Tagged: SETI@home Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:57 pm on July 14, 2015 Permalink | Reply
    Tags: , , , SETI@home   

    From SETI@home: Interview with Dave Anderson 

    SETI@home
    SETI@home

    David Anderson talks BOINC, Citizen Science, and Why We Still Need You

    David Anderson is co-creator of SETI@home, and the Director of BOINC, the Berkeley Open Infrastructure for Network Computing. David is a computer scientist by trade, and mathematician by training who’s had a decades long interest in distributed computing and volunteer science.

    Download BOINC and join the science!
    http://boinc.berkeley.edu/download.php

    Learn more about David
    https://seti.berkeley.edu/user/46

    Follow us on Twitter:
    https://twitter.com/setiathome
    Facebook:
    https://www.facebook.com/BerkeleySETI

    Watch, enjoy, learn, maybe think about joining up.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The science of SETI@home
    SETI (Search for Extraterrestrial Intelligence) is a scientific area whose goal is to detect intelligent life outside Earth. One approach, known as radio SETI, uses radio telescopes to listen for narrow-bandwidth radio signals from space. Such signals are not known to occur naturally, so a detection would provide evidence of extraterrestrial technology.

    Radio telescope signals consist primarily of noise (from celestial sources and the receiver’s electronics) and man-made signals such as TV stations, radar, and satellites. Modern radio SETI projects analyze the data digitally. More computing power enables searches to cover greater frequency ranges with more sensitivity. Radio SETI, therefore, has an insatiable appetite for computing power.

    Previous radio SETI projects have used special-purpose supercomputers, located at the telescope, to do the bulk of the data analysis. In 1995, David Gedye proposed doing radio SETI using a virtual supercomputer composed of large numbers of Internet-connected computers, and he organized the SETI@home project to explore this idea. SETI@home was originally launched in May 1999.

    SETI@home is not a part of the SETI Institute

    The SET@home screensaver image
    SETI@home screensaver

    To participate in this project, download and install the BOINC software on which it runs. Then attach to the project. While you are at BOINC, look at some of the other projects which you might find of interest.

    BOINC

     
  • richardmitnick 8:42 am on March 28, 2015 Permalink | Reply
    Tags: , , , , , , SETI@home   

    From SETI’s Seth Shostak at NYT: “Messaging the Stars” 

    New York Times

    The New York Times

    MARCH 27, 2015

    SETI Seth Shostak
    Seth Shostak

    SETI Institute

    1

    For more than a half-century, a small group of astronomers has sought intelligent company among the stars. They’ve done so by turning large radio antennas skyward, hoping to eavesdrop on signals from an advanced society. It’s a program known as SETI, the Search for Extraterrestrial Intelligence.

    But now some researchers propose that we should do more than simply don headphones and await E.T.’s call: We should make serious efforts to encourage a response from putative aliens by deliberately transmitting our own messages. It’s a simple idea, akin to tossing a bottle into the cosmic ocean. But recent arguments for what’s termed active SETI have loosed a storm of controversy, one that has even washed into the halls of academe.

    Why is this? Why has the sending of dispatches to worlds many trillions of miles distant suddenly become a hot-button issue? The simple answer is that there’s now a perception that advertising our existence could be a mortal threat to the planet.

    The reasoning is this: While no one has yet offered decisive proof for life beyond Earth, in the past two years astronomers have learned that tens of billions of habitable planets suffuse our galaxy. Consequently, to believe that only Earth has spawned intelligence is to insist that our world is the site of a miracle. That point of view rarely appeals to scientists.

    The aliens could very well be out there. And that realization has spurred a call by some for broadcasts intended to elicit a communication from at least the nearest other star systems. But we know nothing of the aliens’ possible motives or behavior. Therefore, it’s conceivable that betraying our existence might prompt aggressive action from space.

    Broadcasting is likened to “shouting in the jungle” — not a good idea when you don’t know what’s out there. The British physicist Stephen Hawking alluded to this danger by noting that on Earth, when less advanced societies drew the attention of those more advanced, the consequences for the former were seldom agreeable.

    It’s a worry we never used to have. Victorian-era scientists toyed with plans to use lanterns and burning pools of oil to contact postulated Martians. In the 1970s, NASA bolted greeting cards onto spacecraft that will leave our solar system and wander the vast reaches between the stars. The Pioneer and Voyager probes carry plaques and records with information about what humans look like and where Earth is, as well as a small sampling of our culture.

    NASA Pioneer 10
    NASA/Pioneer 10

    NASA Voyager 1
    NASA/Voyager 1

    Those messages move at the speed of rockets. But in 1974, a three-minute encoded pictogram was transmitted using the large radio antenna at Arecibo, Puerto Rico.

    Arecibo
    Arecibo Radio Observatory

    It moves at the speed of light, 20,000 times faster. More recent radio transmissions include a Beatles song beamed by NASA to the North Star, a Doritos advertisement launched to a planetary system in the Big Dipper, and a series of broadcasts sent to nearby stars using an antenna in Crimea.

    When most people believed that aliens were no more than easy black hats for Hollywood, the idiosyncratic nature of these messages could be easily dismissed. But if cosmic company is a legitimate possibility, shouldn’t we offer up something more edifying than pop music and snack food? A deliberate transmission should represent all of humanity — not short-circuit the important question of who will speak for Earth.

    Consequently, recent conferences on the merits of active SETI have sought the advice of social scientists. Among their worries is whether to be up front about humanity’s seamy side: Should we tell the extraterrestrials about war and injustice?

    Personally, I think this concern is overwrought. Any society that can pick up our radio messages will be at a level of development at least centuries beyond our own. They would be no more incensed by our bad behavior than historians who learned that Babylonians attacked one another with spears. It seems naïve to imagine that, by shielding aliens from the less flattering aspects of humanity, we would somehow lessen any incentive to do us harm. If there’s a danger, mincing words is unlikely to eliminate it.

    A better approach is to note that the nearest intelligent extraterrestrials are likely to be at least dozens of light-years away. Even assuming that active SETI provokes a reply, it won’t be breezy conversation. Simple back-and-forth exchanges would take decades. This suggests that we should abandon the “greeting card” format of previous signaling schemes, and offer the aliens Big Data.

    For example, we could transmit the contents of the Internet. Such a large corpus — with its text, pictures, videos and sounds — would allow clever extraterrestrials to decipher much about our society, and even formulate questions that could be answered with the material in hand. Sending the web on its way would take months if a radio transmitter were used. A powerful laser, conveying bits much like an optical fiber, could launch these data in a few days.

    Sending messages — even big ones — is technically feasible. However, there’s still the highly controversial matter of whether to broadcast at all. Who decides? One could simply let the public weigh in, but doing so wouldn’t address the security issue. Even if a majority is comfortable with a transmission, how does that mitigate the possible danger?

    The inability to gauge this peril prompts some critics to argue that, given the possibly existential threat posed by active SETI, we should choose the side of caution. We should simply forbid powerful transmissions to the skies. Indeed, a small consortium of academics in California has drafted a petition urging this.

    It’s a wary approach. It’s also poor insurance. Any extraterrestrials with technology advanced enough to threaten us will surely have antennas larger than our own, instruments that can pick up the television and radio signals broadcast willy-nilly since World War II. We are already shouting into the jungle, albeit with less volume than a deliberate signal. But the dangerous creatures may have good hearing.

    Additionally, if we forbid high-powered transmitters aimed at the sky, we shut out such obvious future technologies as better radars for aviation and tracking dangerous asteroids. Do we really want to hamstring our descendants this way?

    A decision to engage in active SETI has not been made. The benefit — learning our place in the cosmos — is only hypothetical, and so is the danger. But I, for one, would hesitate to let a paranoia based on nothing more than conjecture shackle the activities of our children and our children’s children. The universe beckons, and we can do better than to declare that future generations should endlessly tremble at the sight of the stars.

    Seth Shostak is the director of the Center for SETI Research at the SETI Institute, and a host of the radio program Big Picture Science.

    See the full article here.

    SETI Institute promoted the Allen Telescope Array for signal collection.

    Allen Telescope Array

    The Arecibo Radio Telescope is the prime source for data for SET@home a Citizen Science project that runs on personal computers with BOINC software from UC Berkeley.

    SETI@home screensaver

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 12:57 pm on February 14, 2015 Permalink | Reply
    Tags: , , , , SETI@home   

    From New Scientist: “The search for ET: how close are we?” 

    NewScientist

    New Scientist

    23 December 2014
    Graham Lawton

    In 1950, Nobel prizewinning physicist Enrico Fermi posed his famous paradox: if extraterrestrial intelligence exists, why haven’t we found it?

    Why indeed? It is not as if we haven’t been trying. The search for extraterrestrial intelligence (SETI) has been going on for over half a century. It has mostly drawn a blank. But once in a while there is a flurry of excitement. Here are some of the highlights.

    First contact

    On 8 April 1960, Cornell University astronomer Frank Drake pointed a 26-metre radio telescope at two nearby stars. The telescope – based at the US National Radio Astronomy Observatory (NRAO) in West Virginia – was tuned to a frequency of 1420 megahertz, the wavelength of radiation naturally emitted by hydrogen in space. Thus began Project Ozma, the first experiment explicitly designed to look for aliens.

    Drake was hoping to detect radio waves sent by an extraterrestrial civilisation. He chose the emission frequency of hydrogen because it is the most abundant element in the universe, and hence an obvious signal for any intelligent civilisation trying to get itself noticed by another.

    Although the stars – Tau Ceti and Epsilon Eridani – were considered promising candidates, being nearby and sun-like, Project Ozma detected nothing in over 150 hours of observation.

    In 1972, astronomers at NRAO had a second go, this time using a bigger telescope that collected as much data in a minute as the older one could in 19 years. They sporadically monitored more than 650 stars for four years, again searching for the hydrogen signal – and again finding nothing. But the Ozma projects established SETI as a credible discipline and set the scene for many more attempts.

    The Wow! signal

    One of the projects inspired by Ozma was the “Big Ear” programme at Ohio State University, which ran from 1973 to 1995. On 15 August 1977, its 79-metre dish picked up a powerful burst of radio waves from the general direction of Sagittarius.

    2
    WOW signal

    3
    Big Ear

    The burst lasted 72 seconds and was very close to the emission frequency of hydrogen – considered a likely candidate for alien messages. When astronomer Jerry Ehman saw the signal recorded on a computer printout, he circled it in red pen and scrawled “Wow!” on the sheet of paper.

    The set-up of the telescope made it hard to work out exactly where the burst came from, but the general patch of sky was identified.

    The “Wow!” signal remains the most promising putative alien signal ever detected by SETI. But despite extensive searches of the same patch of sky it has never been seen since.

    Radio ga-ga

    In 2007, astronomers at West Virginia University discovered a previously unknown celestial phenomenon: a super-intense, very brief burst of radio waves apparently originating outside our galaxy.

    The Fast Radio Burst lasted for just 15 milliseconds but released more energy than the sun emits in about a month. Calculations suggested that it came from an object no more than 1500 kilometres across.

    At the time there was no obvious explanation for the FRB. Astronomers speculated that it came from a single cataclysmic event, such as the final collapse of a dying black hole or the merger of two neutron stars.

    A handful of other FRBs have since been detected but there is still no agreed explanation.

    Inevitably, the gap has been filled by speculation that FRBs are messages from aliens. Earlier this year, Nigel Watson, author of the UFO Investigations Manual, told the UK’s Daily Mail newspaper that FRBs could be evidence of a “vast alien communication network”. Or, he said, it could just be an as-yet-unknown astronomical phenomenon.

    Messages closer to home

    In the absence of a smoking gun from the sky, some alien hunters have looked for signs on our doorstep. For a while, crop circles – strange geometric patterns that began to appear in arable fields in southern England in the 1970s – were claimed by many people to be messages from ET. They are now known to be the work of artists and pranksters.

    Around a decade ago a slightly more serious idea began to circulate: perhaps there are alien messages in our DNA. As Paul Davies, author of The Eerie Silence: Renewing our search for alien intelligence, wrote in New Scientist in 2004: “Might ET have inserted a message into the genomes of terrestrial organisms, perhaps by delivering carefully crafted viruses in tiny space probes to infect host cells with message-laden DNA?”

    A decade on, we have no evidence whatsoever that ET did this. In the past couple of years the idea has been revived in a slightly different form: a pair of Kazakh researchers have proposed that the genetic code would be a better place to plant a signal, and even claim to have found what they call “the Wow! signal of the genetic code”.

    Comin’ atcha

    Our failure to detect alien messages has not deterred us from sending some of our own. As soon as humans learned to communicate using radio waves we began unwittingly broadcasting to the stars: the earliest radio shows are now about 100 light years away and counting.

    The first deliberate attempt to contact ET was in 1972, with the launch of NASA’s Pioneer 10 space probe.

    NASA Pioneer 10
    Pioneer 10

    This carried a gold-plated aluminium plaque bearing pictures of a male and a female nude and graphical information about the origin of the craft, in the (extremely unlikely) event of it being intercepted by aliens. Pioneer 10 is currently on the fringes of the solar system on course for a star 68 light years away. Pioneer 11, launched in 1973, also carries a plaque.

    NASA Pioneer 11
    Pioneer 11

    A more detailed message was loaded onto the Voyager 1 and 2 probes, launched in 1977.

    NASA Voyager 1
    Voyager 1

    NASA Voyager 2
    Voyager 2

    Both carry a gold-plated copper disc encoding over 150 images and sounds from Earth, greetings in 55 languages, and brief excerpts of music. (In 2010, Voyager 2 started sending some unusual signals back to Earth, prompting speculation that it had been hijacked by aliens. It turned out to be a computer glitch.)

    The chances of any of these physical messages ever being picked up is remote in the extreme, but they are not our only attempts at contact. At the dedication of Puerto Rico’s Arecibo radio telescope in November 1974, a digital message was beamed towards the star cluster Messier 13 (M13) 25,000 light years away.

    Arecibo Observatory
    Arecibo radio telescope

    The message – encoded in microwaves – included the numbers 1 to 10, various graphical representations of DNA and its constituent atoms, and drawings of a human figure, the planets of our solar system and a radio telescope. The message is currently just over 40 light years from Earth. It has yet to receive a reply.

    Since then, numerous other messages have been broadcast to the stars, including a giant Doritos advert beamed from the Arctic archipelago of Svalbard to a solar system 42 light years away. Such messages are controversial, however: some scientists believe we should keep our heads down so as not to alert malicious aliens to our feeble presence.

    See the full article here.

    There are two major efforts for contact: SETI Institute which operates the Allen Telescope Array.

    Allen Telescope Array

    and

    SETI@home, a project of “Radio SETI” in Citizen Science with processing of data running on home computers on BOINC software from UC Berkeley. SET@home gets its raw data from Arecibo radio telescope.

    SETI@home screensaver

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 7:12 pm on October 6, 2014 Permalink | Reply
    Tags: , , , , , , SETI@home   

    From SPACE.com: “Aliens May Be Out There, But Too Distant for Contact” 

    space-dot-com logo

    SPACE.com

    October 06, 2014
    Irene Klotz

    The Milky Way may be home to some 3,000 extraterrestrial civilizations but the vast distances between our galactic cousins will make contact extremely rare, a new study concludes.

    Data collected by NASA’s Kepler space telescope and other observatories scouting for planets beyond the solar system indicate Earth is one of some 40 billion potentially habitable worlds in the galaxy, with about one new life-friendly planet forming every year, astronomer Michael Garrett, head of the Dutch astronomy research foundation ASTRON, said at the International Astronomical Congress in Toronto.

    NASA Kepler Telescope
    NASA/Kepler

    Sounds promising, until you consider the sheer size of the Milky Way, which spans more than 100,000 light-years in diameter. Light travels at about 186,000 miles per second, but a signal will still take more than 4 years to reach neighboring system Alpha Centauri and 100,000 years to travel from one end of the galaxy to the other.

    “On average, you’d expect the civilizations to be separated by at least 1,000 light-years in the Milky Way. That’s a large distance, and for communication purposes you need to allow for twice the travel distance, so you’re talking about civilizations that have to be around for at least a few thousand years in order to have the opportunity to talk to each other,” Garrett said.

    “We don’t really know the time scales in which civilizations persist,” he added.

    The one example available — Earth — indicates that life essentially developed as soon as the conditions were right, but intelligent life arose comparatively late.

    “It’s really just essentially in the last few minutes of the overall evolution of life on the planet,” Garrett said. “I don’t want to be too negative about this, but … my basic conclusion is that SETI signals will be rare in the Milky Way.”

    That doesn’t mean astronomers shouldn’t look, he added. Quite the contrary, given the huge technological leaps in radio astronomy and in data processing techniques compared to what was available for Search for Extraterrestrial Intelligence, or SETI, programs 60 years ago.

    SETI also is benefitting from sister radio astronomy projects, such as the ongoing quest to find the source of mysterious transient radio bursts.

    SETI@home screensaver
    SETI@home from Space Science LabSpaceScienceLabs at UC Berkeley

    “SETI is not easy, but it’s a pursuit that is well worth doing. The question is so important,” Garrett said. “Everyone is interested, not just scientists and space enthusiasts. People in the street are interested to know what else is out there.”

    See the full article, with added material, here.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 4:14 pm on August 18, 2014 Permalink | Reply
    Tags: , , , , , , , SETI@home   

    From Astrobiology: ” SETI Searches Kepler Candidates for Signals of Life” 

    Astrobiology Magazine

    Astrobiology Magazine

    Aug 18, 2014
    Nola Taylor Redd

    A recent search by the Search for Extraterrestrial Intelligence (SETI) studied 86 candidates in the Kepler space observatory’s field for radio signals that could potentially indicate the presence of an intelligent civilization.

    Of course, no radio signals were found, but the search did identify the most promising Kepler objects for wide-band observations using the Green Bank Telescope in West Virginia.

    NRAO GBT
    NRAO Green Bank Telescope

    “The 86 target stars were selected because they hosted planets discovered by [the year] 2011 with properties that could be conducive to the development of life,” said Abhimat Gautam, of the University of California, Berkeley.

    Gautam, who just completed his senior undergratuate year at the University of California, Berkeley and was part of the Berkeley SETI Research Center, presented the results at the 224th summer meeting of the American Astronomical Society in Boston, Massachusetts in June.

    Widening the search

    By 2011, Kepler had revealed 1,235 planetary candidates (as of June 17, 2014, that number stands at 4,254, with 974 of them confirmed as planets). Gautam worked with Andrew Siemion and other scientists of the Berkeley SETI Research Center to select 86 planetary candidates that had surface temperatures between –50 and 100 degrees Celsius (-58 to 212 degrees Fahrenheit), a radius smaller than three times that of Earth, and an orbital period of more than 50 days. Such conditions placed the objects within the habitable zone around their stars, the region where liquid water can exist on the surface and where life might best be able to develop on a planet.

    k11
    Kepler-11, a sun-like star located approximately 2,000 light-years from Earth, hosts six transiting planets that were the target of a search for signals indicating advanced civilizations.

    The Green Bank Telescope (the world’s largest fully steerable radio telescope, located in Green Bank, West Virginia) targeted the parent stars using a wide-band signal. Scientists had performed previous searches of the Kepler field in the narrow-band with no success. Only 5 Hertz (Hz) wide on the radio spectrum, narrowband signals are only known to arise from artificial sources on Earth, Gautam said. The narrowband range is commonly used in SETI searches.

    By switching to wide-band, Gautam hoped for a number of benefits. Wide-band signals cover 2.5 Megahertz (MHz), which is half a billion times wider than previous searches. Increasing the region of the radio spectrum observed means that listening scientists can search for broader signals than those previously observed. The interstellar medium—the gas and dust between stars—can spread the signal out as it travels through the material, causing a delay that could provide a rough estimate of the distance to any detectable source and allowing SETI astronomers to track potential communications back to their origins.

    In addition, a wide-band signal may be more commonly used for intentional signaling, Gautam said.

    “An advanced alien civilization may even use a pulsar for signaling, which can be more easily and effectively detected in a wide-band search.”

    k22
    Located in the habitable zone around a sun-like star, Kepler-22b, shown in this artist’s interpretation, is 2.4 times the size of Earth. Credit: NASA/Ames/JPL-Caltech

    Gautam, who is pursuing a doctorate in astronomy at the University of California, Los Angeles, first took interest in SETI through theSETI@Home project while still in high school. He contacted Dan Werthimer, chief scientist for SETI@Home, in search of available research projects.

    SETI@home screensaver
    SETI @home

    “When UC Berkeley undergraduate students majoring in the physical sciences express an interest in continuing on for a graduate degree in their field, one of the first suggestions they receive is to seek out research opportunities,” SETI’s Andrew Siemion told Astrobiology Magazine in an email.

    Gautam presented the results while he was still an undergraduate student because“it was all his work,” Siemion said.

    “Abhimat [Gautam] was a fantastic member of our research group,” he said.

    Scanning the skies

    The SETI search focused both on active signals deliberately broadcast by a potential civilization, as well as passive signals such as those created by Earth’s television shows and airport radars.

    “We expect intentional, active signals to be brighter and easier to detect than non-intentional, passive signals,” Gautam said.

    With the Green Bank Telescope pointed at each target star, the radio beam would span approximately 4.2 light-years, wide enough to engulf the planetary system, including unknown bodies.

    According to Siemion’s SETI blog, the search also covered a region of the radio spectrum known as the “terrestrial microwave window,” which can travel through both interstellar space and Earth’s atmosphere with little distortion. Within that window, the SETI search covered the “water hole,” a region of the radio spectrum bounded by the two products of water — hydrogen and hydroxyl.

    “Some scientists have suggested that if an extraterrestrial intelligence were to deliberately signal other intelligent beings, they might chose this band,” Siemion wrote.

    The team found no sign of an intelligent civilization. They concluded that less than 1 percent of the stars in the region produce a radio signal greater than 60 times that of the Arecibo radio telescope in Puerto Rico.

    “The Arecibo Planetary Radar is the most powerful radio transmitter on Earth,” Gautam said.

    “This provides a good estimate for calculating estimates of the detectability of Earth-like technology in our search.”

    Arecibo
    Arecibo

    See the full article here.

    NASA

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 2:49 pm on August 13, 2014 Permalink | Reply
    Tags: , , , , , , SETI@home,   

    From SPACE.com: “Hairspray Chemical Could Aid Search for Alien Life” 

    space-dot-com logo

    SPACE.com

    August 13, 2014
    Charles Q. Choi

    Chemicals once found in hairspray may serve as signs of alien life on faraway worlds, researchers say.

    These compounds may reveal that extraterrestrials have disastrously altered their planets, scientists added.

    To detect biomarkers, or signs of life, on distant worlds, scientists have often focused on molecules such as oxygen, which theoretically disappears quickly from atmospheres unless life is present to provide a constant supply of the gas. By looking at light passing through atmospheres of alien worlds, past studies have suggested future instruments such as NASA’s James Webb Space Telescope could detect telltale traces of oxygen.

    But the search for extraterrestrial intelligence (SETI) has mostly concentrated on “technosignatures,” such as radio and other electromagnetic signals that alien civilizations might give off. Now researchers suggest that searches for atmospheric biomarkers could also look for industrial pollutants as potential signs of intelligent aliens.

    SETI ATA
    SETI Institute’s Allen Telescope Array

    SETI@home screensaver
    SETI@home, citizen science, Public Distributed Computing running on BOINC software

    Astronomers at Harvard University focused on tiny, superdense stars known as white dwarfs. More than 90 percent of all stars in the Milky Way, including our own sun, will one day end up as white dwarfs, which are made up of the dim, fading cores of stars.

    sirius
    Image of Sirius A and Sirius B taken by the Hubble Space Telescope. Sirius B, which is a white dwarf, can be seen as a faint pinprick of light to the lower left of the much brighter Sirius A.

    Though white dwarfs are quite cold for stars, they would still be warm enough to possess so-called habitable zones — orbits where liquid water can exist on the surfaces of circling planets. These zones are considered potential habitats for life, as there is life virtually everywhere there is liquid water on Earth.

    The scientists examined how Earth-size planets in the habitable zones of white dwarfs might look if they possessed industrial pollutants in their atmosphere. They focused on chlorofluorocarbons (CFCs), which are entirely artificial compounds, with no known natural process capable of creating them in atmospheres.

    CFCs are nontoxic chemicals that were once used in hairspray and air conditioners, among many other products, before researchers discovered they were causing a hole in Earth’s ozone layer, which protects the planet from dangerous ultraviolet radiation.

    “Very hairy extraterrestrials may be a little easier to detect,” joked lead study author Henry Lin, a physicist at Harvard.

    CFCs are strong greenhouse gases, meaning they are very effective at absorbing heat. This means that if CFCs are in the atmosphere of a distant Earth-size planet, they could alter a white dwarf’s light when that world passes in front of that star — enough for the $8.8 billion James Webb Space Telescope (JWST), which is due to launch in 2018, to detect them.

    In addition, the researchers noted that CFCs are long-lived molecules, capable of lasting up to about 100,000 years in atmospheres. This means they could even serve as markers of long-dead alien civilizations. [10 Alien Encounters Debunked]

    The investigators simulated the amount of time it would take JWST to detect the fluorocarbon CF4 and the chlorofluorocarbon CCl3F in the atmosphere of an Earth-size planet in the habitable zone of a white dwarf. They modeled concentrations of these gases 100 times greater than the highs currently seen on Earth.

    The scientists found it would take JWST three days of looking at such a white dwarf to detect signs of CF4, and only a day and a half for CCl3F.

    NASA Webb Telescope
    NASA/Webb

    “The most exciting aspect of the results is that within the next decade we might be able to search for excessive industrial pollution in the atmospheres of Earth-like planets,” study co-author Abraham Loeb, a theoretical astrophysicist and chair of Harvard’s astronomy department, told Space.com.

    Ironically, “aliens are often referred to as green little creatures, but ‘green’ also means ‘environmentally friendly,'” Loeb said. “Detectable CFC-rich civilizations would not be ‘green.'”

    The scientists did caution that it would take much longer to detect these industrial pollutants than it would biomarkers such as oxygen, which JWST could find after about three hours of looking at such a planet. Astronomers should only attempt to discover technosignatures such as CFCs if initial searches for fundamental biomarkers like oxygen were successful, the research team suggested.

    The astronomers cautioned it would be 100 times more difficult to detect industrial pollutants on planets orbiting yellow dwarf stars like the sun, making such searches beyond the capabilities of JWST. It would also take an unrealistically long time to detect CFC levels on alien planets that match those currently found on Earth, Loeb said.

    One potentially sobering future discovery might be of alien worlds that possess long-lived industrial pollutants such as CFCs but no longer have any short-lived biomarkers such as oxygen.

    “If we find graveyards of other civilizations, most rational people would likely get engaged in protecting the Earth from a similar catastrophe,” Loeb said.

    “We call industrial pollution a biomarker for intelligent life, but perhaps a civilization much more advanced than us with their own exoplanet program will classify industrial pollution as a biomarker for unintelligent life,” Lin said

    However, if astronomers discover a world heavy with CFCs that exists outside the habitable zone of its star, that could mean an extraterrestrial civilization may have intentionally “terraformed” that planet, making it livably warmer “by polluting it with greenhouse gases,” Loeb said. Scientists have previously suggested terraforming Mars by warming and thickening the Red Planet’s atmosphere so that humans can roam its surface without having to wear spacesuits.

    The scientists detailed their findings in a paper submitted to the Astrophysical Journal.

    See the full article here.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 1:05 pm on July 7, 2014 Permalink | Reply
    Tags: , , , , , , , SETI@home,   

    From space.com: "Should Humanity Try to Contact Intelligent Aliens?" 

    space-dot-com logo

    July 07, 2014
    Leonard David

    Astronomers have detected nearly 2,000 alien planets to date. As that number continues to rise, so too does the prospect of finding intelligent extraterrestrial life.

    In terms of the search for extraterrestrial intelligence (SETI), it may no longer be a matter of answering the “are we alone” question, some scientists say. Rather, just how crowded is the universe?

    And if ET is out there, it may be possible to reach out with direct “radio waving” to potentially habitable exoplanets. This form of cosmic cryptography, called “Active SETI,” involves no longer merely listening for a signal but purposefully broadcasting to, and perhaps establishing contact with, other starfolk. [13 Ways to Hunt Intelligent Alien Life]

    Active SETI sounds like science fiction, but some astronomers are discussing it seriously today. The idea is, as it has been in the past, a controversial, hot-button issue, with some researchers wary of sending signals out to touch base with intelligent aliens.

    Work in progress

    “It’s a subject of discussion, I’ll put it that way,” said Seth Shostak, senior astronomer at the SETI Institute in Mountain View, Calif. There have been many workshops and symposia over the years to discuss Active SETI, he said, and because it has a highly emotional component, “it’s like a third rail in a way,” he said.

    Shostak told Space.com that he feels the topic is not something to worry too much about.

    “But there may not be that perception in the broader public … that we have discussed this to death. They haven’t seen these discussions nor participated in them,” he said.

    But exoplanet detections are making news around the world, Shostak said. “That’s putting the whole question of life in space in front of the public in a way that perhaps wasn’t true 20 years ago.”

    Still, trying to figure out what’s the best thing to do, in terms of Active SETI, is a work in progress, Shostak said. “What is the best way to communicate? What do you do…just ping them with a carrier wave and you encode Wikipedia? If you are going to do it, what’s the best way to communicate?”

    Long shot

    A few years ago, renowned British astrophysicist Stephen Hawking suggested that communicating with ET could be a threat to Earth.

    While it’s likely alien life exists, Hawking said, a visit to Earth by other starfolk might turn ugly, akin to when Christopher Columbus landed in America. That didn’t turn out so well for the Native Americans, he said.

    “Hawking stirred things up a few years ago saying we shouldn’t broadcast our existence because the outcome might be bad for us,” said Chris Impey, deputy head of the astronomy department at the University of Arizona in Tucson. He co-edited the 2013 book, Encountering Life in the Universe: Ethical Foundations and Social Implications of Astrobiology.

    Where Are the Aliens?

    “He’s right about our immaturity as a species,” Impey told Space.com, “but I think the argument is moot since intelligent civilizations are likely to be so sparsely distributed that communication in either direction is difficult or unlikely.”

    Active SETI, Impey said, “makes us feel a little more proactive, but I think it’s a long shot worse than buying a lottery ticket.”

    For Impey, the “promising approach” is not conventional SETI or broadcasting, but detection of civilizations by their energy or technology imprints, “and that avoids all the issues of intention and communication and the anthropocentric tangle people get into with that.” [The Search for Intelligent Life: 4 Key Questions (Video)]

    Great unsolved mysteries

    Adding his voice to the Active SETI dialogue is Steven Dick, the Baruch S. Blumberg NASA/Library of Congress Chair in Astrobiology at the Kluge Center in Washington, D.C.

    “I am for passive SETI programs, and in fact would advocate for renewed government funding after a 20-year lapse,” Dick told Space.com. “That’s because the existence of extraterrestrial intelligence is one of the great unsolved mysteries of science.”.

    Dick said that the current NASA astrobiology hunt is centered on microbes, but surely there should be an effort to go beyond micro-organisms and search for complex life with whatever means are available.

    “On the other hand, I would not propose government funding for messaging extraterrestrial intelligence. I think we need to find ET first, and then have a period where a team consisting of scientists, social scientists and humanities people consider what the message should be,” Dick said.

    Different alien minds

    However, Dick is not at all sanguine that communication with ET is possible. He thinks we underestimate how different alien minds can be compared to ours — even their science and mathematics.

    And that might account for the Fermi paradox, Dick said. That paradox, attributed to physicist Enrico Fermi, is the apparent contradiction between the high probability that extraterrestrial civilizations exist and the lack of contact with such civilizations. Hence, Fermi’s 1950 lunchtime query to colleagues: “Where is everybody?”(5 Bold Claims of Alien Life)

    “Having said that, it would be very difficult to regulate individual or institutional projects that wish to attempt messaging extraterrestrial intelligence, and I would not advocate attempting to regulate,” Dick said. In his opinion, there is an equal chance that ET will be good or bad.

    “We do not yet know enough about the evolution of altruism on Earth, much less among other possible intelligent life forms, to say ETs will all be good,” Dick said. “That is a hope rather than a fact.”

    Directed beam

    But haven’t we already revealed ourselves with TV signals, military radar and other outputs into the cosmos? Even music is wafting across the universe, purposely directed toward a specific star.

    That is true, Dick said, but it’s not the same as sending a directed beam to a habitable exoplanet target.

    “Still, the idea of planet Earth cowering and afraid to engage the universe is not a planet I would want to live on. SETI attempts are part of our rising cosmic consciousness, and as such cannot be stifled,” Dick said. “That this is the subject of such controversy…it’s an indication of how seriously the subject of intelligent life in the universe is now taken!”
    NASA’s twin Voyager spacecraft launched in August and September 1977. Aboard each spacecraft is a golden record, a collection of sights, sounds and greetings from Earth. There are 117 images and greetings in 54 languages, with a variety of natural and hum
    [Pin It] NASA’s twin Voyager spacecraft launched in August and September 1977. Aboard each spacecraft is a golden record, a collection of sights, sounds and greetings from Earth. There are 117 images and greetings in 54 languages, with a variety of natural and human-made sounds like storms, volcanoes, rocket launches, airplanes and animals.

    plate
    Credit: NASA

    Consequences of contact

    “Yes, the issue should be re-debated,” said Michael Michaud, author of the 2007 book, Contact with Alien Civilizations: Our Hopes and Fears about Encountering Extraterrestrials.

    Michaud is a former U.S. Foreign Service Officer for the U.S. Department of State and a long-time thinker and writer regarding the probability and consequences of coming into contact with an extraterrestrial civilization.

    “Active SETI advocates broke with the conventional wisdom of the SETI pioneers, which was to listen but not transmit,” Michaud told Space.com. “This change may have been driven by the impatience of younger SETI people after 40 years of unsuccessful searches.”

    “But Active SETI is not science,” said Michaud. “It is an attempt to provoke a response from an alien society whose capabilities and intentions are not known to us.”

    Those most eager to send high-powered messages want their efforts to have consequences, Michaud said, not just for themselves, but for the entire human species. “There is no scientific or historical evidence telling us that the consequences of contact will be those they prefer.”

    Deliberate, powerful signals

    Michaud says that an alien society able to detect our signals almost certainly would be more technologically advanced than our own, and might be capable enough and patient enough to send probes across light-years of space. Scientists and engineers have shown that robotic spacecraft able to reach nearby stars would be feasible for a civilization only slightly in advance of our own.

    Michaud takes issue with the old claim that we already have been detected or that detection is inevitable. Experts have shown that the normal signals emitted by Earth are too weak to be heard at interstellar distances without colossal antennas, he said.

    “Sending deliberate, unusually powerful signals is a decision that belongs properly with all Humankind,” Michaud said. “We should have an open debate about whether or not to call attention to ourselves by making our civilization more detectable than it already is.”

    See the full article here.

    Our Great SETI Hunters:

    aricibo
    Arecibo

    allen
    Allen Telescope Array

    seti@home
    SETI@home, Citizen Science running on personal computers the world over using BOINC software

    Jill Tarter
    Jill Tarter

    fd
    Frank Drake


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 7:52 am on June 9, 2012 Permalink | Reply
    Tags: , , , , , , , , SETI@home   

    A Look at SETI@home 

    EVERY “CRUNCHER” WORKING ON PROJECTS RUNNING ON BOINC SOFTWARE OWES A DEBT TO THE SETI@HOME PROJECT. NO SETI@HOME, NO BOINC. SO I THINK THAT IT IS FAIR TO SAY THAT ANYONE CRUNCHING ON ANY PROJECT, EVEN THOSE PURIST WCG CRUNCHERS, SHOULD BE REPAYING THAT DEBT BY CRUNCHING FOR SETI@HOME.

    SETI@HOME IS SOMETIMES CONFUSED AND CONFLATED WITH THE SETI INSTITUTE. THEY ARE SEPARATE ORGANIZATIONS.

    Everything in this post was taken directly from the SETI@home web site, with the exception of a wee portion from Wikipedia. There is a lot more information to be found if you access the SETI@home web pages.

    SETI@home (“SETI at home”) is an Internet-based public volunteer computing project employing the BOINC software platform, hosted by the Space Sciences Laboratory, at the University of California, Berkeley, in the United States. SETI is an acronym for the Search for Extra-Terrestrial Intelligence. Its purpose is to analyze radio signals, searching for signs of extra terrestrial intelligence, and is one of many activities undertaken as part of SETI.

    SETI@home was released to the public on May 17, 1999, making it the second large-scale use of distributed computing over the Internet for research purposes, as Distributed.net was launched in 1997. Along with MilkyWay@home and Einstein@home, it is the third major computing project of this type that has the investigation of phenomena in interstellar space as its primary purpose.

    How SETI@home works

    The Problem — Mountains of Data

    Most of the SETI programs in existence today, including those at UC Berkeley build large computers that analyze that data from the telescope in real time. None of these computers look very deeply at the data for weak signals nor do they look for a large class of signal types. The reason for this is because they are limited by the amount of computer power available for data analysis. To tease out the weakest signals, a great amount of computer power is necessary. It would take a monstrous supercomputer to get the job done. SETI programs could never afford to build or buy that computing power. There is a trade-off that they can make. Rather than a huge computer to do the job, they could use a smaller computer but just take longer to do it. But then there would be lots of data piling up. What if they used LOTS of small computers, all working simultaneously on different parts of the analysis? Where can the SETI team possibly find thousands of computers they’d need to analyze the data continuously streaming from Arecibo?

    The UC Berkeley SETI team has discovered that there are already thousands of computers that might be available for use. Most of these computers sit around most of the time with toasters flying across their screens accomplishing absolutely nothing and wasting electricity to boot. This is where SETI@home (and you!) come into the picture. The SETI@home project hopes to convince you to allow us to borrow your computer when you aren’t using it and to help us “…search out new life and new civilizations.” We’ll do this with a screen saver that can go get a chunk of data from us over the internet, analyze that data, and then report the results back to us. When you need your computer back, our screen saver instantly gets out of the way and only continues it’s analysis when you are finished with your work.

    ss
    Screenshot of SETI@home Enhanced BOINC Screensaver (v6.03)

    It’s an interesting and difficult task. There’s so much data to analyze that it seems impossible! Fortunately, the data analysis task can be easily broken up into little pieces that can all be worked on separately and in parallel. None of the pieces depends on the other pieces. Also, there is only a finite amount of sky that can be seen from Arecibo. In the next two years the entire sky as seen from the telescope will be scanned three times. We feel that this will be enough for this project. By the time we’ve looked at the sky three times, there will be new telescopes, new experiments, and new approaches to SETI. We hope that you will be able to participate in them too!

    Breaking Up the Data

    Data will be recorded on high-density tapes at the Arecibo telescope in Puerto Rico, filling about one 35 Gbyte DLT tape per day. Because Arecibo does not have a high bandwidth Internet connection, the data tape must go by snail-mail to Berkeley. The data is then divided into 0.25 Mbyte chunks (which we call “work-units”). These are sent from the Seti@Home server over the Internet to people around the world to analyze.

    Extra Credit Section: How the data is broken up

    SETI@home looks at 2.5 MHz of data, centered at 1420 MHz. This is still too broad a spectrum to send to you for analysis, so we break this spectrum space up into 256 pieces, each 10 kHz wide (more like 9766 Hz, but we’ll simplify the numbers to make calculations easier to see). This is done with a software program called the “splitter”. These 10 kHz pieces are now more manageable in size. To record signals up to 10 KHz you have to record the bits at 20,000 bits per second (kbps). (This is called the Nyquist frequency.) We send you about 107 seconds of this 10 kHz (20kbps) data. 100 seconds times 20,000 bits equals 2,000,000 bits, or about 0.25 megabyte given that there are 8 bits per byte. Again, we call this 0.25 megabyte chunk a “work-unit.” We also send you lots of additional info about the work-unit, so the total comes out to about 340 kbytes of data.
    What is Astropulse?

    ap
    Snapshot of BOINC SETI@home Astropulse Screensaver.

    Astropulse is a new type of SETI. It expands on the original SETI@home, but does not replace it. The original SETI@home is narrowband, meaning that it is listening for a particular radio frequency. That’s like listening to an orchestra playing, and trying to hear when anyone plays the note “A sharp”. Astropulse listens for short-time pulses. In the orchestra analogy, it’s like listening for a quick drum beat, or a series of drumbeats. Since no one knows what extraterrestrial communications will “sound like,” it seems like a good idea to search for several types of signals. In scientific terms, Astropulse is a sky survey that searches for microsecond transient radio pulses. These pulses could come from ET, or from some other source. I’ll define each of those terms:

    Sky survey: The telescope we use (Arecibo Observatory) scans across the sky, searching for signals everywhere. This differs from a directed SETI search, in which the telescope examines a few stars carefully.
    Microsecond: A millionth of a second. Astropulse is better than previous searches at detecting signals that last for a very short length of time. The shorter the signal, the better Astropulse is at detecting it, to a lower limit of 0.4 microseconds. Astropulse can detect signals shorter than 0.4 microseconds, it just stops getting better and better in comparison to other searches.
    Transient: A signal is transient if it is short, like a drumbeat. A transient signal can be repeating (it beats over and over again) or single pulse (it beats only once.)
    Radio: The signals are made of the same type of electromagnetic radiation that an AM or FM radio detects. (Actually of substantially higher frequency than that, but still considered “radio.”) Electromagnetic radiation includes radio waves, microwaves, infrared light, visible light, ultraviolet light, x-rays, and gamma rays. Click here for more information on electromagnetic radiation.

    Sources of pulses

    Where would a microsecond transient radio pulse come from? There are several possibilities, including:
    ET: Previous searches have looked for extraterrestrial communications in the form of narrow-band signals, analogous to our own radio stations. Since we know nothing about how ET might communicate, this might be a bit closed-minded.
    Pulsars and RRATs: Pulsars are rotating neutron stars that can produce signals as short as 100 microseconds, although typically much longer. 0.4 microseconds seems like a stretch. Astropulse is capable of detecting pulsars, but is unlikely to find any new ones. RRATs are a recently discovered pulsar variant. Perhaps Astropulse will discover a new type of rotating neutron star with a very short duty cycle.
    Exploding primordial black holes: Martin Rees has theorized that a black hole, exploding via Hawking radiation, might produce a signal that’s detectable in the radio. Click here to learn about black holes.
    Extragalactic pulses: Some scientists recently saw a single transient radio pulse from far outside the Milky Way galaxy. No one knows what caused it, but perhaps there are more of them for Astropulse to find.
    New phenomena: Perhaps the most likely result is that we will discover some unknown astrophysical phenomenon. Any time an astronomer looks at the sky in a new way, he or she may see a new phenomenon, whether it be a type of star, explosion, galaxy, or something else.
    Dispersed pulses

    As a microsecond transient radio pulse comes to us from a distant source in space, it passes through the interstellar medium (ISM). The ISM is a gas of hydrogen atoms that pervades the whole galaxy. There is one big difference between the ISM and ordinary hydrogen gas. Some of the hydrogen atoms in the ISM are ionized, meaning they have no electron attached to them. For each ionized hydrogen atom in the ISM, a free electron is floating off somewhere nearby. A substance composed of free floating, ionized particles is called a plasma.
    The microsecond radio pulse is composed of many different frequencies. As the pulse passes through the ISM plasma, the high frequency radiation goes slightly faster than the lower frequency radiation.When the pulse reaches Earth, we look at the parts of the signal ranging from 1418.75 MHz to 1421.25 MHz. This is a range of 2.5 MHz. The highest frequency radiation arrives about 0.4 milliseconds to 4 milliseconds earlier than the lowest frequency radiation, depending on the distance from which the signal originates. This effect is called dispersion. Click here to see how dispersed and undispersed pulses can be composed of many different frequencies.

    In order to see the signal’s true shape, we have to undo this dispersion. That is, we must dedisperse the signal. Dedispersion is the primary purpose of the Astropulse algorithm.
    Not only does dedispersion allow us to see the true shape of the signal, it also reduces the amount of noise that interferes with the signal’s visibility. Noise consists of fluctuations that produce a false signal. There could be electrical noise in the telescope, for instance, creating the illusion of a signal where there is none. Because dispersion spreads a signal out to be up to 10,000 times as long, this can cause 10,000 times as much noise to appear with the signal. (There’s a square root factor due to the math, so there’s really only 100 times as much noise power, but that’s still a lot.)

    The amount of dispersion depends on the amount of ISM plasma between the Earth and the source of the pulse. The dispersion measure (DM) tells us how much plasma there is. DM is measured in “parsecs per centimeter cubed”, which is written pc cm-3. To get the DM, multiply the distance to the source of the signal (in parsecs) by the electron density in electrons per cubic centimeter. A parsec is about 3 light years. So if a source is 2 parsecs away, and the space between the Earth and that source is filled with plasma, with 3 free electrons per cubic centimeter, then that’s 6 pc cm-3. The actual density of free electrons in the ISM is about 0.03 per cubic centimeter.
    Astropulse algorithm

    Single Pulse Loops
    Astropulse has to analyze the whole workunit at nearly 15,000 different DMs (14,208, to be precise.) At each DM, the whole dedispersion algorithm has to be run again for the entire workunit. The lowest DM is 55 pc cm-3, and the highest is 800 pc cm-3. Astropulse examines DMs at regular intervals between those two. Without going into detail about how to examine a piece of a workunit at a given DM, here is the organization with which Astropulse handles the data: it divides the DMs to be covered into large DM chunks of 128 DMs each, and then small DM chunks of 16 DMs each. It divides the data into chunks of 4096 bytes, and processes them one at a time. Once it has dedispersed the data, Astropulse co-adds the dedispersed data at 10 different levels, meaning that it looks for signals of size 0.4 microseconds, then twice that, 4 times, 8 times, and so on. (0.4 microseconds, 0.8, 1.6, 3.2, 6.4, …) On the lowest level of organization, astropulse looks at individual bins of data. A bin corresponds to 2 bits of the original data, but after dedispersion, it requires a floating point number to represent it. Here’s the breakdown of Astropulse’s loops:
    1 workunit => 111 large DM chunks
    1 large DM chunk => 8 small DM chunks
    1 small DM chunk => 2048 data chunks
    1 data chunk => 16 DMs
    1 DM => 10 fold levels
    1 fold level => 16384 bins (or less)
    1 bin = smallest unit
    So each workunit is composed of 111 large DM chunks, each of which is 0.901% of the whole. Each large DM chunk is composed of 8 small DM chunks, each of which is 0.113% of the whole. And so on.
    The number of large DM chunks will probably change before the final version of Astropulse is released.

    Fast Folding Algorithm
    At the end of each small and large DM chunk, Astropulse performs the Fast Folding Algorithm. This algorithm checks for repeating pulses over a certain range of periods. (The period is the length of time after which the pulse repeats.) When the fast folding algorithm is performed after each large DM chunk, it searches over an entire 13 second workunit, and looks for repeating signals with a period of 256 times the sample rate (256 * 0.4 microseconds) or more. When the FFA is performed after each small DM chunk, it searches over a small fraction of the workunit, and looks for repeating signals with a period of 16 times the sample rate or more.”

    SETI People

    da
    David is a computer scientist, with research interests in volunteer computing, distributed systems, and real-time systems. He also runs the BOINC project.
    David is a rock climber, mountain climber, classical pianist, and father of Noah (born Oct 2005).

    dw
    Dan specializes in signal processing for radio astronomy. He has been doing SETI since 1979, and he runs the SERENDIP, Optical SETI, and CASPER projects.
    Dan dabbles in jazz piano, and is the father of a 4-year old son, William.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Visit the BOINC web page, click on Choose projects and check out some of the very worthwhile studies you will find. Then click on Download and run BOINC software/ All Versons. Download and install the current software for your 32bit or 64bit system, for Windows, Mac or Linux. When you install BOINC, it will install its screen savers on your system as a default. You can choose to run the various project screen savers or you can turn them off. Once BOINC is installed, in BOINC Manager/Tools, click on “Add project or account manager” to attach to projects. Many BOINC projects are listed there, but not all, and, maybe not the one(s) in which you are interested. You can get the proper URL for attaching to the project at the projects’ web page(s) BOINC will never interfere with any other work on your computer.

    MAJOR PROJECTS RUNNING ON BOINC SOFTWARE

    SETI@home The search for extraterrestrial intelligence. “SETI (Search for Extraterrestrial Intelligence) is a scientific area whose goal is to detect intelligent life outside Earth. One approach, known as radio SETI, uses radio telescopes to listen for narrow-bandwidth radio signals from space. Such signals are not known to occur naturally, so a detection would provide evidence of extraterrestrial technology.

    Radio telescope signals consist primarily of noise (from celestial sources and the receiver’s electronics) and man-made signals such as TV stations, radar, and satellites. Modern radio SETI projects analyze the data digitally. More computing power enables searches to cover greater frequency ranges with more sensitivity. Radio SETI, therefore, has an insatiable appetite for computing power.

    Previous radio SETI projects have used special-purpose supercomputers, located at the telescope, to do the bulk of the data analysis. In 1995, David Gedye proposed doing radio SETI using a virtual supercomputer composed of large numbers of Internet-connected computers, and he organized the SETI@home project to explore this idea. SETI@home was originally launched in May 1999.”


    SETI@home is the birthplace of BOINC software. Originally, it only ran in a screensaver when the computer on which it was installed was doing no other work. With the powerand memory available today, BOINC can run 24/7 without in any way interfering with other ongoing work.

    seti
    The famous SET@home screen saver, a beauteous thing to behold.

    einstein@home The search for pulsars. “Einstein@Home uses your computer’s idle time to search for weak astrophysical signals from spinning neutron stars (also called pulsars) using data from the LIGO gravitational-wave detectors, the Arecibo radio telescope, and the Fermi gamma-ray satellite. Einstein@Home volunteers have already discovered more than a dozen new neutron stars, and we hope to find many more in the future. Our long-term goal is to make the first direct detections of gravitational-wave emission from spinning neutron stars. Gravitational waves were predicted by Albert Einstein almost a century ago, but have never been directly detected. Such observations would open up a new window on the universe, and usher in a new era in astronomy.”

    MilkyWay@Home Milkyway@Home uses the BOINC platform to harness volunteered computing resources, creating a highly accurate three dimensional model of the Milky Way galaxy using data gathered by the Sloan Digital Sky Survey. This project enables research in both astroinformatics and computer science.”

    Leiden Classical “Join in and help to build a Desktop Computer Grid dedicated to general Classical Dynamics for any scientist or science student!”

    World Community Grid (WCG) World Community Grid is a special case at BOINC. WCG is part of the social initiative of IBM Corporation and the Smarter Planet. WCG has under its umbrella currently eleven disparate projects at globally wide ranging institutions and universities. Most projects relate to biological and medical subject matter. There are also projects for Clean Water and Clean Renewable Energy. WCG projects are treated respectively and respectably on their own at this blog. Watch for news.

    Rosetta@home “Rosetta@home needs your help to determine the 3-dimensional shapes of proteins in research that may ultimately lead to finding cures for some major human diseases. By running the Rosetta program on your computer while you don’t need it you will help us speed up and extend our research in ways we couldn’t possibly attempt without your help. You will also be helping our efforts at designing new proteins to fight diseases such as HIV, Malaria, Cancer, and Alzheimer’s….”

    GPUGrid.net “GPUGRID.net is a distributed computing infrastructure devoted to biomedical research. Thanks to the contribution of volunteers, GPUGRID scientists can perform molecular simulations to understand the function of proteins in health and disease.” GPUGrid is a special case in that all processor work done by the volunteers is GPU processing. There is no CPU processing, which is the more common processing. Other projects (Einstein, SETI, Milky Way) also feature GPU processing, but they offer CPU processing for those not able to do work on GPU’s.

    gif

    These projects are just the oldest and most prominent projects. There are many others from which you can choose.

    There are currently some 300,000 users with about 480,000 computers working on BOINC projects That is in a world of over one billion computers. We sure could use your help.

    My BOINC

    graph

     
  • richardmitnick 3:03 pm on January 30, 2012 Permalink | Reply
    Tags: , , , , , , , SETI@home   

    From Dennis Overbye at the New York Times: “LIFE OUT THERE | THE COST OF DREAMS: 

    Search for Aliens Is on Again, but Next Quest Is Finding Money

    Dennis Overbye is the best journalist I have found in any of my Science reading. I highly value his work. Mr Overbye “… graduated from M.I.T. with a physics degree….”

    do

    This is copyright protected material, so just enough to get you enthused.

    “E.T. might be phoning, but do we care enough to take the call?…Operating on money and equipment scrounged from the public and from Silicon Valley millionaires, and on the stubborn strength of their own dreams, a band of astronomers recently restarted one of the iconic quests of modern science, the search for extraterrestrial intelligenceSETI, for short — which had been interrupted last year by a lack of financing.

    Early in December, a brace of 42 radio telescopes, known as the Allen Telescope Array, nestled here [Hat Creek, CA] in the shadow of Lassen Peak, came to life and resumed hopping from star to star in the constellation Cygnus, listening for radio broadcasts from alien civilizations. The lines are now open, but with lingering financial problems, how long they will remain that way is anybody’s guess.

    But the story of SETI is the story of a dream deferred by politics, a lack of money and the technological challenges of searching what astronomers call “the cosmic haystack”: 100 billion stars in the galaxy and 9 billion narrow-band radio channels on which aliens, if they exist, might be trying to hail us.”

    See the full article here.

    You can visit the SETI Institute to learn more about the history and science of the search.

    [Full disclosure: I am a teeny weeny financial supporter of the SETI Institute.]

    You can also participate on the search on you own by joining up with SETI@home, a project in Public Distributed Computing running on personal computers via software from the Berkeley Open Infrastructure for Network Computing, or BOINC

    It need to be very clear that SETI@home is totally independent of the SETI Institute.

    Please visit the BOINC web site and then the SETI@home web site, take a look, see what you think, and, maybe lend us a hand.

     
  • richardmitnick 2:55 pm on October 13, 2011 Permalink | Reply
    Tags: , , , , , , , , , , SETI@home   

    Citizen Scientists, Unite!! Around two LHC@home Projects 

    Join your colleagues at the LHC in two Public Distributed Computing projects working for the Large Hadron Collider at CERN.

    LHC@home/Sixtrack works on magnet tuning so that there is less lost effort in the beam line.

    i1

    LHC@home 2.0 simulates collision events

    i3

    So, what do you do? First, if you are not already “crunching” for other worthwhile scientific projects, you go to the BOINC UC Berkeley Space Science Lab web site for a wee bit of software, which you install on your computer(s). Then, you visit the above two web sites, and attach to the two projects. For LHC@home 2.0 you might need to register and await an invitation. This project is very new and is in “beta”. LHC@home/Sixtrack is a mature project, so no waiting. At each project web site, you can find explanations of what is happening, the science. You can find forums in which you can participate.

    Historically, projects running on BOINC software used the idle CPU cycles of your computer. In fact, the grand daddy of all projects, SETI@home , actually ran in a screen saver. Today, with greater power, protected memory, “sandboxed” technology, projects run all the time and in no way interfere with whatever else you are doing on your computer.

    We need your help. There are over 1 billion computers in the world. BOINC counts all of its current users at about 295,000. The LHC is the largest and most complex basic scientific research experiment ever mounted by Modern Man. It ranks with the pyramids, penicillin, and Starbucks.

    SET@home, the largest and oldest project, based at the birthplace of BOINC, currently has 147,000 crunchers on 222,000 computers. To paraphrase Seth Shostak of the SETI Institute (no relation to SETI@home) they haven’t found pond scum. Not even dead pond scum. But, they are processing 423 TeraFLOPS per second. That’s half a PetaFLOP. That would put them at about #15 in the TOP500 world supercomputers list, except, of course, they are distributed.

    We deserve to be that big. We need to scale up and vie with our friends at SETI@home (I crunch for SETI@home on four of my six computers.)

    So, please, visit the sites. Take a look. Tell your colleagues. Be part of something great.

    [If you are at any school, university, institution of any sort, never ever install BOINC software on their computers without written permission of an authority.]

    Meet CERN in a variety of places:

    Cern Courier

    ATLAS

    i2

    ALICE

    CMS

    i3

    LHCb
    i4

    LHC

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 462 other followers

%d bloggers like this: