From The Kavli Institute For Astrophysics and Space Research And AeroAstro In The School of Engineering And The School of Science At The Massachusetts Institute of Technology: “Using wobbling stellar material astronomers measure the spin of a supermassive black hole for the first time”

KavliFoundation

http://www.kavlifoundation.org/institutes

From The Kavli Institute For Astrophysics and Space Research

And

AeroAstro

In

The School of Engineering

And

The School of Science

At

The Massachusetts Institute of Technology

5.22.24
Jennifer Chu

The results offer a new way to probe supermassive black holes and their evolution across the universe.

1
This schematic figure depicts the precession of an accretion disk formed from the debris of a disrupted star around a supermassive black hole (SMBH). The left panel shows the precession phase when the accretion disk is close to an edge-on configuration, which results in the smaller disk area being observed and thus lower luminosity. The observer can see mostly the colder, outer parts of the precessing disk. The right panel depicts a nearly face-on precession phase, when the visible disk area is larger and hence the luminosity also increases. The inner, warmer parts of the disk are then fully exposed. Image: Courtesy of Michal Zajacek & Dheeraj Pasham

Astronomers at MIT, NASA, and elsewhere [see below] have a new way to measure how fast a black hole spins, by using the wobbly aftermath from its stellar feasting.

The method takes advantage of a black hole tidal disruption event — a blazingly bright moment when a black hole exerts tides on a passing star and rips it to shreds. As the star is disrupted by the black hole’s immense tidal forces, half of the star is blown away, while the other half is flung around the black hole, generating an intensely hot accretion disk of rotating stellar material.

The MIT-led team has shown that the wobble of the newly created accretion disk is key to working out the central black hole’s inherent spin.

In a study appearing today in Nature, the astronomers report that they have measured the spin of a nearby supermassive black hole by tracking the pattern of X-ray flashes that the black hole produced immediately following a tidal disruption event.

Full list of Authors and Affiliations for the science paper
1. Dheeraj R. Pasham-Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA

2. Michal Zajaček-Department of Theoretical Physics and Astrophysics, Masaryk University, Brno, Czech Republic

3. C. J. Nixon-School of Physics and Astronomy, University of Leeds, Leeds, UK

4. Eric R. Coughlin-Department of Physics, Syracuse University, Syracuse, NY

5. Marzena Śniegowska-School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

6. Agnieszka Janiuk & Bożena Czerny-Center for Theoretical Physics, Polish Academy of Sciences, Warsaw, Poland

Thomas Wevers-
7. Space Telescope Science Institute, Baltimore, MD
8. European Southern Observatory, Santiago, Chile

9. Muryel Guolo & Yukta Ajay-Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD

Michael Loewenstein-
10. Department of Astronomy, University of Maryland, College Park, MD
11. Center for Research and Exploration in Space Science and Technology, NASA Goddard Space Flight Center, Greenbelt, MD

Fig. 1: Multi-wavelength evolution of AT2020ocn.
2
a, X-ray luminosity (0.3^–1.0 keV) versus time since optical discovery. Gaps in NICER monitoring are filled by Swift data. The dashed and vertical lines are separated by 15 days to guide the eye. Archival Swift X-ray (0.3^–1.0 keV) 3σ upper limits from before MJD 58274 is 3 × 10^−14 erg s^−1 cm^−2 (4 × 10^41 erg s^−1). The first X-ray or XRT data point is a non-detection with a 3σ upper limit of 1.7 × 10^−13 erg s^−1 cm^−2. b, Optical and UV evolution of AT2020ocn. All values are host-subtracted. All the other error bars represent 1σ uncertainties. See ‘Data availability’ section below to access the data.

Fig. 2: LSP of the observed 0.3–1.0 keV NICER light curve.
4
a, The blue dashed histogram represents the unbinned LSP, whereas the red data points are the binned LSP excluding the peaks near 15 days and 2 × 15 days. The solid blue and orange curves are the best-fit bending power-law + constant and power-law + constant models, respectively, used to characterize the noise continuum. b, Unbinned periodogram (same as a but the y-axis is shown on linear scale without overplotting the continuum for clarity).

See the science paper for further instructive material with images.

The team followed the flashes over several months and determined that they were likely a signal of a bright-hot accretion disk that wobbled back and forth as it was pushed and pulled by the black hole’s own spin.

A supermassive black hole dragging the spacetime around it after it rips apart a star.

By tracking how the disk’s wobble changed over time, the scientists could work out how much the disk was being affected by the black hole’s spin, and in turn, how fast the black hole itself was spinning. Their analysis showed that the black hole was spinning at less than 25 percent the speed of light — relatively slow, as black holes go.

The study’s lead author, MIT Research Scientist Dheeraj “DJ” Pasham, says the new method could be used to gauge the spins of hundreds of black holes in the local universe in the coming years. If scientists can survey the spins of many nearby black holes, they can start to understand how the gravitational giants evolved over the history of the universe.

“By studying several systems in the coming years with this method, astronomers can estimate the overall distribution of black hole spins and understand the longstanding question of how they evolve over time,” says Pasham, who is a member of MIT’s Kavli Institute for Astrophysics and Space Research.

The study’s co-authors include collaborators from a number of institutions, including NASA, Masaryk University in the Czech Republic, the University of Leeds, the University of Syracuse, Tel Aviv University, the Polish Academy of Sciences, and elsewhere.

Shredded heat

Every black hole has an inherent spin that has been shaped by its cosmic encounters over time. If, for instance, a black hole has grown mostly through accretion — brief instances when some material falls onto the disk, this causes the black hole to spin up to quite high speeds. In contrast, if a black hole grows mostly by merging with other black holes, each merger could slow things down as one black hole’s spin meets up against the spin of the other.

As a black hole spins, it drags the surrounding space-time around with it. This drag effect is an example of “Lense-Thirring precession”, a longstanding theory that describes the ways in which extremely strong gravitational fields, such as those generated by a black hole, can pull on the surrounding space and time. Normally, this effect would not be obvious around black holes, as the massive objects emit no light.

But in recent years, physicists have proposed that, in instances such as during a tidal disruption event, or TDE, scientists might have a chance to track the light from stellar debris as it is dragged around. Then, they might hope to measure the black hole’s spin.

In particular, during a TDE, scientists predict that a star may fall onto a black hole from any direction, generating a disk of white-hot, shredded material that could be tilted, or misaligned, with respect to the black hole’s spin. (Imagine the accretion disk as a tilted donut that is spinning around a donut hole that has its own, separate spin.) As the disk encounters the black hole’s spin, it wobbles as the black hole pulls it into alignment. Eventually, the wobbling subsides as the disk settles into the black hole’s spin. Scientists predicted that a TDE’s wobbling disk should therefore be a measurable signature of the black hole’s spin.

“But the key was to have the right observations,” Pasham says. “The only way you can do this is, as soon as a tidal disruption event goes off, you need to get a telescope to look at this object continuously, for a very long time, so you can probe all kinds of timescales, from minutes to months.”

A high-cadence catch

For the past five years, Pasham has looked for tidal disruption events that are bright enough, and near enough, to quickly follow up and track for signs of Lense-Thirring precession. In February of 2020, he and his colleagues got lucky, with the detection of AT2020ocn, a bright flash, emanating from a galaxy about a billion light years away, that was initially spotted in the optical band by the Zwicky Transient Facility.

Zwicky Transient Facility (ZTF) instrument installed on the 1.2m diameter Samuel Oschin Telescope at Palomar Observatory in California. Credit: Caltech Optical Observatories.
Caltech Palomar Samuel Oschin 48 inch Telescope, located in San Diego County, California, altitude 1712 m (5617 ft). Credit: Caltech.

From the optical data, the flash appeared to be the first moments following a TDE. Being both bright and relatively close by, Pasham suspected the TDE might be the ideal candidate to look for signs of disk wobbling, and possibly measure the spin of the black hole at the host galaxy’s center. But for that, he would need much more data.

“We needed quick and high-cadence data,” Pasham says. “The key was to catch this early on because this precession, or wobble, should only be present early on. Any later, and the disk would not wobble anymore.”

The team discovered that NASA’s NICER telescope was able to catch the TDE and continuously keep an eye on it over months at a time.

NASA’s NICER on the ISS

NICER — an abbreviation for Neutron star Interior Composition ExploreR — is an X-ray telescope on the International Space Station that measures X-ray radiation around black holes and other extreme gravitational objects.

Additionally the scientists took data from XMM-Newton (X-ray), Swift (X-ray and UV) and the Sloan Digital Sky Survey.

The European Space Agency [La Agencia Espacial Europea] [Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganization](EU) XMM Newton X-ray Telescope.
National Aeronautics and Space Administration Penn State Neil Gehrels Swift X-ray, and UV/Visible light Observatory.
SDSS Reflecting Ritchey–Chrétien 3.5. meter Telescope at Apache Point Observatory, near Sunspot NM, Altitude 2,788 meters (9,147 ft).

Pasham and his colleagues looked through NICER’s observations of AT2020ocn over 200 days following the initial detection of the tidal disruption event. They discovered that the event emitted X-rays that appeared to peak every 15 days, for several cycles, before eventually petering out. They interpreted the peaks as times when the TDE’s accretion disk wobbled face-on, emitting X-rays directly toward NICER’s telescope, before wobbling away as it continued to emit X-rays (similar to waving a flashlight toward and away from someone every 15 days).

The researchers took this pattern of wobbling and worked it into the original theory for Lense-Thirring precession. Based on estimates of the black hole’s mass, and that of the disrupted star, they were able to come up with an estimate for the black hole’s spin — less than 25 percent the speed of light.

Their results mark the first time that scientists have used observations of a wobbling disk following a tidal disruption event to estimate the spin of a black hole.

“Black holes are fascinating objects and the flows of material that we see falling onto them can generate some of the most luminous events in the universe,” says study co-author Chris Nixon, associate professor of theoretical physics at the University of Leeds. “While there is a lot we still don’t understand, there are amazing observational facilities that keep surprising us and generating new avenues to explore. This event is one of those surprises.”

As new telescopes such as the Rubin Observatory come online in the coming years, Pasham foresees more opportunities to pin down black hole spins.

The National Science Foundation NOIRLab National Optical Astronomy Observatory Vera C. Rubin Observatory [LSST] Synoptic Astronomical Survey Telescope currently under construction on the El Peñón peak at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the Gemini South Telescope and Southern Astrophysical Research Telescope.

“The spin of a supermassive black hole tells you about the history of that black hole,” Pasham says. “Even if a small fraction of those that Rubin captures have this kind of signal, we now have a way to measure the spins of hundreds of TDEs. Then we could make a big statement about how black holes evolve over the age of the universe.”

This research was funded, in part, by NASA and the European Space Agency.

See the full article here .

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.


five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.

Stem Education Coalition

MIT AeroAstro campus

MIT AeroAstro

Diversity, Equity, & Inclusion in AeroAstro

Massachusetts Institute of Technology Department of Aeronautics and Astronautics faculty, students, and staff affirm a commitment to protect and nurture, first and foremost, the mental and physical well-being of each member of our community. A core value of our department is a commitment to diversity, which connotes an awareness and acceptance of the value and strength derived from engaging the richness of multiple cultures, including race, disabilities, gender, national origin, religion, sexual orientation, and skin color, among other attributes. The full potential and impact of our scholarship, teaching and learning, knowledge creation, innovation, and service can only be realized in an environment where people are supported and valued for their humanity, without prejudice, and where inclusion, collaboration, and sharing are core principles.

The MIT School of Engineering is one of the five schools of the Massachusetts Institute of Technology, located in Cambridge, Massachusetts. The School of Engineering has eight academic departments and two interdisciplinary institutes. The School grants SB, MEng, SM, engineer’s degrees, and PhD or ScD degrees. The school is the largest at MIT as measured by undergraduate and graduate enrollments and faculty members.

Departments and initiatives:

Departments:

Aeronautics and Astronautics (Course 16)
Biological Engineering (Course 20)
Chemical Engineering (Course 10)
Civil and Environmental Engineering (Course 1)
Electrical Engineering and Computer Science (Course 6, joint department with MIT Schwarzman College of Computing)
Materials Science and Engineering (Course 3)
Mechanical Engineering (Course 2)
Nuclear Science and Engineering (Course 22)

Institutes:

Institute for Medical Engineering and Science
Health Sciences and Technology program (joint MIT-Harvard, “HST” in the course catalog)

(Departments and degree programs are commonly referred to by course catalog numbers on campus.)

Laboratories and research centers

Abdul Latif Jameel Water and Food Systems Lab
Center for Advanced Nuclear Energy Systems
Center for Computational Engineering
Center for Materials Science and Engineering
Center for Ocean Engineering
Center for Transportation and Logistics
Industrial Performance Center
Institute for Soldier Nanotechnologies
Koch Institute for Integrative Cancer Research
Laboratory for Information and Decision Systems
Laboratory for Manufacturing and Productivity
Materials Processing Center
Microsystems Technology Laboratories
MIT Lincoln Laboratory Beaver Works Center
Novartis-MIT Center for Continuous Manufacturing
Ocean Engineering Design Laboratory
Research Laboratory of Electronics
SMART Center
Sociotechnical Systems Research Center
Tata Center for Technology and Design

MIT School of Science

The MIT School of Science is one of the five schools of the Massachusetts Institute of Technology. The School is composed of 6 academic departments who grant SB, SM, and PhD or ScD degrees; as well as a number of affiliated laboratories and centers.
Biology
Brain and Cognitive Sciences
Chemistry
Earth, Atmospheric and Planetary Sciences
Mathematics
Physics

With approximately 275 faculty members, 1100 graduate students, 700 undergraduate majors, 500 postdocs, and 400 research staff, the School is the second largest at MIT. Faculty members and alumni of the School have won Nobel Prizes.

Kavli Institute For Astrophysics and Space Research at M.I.T.

The mission of the MIT Kavli Institute (MKI) for Astrophysics and Space Research is to facilitate and carry out the research programs of faculty and research staff whose interests lie in the broadly defined area of astrophysics and space research. Specifically, the MKI will

Provide an intellectual home for faculty, research staff, and students engaged in space- and ground-based astrophysics
Develop and operate space- and ground-based instrumentation for astrophysics
Engage in technology development
Maintain an engineering and technical core capability for enabling and supporting innovative research
Communicate to students, educators, and the public an understanding of and an appreciation for the goals, techniques and results of MKI’s research.

MKI is working to provide a welcoming, diverse home that enables all community members to succeed.

MIT Seal

USPS “Forever” postage stamps celebrating Innovation at MIT.

MIT Campus

The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

Nobel laureates, Turing Award winners, and Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, National Medal of Science recipients, National Medals of Technology and Innovation recipients, MacArthur Fellows, Marshall Scholars, Mitchell Scholars, Schwarzman Scholars, astronauts, and Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities.

Foundation and vision

In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

“The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

Early developments

Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

Curricular reforms

In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However, six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

Recent history

The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched “OpenCourseWare” to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

Caltech /MIT Advanced aLigo

It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

Leave a comment