From The Australian National University (AU) : “Scientists detect a “tsunami” of gravitational waves”
From The Australian National University (AU)
8 November 2021
James Giggacher
+61 2 6125 7979
media@anu.edu.au
Black Holes to merge. Credit: The National Aeronautics and Space Agency (US).
Artist’s by now iconic conception of two merging black holes similar to those detected by LIGO. Credit: Aurore Simonnet /Caltech MIT Advanced aLIGO(US)/Sonoma State University (US).
Graphic by Carl Knox, OzGrav-ARC CENTRE OF EXCELLENCE FOR GRAVITATIONAL WAVE DISCOVERY (AU)–The Swinburne University of Technology (AU), 90 detections!
A team of international scientists, including researchers from The Australian National University (ANU), and researchers from the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) have unveiled the largest number of gravitational waves ever detected.
The discoveries will help solve some of the most complex mysteries of the Universe, including the building blocks of matter and the workings of space and time.
The global team’s study, published today on Physical Review X, made 35 new detections of gravitational waves caused by pairs of black holes merging or neutron stars and black holes smashing together, using the LIGO and Virgo observatories between November 2019 and March 2020.
_____________________________________________________________________________________
LIGO–VIRGO–KAGRA
Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA.
Caltech/MIT Advanced aLigo Hanford, WA, USA installation.
VIRGO Gravitational Wave interferometer, near Pisa, Italy
KAGRA Large-scale Cryogenic Gravitational Wave Telescope Project (JP)
_____________________________________________________________________________________
LIGO Virgo Kagra Masses in the Stellar Graveyard. Credit: Frank Elavsky and Aaron Geller at Northwestern University(US)
This brings the total number of detections to 90 after three observing runs between 2015 and 2020.
The new detections are from massive cosmic events, most of them billions of light years away, which hurl ripples through space-time. They include 32 black hole pairs merging, and likely three collisions between neutron stars and black holes.
ANU is one of the key players in the international team making the observations and developing the sophisticated technology to hunt down elusive gravitational waves across the vast expanse of the Universe.
Distinguished Professor Susan Scott, from the ANU Centre for Gravitational Astrophysics, said the latest discoveries represented “a tsunami” and were a “major leap forward in our quest to unlock the secrets of the Universe’s evolution”.
“These discoveries represent a tenfold increase in the number of gravitational waves detected by LIGO and Virgo since they started observing,” Distinguished Professor Scott said.
“We’ve detected 35 events. That’s massive! In contrast, we made three detections in our first observing run, which lasted four months in 2015-16.
“This really is a new era for gravitational wave detections and the growing population of discoveries is revealing so much information about the life and death of stars throughout the Universe.
“Looking at the masses and spins of the black holes in these binary systems indicates how these systems got together in the first place.
“It also raises some really fascinating questions. For example, did the system originally form with two stars that went through their life cycles together and eventually became black holes? Or were the two black holes thrust together in a very dense dynamical environment such as at the centre of a galaxy?”
Distinguished Professor Scott, who is also a Chief Investigator of the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), said the continual improvement of gravitational wave detector sensitivity was helping drive an increase in detections.
“This new technology is allowing us to observe more gravitational waves than ever before,” she said.
“We are also probing the two black hole mass gap regions and providing more tests of Einstein’s theory of general relativity.
“The other really exciting thing about the constant improvement of the sensitivity of the gravitational wave detectors is that this will then bring into play a whole new range of sources of gravitational waves, some of which will be unexpected.”
See the full article here .
five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.
The Australian National University (AU) is a world-leading university in Australia’s capital city, Canberra. Our location points to our unique history, ties to the Australian Government and special standing as a resource for the Australian people.
Our focus on research as an asset, and an approach to education, ensures our graduates are in demand the world-over for their abilities to understand, and apply vision and creativity to addressing complex contemporary challenges.
Australian National University is regarded as one of the world’s leading research universities, and is ranked as the number one university in Australia and the Southern Hemisphere by the 2021 QS World University Rankings. It is ranked 31st in the world by the 2021 QS World University Rankings, and 59th in the world (third in Australia) by the 2021 Times Higher Education.
In the 2020 Times Higher Education Global Employability University Ranking, an annual ranking of university graduates’ employability, Australian National University was ranked 15th in the world (first in Australia). According to the 2020 QS World University by Subject, the university was also ranked among the top 10 in the world for Anthropology, Earth and Marine Sciences, Geography, Geology, Philosophy, Politics, and Sociology.
Established in 1946, Australian National University is the only university to have been created by the Parliament of Australia. It traces its origins to Canberra University College, which was established in 1929 and was integrated into Australian National University in 1960. Australian National University enrolls 10,052 undergraduate and 10,840 postgraduate students and employs 3,753 staff. The university’s endowment stood at A$1.8 billion as of 2018.
Australian National University counts six Nobel laureates and 49 Rhodes scholars among its faculty and alumni. The university has educated two prime ministers, 30 current Australian ambassadors and more than a dozen current heads of government departments of Australia. The latest releases of ANU’s scholarly publications are held through ANU Press online.
Reply