From The Materials Research Laboratory At The Massachusetts Institute of Technology: “Team discovers fundamentally new way to detect radiation involving cheap ceramics”

From The Materials Research Laboratory

At

The Massachusetts Institute of Technology

3.27.24 [Just found this.]
Elizabeth A. Thomson | Materials Research Laboratory

Work could lead to plethora of new applications, including better detectors for nuclear materials at ports.

1

An MIT team has discovered a fundamentally new way to detect radiation involving cheap ceramics. L-R are Professor Jennifer Rupp, Postdoctoral Associate Thomas Defferriere, Professor Harry Tuller and Professor Ju Li. Credit: Matías Andrés Wegner Tornel, Technical University of Munich

The radiation detectors used today for applications like inspecting cargo ships for smuggled nuclear materials are expensive and cannot operate in harsh environments, among other disadvantages. Now, in work funded largely by the U.S. Department of Homeland Security with early support from the U.S. Department of Energy, MIT engineers have demonstrated a fundamentally new way to detect radiation that could allow much cheaper detectors and a plethora of new applications.

They are working with Radiation Monitoring Devices, a company in Watertown, MA, to transfer the research as quickly as possible into detector products.

In a 2022 paper in Nature Materials, many of the same engineers reported for the first time how ultraviolet light can significantly improve the performance of fuel cells and other devices based on the movement of charged atoms, rather than those atoms’ constituent electrons.

In the current work, just published online in Advanced Materials, the team shows that the same concept can be extended to a new application: the detection of gamma rays emitted by the radioactive decay of nuclear materials.

“Our approach involves materials and mechanisms very different than those in presently used detectors, with potentially enormous benefits in terms of reduced cost, ability to operate under harsh conditions, and simplified processing,” says Harry L. Tuller, the R.P. Simmons Professor of Ceramics and Electronic Materials in MIT’s Department of Materials Science and Engineering (DMSE).

Tuller leads the work with key collaborators Jennifer L. M. Rupp, an MIT Associate Professor of Materials Science and Engineering and now a Full Professor of Electrochemical Materials at Technical University Munich (TUM) in Germany, and Ju Li, Battelle Energy Alliance Professor in Nuclear Engineering and a Professor of Materials Science and Engineering. All are also affiliated with MIT’s Materials Research Laboratory

“After learning the Nature Materials work, I realized the same underlying principle should work for gamma-ray detection – in fact, may work even better than [UV] light because gamma rays are more penetrating – and proposed some experiments to Harry and Jennifer,” says Li.

Says Rupp, “Employing shorter-range gamma rays enable [us] to extend the opto-ionic to a radio-ionic effect by modulating ionic carriers and defects at material interfaces by photogenerated electronic ones.”

Other authors of the Advanced Materials paper are Thomas Defferriere, first author and a DMSE postdoctoral associate, and Ahmed Sami Helal, a postdoctoral associate in MIT’s Department of Nuclear Science and Engineering.


The Department of Nuclear Science & Engineering

Modifying Barriers

Charge can be carried through a material in different ways. We are most familiar with the charge that is carried by the electrons that help make up an atom. Common applications include solar cells. But there are many devices—like fuel cells and lithium batteries—that depend on the motion of the charged atoms, or ions, themselves rather than just their electrons.

The materials behind applications based on the movement of ions, known as solid electrolytes, are ceramics. Ceramics, in turn, are composed of tiny crystallite grains that are compacted and fired at high temperatures to form a dense structure. The problem is that ions traveling through the material are often stymied at the boundaries between the grains.

In their 2022 paper, the MIT team showed that ultraviolet light shone on a solid electrolyte essentially causes electronic perturbations at the grain boundaries that ultimately lower the barrier that ions encounter at those boundaries. The result: “We were able to enhance the flow of the ions by a factor of three,” says Tuller, making for a much more efficient system.

Vast potential

At the time, the team was excited about the potential of applying what they’d found to different systems. In the 2022 work, the team used ultraviolet light, which is quickly absorbed very near the surface of a material. As a result, that specific technique is only effective in thin films of materials. (Fortunately, many applications of solid electrolytes involve thin films.)

Light can be thought of as particles—photons—with different wavelengths and energies. These range from very low-energy radio waves to the very high-energy gamma rays emitted by the radioactive decay of nuclear materials. Visible light—and ultraviolet light—are of intermediate energies, and fit between the two extremes.

The MIT technique reported in 2022 worked with ultraviolet light. Would it work with other wavelengths of light, potentially opening up new applications? Yes, the team found. In the current paper they show that gamma rays also modify the grain boundaries resulting in a faster flow of ions that, in turn, can be easily detected. And because the high-energy gamma rays penetrate much more deeply than ultraviolet light, “this extends the work to inexpensive bulk ceramics in addition to thin films,” says Tuller. It also allows a new application: an alternative approach to detecting nuclear materials.

Today’s state-of-the-art radiation detectors depend on a completely different mechanism than the one identified in the MIT work. They rely on signals derived from electrons and their counterparts, holes, rather than ions. But these electronic charge carriers must move comparatively great distances to the electrodes that “capture” them to create a signal. And along the way, they can be easily lost as they, for example, hit imperfections in a material. That’s why today’s detectors are made with extremely pure single crystals of material that allow an unimpeded path. They can be made with only certain materials and are difficult to process, making them expensive and hard to scale into large devices.

Using Imperfections

In contrast, the new technique works because of the imperfections—grains—in the material. “The difference is that we rely on ionic currents being modulated at grain boundaries versus the state-of-the-art that relies on collecting electronic carriers from long distances,” Defferriere says.

Says Rupp, “It is remarkable that the bulk ‘grains’ of the ceramic materials tested revealed high stabilities of the chemistry and structure towards gamma rays, and solely the grain boundary regions reacted in charge redistribution of majority and minority carriers and defects.”

Comments Li, “This radiation-ionic effect is distinct from the conventional mechanisms for radiation detection where electrons or photons are collected. Here, the ionic current is being collected.”

Igor Lubomirsky is a professor in the Department of Materials and Interfaces at the Weizmann Institute of Science, Israel. Says Lubomirsky, who was not involved in the current work: “I found the approach followed by the MIT group in utilizing polycrystalline oxygen ion conductors very fruitful given the [materials’] promise for providing reliable operation under irradiation under the harsh conditions expected in nuclear reactors where such detectors often suffer from fatigue and aging. [They also] benefit from much-reduced fabrication costs.”

As a result, the MIT engineers are hopeful that their work could result in new, less expensive detectors. For example, they envision trucks loaded with cargo from container ships driving through a structure that has detectors on both sides as they leave a port. “Ideally you’d have either an array of detectors or a very large detector, and that’s where [today’s detectors] really don’t scale very well,” Tuller says.

Another potential application involves accessing geothermal energy, or the extreme heat below our feet that is being explored as a carbon-free alternative to fossil fuels. Ceramic sensors at the ends of drill bits could detect pockets of heat—radiation—to drill toward. Ceramics can easily withstand extreme temperatures of more than 800 degrees Fahrenheit and the extreme pressures found deep below the Earth’s surface.

The team is excited about additional applications for their work. “This was a demonstration of principle with just one material,” says Tuller, “but there are thousands of other materials good at conducting ions.”

Concludes Defferriere: “It’s the start of a journey on the development of the technology, so there’s a lot to do and a lot to discover.”

This work is currently supported by the U.S. Department of Homeland Security, Countering Weapons of Mass Destruction Office, under awarded contracts 22CWDARI00046. This support does not constitute an express or implied endorsement on the part of the Government. It was also funded by the Defense Threat Reduction Agency.

See the full article here .

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.


five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.

Stem Education Coalition

The MIT Materials Research Laboratory

Merger of the Materials Processing Center and the Center for Materials Science and Engineering melds a rich history of materials science and engineering breakthroughs.

The Materials Research Laboratory at MIT starts from a foundation of fundamental scientific research, practical engineering applications, educational outreach and shared experimental facilities laid by its merger partners, the Materials Processing Center and the Center for Materials Science and Engineering.

MRL is bringing them together and that will make communication both inside and outside MIT easier and will make it clearer especially to people outside MIT that for interdisciplinary research on materials, this is the place to learn about it.

The Materials Research Laboratory serves interdisciplinary groups of faculty researchers, spanning the spectrum of basic scientific discovery through engineering applications and entrepreneurship to ensure that research breakthroughs have impact on society. The center engages with approximately 150 faculty members and scientists from across the Schools of Science and Engineering who are conducting materials science research. MRL will work with MIT.nano to enhance the toolset available for groundbreaking research as well as collaborate with the MIT Innovation Initiative and The Engine.

MIT.nano at the Lisa T. Su Building

MRL will benefit from the long history of research breakthroughs under MPC and CMSE such as “perfect mirror” technology developed through CMSE in 1998 that led to a new kind of fiber optic surgery and a spinout company, OmniGuide Surgical, and the first germanium laser operating at room temperature, which is used for optical communications, in 2012 through MPC’s affiliated Microphotonics Center.

The Materials Processing Center brings to the partnership its wide diversity of materials research, funded by industry, foundations and government agencies, while the Center for Materials Science and Engineering brings its seed projects in basic science and Interdisciplinary Research Groups, educational outreach and shared experimental facilities, funded under the National Science Foundation Materials Research Science and Engineering Center program [NSF-MRSEC].

MPC’s research volume has more than doubled. MRL has a higher profile in the community internally as well as externally. MPC developed over the years a close collaboration with CMSE, including outreach. That will be greatly amplified through the merger.

Tackling energy problems

With industrial support, MPC and CMSE launched the Substrate Engineering Lab in 2004. MPC affiliates include the AIM Photonics Academy, the Center for Integrated Quantum Materials and the MIT Skoltech Center for Electrochemical Energy Storage. Other research includes Professor ‪Harry L. Tuller’s‬‬‬‬ Chemomechanics of Far-From-Equilibrium Interfaces (COFFEI) project, which aims to produce better oxide-based semiconductor materials for fuel cells, and ‬‬‬‬‬‬‬Senior Research Scientist Jurgen Michel’s Micro-Scale Optimized Solar-Cell Arrays with Integrated Concentration (MOSAIC) project, which aims to achieve overall efficiency of greater than 30 percent. ‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬

The MPC kicked off the Singapore-MIT Alliance for Research and Technology Center’s program in Low Energy Electronic Systems [SMART-LEES] in January 2012, managing the MIT part of the budget.

Shared experimental facilities, including X-Ray diffraction, scanning and transmission electron microscopy, probe microscopy, and surface analytical capabilities, are used by more than 1,100 individuals each year. The amount of investment that needs to be made to keep state-of-the-art shared facilities at a university like MIT is on the order of 1 to 2 million dollars per year in new investment and new tools. That kind of funding is very difficult to get. It certainly doesn’t come to through just NSF funding. MIT.nano, in concert with MRL, will be able to work together to look at new strategies for trying to maintain state-of-the-art equipment and to find funding sources and to figure out ways to not only get the equipment in, but to have highly trained professionals running that equipment.

Spinning out jobs

NSF-MRSEC-funded research through CMSE has led to approximately 1,100 new jobs through spinouts such as American Superconductor [superconductivity], OmniGuide Surgical [optical fibers] and QD Vision [quantum dots], which Samsung acquired in 2016. Many of these innovations began with seed funding, CMSE’s earliest stage of support, and evolved through joint efforts with MPC, such as microphotonics research that began with a seed grant in 1993, followed by Interdisciplinary Research Group funding a year later. In 1997, MIT researchers published two key papers in Nature and Physical Review Letters, won a two-year, multi-university award through DARPA for Photonic Crystal Engineering, and formed the Microphotonics Center. Further research led to the spinout in 2002 of Luminus Devices, which specializes in solid-state lighting based on light emitting diodes [LEDs].

The greatest legacy is bringing people together to produce fundamental new science, and then allowing those researchers to explore that new science in ways that may be beneficial to society, as well as to develop new technologies and launch companies. Research in complex photonic crystal structures began with Francis Wright Davis Professor of Physics John D. Joannopoulos as leader. They got funding at first as seed funding and then IRG [interdisciplinary research group] funding, and over the years, they have continued to get funding because they evolved. They would seek a new direction, and one of the new directions they evolved into was this idea of making photonic fibers, so they went from photonic crystals to photonic fibers and that led to, for example, the launching of OmniGuide. An outgrowth of basic CMSE research, the company’s founders included Professors Joannopolous, Yoel Fink, and Edwin L. [“Ned”] Thomas, who served as William and Stephanie Sick Dean of the George R. Brown School of Engineering at Rice University from 2011 to 2017.

Under Fink’s leadership, that work evolved into Advanced Functional Fabrics of America [AFFOA], a public-private Manufacturing Innovation Institute devoted to creating and bringing to market revolutionary fibers and textiles. The institute, which is a separate nonprofit organization, is led by Fink.

The evolution of perfect mirror technology resulted in life-saving new fiber optic surgery. Day to day, things happen that you don’t know are going to happen. When you think about saving people’s lives, that’s amazing, and that’s just one example.

Government, industry partners

Through its Collegium and close partnership with the MIT‪ Industrial Liaison Program (‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬ILP), MPC has a long history of government and industrial partnerships as well as individual faculty research projects. Merton C. Flemings, who is MPC’s founding director [1980-82], and a retired Toyota Professor of Materials Processing, recalls that the early focus was primarily on metallurgy, but ceramics work also was important. “It’s gone way beyond that, and it’s a delight to see what’s going on,” he notes.‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬

“From the time of initiation of the MPC, we had interdepartmental participation, and quite soon after its formation, we initiated an industrial collegium to share in research formulation and participate in research partnerships. I believe our collegium was the first to work collaboratively with the Industrial Liaison Program. It was also at a period in MIT history when working directly with the commercial sector was rare,” Flemings says.

Founded in February 1980, the Materials Processing Center won early support from NASA, which was interested in processing materials in space. A question being asked then was: “What would it be like when you’re in zero gravity and you try and purify a metal or make anything out there?” Dr. John R. Carruthers headed this zero-gravity materials processing activity in NASA, and as he considered the problem, he realized we didn’t really have much of a science base of materials processing on earth, let alone in space. With that in mind, at Carruthers’ instigation, NASA provided a very generous continuing grant to MIT that was essential to us starting in those early years,” Flemings explained.

Carruthers went on to become director of research with Intel and Distinguished Professor of Physics, at Portland [Oregon] State University. The two men – Flemings at MIT and Carruthers at the University of Toronto – had been familiar with each other’s work in the study of how metals solidify, before Carruthers joined NASA as director of its materials processing in space program in 1977. Both Flemings and Carruthers wanted to understand how the effects of gravitationally driven convection influenced the segregation processes during metals solidification.

“In molten metal baths, as the metal solidifies into ingots, the solidification process is never uniform. And so, the distribution of the components being solidified is very much affected by fluid flow or convection in the molten metal,” Carruthers explained. “We were both interested in what would happen if you could actually turn gravity down because most of the convective effects were influenced by density gradients in the metal due to thermal and compositional effects. So, we were quite interested in what would happen given that those density gradients existed, if you could actually turn the effects of gravity down.”

“When the NASA program came around, they wanted to try to use the low gravity environment of space to actually fabricate materials,” Carruthers recalled. “After a couple of years at NASA, I was able to secure some block grant funding for the center. It subsequently, of course, has developed its own legs and outgrown any of the initial funding that we provided, which has been really great to see, and is a tribute to the MIT way of doing research, of course, as well. I was really quite proud to be part of the early development of the center,” Carruthers said. “Many of the things we learned in those days are relevant to other areas. I found that a lot of knowledge and way of doing things is transferrable to the biomedical sciences, for example, so I became quiet interested in helping to develop things like nanomonitors, you know, more materials science-oriented approaches for the biomedical sciences.”

Expanding research portfolio

From its beginnings in metals processing with NASA support, MPC evolved into a multi-faceted center with diverse sponsors of research in energy harvesting, conversion and storage; fuel cells; quantum materials and spintronics; materials integration for microsystems; photonic devices and systems; materials systems and sustainability; solid-state ionics; as well as metals processing, an old topic that is hot again.

MRL-affiliated MIT condensed matter physicists have included experimentalists Raymond C. Ashoori, Joseph G. Checkelsky, Nuh Gedik, and Pablo Jarillo-Herrero, who have explored quantum materials for next-generation electronics, such as spintronics and valleytronics, new forms of nanoscale magnetism, and graphene-based optoelectronic devices. MRL explores electronic phases in quantum materials. Theorists envision new forms of random-access memory, Majorana fermions for quantum computing, and unusual magnetic materials such as quantum spin liquids.

In the realm of biophysics, MRL tests fundamental ideas of theoretical ecology and evolutionary dynamics through experimental studies of microbial communities. Physical techniques that visualize weak and transient biological interactions are used to study emergent phenomena in live cells with single molecule sensitivity. On the theoretical front, researchers focus on structure, function, and evolution in the sub-cellular biophysical realm.

MPC embraced the new area of Photonics. The MRL-affiliated Microphotonics Center has produced collaborative road-mapping reports since 2007 to guide manufacturing research and address systems requirements for networks that fully exploit the power of photonics. The LIFT Manufacturing Innovation Institute is engaged in cost modeling.

From its founding MPC engaged the faculty with industry. Advisory board members often sponsored research as well as offering advice. This was the era well before entrepreneurism. It survived changes in technology focus, because at its core, it was interfacing industry needs with the research capabilities at the Institute.

Broadening participation

There is an extensive array of programs, including the Summer Scholars program, which is primarily funded through NSF’s Research Experience for Undergraduates (REU) program. Each summer a dozen or so top undergraduates from across the country spend about two months at MIT as lab interns working with professors, postdocs and graduate students on cutting edge research.

CMSE also conducts summer programs for community college students and teachers, middle and high school teachers, and participates in the Women’s Technology Program and Boston Area Girls’ STEM Collaborative. Diversity is also part of MRL’s mission, part of what the mission from NSF is, broadening participation in science and engineering.

Teachers who participate in these programs often note how collaborative the research enterprise is at MIT. Several cookbook-style labs have been replaced with open-ended projects that let students experience original research.

Confidence to test ideas

A Merrimack [N.H.] High School chemistry teacher first participated in the Research Experience for Teachers program in 2000. Through his experiences with the RET program, he learned how to ‘run a research group’ consisting of his students. Without this experience, he would not have had the confidence to allow his students to research, develop, and test their original ideas. This has also allowed him to coach the school’s Science Olympiad team to six consecutive state titles, to mentor a set of students that developed a mini bio-diesel processor that they sold to Turner Biodiesel, and to mentor another set of students that took second place in Embedded Systems at I.S.E.F. [Intel International Science and Engineering Fair] for their ChemiCube chemical dispensing system.

The teacher says he is always looking for new ideas and researching older ideas to develop lab activities in his classroom. “One year my students made light emitting thin films. We have grown beautiful bismuth crystals in our test furnace, and currently he is working out how to make glow-in-the-dark zinc sulfide electroluminescent by doping it with copper so that he and his students can make their own electroluminescent panels. They are going to try to make the clear see-through wood that was in the news. He is also bringing in new materials that students have not seen before such as gallium-indium eutectic. These novel materials and activities generate a very high level of enthusiasm and interest in students, and students that are excited, interested, and motivated learn more efficiently and more effectively.”

The teacher developed a relationship with a professor that has brought him back to MIT during past summers to present a brief background in polymer chemistry, supplemented by hands-on demonstrations and activities, for the Science Teacher Enrichment Program (STEP) and Women’s Technology program. He showed them how they could use their cell phone and a polarized film to see the different areas of crystallization in polymers when they are stressed. He enjoys the presentation because it is more of a conversation with all of the teachers asking questions about different activities and methods and discussing what has worked and what has not worked in the past.

Conducive environment

The MPC served a broad community, but many people at MIT didn’t know about it because it was in the basement of Building 12. So one of the things to do was raise the profile of MPC so people better understood what the MPC did in order to better serve the community. MPC rolled out a new logo and developed a higher profile Web page. That was successful. Many more people understand what MPC is and what it does and that enables them to do more. In 2014 MPC moved to Building 24 as the old Building 12 was razed to make way for MIT.nano. The new MRL is consolidating its offices in Building 13.

Research breakthroughs by their very nature are hard to predict, but what can be done is to create an environment that leads to research breakthroughs. The successful model in both MPC and CMSE is to bring together people interested in materials, but with different disciplinary backgrounds. MPV and CSME have done that separately, and will do it together, and the expectation is that it will be done even more effectively.”
MIT Seal

USPS “Forever” postage stamps celebrating Innovation at MIT.

MIT Campus

The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

Nobel laureates, Turing Award winners, and Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, National Medal of Science recipients, National Medals of Technology and Innovation recipients, MacArthur Fellows, Marshall Scholars, Mitchell Scholars, Schwarzman Scholars, astronauts, and Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities.

Foundation and vision

In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

“The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

Early developments

Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

Curricular reforms

In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However, six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

Recent history

The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched “OpenCourseWare” to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

Caltech /MIT Advanced aLigo

It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

Leave a comment