Tagged: Gravitational wave astronomy Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:49 am on May 8, 2019 Permalink | Reply
    Tags: , , , , , , , Gravitational wave astronomy, , , Persistent gravitational wave observables, , When two massive objects such as neutron stars or black holes collide they send shockwaves through the Universe rippling the very fabric of space-time itself.   

    From Cornell University via Science Alert: “Gravitational Waves Could Be Leaving Some Weird Lasting Effects in Their Wake” 


    From Cornell University

    via

    ScienceAlert

    Science Alert

    8 MAY 2019
    MICHELLE STARR

    1
    (Henze/NASA)

    The faint, flickering distortions of space-time we call gravitational waves are tricky to detect, and we’ve only managed to do so in recent years. But now scientists have calculated that these waves may leave more persistent traces of their passing – traces we may also be able to detect.

    Such traces are called ‘persistent gravitational wave observables’, and in a new paper [Physical Review D], an international team of researchers [see paper for science team authors] has refined the mathematical framework for defining them. In the process, they give three examples of what these observables could be.

    Here’s the quick lowdown on gravitational waves: When two massive objects such as neutron stars or black holes collide, they send shockwaves through the Universe, rippling the very fabric of space-time itself. This effect was predicted by Einstein in his theory of general relativity in 1916, but it wasn’t until 2015 that we finally had equipment sensitive enough to detect the ripples.

    That equipment is an interferometer that shoots two or more laser beams down arms that are several kilometres in length. The wavelengths of these laser beams interfere to cancel each other out, so, normally, no light hits the instrument’s photodetectors.


    VIRGO Gravitational Wave interferometer, near Pisa, Italy


    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger

    Gravity is talking. Lisa will listen. Dialogos of Eide

    ESA/eLISA the future of gravitational wave research

    Localizations of gravitational-wave signals detected by LIGO in 2015 (GW150914, LVT151012, GW151226, GW170104), more recently, by the LIGO-Virgo network (GW170814, GW170817). After Virgo came online in August 2018


    Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

    But when a gravitational wave hits, the warping of space-time causes these laser beams to oscillate, shrinking and stretching. This means that their interference pattern is disrupted, and they no longer cancel each other out – so the laser hits the photodetector. The pattern of the light that hits can tell scientists about the event that created the wave.

    But that shrinking and stretching and warping of space-time, according to astrophysicist Éanna Flanagan of Cornell University and colleagues, could be having a much longer-lasting effect.

    As the ripples in space-time propagate, they can change the velocity, acceleration, trajectories and relative positions of objects and particles in their way – and these features don’t immediately return to normal afterwards, making them potentially observable.

    Particles, for instance, disturbed by a burst of gravitational waves, could show changes. In their new framework, the research team mathematically detailed changes that could occur in the rotation rate of a spinning particle, as well as its acceleration and velocity.

    Another of these persistent gravitational wave observables involves a similar effect to time dilation, whereby a strong gravitational field slows time.

    Because gravitational waves warp both space and time, two extremely precise and synchronised clocks in different locations, such as atomic clocks, could be affected by gravitational waves, showing different times after the waves have passed.

    Finally, the gravitational waves could actually permanently shift the relative positions in the mirrors of a gravitational wave interferometer – not by much, but enough to be detectable.

    Between its first detection in 2015 and last year, the LIGO-Virgo gravitational wave collaboration detected a handful of events before LIGO was taken offline for upgrades.

    At the moment, there are not enough detections in the bank for a meaningful statistical database to test these observables.

    But LIGO-Virgo was switched back on on 1 April, and since then has been detecting at least one gravitational wave event per week.

    The field of gravitational wave astronomy is heating up, space scientists are itching to test new mathematical calculations and frameworks, and it won’t be long before we’re positively swimming in data.

    This is just such an incredibly exciting time for space science, it really is.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

     
  • richardmitnick 3:39 pm on May 6, 2019 Permalink | Reply
    Tags: , , , , Gravitational wave astronomy, ,   

    From Science News: “LIGO [and VIRGO] on the lookout for these 8 sources of gravitational waves” 

    From Science News

    May 6, 2019
    Lisa Grossman

    Astronomers still hope to catch a star going supernova and a bumpy neutron star, among others.

    1
    BANG, CRASH Physicists using the LIGO and Virgo observatories are catching all sorts of cosmic collisions, including of pairs of neutron stars (illustrated). But scientists hope to bag even more exotic quarry. NASA’s Goddard Space Flight Center/CI Lab

    Seekers of gravitational waves are on a cosmic scavenger hunt.

    Since the Advanced Laser Interferometer Gravitational-wave Observatory turned on in 2015, physicists have caught these ripples in spacetime from several exotic gravitational beasts — and scientists want more.

    This week, LIGO and its partner observatory Virgo announced five new possible gravitational wave detections in a single month, making what was once a decades-long goal almost commonplace (SN Online: 5/2/19).

    _____________________________________________________
    Picking up

    In just one month, scientists have already spotted 5 possible gravitational wave events, plotted here as a function of their approximate distance from Earth. That’s compared to 11 events from all previous observations combined. Most detections are from merging black holes, but neutron star mergers (red) are also in the mix. And one event (yellow) might be a mash up between a black hole and a neutron star.

    Gravitational wave detections by LIGO and Virgo are becoming more frequent

    4
    E. Otwell, T. Tibbitts

    _____________________________________________________

    “We’re just beginning to see the field of gravitational wave astronomy open,” LIGO spokesperson Patrick Brady from the University of Wisconsin–Milwaukee said May 2 in a news conference. “Opening up a new window on the universe like this will hopefully bring us a whole new perspective on what’s out there.”

    The speed and pitch of gravitational wave signals allow astronomers to make out what’s stirring up the waves. Here are the sources of gravitational waves that scientists that already have in their nets, and what they’re still hoping to find.
    1. Pairs of colliding black holes

    Status: Found

    7
    SWEET SUCCESS For the first time, physicists have directly observed gravitational waves, caused by two black holes colliding (illustrated here). SXS collaboration.

    2. Pairs of colliding neutron stars

    Status: Found

    3. A neutron star crashing into a black hole

    Status: Maybe

    3
    TOUGH STUFF An exotic substance thought to exist within a type of collapsed star called a neutron star (illustrated) may be stronger than any other known material.
    Casey Reed/Penn State University, Wikimedia Commons

    4. A collision involving an intermediate-mass black hole

    Status: Not yet

    9
    HIDDEN FIGURE An intermediate-mass black hole about 2,200 times as heavy as the sun may lurk at the center of this dense ball of stars, a globular cluster called 47 Tucanae.
    NASA, ESA, Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration, J. Mack/STScI, G. Piotto/University of Padua

    5. A bumpy neutron star

    Status: Not yet

    6. Supernova explosions

    Status: Not yet

    LIGO and Virgo might also be able to pick up gravitational waves from supernova explosions, the bright cataclysms at the end of massive stars’ lives.

    6
    SHINE BRIGHT Supernova 1987A shone as a brilliant point of light near the Tarantula Nebula (pink cloud) in the Large Magellanic Cloud, as pictured from an observatory in Chile.

    Supernovas emit many types of light and particles, including ghostly subatomic particles called neutrinos that are born deep in the heart of the explosions (SN: 2/18/17, p. 20). But scientists still don’t know exactly what makes a star explode as a supernova in the first place.

    What they do know is that during a supernova explosion, the central core of the star collapses, and the resulting proto-neutron star gathers material from the remainder of the collapsing core. The turbulence at the surface of the proto-neutron star makes it vibrate like a bell, sending off gravitational waves. That specific gravitational wave signal is strongly related to the strength of the turbulence and the structure of the nascent neutron star, astrophysicist David Radice of Princeton University and colleagues report April 29 in the Astrophysical Journal Letters.

    7. Waves triggered by the Big Bang

    Status: Not yet

    8. New sources?

    Status: Not yet

    LIGO Caltech. LIGO and Virgo detect neutron star smash-ups. May 2, 2019.
    See https://sciencesprings.wordpress.com/2019/05/06/from-mit-caltech-advanced-aligo-ligo-and-virgo-detect-neutron-star-smash-ups/

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 9:49 am on May 4, 2019 Permalink | Reply
    Tags: , , , , , , Gravitational wave astronomy, ,   

    From MIT News: “3 Questions: Salvatore Vitale on LIGO’s latest detections” 

    MIT News
    MIT Widget

    From MIT News

    May 2, 2019
    Jennifer Chu

    1
    Salvatore Vitale, assistant professor of physics at MIT and member of the LIGO Scientific Collaboration. Courtesy of MIT Kavli Institute for Astrophysics and Space Research.

    Kavli MIT Institute of Astrophysics and Space Research

    “We will keep listening for these faint and remote cosmic whispers,” says the physics professor.

    It’s been just three weeks since LIGO resumed its hunt for cosmic ripples through space-time, and already the gravitational-wave hunter is off to a running start.

    One of the detections researchers are now poring over is a binary neutron star merger — a collision of two incredibly dense stars, nearly 500 million light years away. The power of this stellar impact set off gravitational waves across the cosmos, eventually reaching Earth as infinitely small ripples that were picked up by LIGO (the Laser Interferometer Gravitational-wave Observatory, operated jointly by Caltech and MIT), as well as by Virgo, LIGO’s counterpart in Italy, on April 25 at 4 a.m. ET.



    Localizations of gravitational-wave signals detected by LIGO in 2015 (GW150914, LVT151012, GW151226, GW170104), more recently, by the LIGO-Virgo network (GW170814, GW170817). After Virgo came online in August 2018

    Researchers have determined that the source of the gravitational wave signal is likely a binary neutron star merger, which they’ve dubbed #S190425z. This is the second time that LIGO has discovered such a source.

    The other neutron star merger, detected in 2017, was also the first event captured by LIGO that was also observed using optical telescopes. As astronomers around the world pointed telescopes at this first neutron star merger, they were able to see the brilliant “kilonova” explosion generated as the two stars merged. They also detected signatures of gold and platinum in the aftermath — direct evidence for how heavy elements are produced in the universe.

    With LIGO’s new detection, astronomers are again pointing telescopes to the skies and searching for optical traces of the stellar merger and any resulting cosmic goldmine.

    MIT News caught up with Salvatore Vitale, assistant professor of physics at MIT and a member of the LIGO Scientific Collaboration, about this newest stellar discovery and hints of even more “cosmic whispers” on the horizon — including the tantalizing possibility that LIGO has also captured the collision of a black hole and a neutron star.

    Q: Walk us through the moment of discovery. When did this signal come in, and what told you that it was likely a binary neutron star merger?

    A: The signal hit Earth at 4:18 a.m. EDT. Unfortunately, at that time the LIGO detector in Hanford, Washington, was not collecting data. The signal was thus detected by the LIGO instrument in Baton Rouge, Louisiana, and the Virgo detector in Italy.

    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    VIRGO Gravitational Wave interferometer, near Pisa, Italy

    Having only two detectors online did not affect our confidence of it being real, since neutron star binaries spend more than one minute in our detectors and these kinds of very long chirps cannot easily be confused with instrumental artifacts or other sources of noise. Similarly, we were able to measure extremely well the mass of the source, which told us it was a binary neutron star, the second ever detected by LIGO and Virgo.

    The main consequence of only having two detectors online was that it hurt our ability to localize the source in the sky. The sky map we sent out had a very large uncertainty, over 10,000 square degrees, which is a huge area to follow up, if you are looking for an electromagnetic counterpart.

    Q: Since the notice from LIGO went out, astronomers have been training telescopes on the sky. What have they been able to find about this new merger, and how is it different from the one LIGO detected in 2017?

    A: When two neutron stars smash one against the other, they trigger a cataclysmic explosion that releases huge amounts of energy and creates some of the heaviest elements in the universe (gold, among others). Finding both gravitational and electromagnetic waves can tell us about the environment in which these systems form, how they shine, their role in enriching galaxies with metals, and about the universe. This is why we routinely and automatically send public alerts to astronomers, so that they can try to identify the sources of our gravitational-wave events.

    This is challenging for S190425z, since it has been localized poorly (compare 10,000 square degrees for S190425z with 30 square degrees for the first binary neutron star merger, GW170817). Another important difference is that S190425z was nearly four times further away. Both these factors make it harder to successfully find an electromagnetic counterpart to S190425z. You want to scan a much larger area, and you want to find a weaker and more distant source. This doesn’t mean that astronomers are not trying hard! In fact, in the last 36 hours there have been dozens of observations. So far nothing too convincing, but a lot of excitement! It is nice to see the broader community so engaged with the follow-up of LIGO and Virgo’s events.

    Q: Since it started its newest observing run, LIGO has been detecting at least one gravitational wave source per week. What does this say about what sort of extreme phenomena are happening in the universe, on a daily basis?

    A: The last few weeks have been incredibly exciting! So far we are making discoveries at roughly the rate we were expecting: one binary black hole a week and one binary neutron star a month. This confirms our expectations that gravitational waves can really play a major role in understanding the most extreme objects of the universe.

    It also says that it is not uncommon that two stellar-mass black holes merge, which was not obvious at all before LIGO and Virgo discovered them. We still don’t know if the black holes pairs we are seeing had been together their whole cosmic life, first as normal stars, then as black holes, or if instead they were born separately and then just happened to meet and form a binary system. Both avenues are possible, and with a few more tens of detections we should be able to tell which of these two scenarios happens more often.

    Then there is always the possibility of detecting something new and unexpected! As I started drafting these answers, we detected #S190426c, which, if of astrophysical origin, could be the first neutron star colliding into a black hole ever detected by humans. We will know more in the next few weeks, and we will keep listening for these faint and remote cosmic whispers.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    MIT Campus

     
  • richardmitnick 8:12 am on May 3, 2019 Permalink | Reply
    Tags: "Have scientists observed a black hole swallowing a neutron star?", , , , , , , Gravitational wave astronomy, ,   

    From Cardiff University: “Have scientists observed a black hole swallowing a neutron star?” 

    Cardiff University

    From Cardiff University

    3 May 2019

    Professor Mark Hannam
    Head of Gravitational Physics Group
    Director of the Gravity Exploration Institute

    1
    Now iconic image NSF/LIGO/Sonoma State University/A. Simonnet

    Within weeks of switching their machines back on to scour the sky for more sources of gravitational waves, scientists are poring over data in an attempt to further understand an unprecedented cosmic event.

    Astronomers working at the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the European-based Virgo detector have reported the possible detection of gravitational waves emanating from the collision of a neutron star and a black hole.


    VIRGO Gravitational Wave interferometer, near Pisa, Italy


    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger

    Gravity is talking. Lisa will listen. Dialogos of Eide

    ESA/eLISA the future of gravitational wave research

    Localizations of gravitational-wave signals detected by LIGO in 2015 (GW150914, LVT151012, GW151226, GW170104), more recently, by the LIGO-Virgo network (GW170814, GW170817). After Virgo came online in August 2018


    Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

    The signal, detected on 26 April, came just weeks after the teams turned the updated detectors back on to start their third observation run, named “O3”.

    “The universe is keeping us on our toes,” says Patrick Brady, spokesperson for the LIGO Scientific Collaboration and a professor of physics at the University of Wisconsin-Milwaukee. “We’re especially curious about the April 26 candidate. Unfortunately, the signal is rather weak. It’s like listening to somebody whisper a word in a busy café; it can be difficult to make out the word or even to be sure that the person whispered at all. It will take some time to reach a conclusion about this candidate.”

    The possible detection not only throws light on an event that up until now has never been observed, but also confirms the unprecedented accuracy with which the gravitational wave detectors are now operating.

    Included in the latest batch of discoveries is another possible merger between two neutron stars – potentially the second time this has been observed by the LIGO and Virgo teams – as well as a further three interesting black hole mergers.

    Professor Mark Hannam, a member of the LIGO team and Director of Cardiff University’s Gravity Exploration Institute said: “Yet again the LIGO and Virgo detectors have surpassed expectations. Our most optimistic estimates were for a detection every week, and the first month of the run gave us five candidates.”

    Dr Vivien Raymond, from Cardiff University’s Gravity Exploration Institute, said: “LIGO-Virgo’s third observing run has already proven to be more interesting than we expected, barely a month after it started. It’s exciting to think about the next surprises in the Universe for us to discover.”

    Gravitational waves are ripples in space produced by massive cosmic events such as the collision of black holes or the explosion of supernovae.

    Research undertaken by Cardiff University’s Gravity Exploration Institute has laid the foundations for how we go about detecting gravitational waves with the development of novel algorithms and software that have now become standard tools for detecting the elusive signals.

    The Institute also includes world-leading experts in the collision of black holes, who have produced large-scale computer simulations of what is to be expected and observed when these violent events occur, as well as experts in the design of gravitational-wave detectors.

    The twin detectors of LIGO—one in Washington and one in Louisiana—along with Virgo, located at the European Gravitational Observatory (EGO) in Italy, resumed operations on 1 April , after undergoing a series of upgrades to increase their sensitivities to gravitational waves—ripples in space and time.

    Each detector now surveys larger volumes of the universe than before, searching for extreme events such as smash-ups between black holes and neutron stars.

    In total, since making history with the first-ever direct detection of gravitational waves in 2015, the network has spotted evidence for two neutron star mergers; 13 black hole mergers; and one possible black hole-neutron star merger.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Cardiff Unversity is an ambitious and innovative university with a bold and strategic vision located in a beautiful and thriving capital city. Our research is world-leading and we provide an educationally outstanding experience for our students.

    Driven by creativity and curiosity, we strive to fulfil our social, cultural and economic obligations to Cardiff, Wales, and the world.

     
  • richardmitnick 2:02 pm on May 1, 2019 Permalink | Reply
    Tags: , , , , , Gravitational wave astronomy, , , QRPN-quantum radiation pressure noise   

    From MIT News: “Quantum measurement could improve gravitational wave detection sensitivity” 

    MIT News
    MIT Widget

    From MIT News

    May 1, 2019
    Brittany Flaherty | School of Science

    Research could enable a new suite of experiments to measure quantum activity at room temperature.

    1
    New technology allows LIGO researchers to model noise from quantum phenomena at room temperature. The green path shows the optical fiber that carries light into the chamber, and the red path shows where the light exits.

    Minutes before dawn on Sept. 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) became the first-ever instrument on Earth to directly detect a gravitational wave. This work, led by the LIGO Scientific Collaboration with prominent roles from MIT and Caltech, was the first confirmation of this consequence of Albert Einstein’s theory of general relativity — 100 years after he first predicted it. The groundbreaking detection represented an enormous step forward in the field of astrophysics. In the years since, scientists have striven to achieve even greater sensitivity in the LIGO detectors.

    New research has taken investigators one step closer to this goal. Nergis Mavalvala, the Curtis and Kathleen Marble Professor of Astrophysics at MIT, postdoc Robert Lanza, graduate student Nancy Aggarwal, and their collaborators at Louisiana State University (LSU) recently conducted experiments that could help overcome a future limitation in Advanced LIGO. In their laboratory study, the team successfully measured a type of noise that will soon hold the LIGO instruments back from detecting gravitational waves with greater sensitivity.

    Their study, reported recently in Nature, was the first to measure an important source of quantum noise at room temperature and at frequencies relevant to gravitational wave detectors. Funded by the National Science Foundation, this work could enable researchers to understand this limiting noise source and test ideas for circumventing it to further increase LIGO’s sensitivity to gravitational waves.

    In addition to future applications for improving LIGO’s detection abilities, Mavalvala says these observations of quantum effects at room temperature could help scientists learn more about how quantum mechanics can disturb the precision of measurements generally — and how best to get around these quantum noise limits.

    “This result was important for the gravitational wave community,” says Mavalvala. “But more broadly, this is essentially a room-temperature quantum resource, and that’s something that many communities should care about.”

    Sensitivity upgrade

    LIGO has undergone upgrades since its first gravitational wave searches in 2002; the currently operating version of the instrumentation is called Advanced LIGO following major upgrades in 2015. But to get LIGO to its maximum design sensitivity, Mavalvala says her team needs to be able to conduct experiments and test improvement strategies in the laboratory rather than on the LIGO instruments themselves. LIGO’s astrophysical detection work is too important to interfere with, so she and her collaborators have developed instruments in the lab that can mimic the sensitivity of the real thing. In this case, the team aimed to reproduce processes that occur in LIGO to measure a type of noise called quantum radiation pressure noise (QRPN).

    In LIGO, gravitational waves are detected by using lasers to probe the motion of mirrors. The mirrors are suspended as pendulums, allowing them to have periodic motion similar to a mass on a spring. When laser beams hit the movable mirrors, the momentum carried by the light applies pressure on the mirror and causes them to move slightly.

    “I like to think of it like a pool table,” says Aggarwal. “When your white cue ball strikes the ball in front of it, the cue ball comes back but it still moves the other ball. When a photon that was traveling forward then travels backwards, the momentum went somewhere; [in this case] that momentum went into the mirror.”

    The quantum nature of light, which is made up of photons, dictates that there are quantum fluctuations in the number of photons hitting the mirrors, creating an uncertain amount of force on the mirrors at any given moment. This uncertainty results in random perturbations of the mirror. When the laser power is high enough, this QRPN can interfere with gravitational wave detection. At Advanced LIGO’s full design sensitivity, with many hundreds of kilowatts of laser power hitting 40-kilogram mirrors, QRPN will become a dominant limitation.

    Minuscule mirrors

    To address this imminent issue, Mavalvala, Aggarwal, and their collaborators designed an experiment to recreate the effects of QRPN in a laboratory setting. One challenge was that the team could not use lasers as powerful as those in Advanced LIGO in their lab experiments. The greater the laser power and the lighter the mass of the mirror oscillator, the stronger the radiation pressure-driven motion. To be able to detect this motion with less laser power, they needed to create an extremely low-mass mirror oscillator. They scaled down the 40-kilogram mirrors of Advanced LIGO with a 100-nanogram mirror oscillator (less than the mass of a grain of salt).

    The team also faced the significant challenge of designing a mirror oscillator that could exhibit quantum behavior at room temperature. Previously, observing quantum effects like QRPN required cryogenic cooling so that the motion due to heat energy of the oscillator would not mask the QRPN. In addition to being challenging and impractical, vibrations associated with cryogenic cooling interferes with LIGO’s operation, so conducting experiments at room temperature would be more readily applicable to LIGO itself. After many iterations of design and testing, Mavalvala and her MIT colleagues designed a mirror oscillator that allowed the team to reach a low enough level of thermally driven fluctuations that the mirror motion was dominated by QRPN at room temperature — the first-ever study to do so.

    “It’s really pretty mind-boggling that we can observe this room-temperature, macroscopic object — you can see it with the naked eye if you squint enough — being pushed around by quantum fluctuations,” Mavalvala says. “Its thermal jitter is small enough that it’s being tickled ever-so-slightly by quantum fluctuations, and we can measure that.”

    This was also the first study to detect QRPN at frequencies relevant to gravitational wave detectors. Their success means that they can now design additional experiments that reflect the radiation pressure conditions in Advanced LIGO itself.

    “This experiment mimics an important noise source in Advanced LIGO,” says Mavalvala. “It’s now a test bed where we can try out new ideas for improving Advanced LIGO without impinging on the instrument’s own operating time.”

    Advanced LIGO does not yet run its lasers at strong enough power for QRPN to be a limiting factor in gravitational wave detections. But, as the instruments become more sensitive, this type of noise will soon become a problem and limit Advanced LIGO’s capabilities. When Mavalvala and her collaborators recognized QRPN as an imminent issue, they strove to recreate its effects in the laboratory so that they can start exploring ways to overcome this challenge.

    “We’ve known for a long time that this QRPN would be a limitation for Advanced LIGO,” says Mavalvala. “Now that we are able to reproduce that effect in a laboratory setting, we can start to test ideas for how to improve that limit.”

    Mavalvala’s primary collaborator at LSU was Thomas Corbitt, an associate professor of physics and astronomy. Corbitt was formerly a graduate student and post-doctoral scholar in Mavalvala’s lab at MIT. They have since collaborated for many years.

    “This is the first time this effect has been observed in a system similar to gravitational wave interferometers and in LIGO’s frequency band,” says Corbitt. “While this work was motivated by the imperative to make ever-more-sensitive gravitational wave detectors, it is of wide interest.”

    New directions

    Since the original detection of a binary black hole merger in 2015, LIGO has also captured signals from collisions of neutron stars, as well as additional black hole collisions. These waves ripple outward from interactions that can take place more than a billion light years away. While LIGO’s capabilities are impressive, Mavalvala and her team plan to continue finding ways to make LIGO even more powerful.

    Before they collide, black holes, for example, orbit each other slowly and at lower frequencies. As the two black holes get closer, their orbits speed up and they swirl around each other at high speeds and high frequencies. If Advanced LIGO becomes sensitive enough to pick up lower frequencies, Mavalvala says we may someday detect these systems earlier in the process, before the pair collides, allowing us to draw an ever-clearer picture of these distant spacetime phenomena. She and her team aim to make sure that factors such as QRPN don’t limit Advanced LIGO’s growing power.

    “At this moment in time, Advanced LIGO is the best it can be at its job: to look out at the sky and detect gravitational wave events,” says Mavalvala. “In parallel, we have all of these ideas for making it better, and we have to be able to try those out in laboratories. This measurement allows that to happen with QRPN for the first time.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    MIT Campus

     
  • richardmitnick 11:26 am on April 26, 2019 Permalink | Reply
    Tags: , , , , , , Gravitational wave astronomy, IPTA-International Pulsar Timing Array, , , ,   

    From University of Maryland CMNS: “The Past, Present and Future of Gravitational Wave Astronomy” 

    U Maryland bloc

    From University of Maryland


    CMNS

    Matthew Wright
    301-405-9267
    mewright@umd.edu

    UMD Astronomy Professor Coleman Miller co-authored wide-ranging review article for 150th anniversary of the journal Nature.

    1
    Coleman Miller, University of Maryland Astronomy Professor and Co-Director of the Joint Space-Science Institute. Miller co-authored a new review of the past, present, and future of gravitational wave astronomy for the journal Nature. Image credit: Coleman Miller.

    When Albert Einstein published his general theory of relativity in 1915, he gave the scientific community a wealth of theoretical predictions about the nature of space, time, matter and gravity. Unlike much of his prior work, however, general relativity wasn’t easily testable with experiments and direct observation.

    That all changed a century later, on September 14, 2015, when the twin Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors registered gravitational waves from the merger of two black holes.

    For the first time, the scientific community had definitive support for one of the greatest predictions arising from Einstein’s general theory of relativity—that the acceleration of massive objects can produce ripples in the fabric of spacetime.

    In just three short years since that initial observation, LIGO has made or contributed to a landslide of new discoveries, helping to usher in the age of gravitational wave astronomy. University of Maryland Astronomy Professor Coleman Miller, an expert in the theory and modeling of gravity, co-authored a review of the past, present, and future of gravitational wave astronomy for the journal Nature, published on April 25, 2019. The article is part of a series that celebrates the 150th anniversary of the journal, which was first published on November 4, 1869.

    “Direct observation of gravitational waves was an important test of general relativity that gave us access to information we simply didn’t have before,” said Miller, who is also a co-director of the Joint Space-Science Institute (JSI), a partnership between UMD and NASA’s Goddard Space Flight Center. “There is a very limited set of ways we can get information about the distant universe beyond our solar system. We were missing a lot of non-trivial events before we could detect gravitational waves. To offer some perspective: the final plunge of a black hole merger emits tens of times more energy in gravitational waves than all the stars in the visible universe radiate within the same period of time.”

    Miller is a co-author of more than 20 publications related to gravitational radiation. Although he served as the chair of the LIGO Program Advisory Committee for four years (2010-2014), Miller has not been directly involved in LIGO’s science operations. This provides him with a uniquely knowledgeable, yet scientifically objective, viewpoint on the topic.

    Co-authored with Nicolás Yunes of Montana State University, the review article traces the early history of attempts to investigate general relativity, including several indirect observations and theoretical work. Then, Miller and Yunes describe the contributions of UMD Physics Professor Joseph Weber (1919-2000), who was the first to suggest that it was physically possible to detect and measure gravitational waves.

    Beginning in the 1960s, Weber designed, built and operated a pair of solid aluminum bars—one near UMD’s campus and another just outside Chicago—which he suggested would resonate like a bell when struck by passing gravitational waves. Thus began a decades-long scientific quest that would involve hundreds of scientists the world over, including many UMD faculty and staff members and alumni. The physics community eventually settled on a completely different interferometer design that would become the basis for LIGO’s twin detector facilities in Livingston, Louisiana, and Hanford, Washington.

    3
    The collision of two black holes—a tremendously powerful event detected for the first time ever by the Laser Interferometer Gravitational-Wave Observatory, or LIGO on September 14, 2015—is seen in this still from a computer simulation. LIGO detected gravitational waves, or ripples in space and time generated as the black holes spiraled in toward each other, collided, and merged. This simulation shows how the merger would appear to human eyes. It was created by solving equations from Albert Einstein’s general theory of relativity using the LIGO data. Illustration: SXS.

    With the help of UMD Physics Professor and JSI Fellow Peter Shawhan and UMD College Park Professor of Physics Alessandra Buonanno—both principal investigators with the LIGO Scientific Collaboration—the construction and fine-tuning of the detectors resulted in LIGO’s historic first observation in 2015. Just two years later, in 2017, LIGO project leads Rainer Weiss of the Massachusetts Institute of Technology and Kip Thorne and Barry Barish of Caltech were recognized with the Nobel Prize in physics for the groundbreaking observation.

    LIGO followed the initial 2015 detection with several more observations of black hole mergers. But another major turning point came on August 17, 2017, when scientists across the world made the first direct observation of a merger between two neutron stars—the dense, collapsed cores that remain after large stars die in a supernova. The merger was the first cosmological event observed in both gravitational waves and—with the help of a large array of ground- and space-based telescopes—the entire spectrum of light, from gamma rays to radio waves.

    “This event gave us instant confirmation that gravitational waves travel at a speed that is indistinguishable from the speed of light,” Miller explained. “For years, there have been alternate theories of gravity that would explain what dark matter is thought to do. But many of these relied on gravitational waves reacting to the gravity of massive objects differently than light does. This was not found to be the case in the wake of a neutron star merger, so observing this event eliminated a wide swath of these theories immediately.”

    The neutron star merger also yielded the first direct observation of a kilonova—a massive explosion now believed to create most of the heavy elements in the universe. Led by UMD’s Eleonora Troja, an associate research scientist in the Department of Astronomy, an early analysis of the kilonova suggested that the explosion produced a staggering amount of platinum and gold, with a combined mass several hundred times that of Earth.

    4
    This iconc illustration depicts the merger of two neutron stars. The rippling spacetime grid represents gravitational waves that travel out from the collision, while the narrow beams show the burst of gamma rays launched just seconds after the gravitational waves. Swirling clouds of material ejected from the merging stars glow with visible and other wavelengths of light. Image credit: National Science Foundation/LIGO/Sonoma State University/A. Simonnet

    This finding alone strongly swung the needle toward a conclusion that all elements heavier than iron are all produced in neutron star mergers,” Miller explained. “That’s very exciting.”

    On April 1, 2019, LIGO began its third observing run, after a series of upgrades to its lasers, mirrors and other components. While Miller is hesitant to set his own expectations too high, he is hopeful that the latest round will yield some new surprises.

    “The universe will give us what it will give us. That said, it would be wonderful to see a merger between a black hole and a neutron star,” Miller said. “And a few extra double neutron star mergers certainly wouldn’t hurt.”

    Looking further down the line, Miller and Yunes also assessed the prospects for observing the gravitational wave background. This ever-present hum of gravitational waves is thought to contain the fingerprints of orbiting black holes, neutron stars and other massive objects. These pairs of objects may be tens, hundreds or even thousands of years away from merging—and thus are unable to produce a spike in gravitational waves detectable with current technology. Miller likens the effort to adjusting one’s ears to the din of conversation in a crowded room.

    “Imagine arriving at a party. At first, you can see that everyone is talking, but the sound registers quietly, if at all,” Miller said. “Then your hearing gets better. You’re not yet able to hear every individual, but you can hear the sum total. Then, as your hearing gets better, you can hear some nearby conversations and can distinguish between people who are near and far.”

    Within the next few years, the International Pulsar Timing Array (IPTA) collaboration could become the first to detect the subtle drone from thousands of pairs of supermassive black holes.

    4

    With the help of the world’s largest radio telescopes, IPTA will carefully track deviations in the precise, clock-like flashing of roughly 100 small, rotating neutron stars called millisecond pulsars. These deviations will help IPTA detect gravitational fluctuations from orbiting pairs of supermassive black holes, each of which contains billions of times the mass of the sun.

    The next big step in gravitational wave astronomy will be the launch of the Laser Interferometer Space Antenna (LISA) mission, led by the European Space Agency in partnership with NASA.


    ESA/NASA eLISA space based, the future of gravitational wave research

    This trio of satellites, currently slated for deployment by 2034, will be sensitive to a lower range of gravitational wave frequencies than LIGO. As such, LISA should be able to observe events that LIGO cannot detect, such as mergers that involve one or more supermassive black holes.

    “A lot can happen in 15 years. In the meantime, I plan to eat my vegetables so I can be around to appreciate LISA’s findings when the satellites are launched,” Miller said. “The excitement in the astrophysical community is only increasing. Expectation of new discovery has been one the enduring excitements of gravitational wave astronomy.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Maryland Campus

    About CMNS

    The thirst for new knowledge is a fundamental and defining characteristic of humankind. It is also at the heart of scientific endeavor and discovery. As we seek to understand our world, across a host of complexly interconnected phenomena and over scales of time and distance that were virtually inaccessible to us a generation ago, our discoveries shape that world. At the forefront of many of these discoveries is the College of Computer, Mathematical, and Natural Sciences (CMNS).

    CMNS is home to 12 major research institutes and centers and to 10 academic departments: astronomy, atmospheric and oceanic science, biology, cell biology and molecular genetics, chemistry and biochemistry, computer science, entomology, geology, mathematics, and physics.

    Our Faculty

    Our faculty are at the cutting edge over the full range of these disciplines. Our physicists fill in major gaps in our fundamental understanding of matter, participating in the recent Higgs boson discovery, and demonstrating the first-ever teleportation of information between atoms. Our astronomers probe the origin of the universe with one of the world’s premier radio observatories, and have just discovered water on the moon. Our computer scientists are developing the principles for guaranteed security and privacy in information systems.

    Our Research

    Driven by the pursuit of excellence, the University of Maryland has enjoyed a remarkable rise in accomplishment and reputation over the past two decades. By any measure, Maryland is now one of the nation’s preeminent public research universities and on a path to become one of the world’s best. To fulfill this promise, we must capitalize on our momentum, fully exploit our competitive advantages, and pursue ambitious goals with great discipline and entrepreneurial spirit. This promise is within reach. This strategic plan is our working agenda.

    The plan is comprehensive, bold, and action oriented. It sets forth a vision of the University as an institution unmatched in its capacity to attract talent, address the most important issues of our time, and produce the leaders of tomorrow. The plan will guide the investment of our human and material resources as we strengthen our undergraduate and graduate programs and expand research, outreach and partnerships, become a truly international center, and enhance our surrounding community.

    Our success will benefit Maryland in the near and long term, strengthen the State’s competitive capacity in a challenging and changing environment and enrich the economic, social and cultural life of the region. We will be a catalyst for progress, the State’s most valuable asset, and an indispensable contributor to the nation’s well-being. Achieving the goals of Transforming Maryland requires broad-based and sustained support from our extended community. We ask our stakeholders to join with us to make the University an institution of world-class quality with world-wide reach and unparalleled impact as it serves the people and the state of Maryland.

    Our researchers are also at the cusp of the new biology for the 21st century, with bioscience emerging as a key area in almost all CMNS disciplines. Entomologists are learning how climate change affects the behavior of insects, and earth science faculty are coupling physical and biosphere data to predict that change. Geochemists are discovering how our planet evolved to support life, and biologists and entomologists are discovering how evolutionary processes have operated in living organisms. Our biologists have learned how human generated sound affects aquatic organisms, and cell biologists and computer scientists use advanced genomics to study disease and host-pathogen interactions. Our mathematicians are modeling the spread of AIDS, while our astronomers are searching for habitable exoplanets.

    Our Education

    CMNS is also a national resource for educating and training the next generation of leaders. Many of our major programs are ranked among the top 10 of public research universities in the nation. CMNS offers every student a high-quality, innovative and cross-disciplinary educational experience that is also affordable. Strongly committed to making science and mathematics studies available to all, CMNS actively encourages and supports the recruitment and retention of women and minorities.

    Our Students

    Our students have the unique opportunity to work closely with first-class faculty in state-of-the-art labs both on and off campus, conducting real-world, high-impact research on some of the most exciting problems of modern science. 87% of our undergraduates conduct research and/or hold internships while earning their bachelor’s degree. CMNS degrees command respect around the world, and open doors to a wide variety of rewarding career options. Many students continue on to graduate school; others find challenging positions in high-tech industry or federal laboratories, and some join professions such as medicine, teaching, and law.

     
  • richardmitnick 3:48 pm on April 16, 2019 Permalink | Reply
    Tags: A bright burst of X-rays has been discovered by NASA's Chandra X-ray Observatory in a galaxy 6.6 billion light years from Earth., , , , Chandra observed the source dubbed XT2 as it suddenly appeared and then faded away after about seven hours., , Gravitational wave astronomy, , , , The neutron star merger produced a new larger neutron star and not a black hole., This event likely signaled the merger of two neutron stars and could give astronomers fresh insight into how neutron stars — dense stellar objects packed mainly with neutrons — are built.   

    From NASA Chandra: “A New Signal for a Neutron Star Collision Discovered” 

    NASA Chandra Banner

    NASA/Chandra Telescope


    From NASA Chandra

    April 16, 2019

    Megan Watzke
    Chandra X-ray Center, Cambridge, Mass.
    617-496-7998
    mwatzke@cfa.harvard.edu

    1
    Credit: X-ray: NASA/CXC/Uni. of Science and Technology of China/Y. Xue et al; Optical: NASA/STScI

    A bright burst of X-rays has been discovered by NASA’s Chandra X-ray Observatory in a galaxy 6.6 billion light years from Earth. This event likely signaled the merger of two neutron stars and could give astronomers fresh insight into how neutron stars — dense stellar objects packed mainly with neutrons — are built.

    When two neutron stars merge they produce jets of high energy particles and radiation fired in opposite directions. If the jet is pointed along the line of sight to the Earth, a flash, or burst, of gamma rays can be detected. If the jet is not pointed in our direction, a different signal is needed to identify the merger.

    The detection of gravitational waves — ripples in spacetime — is one such signal. Now, with the observation of a bright flare of X-rays, astronomers have found another signal, and discovered that two neutron stars likely merged to form a new, heavier and fast-spinning neutron star with an extraordinarily strong magnetic field.

    “We’ve found a completely new way to spot a neutron star merger,” said Yongquan Xue of the University of Science and Technology of China and lead author of a paper appearing in Nature. “The behavior of this X-ray source matches what one of our team members predicted for these events.”

    Chandra observed the source, dubbed XT2, as it suddenly appeared and then faded away after about seven hours.The source is located in the Chandra Deep Field-South, the deepest X-ray image ever taken that contains almost 12 weeks of Chandra observing time, taken at various intervals over several years. The source appeared on March 22nd, 2015 and was discovered later in analysis of archival data.

    “The serendipitous discovery of XT2 makes another strong case that nature’s fecundity repeatedly transcends human imagination,”said co-author Niel Brandt of the Pennsylvania State University and principal investigator of the relevant Chandra Deep Field-South.

    The researchers identified the likely origin of XT2 by studying how its X-ray light varied with time, and comparing this behavior with predictions made in 2013 by Bing Zhang from the University of Nevada in Las Vegas, one of the corresponding authors of the paper. The X-rays showed a characteristic signature that matched those predicted for a newly-formed magnetar — a neutron star spinning around hundreds of times per second and possessing a tremendously strong magnetic field about a quadrillion times that of Earth’s.

    The team think that the magnetar lost energy in the form of an X-ray-emitting wind, slowing down its rate of spin as the source faded. The amount of X-ray emission stayed roughly constant in X-ray brightness for about 30 minutes, then decreased in brightness by more than a factor of 300 over 6.5 hours before becoming undetectable. This showed that the neutron star merger produced a new, larger neutron star and not a black hole.

    This result is important because it gives astronomers a chance to learn about the interior of neutron stars, objects that are so dense that their properties could never be replicated on Earth.

    “We can’t throw neutron stars together in a lab to see what happens, so we have to wait until the Universe does it for us,” said Zhang. “If two neutron stars can collide and a heavy neutron star survives, then this tells us that their structure is relatively stiff and resilient.”

    Neutron star mergers have been prominent in the news since the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) detected gravitational waves from one in 2017. That source, known as GW170817, produced a burst of gamma rays and an afterglow in light detected by many other telescopes, including Chandra. Xue’s team think that XT2 would also have been a source of gravitational waves, however it occurred before Advanced LIGO started its first observing run, and it was too distant to have been detected in any case.

    Xue’s team also considered whether the collapse of a massive star could have caused XT2, rather than a neutron star merger. The source is in the outskirts of its host galaxy, which aligns with the idea that supernova explosions that left behind the neutron stars kicked them out of the center a few billion years earlier. The galaxy itself also has certain properties — including a low rate of star formation compared to other galaxies of a similar mass — that are much more consistent with the type of galaxy where the merger of two neutron stars is expected to occur.Massive stars are young and are associated with high rates of star formation.

    “The host-galaxy properties of XT2 indeed boost our confidence in explaining its origin,”said co-author Ye Li from Peking University.

    The team estimated the rate at which events like XT2 should occur, and found that it agrees with the rate deduced from the detection of GW170817. However, both estimates are highly uncertain because they depend on the detection of just one object each, so more examples are needed.

    “We’ve started looking at other Chandra data to see if similar sources are present”, said co-author Xuechen Cheng, also of the University of Science and Technology of China. “Just as with this source, the data sitting in archives might contain some unexpected treasures.”

    A paper describing these results appeared in the April 11th issue of Nature.

    Other materials about the findings are available at:
    http://chandra.si.edu

    For more Chandra images, multimedia and related materials, visit:
    http://www.nasa.gov/chandra

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 1:16 pm on April 4, 2019 Permalink | Reply
    Tags: , , , , Gravitational wave astronomy, , , The Hubble Constant discrepency, UC Banta Barbra   

    From UC Santa Barbara: “The Standard Siren” 

    UC Santa Barbara Name bloc
    From UC Santa Barbara

    Ten years before the detection of gravitational waves, two KITP postdocs at UC Santa Barbara had a novel idea.

    April 2, 2019
    Harrison Tasoff

    1
    Two neutron stars collide, sending out gravitational waves and electromagnetic radiation detected on Earth in 2017. Photo Credit: Fermilab

    2
    Scott Hughesz. Photo Credit: MIT

    The history of science is filled with stories of enthusiastic researchers slowly winning over skeptical colleagues to their point of view. Astrophysicist Scott Hughes can relate to these tales.

    “For the first 15 or 16 years of my career I was speaking to astronomers, and I always had the impression that they were politely interested in what I had to say, but regarded me as a little bit of a wild-eyed enthusiast who was telling them about a herd of unicorns that my friends and I were raising,” said Hughes.

    “Now,” he continued, “there are people who are going, ‘Ooh, all those unicorns you found, can I use them to solve my problem? Do your unicorns have wings? Are they sparkly?’”

    3
    Daniel Holz. Photo Credit: University of Chicago

    These unicorns are gravitational waves, an area of physics in which Hughes specializes. While working as postdoctoral researchers at UC Santa Barbara’s Kavli Institute for Theoretical Physics (KITP), Hughes and his colleague, Daniel Holz, were among the first to propose using the phenomena, in combination with telescope-based observations, to measure the Hubble constant, a fundamental quantity involved in describing the expansion of the universe.

    As the universe expands, it carries celestial objects away from us. This stretches out the wavelength of light we detect from these objects, causing it to drop in frequency just like a siren on a passing ambulance. The faster the object is receding, the more its light will shift toward the red end of the spectrum. The Hubble constant relates an object’s distance from Earth to this redshift, and thus the object’s speed as it’s carried away.

    One of an astronomer’s best tools for calculating this is a standard candle, any class of objects that always have the same, standard brightness.

    Standard Candles to measure age and distance of the universe from supernovae NASA

    If scientists know the brightness of an object, they can determine its distance by measuring how dim it appears to us on Earth.

    For decades scientists have tried to get accurate measurements of the Hubble constant in order to investigate why the universe is expanding, and, in fact, accelerating. This ultimately resolves to measuring objects’ redshifts and matching them with independent measurements of the objects’ distances from us. However, these two most accurate measurements scientists currently have for the Hubble constant disagree — an endless source of frustration for cosmologists.

    A Proposal

    This was the cosmological landscape in the early 2000s when Holz and Hughes held positions as postdoctoral researchers at KITP. “Scott had been thinking about gravitational waves for a while,” said Holz. “He was the expert, and I was much more focused on cosmological questions.” But Hughes’ enthusiasm soon piqued Holz’s curiosity, and the two began to talk about gravitational wave cosmology in the office and on walks along the Santa Barbara bluffs.

    Holz and Hughes credit their close collaboration to the construction of the new wing of Kohn Hall in 2001. Initially, all postdocs at KITP had their own offices, explained Hughes, but the construction forced them to double-up. “Suddenly we were spending a lot more time with each other.”

    A 2002 KITP program on cosmological data fanned the flames of their interest in the topic. By the time Hughes left to join the faculty at MIT, they had finished the first draft of their paper detailing how to calculate the Hubble constant with gravitational waves. After two years gestating they finally published the study in The Astrophysical Journal.

    “I had a great time writing that paper with Scott,” said Holz. “I learned an incredible amount. So much that I was convinced that gravitational waves were the future, and that I should get involved.”

    The idea of using gravitational wave sources to measure the Hubble constant was not new. The concept was first proposed in a visionary paper back in 1986 by Bernard Schutz [Nature]. And a number of other notions regarding gravitational waves were also floating around the literature in the early 2000s. But what Holz and Hughes did was synthesize all these ideas and emphasize the feasibility of combining data from gravitational waves with follow-up observations using light.

    The study also was the first to use the term “standard siren [Nature].” Hughes recalled discussing the paper with Caltech astrophysicist Sterl Phinney, who remarked, “Hmm. Kind of like a standard candle, but you hear it. You should call it a standard siren.” Holz independently had an almost identical conversation with physicist Sean Carroll, a former KITP postdoc himself. Holz and Hughes included the term in their paper, and it stuck. The phrase has since become ubiquitous in cosmology.

    “The term ‘standard siren’ might be our most lasting contribution, Scott,” Holz remarked. “I’ll take it,” laughed Hughes.

    Using gravitational waves to measure the Hubble constant has many advantages over other methods. Certain supernovae provide decent standard candles, “but, as a standard candle, supernovae are not very well understood,” said Holz. “The main thing that makes standard sirens interesting is that they’re understood from first principles, directly from the theory of general relativity.”

    When using standard candles, scientists have to calibrate the distances of certain classes of objects using the information from other ones, effectively leapfrogging their way to a proper distance measurement. Astronomers call this method a “distance ladder,” and errors and uncertainty can creep in at many points in the calculations.

    3
    Getting accurate measurements of distance requires building up a distance ladder using a number of different techniques for various ranges. Photo Credit: MATT PERKO.

    In contrast, gravitational waves can provide a direct measurement of an object’s distance. “You just write down the equations and solve them, and then you’re done,” said Holz. “We’ve tested general relativity for a hundred years; it really works, and it says ‘here’s how far that source is.’ There’s no distance ladder, there’s none of that fiddling around.”

    All the early papers on measuring the Hubble constant using gravitational waves were somewhat speculative, according to Holz. They were proposals for the far future. “We hadn’t even detected gravitational waves yet, much less waves from two neutron stars, much less with an optical counterpart,” he said. But interest and enthusiasm for the technique were growing.

    Hughes remembers colleagues coming up to him after his talks and asking about the likelihood of observing a standard siren in the next decade. He didn’t know, but he did say that with a better understanding of the optical counterpart, they could probably localize an event to within 10-20 square degrees. “And I think if you have that, every piece of large glass on Earth is going to stare at that spot on the sky,” Hughes had said. “And, in the end, that is exactly what happened.”

    And Then It Happened

    On August 17, 2017, less than two years after detecting the first gravitational waves, the LIGO and Virgo observatories recorded a signal from merging neutron stars. Thanks to an alert system, which Holz helped establish, a flurry of activity followed as nearly every major ground and space-based observatory trained their sights on the event. Scientists collected data on the merger in every region of the electromagnetic spectrum.


    VIRGO Gravitational Wave interferometer, near Pisa, Italy


    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger

    Gravity is talking. Lisa will listen. Dialogos of Eide

    ESA/eLISA the future of gravitational wave research

    Localizations of gravitational-wave signals detected by LIGO in 2015 (GW150914, LVT151012, GW151226, GW170104), more recently, by the LIGO-Virgo network (GW170814, GW170817). After Virgo came online in August 2018


    Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

    “It really is one of those things where, if it had happened before I retired, I would have been happy,” said Hughes. “But it actually happened before I turned 50.”

    Suddenly, gravitational wave cosmology was a real field, and standard sirens were another part of the toolkit. “But for something to become part of the toolkit so quickly? That’s extraordinarily unusual,” said Holz.

    It turns out that cosmologists need another tool, because they currently have two different values for the Hubble constant. Methods using the cosmic microwave background [CMB] — faint light left over from the big bang — yields a value of around 68. Meanwhile, calculations that use Type Ia supernovae — a variety of standard candle [above] — yield a bit more than 73.

    CMB per ESA/Planck

    Although they appear close, the two values actually differ by three standard deviations, and both have fairly tight error bars. The disagreement has cosmologists increasingly concerned as the error bars on these two values only get tighter. It could signal a fundamental problem in our understanding of the universe, and is the subject of a KITP conference this July.

    There are a few intrinsic differences between the two techniques, though. The cosmic microwave background reflects the conditions of the early universe, while the supernovae paint a picture of the current universe. “There’s a chance that maybe something very strange and unexpected has happened between the early and late days of the universe, and that’s why these values don’t agree,” said Holz. But cosmologists simply don’t know for sure.

    Getting another, independent value for the Hubble constant will help clear up this conundrum. “Because it’s so clean and so direct, that measurement will be a very compelling number,” Holz explained. “At the very least, it’ll inform this discussion, if not just completely resolve it.”

    Holz and his colleagues, Hsin-Yu Chen and Maya Fishbach, have just published a paper in the journal Nature, finding that 20 to 30 observations would allow scientists to calculate the Hubble constant to within 2 percent accuracy, tight enough to begin comparing it to the two values from the cosmic microwave background and supernovae.

    This summer, Holz is co-organizing a KITP program on the new era of gravitational wave physics and astrophysics, and the new field of standard siren cosmology will be a major topic of discussion. In fact, Holz also helped organize the KITP rapid response program that brought researchers together shortly after LIGO’s first detection of gravitational waves.

    Holz and Hughes credit their success to their experiences at KITP. “While working together at the KITP the two of us got excited about measuring the Hubble constant using gravitational waves,” said Holz. “And that’s exactly what the KITP is about: bringing different people together with different backgrounds, stirring the pot and seeing what happens.”

    For the past decade Holz’s career has focused on standard siren cosmology. “And the amazing thing is we’ve actually done it,” he said. “I helped write the paper that did the first standard siren measurement ever. This was exactly what Scott and I had hypothesized about years before.”

    “If both of us hadn’t been at the KITP there’s no way I’d be spending a good fraction of my life on LIGO teleconferences right now,” said Holz. “But I wouldn’t have it any other way.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC Santa Barbara Seal
    The University of California, Santa Barbara (commonly referred to as UC Santa Barbara or UCSB) is a public research university and one of the 10 general campuses of the University of California system. Founded in 1891 as an independent teachers’ college, UCSB joined the University of California system in 1944 and is the third-oldest general-education campus in the system. The university is a comprehensive doctoral university and is organized into five colleges offering 87 undergraduate degrees and 55 graduate degrees. In 2012, UCSB was ranked 41st among “National Universities” and 10th among public universities by U.S. News & World Report. UCSB houses twelve national research centers, including the renowned Kavli Institute for Theoretical Physics.

     
  • richardmitnick 2:34 pm on April 2, 2019 Permalink | Reply
    Tags: , , , , , , , Gravitational wave astronomy, , ,   

    From University of Chicago: “How to use gravitational waves to measure the expansion of the universe” 

    U Chicago bloc

    From University of Chicago

    Mar 28, 2019
    Louise Lerner


    Prof. Daniel Holz discusses a new way to calculate the Hubble constant, a crucial number that measures the expansion rate of the universe and holds answers to questions about the universe’s size, age and history. Video by UChicago Creative

    Ripples in spacetime lead to new way to determine size and age of universe.

    On the morning of Aug. 17, 2017, after traveling for more than a hundred million years, the aftershocks from a massive collision in a galaxy far, far away finally reached Earth.

    These ripples in the fabric of spacetime, called gravitational waves, tripped alarms at two ultra-sensitive detectors called LIGO, sending texts flying and scientists scrambling.


    VIRGO Gravitational Wave interferometer, near Pisa, Italy


    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger

    Gravity is talking. Lisa will listen. Dialogos of Eide

    ESA/eLISA the future of gravitational wave research

    Localizations of gravitational-wave signals detected by LIGO in 2015 (GW150914, LVT151012, GW151226, GW170104), more recently, by the LIGO-Virgo network (GW170814, GW170817). After Virgo came online in August 2018


    Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

    One of the scientists was Prof. Daniel Holz at the University of Chicago. The discovery had provided him the information he needed to make a groundbreaking new measurement of one of the most important numbers in astrophysics: the Hubble constant, which is the rate at which the universe is expanding.

    The Hubble constant holds the answers to big questions about the universe, like its size, age and history, but the two main ways to determine its value have produced significantly different results. Now there was a third way, which could resolve one of the most pressing questions in astronomy—or it could solidify the creeping suspicion, held by many in the field, that there is something substantial missing from our model of the universe.

    “In a flash, we had a brand-new, completely independent way to make a measurement of one of the most profound quantities in physics,” said Holz. “That day I’ll remember all my life.”

    As LIGO and its European counterpart VIRGO turn back on on April 1, Holz and other scientists are preparing for more data that could shed light on some of the universe’s biggest questions.

    Universal questions

    We’ve known the universe is expanding for a long time (ever since eminent astronomer and UChicago alum Edwin Hubble made the first measurement of the expansion in 1929, in fact),

    Edwin Hubble looking through a 100-inch Hooker telescope at Mount Wilson in Southern California, 1929 discovers the Universe is Expanding

    but in 1998, scientists were stunned to discover that the rate of expansion is not slowing as the universe ages, but actually accelerating over time. In the following decades, as they tried to precisely determine the rate, it has become apparent that different methods for measuring the rate produce different answers.

    One of the two methods measures the brightness of supernovae–exploding stars– in distant galaxies;

    Standard Candles to measure age and distance of the universe from supernovae NASA

    the other looks at tiny fluctuations in the cosmic microwave background [CMB], the faint light left over from the Big Bang.

    CMB per ESA/Planck

    ESA/Planck 2009 to 2013

    Scientists have been working for two decades to boost the accuracy and precision for each measurement, and to rule out any effects which might be compromising the results; but the two values still stubbornly disagree by almost 10 percent.

    2
    A neutron star collision causes detectable ripples in the fabric of spacetime, which are called gravitational waves. Photo courtesy of Aurore Simonnet

    Because the supernova method looks at relatively nearby objects, and the cosmic microwave background is much more ancient, it’s possible that both methods are right—and that something profound about the universe has changed since the beginning of time.

    “We don’t know if one or both of the other methods have some kind of systematic error, or if they actually reflect a fundamental truth about the universe that is missing from our current models,” said Holz. “Either is possible.”

    Holz saw the possibility for a third, completely independent way to measure the Hubble constant—but it would depend on a combination of luck and extreme feats of engineering.

    The ‘standard siren’

    In 2005, Holz wrote a paper [NJP] with Scott Hughes of Massachusetts Institute of Technology suggesting that it would be possible to calculate the Hubble constant through a combination of gravitational waves and light. They called these sources “standard sirens,” a nod to “standard candles”, which refers to the supernovae used to make the Hubble constant measurement.

    But first it would take years to develop technology that could pick up something as ephemeral as ripples in the fabric of spacetime. That’s LIGO: a set of enormous, extremely sensitive detectors that are tuned to pick up the gravitational waves that are emitted when something big happens somewhere in the universe.

    The Aug. 17, 2017 waves came from two neutron stars, which had spiraled around and around each other in a faraway galaxy before finally slamming together at close to the speed of light. The collision sent gravitational waves rippling across the universe and also released a burst of light, which was picked up by telescopes on and around Earth.

    Neutron star collision-Robin Dienel-The Carnegie Institution for Science

    3
    Prof. Daniel Holz writes out the formula for the Hubble constant, which measures the rate at which the universe is expanding.

    That burst of light was what sent the scientific world into a tizzy. LIGO had picked up gravitational wave readings before, but all the previous ones were from collisions of two black holes, which can’t be seen with conventional telescopes.

    But they could see the light from the colliding neutron stars, and the combination of waves and light unlocked a treasure trove of scientific riches. Among them were the two pieces of information Holz needed to make his calculation of the Hubble constant.

    How does the method work?

    To make this measurement of the Hubble constant, you need to know how fast an object—like a newly collided pair of neutron stars—is receding away from Earth, and how far away it was to begin with. The equation is surprisingly simple. It looks like this: The Hubble constant is the velocity of the object divided by the distance to the object, or H=v/d.

    Somewhat counterintuitively, the easiest part to calculate is how fast the object is moving. Thanks to the bright afterglow given off by the collision, astronomers could point telescopes at the sky and pinpoint the galaxy where the neutron stars collided. Then they can take advantage of a phenomenon called redshift: As a faraway object moves away from us, the color of the light it’s giving off shifts slightly towards the red end of the spectrum. By measuring the color of the galaxy’s light, they can use this reddening to estimate how fast the galaxy is moving away from us. This is a century-old trick for astronomers.

    The more difficult part is getting an accurate measure of the distance to the object. This is where gravitational waves come in. The signal the LIGO detectors pick up gets interpreted as a curve, like this:

    4
    The signal picked up by the LIGO detector in Louisiana, as it caught the waves from two neutron stars colliding far away in space, forms a distinctive curve. Courtesy of LIGO

    The shape of the signal tells scientists how big the two stars were and how much energy the collision gave off. By comparing that with how strong the waves were when they reached Earth, they could infer how far away the stars must have been.

    The initial value from just this one standard siren came out to be 70 kilometers per second per megaparsec. That’s right in between the other two methods, which find about 73 (from the supernova method) and 67 (from the cosmic microwave background).

    Of course, that initial standard siren measurement is only from one data point, and large uncertainties remain. But the LIGO detectors are turning back on after an upgrade to boost their sensitivity. Nobody knows how often neutron stars collide, but Holz (along with former student Hsin-Yu Chen and current student Maya Fishbach) wrote a paper estimating that the gravitational wave method may provide a revolutionary, extremely precise measurement of the Hubble constant within five years.

    “As time goes on, we’ll observe more and more of these binary neutron star mergers, and use them as standard sirens to steadily improve our estimate of the Hubble constant. Depending on where our value falls, we might confirm one method or the other. Or we might find an entirely different value,” Holz said. “No matter what we find, it’s gonna be interesting—and will be an important step in learning more about our universe.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
  • richardmitnick 5:25 pm on April 1, 2019 Permalink | Reply
    Tags: , , , , , , Gravitational wave astronomy, , Lisa Barsotti, , ,   

    From MIT News: Women in STEM “3 Questions: Lisa Barsotti on the new and improved LIGO” 

    MIT News
    MIT Widget

    From MIT News

    April 1, 2019
    Jennifer Chu

    1
    LIGO laboratory detection site near Hanford in eastern Washington. Image: Caltech/MIT/LIGO Laboratory

    “If we are very lucky, we might observe something new … or maybe even something totally unexpected.”

    The search for infinitely faint ripples in space-time is back in full swing. Today, LIGO, the Laser Interferometer Gravitational-wave Observatory, operated jointly by Caltech and MIT, resumes its hunt for gravitational waves and the immense cosmic phenomena from which they emanate.

    Over the past several months, LIGO’s twin detectors, in Washington and Lousiana, have been offline, undergoing upgrades to their lasers, mirrors, and other components, which will enable the detectors to listen for gravitational waves over a far greater range, out to about 550 million light-years away — around 190 million light-years farther out than before.

    As the LIGO detectors turn back on, they will be joined by Virgo, the European-based counterpart based in Italy, which also turns on today after undergoing upgrades that doubled its sensitivity. With both LIGO and Virgo back online, scientists anticipate that detections of gravitational waves from the farthest reaches of the universe may be a regular occurrence.

    MIT News spoke with LIGO member Lisa Barsotti, principal research scientist at MIT’s Kavli Institute for Astrophysics and Space Research, about the potential discoveries that lie ahead.

    Kavli MIT Institute For Astrophysics and Space Research

    Q: Give us a sense of the new capabilities that the LIGO detectors now have. What sort of upgrades were made?

    A: Both LIGO detectors are coming back online more sensitive than ever before, thanks to a wide range of improvements. In particular, we more than doubled the laser power in the interferometers to reduce one of the LIGO fundamental noise sources — quantum “shot noise,” caused by the uncertainty of the arrival time of photons onto the main photodetector. We also deployed a new technology, “squeezed” light, that uses quantum optics to further reduce shot noise.

    Combined with other upgrades to mitigate technical noises (for example noises introduced by the control scheme or from stray light) we improved the sensitivity to binary neutron stars by 40 percent in each detector, with respect to the past observing run.

    Q: What do these new capabilities mean for you, as a researcher who will be looking through the data from these upgraded detectors?

    A: I am personally very excited to see the LIGO detectors operating with squeezed light! This new technology has been developed here at MIT after many years of research to make it compatible with the very stringent LIGO requirements, and our graduate students have been leading the commissioning of this new system at the observatories. It is particularly rewarding to see that we succeeded in making LIGO better.

    Also, operation at high laser power has been enabled by another upgrade developed and built here at MIT — an “acoustic mode damper” glued to the main LIGO optics that mitigates instabilities originating with high laser power. We are looking forward to seeing many years of work in our labs pay off in this observing run!

    Q: What new phenomena are you hoping to detect, and how soon could you detect them, with these new capabilities?

    A: We hope to detect more binary neutron star systems (so far only one has been detected), and thanks to the improved LIGO sensitivity, we should be able to observe them with high signal-to-noise ratio. And more black holes, obviously! The more sources we detect, the more we can learn about the way these systems form and evolve.

    If we are very lucky, we might observe something new, like a neutron star-black hole system, or maybe even something totally unexpected. Not only are the LIGO detectors better than before — the Virgo detector in Italy more than doubled its sensitivity with respect to the last observing run, and this will improve our ability to localize sources in the sky, facilitating the follow-up of telescopes at multiple wavelengths.

    VIRGO Gravitational Wave interferometer, near Pisa, Italy

    So, if the last observing run, “O2,” will be remembered as the one that started multimessenger astronomy, I hope the upcoming one, “O3,” will be the one in which multimessenger astronomy becomes the new normal!

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    MIT Campus

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: