heavier than hydrogen and helium are called ‘metals’). Oxygen-poor galaxies found today serve as analogs for galaxies born shortly after the Big Bang, thus helping astronomers better understand how galaxies formed and evolved in the early universe.

    The research team finds two interesting indications from the discovery of HSC J1631+4426. First, it provides evidence supporting the Standard Cosmology prediction that young, star-forming galaxies do in fact exist in the present universe.

    Second, the study indicates this could be the latest epoch of the cosmic history where we may witness a newborn galaxy. The Standard Cosmology suggests the density of matter drops as the expansion of the universe accelerates. This would lead to a future universe where matter does not assemble by gravity, and new galaxies won’t be born. Thus, HSC J1631+4426 may be the last generation galaxy of its kind in the long cosmic history.

    _________________________________________

    ABOUT DEIMOS

    The DEep Imaging and Multi-Object Spectrograph (DEIMOS) boasts the largest field of view (16.7arcmin by 5 arcmin) of any of the Keck Observatory instruments, and the largest number of pixels (64 Mpix). It is used primarily in its multi-object mode, obtaining simultaneous spectra of up to 130 galaxies or stars. Astronomers study fields of distant galaxies with DEIMOS, efficiently probing the most distant corners of the universe with high sensitivity.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.


    Keck UCal

     
  • richardmitnick 11:03 am on July 14, 2020 Permalink | Reply
    Tags: "Maunakea Observatories Quick Reflexes Capture Fleeting Flash", Astronomers have discovered the second-most distant confirmed short gamma-ray burst (SGRB) ever studied., , , , , GRB181123B placed squarely in the epoch of cosmic high noon when the universe was in its “teenage years” and rapidly forming stars., Keck Observatory, Observations confirm the object’s distance at 10 billion light-years away.   

    From Keck Observatory: “Maunakea Observatories Quick Reflexes Capture Fleeting Flash” 

    Keck Observatory, operated by Caltech and the University of California, Maunakea Hawaii USA, 4,207 m (13,802 ft)

    From Keck Observatory

    July 14, 2020
    Mari-Ela Chock
    Communications Officer
    W. M. Keck Observatory
    (808) 554-0567 mobile
    mchock@keck.hawaii.edu

    The International Gemini Observatory and W. M. Keck Observatory Catch Short Gamma-Ray Burst Within Hours

    1
    The afterglow of grb181123b, captured by the Gemini North telescope. the afterglow is marked with a circle.
    Credit: International Gemini Observatory/NOIRLab/NSF/AURA/K. Paterson & W. Fong (Northwestern University) Image processing: Travis Rector (University of Alaska Anchorage), Mahdi Zamani & Davide de Martin

    Astronomers have discovered the second-most distant confirmed short gamma-ray burst (SGRB) ever studied using two Maunakea Observatories in Hawaiʻi – W. M. Keck Observatory [above] and the international Gemini Observatory, a Program of NSF’s NOIRLab. Observations confirm the object’s distance at 10 billion light-years away, placing it squarely in the epoch of cosmic high noon when the universe was in its “teenage years” and rapidly forming stars.


    Frederick C Gillett Gemini North Telescope Maunakea, Hawaii, USA, Altitude 4,213 m (13,822 ft)

    The appearance of an SGRB at such an early time could alter theories about their origins, particularly the length of time it takes two neutron stars to merge and produce these powerful explosions, as well as the rate of neutron star mergers in the young universe.

    “This was a very exciting object to study,” said Kerry Paterson, a postdoctoral associate at Northwestern University’s Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and lead author of the study. “Our research now suggests neutron star mergers could occur surprisingly quickly for some systems — with neutron star binaries spiraling together in less than a billion years to create an SGRB.”

    The study has been accepted in The Astrophysical Journal Letters.

    SGRBs are short-lived, highly-energetic bursts of gamma-ray light. The gamma-ray light lasts for less than two seconds, while the optical light can last for a matter of hours before fading. Therefore, rapid follow-up of the optical afterglow of these intense flashes of gamma-ray radiation is critical. Within just a few hours after NASA’s Neil Gehrels Swift Observatory detected the object and broadcast a worldwide alert, Paterson’s team quickly pointed the Gemini North and Keck I telescopes toward the location of the SGRB.

    NASA Neil Gehrels Swift Observatory

    Using the Gemini Multi-Object Spectrograph followed by Keck Observatory’s Multi-Object Spectrograph for Infrared Exploration (MOSFIRE) instrument, the researchers were able to measure the very faint afterglow of the object, which is named GRB181123B because it was the second burst discovered on November 23, 2018 – Thanksgiving night.

    GEMINI/North GMOS

    Keck/MOSFIRE on Keck 1, Mauna Kea, Hawaii, USA

    “It was unreal,” said Wen-fai Fong, assistant professor of physics and astronomy at Northwestern University and co-author of the study. “I was in New York with my family and had finished having a big Thanksgiving dinner. Just as I had gone to sleep, the alert went off and woke me up. While somewhat of a nuisance, you literally never know when you’ll land a big discovery like this! I immediately triggered the Gemini observations and notified Kerry. Thankfully, she happened to be observing at Keck that night and was able to rearrange her original observing plan and repoint the telescope towards the SGRB.”

    “It was such an adrenaline-rush to be at Keck when the SGRB alert went off and personally move the telescope towards the object to capture data mere hours after the burst,” said Paterson.

    Precisely-localized SGRBs are rare, typically only 7–8 are detected per year. To pinpoint the distance of GRB181123B, the team obtained spectra of its host galaxy through follow-up observations using Keck Observatory’s DEep Imaging and Multi-Object Spectrograph (DEIMOS).

    Keck/DEIMOS on Keck 2

    “Once we obtained the optical spectrum from DEIMOS, it was clear this event was one of the most distant SGRBs measured, which further fueled our investigation to determine its precise distance,” said Paterson.

    This led the team to collect additional observations with Keck Observatory, along with the Gemini South telescope in Chile and the Multi-Mirror Telescope in Arizona. With a distance calculated at a cosmological redshift of 1.754, the data confirmed the object is the most distant high-confidence SGRB with an optical afterglow detection ever found.

    Gemini/South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile, at an altitude of 7200 feet on the summit of Cerro Pachon


    CfA 6.5-m Multi-Mirror Telescope at Arizona Fred Lawrence Whipple Observatory at the summit of Mount Hopkins near Tucson, Arizona, USA, Altitude 2,616 m (8,583 ft) n the Santa Rita Mountains.

    3
    An artist’s impression of how GRB181123B compares to other short gamma-ray bursts. It is the second-most distant short gamma-ray burst to ever be detected, and the most distant to have its optical afterglow captured. Except when they are detected by gravitational wave observatories, the gamma-ray bursts can only be detected from Earth when their jets of energy are pointed towards us. Credit: International Gemini Observatory/NOIRLab/NSF/AURA/J. Pollard/K. Paterson & W. Fong (Northwestern University); Image processing: Travis Rector (University of Alaska Anchorage), Mahdi Zamani & Davide de Martin

    “The identification of certain patterns in the spectrum, together with the colors of the galaxy from the three observatories, allowed us to precisely constrain the distance and solidify it as one of the most distant SGRBs to date in 16 years of Swift operations,” said Paterson.

    Once the team identified the host galaxy, they were able to determine key properties of the parent stellar population within the galaxy that produced the SGRB.

    “Performing ‘forensics’ to understand the local environment of SGRBs and what their home galaxies look like can tell us a lot about the underlying physics of these systems, such as how SGRB progenitors form and how long it takes for them to merge,” said Fong. “We certainly did not expect to discover an extremely distant SGRB, as they are very rare and faint, but we were pleasantly surprised! This motivates us to go after every one that we possibly can.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.


    Keck UCal

     
  • richardmitnick 12:07 pm on June 25, 2020 Permalink | Reply
    Tags: "Monster Black Hole Found in the Early Universe", , , , , Keck Observatory, Quasar j1007+2115 or pōniuāʻena   

    From Keck Observatory: “Monster Black Hole Found in the Early Universe” 

    Keck Observatory, operated by Caltech and the University of California, Maunakea Hawaii USA, 4,207 m (13,802 ft)

    From Keck Observatory

    June 25, 2020
    Mari-Ela Chock
    Communications Officer
    W. M. Keck Observatory
    (808) 554-0567 mobile
    mchock@keck.hawaii.edu

    The Second-most Distant Quasar Ever Discovered Now Has a Hawaiian Name.

    1
    Quasar j1007+2115, or pōniuāʻena
    Credit: International Gemini Observatory/NOIRLab/NSF/AURA/P. Marenfeld

    Astronomers have discovered the second-most distant quasar ever found using three Maunakea Observatories in Hawai‘i: W. M. Keck Observatory [above], the international Gemini Observatory, a Program of NSF’s NOIRLab, and the University of Hawai‘i-owned United Kingdom Infrared Telescope (UKIRT). It is the first quasar to receive an indigenous Hawaiian name, Pōniuāʻena, which means “unseen spinning source of creation, surrounded with brilliance” in the Hawaiian language.


    Frederick C Gillett Gemini North Telescope Maunakea, Hawaii, USA, Altitude 4,213 m (13,822 ft)


    UKIRT, located on Mauna Kea, Hawai’i, USA as part of Mauna Kea Observatory,4,207 m (13,802 ft) above sea level

    Pōniuāʻena is only the second quasar yet detected at a distance calculated at a cosmological redshift greater than 7.5 and it hosts a black hole twice as large as the other quasar known in the same era. The existence of these massive black holes at such early times challenges current theories of how supermassive black holes formed and grew in the young universe.

    The research has been accepted in The Astrophysical Journal Letters.

    Quasars are the most energetic objects in the universe powered by their supermassive black holes and since their discovery, astronomers have been keen to determine when they first appeared in our cosmic history. By systematically searching for these rare objects in wide-area sky surveys, astronomers discovered the most distant quasar (named J1342+0928) in 2018 and now the second-most distant, Pōniuāʻena (or J1007+2115, at redshift 7.515). The light seen from Pōniuāʻena traveled through space for over 13 billion years since leaving the quasar just 700 million years after the Big Bang.

    Spectroscopic observations from Keck Observatory and Gemini Observatory show the supermassive black hole powering Pōniuāʻena is 1.5 billion times more massive than our Sun.

    2
    An artist’s impression of the formation of the quasar Pōniuāʻena, starting with a seed black hole 100 million years after the Big Bang (left), then growing into a billion solar mass black hole 700 million years after the Big Bang (right). Astronomers discovered Pōniuāʻena, the second-most distant quasar ever found, using three Maunakea Observatories on Hawaii Island: W. M. Keck Observatory, Gemini Observatory, and UKIRT, as well as the Pan-STARRS1 telescope on the Island of Maui. It is the first quasar to receive an indigenous Hawaiian name. Credit: International Gemini Observatory/NOIRLab/NSF/AURA/P. Marenfeld

    “Pōniuāʻena is the most distant object known in the universe hosting a black hole exceeding one billion solar masses,” said Jinyi Yang, a postdoctoral research associate at the Steward Observatory of the University of Arizona and lead author of the study.

    For a black hole of this size to form this early in the universe, it would need to start as a 10,000 solar mass “seed” black hole about 100 million years after the Big Bang, rather than growing from a much smaller black hole formed by the collapse of a single star.

    “How can the universe produce such a massive black hole so early in its history?” said Xiaohui Fan, Regents’ professor and associate department head of the Department of Astronomy at the University of Arizona. “This discovery presents the biggest challenge yet for the theory of black hole formation and growth in the early universe.”

    Current theory holds the birth of stars and galaxies as we know them started during the Epoch of Reionization, beginning about 400 million years after the Big Bang. The growth of the first giant black holes is thought to have occurred during that same era in the universe’s history.

    The discovery of quasars like Pōniuāʻena, deep into the reionization epoch, is a big step towards understanding this process of reionization and the formation of early supermassive black holes and massive galaxies. Pōniuāʻena has placed new and important constraints on the evolution of the matter between galaxies (intergalactic medium) in the reionization epoch.

    “Pōniuāʻena acts like a cosmic lighthouse. As its light travels the long journey towards Earth, its spectrum is altered by diffuse gas in the intergalactic medium which allowed us to pinpoint when the Epoch of Reionization occurred,” said co-author Joseph Hennawi, a professor in the Department of Physics at the University of California, Santa Barbara.

    METHODOLOGY

    Yang’s team first detected Pōniuāʻena as a possible quasar after combing through large area surveys such as the UKIRT Hemisphere Survey and data from the University of Hawai‘i Institute for Astronomy’s Pan-STARRS1 telescope on the Island of Maui.

    In 2019, the researchers observed the object using Gemini Observatory’s GNIRS instrument as well as Keck Observatory’s Near Infrared Echellette Spectrograph (NIRES) to confirm the existence of Pōniuāʻena.

    “The preliminary data from Gemini suggested this was likely to be an important discovery. Our team had observing time scheduled at Keck just a few weeks later, perfectly timed to observe the new quasar using Keck’s NIRES spectrograph in order to confirm its extremely high redshift and measure the mass of its black hole,” said co-author Aaron Barth, a professor in the Department of Physics and Astronomy at the University of California, Irvine.

    In honor of its discovery from atop Maunakea, 30 Hawaiian immersion school teachers named the quasar Pōniuāʻena through the ‘Imiloa Astronomy Center of Hawai‘i’s A Hua He Inoa program led by renowned Hawaiian language expert Dr. Larry Kimura.

    “We recognize there are different ways of knowing the universe,” said John O’Meara, chief scientist at Keck Observatory. “Pōniuāʻena is a wonderful example of interconnectedness between science and culture, with shared appreciation for how different knowledge systems enrich each other.”

    “I am extremely grateful to be a part of this educational experience – it is a rare learning opportunity,” said Kauʻi Kaina, a high school Hawaiian immersion teacher from Kahuku, Oʻahu who was involved in the naming workshop. “Today it is relevant to apply these cultural values in order to further the well-being of the Hawaiian language beyond ordinary contexts such as in school, but also to ensure the language lives throughout the universe.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.


    Keck UCal

     
  • richardmitnick 1:04 pm on June 1, 2020 Permalink | Reply
    Tags: Astronomers Find Cosmic Golden Needle Buried for Two Decades, , , , , Discovery Sheds New Light on Famous Einstein Ring, Gravitationally lens, , Keck Observatory, The first discovered Einstein ring named MG 1131+0456 which was observed in 1987 with the Very Large Array.   

    From Keck Observatory: “Astronomers Find Cosmic Golden Needle Buried for Two Decades; Discovery Sheds New Light on Famous Einstein Ring” 

    Keck Observatory, operated by Caltech and the University of California, Maunakea Hawaii USA, 4,207 m (13,802 ft)

    From Keck Observatory

    Mari-Ela Chock
    Communications Officer
    W. M. Keck Observatory
    (808) 554-0567 mobile
    mchock@keck.hawaii.edu

    Social Distance Science Made Possible with Public W. M. Keck Observatory and NASA Archive Data.

    1
    A radio image of mg 1131+0456, the first known einstein ring observed in 1987 using the very large array.
    IMAGE CREDIT: VLA

    NRAO/Karl V Jansky Expanded Very Large Array, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

    Determined to find a needle in a cosmic haystack, a pair of astronomers time traveled through archives of old data from W. M. Keck Observatory on Mauankea in Hawaii and old X-ray data from NASA’s Chandra X-ray Observatory to unlock a mystery surrounding a bright, lensed, heavily obscured quasar.

    NASA/Chandra X-ray Telescope

    This celestial object, which is an active galaxy emitting enormous amounts of energy due to a black hole devouring material, is an exciting object in itself. Finding one that is gravitationally lensed, making it appear brighter and larger, is exceptionally exciting. While slightly over 200 lensed unobscured quasars are currently known, the number of lensed obscured quasars discovered is in the single digits. This is because the feeding black hole stirs up gas and dust, cloaking the quasar and making it difficult to detect in visible light surveys.

    Not only did the researchers uncover a quasar of this type, they found the object happens to be the first discovered Einstein ring, named MG 1131+0456, which was observed in 1987 with the Very Large Array network of radio telescopes in New Mexico. Remarkably, though widely studied, the quasar’s distance or redshift remained a question mark.

    “As we dug deeper, we were surprised that such a famous and bright source never had a distance measured for it,” said Daniel Stern, senior research scientist at NASA’s Jet Propulsion Laboratory and author of the study. “Having a distance is a necessary first step for all sorts of additional studies, such as using the lens as a tool to measure the expansion history of the universe and as a probe for dark matter.”

    Stern and co-author Dominic Walton, an STFC Ernest Rutherford Fellow at the University of Cambridge’s Institute of Astronomy (UK), are the first to calculate the quasar’s distance, which is 10 billion light-years away (or a redshift of z = 1.849).

    The result is published in the June 1 issue of The Astrophysical Journal Letters.

    “This whole paper was a bit nostalgic for me, making me look at papers from the early days of my career, when I was still in graduate school. The Berlin Wall was still up when this Einstein ring was first discovered, and all the data presented in our paper are from the last millennium,” said Stern.

    METHODOLOGY

    At the time of their research, telescopes around the planet were shuttered due to the coronavirus pandemic (Keck Observatory has since reopened as of May 16); Stern and Walton took advantage of their extended time at home to creatively keep science going by combing through data from NASA’s Wide-field Infrared Survey Explorer (WISE) to search for gravitationally lensed, heavily obscured quasars.

    NASA/WISE NEOWISE Telescope

    While dust hides most active galaxies in visible light surveys, that obscuring dust makes such sources very bright in infrared surveys, such as provided by WISE.

    Though quasars are often extremely far away, astronomers can detect them through gravitational lensing, a phenomenon that acts as nature’s magnifying glass.

    Gravitational Lensing

    Gravitational Lensing NASA/ESA

    This occurs when a galaxy closer to Earth acts as a lens and makes the quasar behind it look extra bright. The gravitational field of the closer galaxy warps space itself, bending and amplifying the light of the quasar in the background. If the alignment is just right, this creates a circle of light called an Einstein ring, predicted by Albert Einstein in 1936. More typically, gravitationally lensing will cause multiple images of the background object to appear around the foreground object.

    2
    Examples of Einstein ring gravitational lenses taken with the Hubble Space Telescope. Image credit: NASA/ESA/SLACS Survey team: A. Bolton (Harvard/Smithsonian), S. Burles (MIT), L. Koopmans (Kapteyn), T. Treu (UCSB), L. Moustakas (JPL/Caltech)

    Once Stern and Walton rediscovered MG 1131+0456 with WISE and realized its distance remained a mystery, they meticulously combed through old data from the Keck Observatory Archive (KOA) and found the Observatory observed the quasar seven times between 1997 and 2007 using the Low Resolution Imaging Spectrometer (LRIS) on the Keck I telescope, as well as the Near-Infrared Spectrograph (NIRSPEC) and the Echellette Spectrograph and Imager (ESI) on the Keck II telescope.

    UCO Keck LRIS

    Nirspec on Keck 2

    KECK Echellette Spectrograph and Imager (ESI) on Keck II

    “We were able to extract the distance from Keck’s earliest data set, taken in March of 1997, in the early years of the observatory,” said Walton. “We are grateful to Keck and NASA for their collaborative efforts to make more than 25 years of Keck data publicly available to the world. Our paper would not have been possible without that.”

    The team also analyzed NASA’s archival data from the Chandra X-ray Observatory in 2000, in the first year after the mission launched.

    NEXT STEPS

    With MG 1131+0456’s distance now known, Walton and Stern were able to determine the mass of the lensed galaxy with exquisite precision and use the Chandra data to robustly confirm the obscured nature of the quasar, accurately determining how much intervening gas lies between us and its luminous central regions.

    “We can now fully describe the unique, fortuitous geometry of this Einstein ring,” said Stern. “This allows us to craft follow-up studies, such as using the soon-to-launch James Webb Space Telescope to study the dark matter properties of the lensing galaxy.”

    “Our next step is to find lensed quasars that are even more heavily obscured than MG 1131+0456,” said Walton. “Finding those needles is going to be even harder, but they’re out there waiting to be discovered. These cosmic gems can give us a deeper understanding of the universe, including further insight into how supermassive black holes grow and influence their surroundings,” says Walton.

    3
    Adhering to social distancing amid the COVID-19 pandemic, astronomers Dominic Walton (left) and Daniel Stern (right) collaborated remotely via Zoom to conduct their study of the lensed, obscured quasar MG 1131+0456 and determine its distance. Image credit: D. Stern, NASA JPL/D. Walton, University of Cambridge IoA

    __________________________________________

    ABOUT LRIS

    The Low Resolution Imaging Spectrometer (LRIS) is a very versatile and ultra-sensitive visible-wavelength imager and spectrograph built at the California Institute of Technology by a team led by Prof. Bev Oke and Prof. Judy Cohen and commissioned in 1993. Since then it has seen two major upgrades to further enhance its capabilities: the addition of a second, blue arm optimized for shorter wavelengths of light and the installation of detectors that are much more sensitive at the longest (red) wavelengths. Each arm is optimized for the wavelengths it covers. This large range of wavelength coverage, combined with the instrument’s high sensitivity, allows the study of everything from comets (which have interesting features in the ultraviolet part of the spectrum), to the blue light from star formation, to the red light of very distant objects. LRIS also records the spectra of up to 50 objects simultaneously, especially useful for studies of clusters of galaxies in the most distant reaches, and earliest times, of the universe. LRIS was used in observing distant supernovae by astronomers who received the Nobel Prize in Physics in 2011 for research determining that the universe was speeding up in its expansion.

    ABOUT NIRSPEC

    The Near-Infrared Spectrograph (NIRSPEC) is a unique, cross-dispersed echelle spectrograph that captures spectra of objects over a large range of infrared wavelengths at high spectral resolution. Built at the UCLA Infrared Laboratory by a team led by Prof. Ian McLean, the instrument is used for radial velocity studies of cool stars, abundance measurements of stars and their environs, planetary science, and many other scientific programs. A second mode provides low spectral resolution but high sensitivity and is popular for studies of distant galaxies and very cool low-mass stars. NIRSPEC can also be used with Keck II’s adaptive optics (AO) system to combine the powers of the high spatial resolution of AO with the high spectral resolution of NIRSPEC. Support for this project was provided by the Heising-Simons Foundation.

    ABOUT ESI

    The Echellette Spectrograph and Imager (ESI) is a medium-resolution visible-light spectrograph that records spectra from 0.39 to 1.1 microns in each exposure. Built at UCO/Lick Observatory by a team led by Prof. Joe Miller, ESI also has a low-resolution mode and can image in a 2 x 8 arc min field of view. An upgrade provided an integral field unit that can provide spectra everywhere across a small, 5.7 x4.0 arc sec field. Astronomers have found a number of uses for ESI, from observing the cosmological effects of weak gravitational lensing to searching for the most metal-poor stars in our galaxy.

    ABOUT KOA

    The Keck Observatory Archive (KOA) is a collaboration between the NASA Exoplanet Science Institute (NExScI) and the W. M. Keck Observatory (WMKO). NExScI is sponsored by NASA’s Exoplanet Exploration Program, and operated by the California Institute of Technology in coordination with the Jet Propulsion Laboratory (JPL).

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.


    Keck UCal

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: