Tagged: CERN CMS Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:52 pm on April 20, 2018 Permalink | Reply
    Tags: , , CERN CMS, , , ,   

    From FNAL: “Turning up the luminosity: Fermilab contributes important CMS upgrades” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    April 19, 2018
    Sarah Lawhun

    Fermilab is developing and testing a revolutionary particle detector concept, one that will enable the CMS detector at CERN’s Large Hadron Collider to handle 10 times the number of particle collisions currently being produced at the European machine — a virtual avalanche. This upgrade will make the LHC the world’s highest-energy proton smasher in the next decades.

    CERN CMS

    CERN CMS Higgs Event

    CERN CMS pre-Higgs Event

    At the LHC, two beams of protons are accelerated to nearly the speed of light around the collider’s 18-mile ring in opposite directions, colliding inside one of four detectors, including one called CMS. The protons smash together in the detector’s core, producing a plethora of subatomic particles that fly off in all directions.

    The detector — a gigantic, barrel-shaped device that could surround a whale if the instrument were hollow — is packed with layers of detectors that surround the collision site. Think of it as a superhigh-tech onion — a 14,000-ton onion equipped with billions of sensors in its core, buried 100 meters underground. These layers collect data from the particles emerging from the collisions, tracking their paths as they shoot away from the center.

    Higher luminosity for the Higgs

    In the late 2020s, CERN will turn up the LHC’s beam luminosity, or the number of protons packed into its beams, resulting in showers of even more particles.

    This increased abundance will give scientists more opportunities to reveal new particles and processes, helping us refine our understanding of how the universe works.

    The CMS and ATLAS co-discovered the Higgs boson in 2012, a discovery that led to a Nobel Prize. Now, both experiments are working to learn more about the Higgs and how it behaves — and in the process to maybe reveal something unexpected.

    CERN/ATLAS detector

    “There’s the possibility of not only making very precise measurements of phenomena that will allow us to test our assumptions about the Standard Model, but also gaining an increased scope for new physics that might be just beyond where we’re reaching now,” said Ron Lipton, a Fermilab scientist on the CMS experiment who is coordinating the detector project at national level.

    Of course, the LHC’s high luminosity won’t do much good if the detector isn’t equipped to handle it.

    4
    CMS tracker for HL-LHC

    CERN CMS Tracker for HL-LHC

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.


    FNAL/MINERvA

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL Minos Far Detector

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

    Advertisements
     
  • richardmitnick 1:24 pm on April 20, 2018 Permalink | Reply
    Tags: , , CERN CMS, , , , , ,   

    From FNAL: “CMS experiment at the LHC sees first 2018 collisions” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    April 19, 2018
    Cecilia Gerber
    Sergo Jindariani

    Cecilia Gerber and Sergo Jindariani are co-coordinators of the LHC Physics Center at Fermilab.

    After months of winter shutdown, the CMS experiment at the Large Hadron Collider (LHC) is once again seeing collisions and is ready to take data.

    CERN CMS

    CERN CMS Higgs Event

    CERN CMS pre-Higgs Event

    The shutdown months have been very busy for CMS physicists, who used this downtime to improve the performance of the detector by completing upgrades and repairs of detector components. The LHC will continue running until December 2018 and is expected to deliver an additional 50 inverse femtobarns of integrated luminosity to the ATLAS and CMS experiments. This year of data-taking will conclude Run-2, after which the collider and its experiment will go into a two-year long shutdown for further upgrades.

    Run-2 of the LHC has been highly successful, with close to 100 inverse femtobarns of integrated luminosity already delivered to the experiments in 2016 and 2017. These data sets enabled CMS physicists to perform many measurements of Standard Model parameters and searches for new physics. New data will allow CMS to further advance into previously uncharted territory. Physicists from the LHC Physics Center at Fermilab have been deeply involved in the work during the winter shutdown. They are now playing key roles in processing and certification of data recorded by the CMS detector, while looking forward to analyzing the new data sets for a chance to discover new physics.


    This is an event display of one of the early 2018 collisions that took place at the CMS experiment at CERN.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.


    FNAL/MINERvA

    FNAL DAMIC

    FNAL Muon g-2 studio

    FNAL Short-Baseline Near Detector under construction

    FNAL Mu2e solenoid

    Dark Energy Camera [DECam], built at FNAL

    FNAL DUNE Argon tank at SURF

    FNAL/MicrobooNE

    FNAL Don Lincoln

    FNAL/MINOS

    FNAL Cryomodule Testing Facility

    FNAL Minos Far Detector

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    FNAL/NOvA experiment map

    FNAL NOvA Near Detector

    FNAL ICARUS

    FNAL Holometer

     
  • richardmitnick 10:12 am on March 1, 2018 Permalink | Reply
    Tags: , , CERN CMS, , , , , MIT physicists observe electroweak production of same-sign W boson pairs, , ,   

    From MIT: “MIT physicists observe electroweak production of same-sign W boson pairs” 

    MIT News

    MIT Widget

    MIT News

    February 27, 2018
    Scott Morley | Laboratory for Nuclear Science

    1
    Vector-boson scattering processes are characterized by two high-energetic jets in the forward regions of the detector. The Figure shows a significant excess of events in the distribution of the mass of the two tagging jets in yellow, labelled as EW WW. Image: Markus Klute

    In research conducted by a group led by MIT Laboratory for Nuclear Science researcher and associate professor of physics Markus Klute, electroweak productions of same-sign W boson pairs were observed, the first such observation of its kind and a milestone toward precision testing of vector boson scattering (W and Z bosons) at the Large Hadron Collider (LHC).

    LHC

    CERN/LHC Map

    CERN LHC Tunnel

    CERN LHC particles

    The LHC at CERN in Geneva, Switzerland, was proposed in the 1980s as a machine to either find the Higgs boson or discover yet unknown particles or interactions.

    CERN CMS Higgs Event


    CERN ATLAS Higgs Event

    This idea, that the LHC would be able to make a discovery, whatever that might be, is called by theorists No-lose Theorem, and is connected to probing the scattering of W boson pairs at energies above 1 teraelectronvolt (TeV). In 2012, only two years after the first high-energy collision at the LHC, this proposal paid huge dividends when the Higgs boson was discovered by the ATLAS and Compact Muon Solenid (CMS) collaborations.

    According to CERN, the CMS detector at the LHC utilizes a massive solenoid magnet to study everything from the Higgs boson to dark matter to the Standard Model.

    CERN/CMS Detector

    The Standard Model of elementary particles , with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    CMS is capable of generating a magnetic field that is approximately 100,000 times that of Earth. It resides in an underground cavern near Cessy, France, which is northwest of Geneva.

    The main goal of a recent measurement by CMS was to identify W boson pairs with the same sign (W+W+ or W-W-) produced purely via the electroweak interaction and probing the scattering of W bosons. The result does not unveil physics beyond the Standard Model, but this first observation of this process marks a starting point for a field of study to independently test whether the discovered Higgs boson is or is not the particle predicted by Robert Brout, François Englert, and Peter Higgs. It is anticipated that the rapidly growing data sets available at the LHC will further knowledge along these lines. Studies show that the high luminosity LHC will likely allow the direct study of longitudinal W boson scattering.

    “The measurement of vector-boson scattering processes, like the one studied in this paper, is an important test bench of the nature of the Higgs boson, as small deviations from the Standard Model expectation can have a large impact on event rates,” Klute says. “While challenging new physics models, these processes also allow a unique model-independent measurement of Higgs boson couplings to the W and Z boson at the LHC.”

    “The observation of this vector-boson scattering process is an important milestone toward future precision measurements,” Klute says. “These measurements are very challenging experimentally and require theoretical predictions with high precision. Both areas are pushed forward by the published results.”

    The work, while within CMS, was performed by MIT and included Klute, his students Andrew Levin and Xinmei Nui, and research scientist Guillelmo Gomez-Ceballos, along with University of Antwerp colleague Xavier Janssen and his student Jasper Lauwers.

    The work has been published in Physical Review Letters.

    This research was funded with support from U.S. Department of Energy.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    MIT Campus

     
  • richardmitnick 11:31 am on December 20, 2017 Permalink | Reply
    Tags: , , CERN CMS, CMS releases more than one petabyte of open data, , , ,   

    From CERN: “CMS releases more than one petabyte of open data” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    20 Dec 2017
    Corinne Pralavorio

    1
    A collision event recorded by CMS in 2012 showing a “Higgs candidate”, available on the CERN Open Data portal with the latest release of CMS Open Data. (Image: Tom McCauley/CMS/CERN)

    The CMS Collaboration at CERN have just made public around half of the data collected in 2012 by the CMS detector at the Large Hadron Collider. This release includes sets used to discover the Higgs boson, and is being shared through the CERN Open Data portal.

    This is the third release of high-level CMS Open Data, following the release of 2010 data in 2014, and 2012 data in 2016. This batch contains more than 550 terabytes of proton-proton collision data recorded at a centre-of-mass energy of 8 TeV as well as around 510 petabytes of Monte Carlo simulation data.

    LHC data are complicated and big. CMS researchers have recorded petabytes of data from collisions at the LHC and have so far published hundreds of scientific papers with them. By releasing the data into the public domain, researchers outside the CMS Collaboration have the opportunity to conduct novel research with them.

    “Our data are an important element of the CMS Collaboration’s rich scientific legacy,” says CMS Spokesperson, Joel Butler. “We would like to ensure that they are not only preserved in the long run but are also available to the public, so that both CMS members and external researchers can re-examine them in the future. This is part of our commitment to openness and long-term data preservation.”

    2
    Animation showing a “Higgs candidate” event, recorded by CMS in 2012 and available on the CERN Open Data portal with the latest release of CMS Open Data. (Image: Tom McCauley and Achintya Rao CMS/CERN)

    Recently, the first two such research papers were published by a team of theorists at MIT interested in performing a measurement CMS scientists had themselves not done: specifically they wanted to measure particular substructures in clusters of particles known as “jets” produced in proton-proton collisions.

    The latest release of CMS Open Data also carries the fascinating possibility of allowing people to repeat the analysis that led to the Higgs discovery by studying the same data used by CMS scientists to announce the particle’s existence in 2012. As a proof of concept, CMS doctoral student Nur Zulaiha Jomhari analysed CMS Open Data and produced plots similar to some of those shown when the Higgs discovery was announced. This analysis is a lot less sophisticated than the official CMS one and is not scrutinised by the wider CMS community of experts, but it demonstrates the potential of CMS Open Data.

    2
    Left: The official CMS plot for the “Higgs to four leptons” channel, shown on the day of the Higgs discovery announcement. Right: A similar plot produced by Nur Zulaiha Jomhari et al. using CMS Open Data from 2011 and 2012. Although the plots appear similar, the analysis with CMS Open Data uses more data (at 8 TeV and overall) than the official CMS one from the original discovery but is a lot less sophisticated and is not scrutinised by the wider CMS community of experts. (Image: CMS/CERN)

    In addition to the datasets themselves, the CMS Data Preservation and Open Data team has also assembled a comprehensive collection of supplementary materials, including example code for performing relatively simple analyses, as well as metadata such as information on how data were selected and what the LHC’s running conditions were during the time of data collection.

    At the moment, CMS has committed to releasing up to 50% of each year’s recorded data a few years after they were collected, once CMS scientists finish most of their analysis of these datasets. “To see our open data in use outside CMS has been very rewarding,” says Kati Lassila-Perini, the CMS Data Preservation and Open Access co-coordinator. “It has been a great motivation for us and we look forward to continuing our pioneering efforts to release research-quality open data from the LHC in the years to come.”

    Read more about this release in the CMS announcement

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    Quantum Diaries

     
  • richardmitnick 12:10 pm on November 22, 2017 Permalink | Reply
    Tags: , , CERN CMS, , , , Intel, , ,   

    From CERN: “Fermilab joins CERN openlab, works on ‘data reduction’ project with CMS experiment” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    1

    2
    Fermilab Wilson Hall

    Fermilab, the USA’s premier particle physics and accelerator laboratory, has joined CERN openlab as a research member. Researchers from the laboratory will collaborate with members of the CMS experiment and the CERN IT Department on efforts to improve technologies related to ‘physics data reduction’. This work will take place within the framework of an existing CERN openlab project with Intel on ‘big-data analytics’.

    CERN/CMS Detector

    ‘Physics data reduction’ plays a vital role in ensuring researchers are able to gain valuable insights from the vast amounts of particle-collision data produced by high-energy physics experiments, such as the CMS experiment on CERN’s Large Hadron Collider (LHC).

    LHC

    CERN/LHC Map

    CERN LHC Tunnel

    CERN LHC particles

    The project’s goal is to develop a new system — using industry-standard big-data tools — for filtering many petabytes of heterogeneous collision data to create manageable, but rich, datasets of a few terabytes for analysis. Using current systems, this kind of targeted data reduction can often take weeks; but the aim of the project is to be able to achieve this in a matter of hours.

    “Time is critical in analysing the ever-increasing volumes of LHC data,”says Oliver Gutsche, a Fermilab scientist working at the CMS experiment. “I am excited about the prospects CERN openlab brings to the table: systems that could enable us to perform analysis much faster and with much less effort and resources.” Gutsche and his colleagues will explore methods of ensuring efficient access to the data from the experiment. For this, they will investigate techniques based on Apache Spark, a popular open-source software platform for distributed processing of very large data sets on computer clusters built from commodity hardware. “The success of this project will have a large impact on the way analysis is conducted, allowing more optimised results to be produced in far less time,” says Matteo Cremonesi, a research associate at Fermilab. “I am really looking forward to using the new open-source tools; they will be a game changer for the overall scientific process in high-energy physics.”

    The team plans to first create a prototype of the system, capable of processing 1 PB of data with about 1000 computer cores. Based on current projections, this is about 1/20th of the scale of the final system that would be needed to handle the data produced when the High-Luminosity LHC comes online in 2026.

    Using this prototype, it should be possible to produce a benchmark (or ‘reference workload’) that can be used evaluate the optimum configuration of both hardware and software for the data-reduction system.

    “This kind of work, investigating big-data analytics techniques is vital for high-energy physics — both in terms of physics data and data from industrial control systems on the LHC,” says Maria Girone, CERN openlab CTO. “However, these investigations also potentially have far-reaching impact for a range of other disciplines. For example, this CERN openlab project with Intel is also exploring the use of these kinds of analytics techniques for healthcare data.”

    “Intel is proud of the work it has done in enabling the high-energy physics community to adopt the latest technologies for high-performance computing, data analytics, and machine learning — and reap the benefits. CERN openlab’s project on big-data analytics is one of the strategic endeavours to which Intel has been contributing,” says Stephan Gillich, Intel Deutschland’s director of technical computing for Europe, the Middle East, and Africa. “The possibility of extending the CERN openlab collaboration to include Fermilab, one of the world’s leading research centres, is further proof of the scientific relevance and success of this private-public partnership.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About CERN openlab

    CERN openlab is a unique public-private partnership that accelerates the development of cutting-edge solutions for the worldwide LHC community and wider scientific research. Through CERN openlab, CERN collaborates with leading ICT companies and research institutes.

    Within this framework, CERN provides access to its complex IT infrastructure and its engineering experience, in some cases even extended to collaborating institutes worldwide. Testing in CERN’s demanding environment provides the ICT industry partners with valuable feedback on their products while allowing CERN to assess the merits of new technologies in their early stages of development for possible future use. This framework also offers a neutral ground for carrying out advanced R&D with more than one company.

    CERN openlab was created in 2001 (link is external) and is now in the phase V (2015-2017). This phase tackles ambitious challenges covering the most critical needs of IT infrastructures in domains such as data acquisition, computing platforms, data storage architectures, compute provisioning and management, networks and communication, and data analytics.

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    Quantum Diaries

     
  • richardmitnick 12:56 pm on September 29, 2017 Permalink | Reply
    Tags: , CERN CMS, , CERN Open Data Portal, ,   

    From MIT: “First open-access data from large collider confirm subatomic particle patterns” 

    MIT News

    MIT Widget

    MIT News

    September 29, 2017
    Jennifer Chu

    1
    The Compact Muon Solenoid is a general-purpose detector at the Large Hadron Collider. Image courtesy of CERN

    LHC

    CERN/LHC Map

    CERN LHC Tunnel

    CERN LHC particles

    In November of 2014, in a first, unexpected move for the field of particle physics, the Compact Muon Solenoid (CMS) experiment — one of the main detectors in the world’s largest particle accelerator, the Large Hadron Collider — released to the public an immense amount of data, through a website called the CERN Open Data Portal.

    The data, recorded and processed throughout the year 2010, amounted to about 29 terabytes of information, yielded from 300 million individual collisions of high-energy protons within the CMS detector. The sharing of these data marked the first time any major particle collider experiment had released such an information cache to the general public.

    A new study by Jesse Thaler, an associate professor of physics at MIT and a long-time advocate for open access in particle physics, and his colleagues now demonstrates the scientific value of this move. In a paper published in Physical Review Letters, the researchers used the CMS data to reveal, for the first time, a universal feature within jets of subatomic particles, which are produced when high-energy protons collide. Their effort represents the first independent, published analysis of the CMS open data.

    “In our field of particle physics, there isn’t the tradition of making data public,” says Thaler. “To actually get data publicly with no other restrictions — that’s unprecedented.”

    Part of the reason groups at the Large Hadron Collider and other particle accelerators have kept proprietary hold over their data is the concern that such data could be misinterpreted by people who may not have a complete understanding of the physical detectors and how their various complex properties may influence the data produced.

    “The worry was, if you made the data public, then you would have people claiming evidence for new physics when actually it was just a glitch in how the detector was operating,” Thaler says. “I think it was believed that no one could come from the outside and do those corrections properly, and that some rogue analyst could claim existence of something that wasn’t really there.”

    “This is a resource that we now have, which is new in our field,” Thaler adds. “I think there was a reluctance to try to dig into it, because it was hard. But our work here shows that we can understand in general how to use this open data, that it has scientific value, and that this can be a stepping stone to future analysis of more exotic possibilities.”

    Thaler’s co-authors are Andrew Larkoski of Reed College, Simone Marzani of the State University of New York at Buffalo, and Aashish Tripathee and Wei Xue of MIT’s Center for Theoretical Physics and Laboratory for Nuclear Science.

    Seeing fractals in jets

    When the CMS collaboration publicly released its data in 2014, Thaler sought to apply new theoretical ideas to analyze the information. His goal was to use novel methods to study jets produced from the high-energy collision of protons.

    Protons are essentially accumulations of even smaller subatomic particles called quarks and gluons, which are bound together by interactions known in physics parlance as the strong force. One feature of the strong force that has been known to physicists since the 1970s describes the way in which quarks and gluons repeatedly split and divide in the aftermath of a high-energy collision.

    This feature can be used to predict the energy imparted to each particle as it cleaves from a mother quark or gluon. In particular, physicists can use an equation, known as an evolution equation or splitting function, to predict the pattern of particles that spray out from an initial collision, and therefore the overall structure of the jet produced.

    “It’s this fractal-like process that describes how jets are formed,” Thaler says. “But when you look at a jet in reality, it’s really messy. How do you go from this messy, chaotic jet you’re seeing to the fundamental governing rule or equation that generated that jet? It’s a universal feature, and yet it has never directly been seen in the jet that’s measured.”

    Collider legacy

    In 2014, the CMS released a preprocessed form of the detector’s 2010 raw data that contained an exhaustive listing of “particle flow candidates,” or the types of subatomic particles that are most likely to have been released, given the energies measured in the detector after a collision.

    The following year, Thaler published a theoretical paper with Larkoski and Marzani, proposing a strategy to more fully understand a complicated jet in a way that revealed the fundamental evolution equation governing its structure.

    “This idea had not existed before,” Thaler says. “That you could distill the messiness of the jet into a pattern, and that pattern would match beautifully onto that equation — this is what we found when we applied this method to the CMS data.”

    To apply his theoretical idea, Thaler examined 750,000 individual jets that were produced from proton collisions within the CMS open data. He looked to see whether the pattern of particles in those jets matched with what the evolution equation predicted, given the energies released from their respective collisions.

    Taking each collision one by one, his team looked at the most prominent jet produced and used previously developed algorithms to trace back and disentangle the energies emitted as particles cleaved again and again. The primary analysis work was carried out by Tripathee, as part of his MIT bachelor’s thesis, and by Xue.

    “We wanted to see how this jet came from smaller pieces,” Thaler says. “The equation is telling you how energy is shared when things split, and we found when you look at a jet and measure how much energy is shared when they split, they’re the same thing.”

    The team was able to reveal the splitting function, or evolution equation, by combining information from all 750,000 jets they studied, showing that the equation — a fundamental feature of the strong force — can indeed predict the overall structure of a jet and the energies of particles produced from the collision of two protons.

    While this may not generally be a surprise to most physicists, the study represents the first time this equation has been seen so clearly in experimental data.

    “No one doubts this equation, but we were able to expose it in a new way,” Thaler says. “This is a clean verification that things behave the way you’d expect. And it gives us confidence that we can use this kind of open data for future analyses.”

    Thaler hopes his and others’ analysis of the CMS open data will spur other large particle physics experiments to release similar information, in part to preserve their legacies.

    “Colliders are big endeavors,” Thaler says. “These are unique datasets, and we need to make sure there’s a mechanism to archive that information in order to potentially make discoveries down the line using old data, because our theoretical understanding changes over time. Public access is a stepping stone to making sure this data is available for future use.”

    This research was supported, in part, by the MIT Charles E. Reed Faculty Initiatives Fund, the MIT Undergraduate Research Opportunities Program, the U.S. Department of Energy, and the National Science Foundation.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    MIT Campus

     
  • richardmitnick 11:11 am on May 24, 2017 Permalink | Reply
    Tags: , , CERN CMS, , , , Our failure in resolve,   

    From FNAL: “Fermilab scientists set upper limit for Higgs boson mass” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    In 1977, theoretical physicists at Fermilab — Ben Lee and Chris Quigg, along with Hank Thacker — published a paper setting an upper limit for the mass of the Higgs boson. This calculation helped guide the design of the Large Hadron Collider by setting the energy scale necessary for it to discover the particle. The Large Hadron Collider turned on in 2008, and in 2012, the LHC’s ATLAS and CMS discovered the long-sought Higgs boson — 35 years after the seminal paper.

    1

    CERN CMS Higgs Event


    CERN/CMS Detector


    CERN ATLAS Higgs Event


    CERN/ATLAS detector

    Where it all started:

    FNAL Tevatron

    FNAL/Tevatron map


    FNAL/Tevatron DZero detector


    FNAL/Tevatron CDF detector

    Where we failed and handed it to Europe:

    3
    Sight of the planned Superconducting Super Collider, in the vicinity of Waxahachie, Texas. Cancelled by our idiot Congress under Bill Clinton in 1993. We could have had it all.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 2:16 pm on April 22, 2017 Permalink | Reply
    Tags: , CERN CMS, , , , Videos   

    From CMS at CERN: Fantastic Videos 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    These incredible videos are presented in no particular order.,


    An introduction to the CMS Experiment at CERN


    Welcome to LHC season 2: new frontiers in physics at #13TeV


    LHC animation: The path of the protons


    The Large Hadron Collider Returns in the Hunt for New Physics


    Physics Run 2016


    Back to the Big Bang: Inside the Large Hadron Collider – From the World Science Festival


    Higgs boson: what’s next? #13TeV

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Quantum Diaries
    QuantumDiaries

    Cern Courier

    CernCourier
    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    Quantum Diaries

     
  • richardmitnick 12:09 pm on April 13, 2017 Permalink | Reply
    Tags: CERN CMS, ,   

    From Rice: “Proton-nuclei smashups yield clues about ‘quark gluon plasma’ “ 

    Rice U bloc

    Rice University

    April 10, 2017
    Jade Boyd

    Rice University physicists probe exotic state of nuclear matter at Europe’s LHC

    1
    A visual of data collected by the Compact Muon Solenoid detector during a proton-lead collision at the Large Hadron Collider in 2016. (Image courtesy of Thomas McCauley/CERN)

    Findings from Rice University physicists working at Europe’s Large Hadron Collider (LHC) are providing new insight about an exotic state of matter called the “quark-gluon plasma” that occurs when protons and neutrons melt.

    As the most powerful particle accelerator on Earth, the LHC is able to smash together the nuclei of atoms at nearly the speed of the light. The energy released in these collisions is vast and allows physicists to recreate the hot, dense conditions that existed in the early universe. Quark-gluon plasma, or QGP, is a high-energy soup of particles that’s formed when protons and neutrons melt at temperatures approaching several trillion kelvins.

    In a recent paper in Physical Review Letters written on behalf of more than 2,000 scientists working on the LHC’s Compact Muon Solenoid (CMS) experiment, Rice physicists Wei Li and Zhoudunming (Kong) Tu proposed a new approach for studying a characteristic magnetic property of QGP called the “chiral magnetic effect” (CME).

    CERN/CMS Detector

    Their approach uses collisions between protons and lead nuclei. CME is an electromagnetic phenomenon that arises as a consequence of quantum mechanics and is also related to so-called topological phases of matter, an area of condensed matter physics that has drawn increased worldwide attention since capturing the Nobel Prize in physics in 2016.

    “To find evidence for the chiral magnetic effect and thus topological phases in hot QGP matter has been a major goal in the field of high-energy nuclear physics for some time,” Li said. “Early findings, although indicative of the CME, still remain inconclusive, mainly because of other background processes that are difficult to control and quantify.”

    QGP was first produced around 2000 at the Relativistic Heavy Ion Collider in New York and later at the LHC in 2010.

    BNL/RHIC

    CERN/LHC Map

    In those experiments, physicists smashed together two fast-moving lead nuclei, each of containing 82 protons and 126 neutrons, the two building blocks of all atomic nuclei. Because the melting protons in these collisions each carries a positive electric charge, the QGPs from these experiments contained enormously strong magnetic fields, which are estimated to be about a trillion times stronger than the strongest magnetic field ever created in a laboratory.

    The chiral magnetic effect is an exotic asymmetric electromagnetic effect that only arises due to the combination of quantum mechanics and the extreme physical conditions in a QGP. The laws of classical electrodynamics would forbid the existence of such a state, and indeed, Li’s inspiration for the new experiments arose from thinking about the problem in classical terms.

    “I was inspired by a problem in an undergraduate course I was teaching on classical electrodynamics,” Li said.

    Two years ago Li discovered that head-on collisions at LHC between a lead nucleus and a single proton created small amounts of particles that appeared to behave as a liquid. On closer analysis, he and colleagues at CMS found the collisions were creating small amounts of QGP.

    In a 2015 Rice News report about the discovery, Rice alumnus Don Lincoln, a particle physicist and physics communicator at Fermilab, wrote, “This result was surprising because when the proton hits the lead nucleus, it punches a hole through much of the nucleus, like shooting a rifle at a watermelon (as opposed to colliding two lead nuclei, which is like slamming two watermelons together).”

    Li said, “One unusual thing about the droplets of QGP created in proton-lead collisions is the configuration of their magnetic fields. The QGP is formed near the center of the initial lead nucleus, which makes it easy to tell that the strength of the magnetic field is rather negligible in comparison with the QGP created in lead-lead collisions. As a result, proton-lead collisions provide us a means to switch off the magnetic field — and the CME signal — in a QGP in a well-controlled way.”

    In the new paper, Li, Tu and their CMS colleagues showed evidence from proton-lead collision data that helps shed light on the electromagnetic behaviors that arise from the chiral magnetic effect in lead-lead QGPs.

    Li said more details still need to be worked out before a definitive conclusion can be drawn, but he said the results bode well for future QGP discoveries at the LHC.

    “This is just a first step in a new avenue opened up by proton-nucleus collisions for the search of exotic topological phases in QGP,” Li said. “We are working hard on accumulating more data and performing a series of new studies. Hopefully, in coming years, we will see the first direct evidence for the chiral magnetic effect.”

    The research is supported by the Department of Energy, the Robert Welch Foundation and Alfred Sloan Foundation.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Rice U campus

    In his 1912 inaugural address, Rice University president Edgar Odell Lovett set forth an ambitious vision for a great research university in Houston, Texas; one dedicated to excellence across the range of human endeavor. With this bold beginning in mind, and with Rice’s centennial approaching, it is time to ask again what we aspire to in a dynamic and shrinking world in which education and the production of knowledge will play an even greater role. What shall our vision be for Rice as we prepare for its second century, and how ought we to advance over the next decade?

    This was the fundamental question posed in the Call to Conversation, a document released to the Rice community in summer 2005. The Call to Conversation asked us to reexamine many aspects of our enterprise, from our fundamental mission and aspirations to the manner in which we define and achieve excellence. It identified the pressures of a constantly changing and increasingly competitive landscape; it asked us to assess honestly Rice’s comparative strengths and weaknesses; and it called on us to define strategic priorities for the future, an effort that will be a focus of the next phase of this process.

     
  • richardmitnick 11:33 am on March 24, 2017 Permalink | Reply
    Tags: A new gem inside the CMS detector, , , CERN CMS, , , , ,   

    From Symmetry: “A new gem inside the CMS detector” 

    Symmetry Mag

    Symmetry

    03/24/17
    Sarah Charley

    1
    Photo by Maximilien Brice, CERN

    This month scientists embedded sophisticated new instruments in the heart of a Large Hadron Collider experiment.

    Sometimes big questions require big tools. That’s why a global community of scientists designed and built gigantic detectors to monitor the high-energy particle collisions generated by CERN’s Large Hadron Collider in Geneva, Switzerland. From these collisions, scientists can retrace the footsteps of the Big Bang and search for new properties of nature.

    The CMS experiment is one such detector. In 2012, it co-discovered the elusive Higgs boson with its sister experiment, ATLAS. Now, scientists want CMS to push beyond the known laws of physics and search for new phenomena that could help answer fundamental questions about our universe. But to do this, the CMS detector needed an upgrade.

    “Just like any other electronic device, over time parts of our detector wear down,” says Steve Nahn, a researcher in the US Department of Energy’s Fermi National Accelerator Laboratory and the US project manager for the CMS detector upgrades. “We’ve been planning and designing this upgrade since shortly after our experiment first started collecting data in 2010.”

    The CMS detector is built like a giant onion. It contains layers of instruments that track the trajectory, energy and momentum of particles produced in the LHC’s collisions. The vast majority of the sensors in the massive detector are packed into its center, within what is called the pixel detector. The CMS pixel detector uses sensors like those inside digital cameras but with a lightning fast shutter speed: In three dimensions, they take 40 million pictures every second.

    For the last several years, scientists and engineers at Fermilab and 21 US universities have been assembling and testing a new pixel detector to replace the current one as part of the CMS upgrade, with funding provided by the Department of Energy Office of Science and National Science Foundation.

    2
    Maral Alyari of SUNY Buffalo and Stephanie Timpone of Fermilab measure the thermal properties of a forward pixel detector disk at Fermilab. Almost all of the construction and testing of the forward pixel detectors occurred in the United States before the components were shipped to CERN for installation inside the CMS detector. Photo by Reidar Hahn, Fermilab

    3
    Stephanie Timpone consults a cabling map while fellow engineers Greg Derylo and Otto Alvarez inspect a completed forward pixel disk. The cabling map guides their task of routing the the thin, flexible cables that connect the disk’s 672 silicon sensors to electronics boards. Maximilien Brice, CERN

    4
    The CMS detector, located in a cavern 100 meters underground, is open for the pixel detector installation. Photo by Maximilien Brice, CERN

    5
    Postdoctoral researcher Stefanos Leontsinis and colleague Roland Horisberger work with a mock-up of one side of the barrel pixel detector next to the LHC’s beampipe.
    Photo by Maximilien Brice, CERN

    6
    Leontsinis watches the clearance as engineers slide the first part of the barrel pixel just millimeters from the LHC’s beampipe. Photo by Maximilien Brice, CERN

    7
    Scientists and engineers lift and guide the components by hand as they prepare to insert them into the CMS detector. Photo by Maximilien Brice, CERN

    8
    Scientists and engineers connect the cooling pipes of the forward pixel detector. The pixel detector is flushed with liquid carbon dioxide to keep the silicon sensors protected from the LHC’s high-energy collisions. Photo by Maximilien Brice, CERN

    The pixel detector consists of three sections: the innermost barrel section and two end caps called the forward pixel detectors. The tiered and can-like structure gives scientists a near-complete sphere of coverage around the collision point. Because the three pixel detectors fit on the beam pipe like three bulky bracelets, engineers designed each component as two half-moons, which latch together to form a ring around the beam pipe during the insertion process.

    Over time, scientists have increased the rate of particle collisions at the LHC. In 2016 alone, the LHC produced about as many collisions as it had in the three years of its first run together. To be able to differentiate between dozens of simultaneous collisions, CMS needed a brand new pixel detector.

    The upgrade packs even more sensors into the heart of the CMS detector. It’s as if CMS graduated from a 66-megapixel camera to a 124-megapixel camera.

    Each of the two forward pixel detectors is a mosaic of 672 silicon sensors, robust electronics and bundles of cables and optical fibers that feed electricity and instructions in and carry raw data out, according to Marco Verzocchi, a Fermilab researcher on the CMS experiment.

    The multipart, 6.5-meter-long pixel detector is as delicate as raw spaghetti. Installing the new components into a gap the size of a manhole required more than just finesse. It required months of planning and extreme coordination.

    “We practiced this installation on mock-ups of our detector many times,” says Greg Derylo, an engineer at Fermilab. “By the time we got to the actual installation, we knew exactly how we needed to slide this new component into the heart of CMS.”

    The most difficult part was maneuvering the delicate components around the pre-existing structures inside the CMS experiment.

    “In total, the full three-part pixel detector consists of six separate segments, which fit together like a three-dimensional cylindrical puzzle around the beam pipe,” says Stephanie Timpone, a Fermilab engineer. “Inserting the pieces in the right positions and right order without touching any of the pre-existing supports and protections was a well-choreographed dance.”

    For engineers like Timpone and Derylo, installing the pixel detector was the last step of a six-year process. But for the scientists working on the CMS experiment, it was just the beginning.

    “Now we have to make it work,” says Stefanos Leontsinis, a postdoctoral researcher at the University of Colorado, Boulder. “We’ll spend the next several weeks testing the components and preparing for the LHC restart.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: