From SETI@home via The Ringer: “E.T.’s Home Phone”

SETI@home
From SETI@home

via

The Ringer

May 24, 2019
Ben Lindbergh

UC Berkeley’s SETI@home, one of the most significant citizen-science projects of the late 20th century, brought the search for intelligent life to PCs. It hasn’t yet found what it set out to, but there’s still hope.

1
Getty Images/Ringer illustration

Around the time the movie Contact came out in 1997, Kevin D., a governmental IT support and procurement employee in Toronto, saw a notice on a technical news site about a piece of software that was being developed by researchers at the University of California, Berkeley. The scientists were interested in SETI, the Search for Extraterrestrial Intelligence, and courtesy of Contact, so was Kevin D. The moment he heard about the program that would eventually come to be called SETI@home wasn’t as dramatic as Jodie Foster’s portrayal of Dr. Eleanor Arroway discovering a message sent across the universe, but it would make a major impact on the next two decades of his life. It also signaled the advent of a productive and unprecedented citizen-science project that continues today, 20 years after it launched in May 1999.

Kevin D. aspired to be a scientist as soon as he could read, but financial difficulties forced him to drop out of university, which put an end to that dream. “I could have probably gone with student loans and a few years of eating ramen, but I wasn’t in the right frame of mind anymore,” he says. “SETI@home and other distributed-computing projects have filled that need nicely, allowing me to contribute to science on a scale that would have been unimaginable just a few decades ago.”

SETI@home was the brainchild of a UC Berkeley grad student named David Gedye, who came up with the concept of using personal computers for scientific purposes in 1995. “That was the point where a lot of home computers were on the internet,” says Berkeley research scientist David Anderson, Gedye’s grad advisor and the cofounder of SETI@home. “Also the point where personal computers were becoming fast enough that they could potentially do number-crunching for scientific purposes.”

Gedye thought using computers to comb through data recorded by radio telescopes in search of signals sent by intelligent extraterrestrial life would both appeal to the public and demonstrate the potential for public participation to boost the scientific community’s processing power. He and Anderson joined forces with multiple partners in the astronomy and SETI fields, including Eric Korpela, the current director of SETI@home, and Dan Werthimer, the Berkeley SETI Research Center’s chief scientist. Werthimer was a SETI veteran who had been hunting for alien life since the 1970s and oversaw the SERENDIP program, which piggybacks on observations that radio astronomers are already conducting and scours the results for evidence that E.T. is phoning our home. SERENDIP supplied the incipient SETI@home with data from the venerable Arecibo Observatory in Puerto Rico, which until 2016 featured the world’s largest single-aperture radio telescope.

NAIC Arecibo Observatory operated by University of Central Florida, Yang Enterprises and UMET, Altitude 497 m (1,631 ft).

Fueled by $50,000 from the Planetary Society and $10,000 from a company backed by Microsoft cofounder and SETI enthusiast Paul Allen, Korpela and Anderson started designing software that would split that data into chunks that could be distributed to personal computers, processed, and sent back to Berkeley for further analysis. By the spring of ’99, SETI@home was ready to launch, despite the difficulty of making it compatible with all kinds of computers and dealing with pre-broadband internet. But its creators weren’t prepared for the outpouring of public interest that propagated through word of mouth and posts on forums and sites such as Slashdot.

“The biggest issue was not the people on dial-up connections,” Korpela recalls. “It was just the sheer number of people that were interested in SETI@home. When we started SETI@home, we planned or thought that maybe we could get 10,000 people to be interested in doing this. The day we turned it on, we had close to half a million people show up.”

In 1999, the public portion of the internet was new enough that going viral was a nearly unknown phenomenon. But Korpela says that within a month or two, SETI@home had attracted a couple million active users, which overwhelmed the modest equipment underpinning the project, causing frequent crashes. “We were planning on running our servers from a small desktop machine,” Korpela says. “That didn’t really work.” Sun Microsystems stepped in to donate more powerful hardware, and SETI@home users helped the perpetually underfunded program defray the cost of bandwidth, which was expensive at the time. In 1999, Korpela says, Berkely was paying $600 a month for each megabit per second, and SETI@home was guzzling about 25.

On the plus side, the uptick in processing power was immediately apparent. “The main benefit of the SETI@home–type processing is that it gives us about a factor-of-10 increase in sensitivity,” Korpela says. “So we can detect a signal that’s 10 times smaller than we could just using the instrumentation that’s available at the radio telescope.”

As SETI@home spread, a few of its more zealous acolytes ran afoul of the workplaces where they installed it, which the program’s creators advised users not to do without permission. In 2001, 16 employees of the Tennessee Valley Authority were reprimanded for installing the software on their office computers. (I know the feeling; my mom wasn’t pleased about the electricity costs she claimed I was incurring when she spotted the screensaver on my own early-2000s PC.) In 2002, computer technician David McOwen faced criminal charges and was ultimately put on probation when he installed SETI@home at DeKalb Technical College in Atlanta. And in 2009, network systems administrator Brad Niesluchowski lost his job after installing SETI@home on thousands of computers across an Arizona school district. (Niesluchowski, or “NEZ,” still ranks 17th on the all-time SETI@home leaderboard for data processed.) Korpela has made several SETI@home sightings in the wild, including on point-of-sale cash registers and, once, on a public computer at an Air Force base (which wasn’t Area 51).

Over the decades, SETI@home’s user base has dwindled to between 100,000 and 150,000 people, operating an average of two computers and six to eight CPUs per person. But the remaining participants’ computers are hundreds or thousands of times more powerful than they were in 1999. “When we started, we designed our work units—our data chunks going out to people—to be something that a typical PC would be able to finish computing in about a week, and a current GPU will do those in a couple of minutes,” Korpela says. SETI@home is now available via an Android app that’s used by about 12,000 participants, and even smartphones smoke turn-of-the-century desktop computers in processing speed.

The SETI@home software has evolved along with the hardware that hosts it. In the early years, the program ran as a screensaver, which served multiple purposes. First, screensavers were popular, so the software filled a need. Second, the graphical representations of the program’s activities fed users’ scientific curiosity and reassured them that the program was working as intended. And third, it functioned as eye candy that entertained users and caught the attention of anyone within visual range. Now that screensavers have fallen out of favor and more people prefer to turn off their monitors or computers when they’re not in use to save power, Anderson says, “We’ve kind of moved away from the screensaver model to the model of just running invisibly in the background while you’re at your computer.”

A shortcoming of the original SETI@home software led to a much more significant change—and, indirectly, the greatest legacy of SETI@home, at least so far. In the program’s initial form, the signal-processing logic and the code that handled displaying the screensaver and receiving and transmitting data were a package deal. “Each time we wanted to change the algorithms, to change the scientific part, we had to have all of our users download and install a new program,” Anderson says. “And then we would lose some fraction of our users each time we did that.”

The solution was separating the science part from the distributed-computing part by building a platform that could update the algorithm without requiring a reinstall. Better yet, that platform could act as a conduit for any number of alternative distributed-computing efforts. In 2002, Anderson built and released that system, which he called Berkeley Open Infrastructure for Network Computing, or BOINC.

SETI@home, which migrated to BOINC in 2005, has thus far failed in its primary purpose: to detect intelligent alien life. But it’s succeeded in its secondary goal of demonstrating the viability of distributed computing. Other researchers have emulated that model, and BOINC, which is funded primarily by the National Science Foundation, is now home to 38 active projects that are doing useful science, including investigating diseases and identifying drugs that could combat cancer, modeling climate change, and searching for phenomena such as pulsars and gravitational waves. Research conducted by BOINC-based projects has generated 150 scientific papers (and counting), and the network’s collective computing power—about 27 petaflops—makes it more powerful than all but four of the world’s individual supercomputers. Anderson, who believes volunteer computing is still underutilized by the scientific community, says it’s especially “well suited to the general area of physical simulations where you have programs that simulate physical reality, which scales anywhere from the atomic level up to the entire universe.”

See the full article here.

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

The science of SETI@home
SETI (Search for Extraterrestrial Intelligence) is a scientific area whose goal is to detect intelligent life outside Earth. One approach, known as radio SETI, uses radio telescopes to listen for narrow-bandwidth radio signals from space. Such signals are not known to occur naturally, so a detection would provide evidence of extraterrestrial technology.

Radio telescope signals consist primarily of noise (from celestial sources and the receiver’s electronics) and man-made signals such as TV stations, radar, and satellites. Modern radio SETI projects analyze the data digitally. More computing power enables searches to cover greater frequency ranges with more sensitivity. Radio SETI, therefore, has an insatiable appetite for computing power.

Previous radio SETI projects have used special-purpose supercomputers, located at the telescope, to do the bulk of the data analysis. In 1995, David Gedye proposed doing radio SETI using a virtual supercomputer composed of large numbers of Internet-connected computers, and he organized the SETI@home project to explore this idea. SETI@home was originally launched in May 1999.

SETI@home is not a part of the SETI Institute

The SET@home screensaver image

SETI@home, a BOINC project originated in the Space Science Lab at UC Berkeley

To participate in this project, download and install the BOINC software on which it runs. Then attach to the project. While you are at BOINC, look at some of the other projects which you might find of interest.

My BOINC