From The NASA Goddard Space Flight Center: “How NASA’s Roman Mission Will Hunt for Primordial Black Holes”

NASA Goddard Banner

From The NASA Goddard Space Flight Center

5.7.24
By Ashley Balzer
301.286.2656
ashley.m.balzer@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

National Aeronautics and Space Administration Nancy Grace Roman Infrared Space Telescope [WFIRST] depiction.

Astronomers have discovered black holes ranging from a few times the Sun’s mass to tens of billions. Now a group of scientists has predicted that NASA’s Nancy Grace Roman Space Telescope could find a class of “featherweight” black holes that has so far eluded detection.

Today, black holes form either when a massive star collapses or when heavy objects merge. However, scientists suspect that smaller “primordial” black holes, including some with masses similar to Earth’s, could have formed in the first chaotic moments of the early universe.

1

This artist’s concept takes a fanciful approach to imagining small primordial black holes. In reality, such tiny black holes would have a difficult time forming the accretion disks that make them visible here. NASA’s Goddard Space Flight Center

“Detecting a population of Earth-mass primordial black holes would be an incredible step for both astronomy and particle physics because these objects can’t be formed by any known physical process,” said William DeRocco, a postdoctoral researcher at the University of California Santa Cruz who led a study about how Roman could reveal them. A paper describing the results has been published in the journal Physical Review D. “If we find them, it will shake up the field of theoretical physics.”

Primordial Black Hole Recipe

The smallest black holes that form nowadays are born when a massive star runs out of fuel. Its outward pressure wanes as nuclear fusion dies down, so inward gravitational pull wins the tug-of-war. The star contracts and may get so dense it becomes a black hole.

But there’s a minimum mass required: at least eight times that of our Sun. Lighter stars will either become white dwarfs or neutron stars.

White dwarfs are dense stellar corpses. Image credit: Future
Neutron Star emitting high-energy beams from its north and south magnetic poles. Credit: Astronomy.com

Conditions in the very early universe, however, may have allowed far lighter black holes to form. One weighing the mass of Earth would have an event horizon –– the point of no return for infalling objects –– about as wide as a U.S. dime coin.

Just as the universe was being born, scientists think it experienced a brief but intense phase known as inflation when space expanded faster than the speed of light.

_________________________________________
Inflation

4
Alan Guth, from M.I.T., who first proposed cosmic inflation

Lambda Cold Dark Matter Expansion [ΛCDM] of the Universe. Credit Alex Mittelmann Coldcreation.

Alan Guth’s original notes on inflation

_________________________________________
In these special conditions, areas that were denser than their surroundings may have collapsed to form low-mass primordial black holes.

While theory predicts the smallest ones should evaporate before the universe has reached its current age, those with masses similar to Earth could have survived.

Discovering these tiny objects would have an enormous impact on physics and astronomy.

“It would affect everything from galaxy formation to the universe’s dark matter content to cosmic history,” said Kailash Sahu, an astronomer at the Space Telescope Science Institute in Baltimore, who was not involved in the study. “Confirming their identities will be hard work and astronomers will need a lot of convincing, but it would be well worth it.”

Hints of Hidden Homesteaders

Observations have already revealed clues that such objects may be lurking in our galaxy. Primordial black holes would be invisible, but wrinkles in space-time have helped round up some possible suspects.

Microlensing is an observational effect that occurs because the presence of mass warps the fabric of space-time, like the imprint a bowling ball makes when set on a trampoline.

Gravitational microlensing, S. Liebes, Physical Review B 133.B835, 133 (1964): 835.
Mt John University Observatory 1.8m MOA telescope NZ.

University of Warsaw 1.3 meter OGLE Warsaw Telescope at the Las Campanas Observatory in Chile, over 2,500 m (8,200 ft) high.

Planet formation and evolution theories predict certain masses and abundances of rogue planets ––worlds roaming the galaxy untethered to a star. The MOA and OGLE observations suggest there are more Earth-mass objects drifting through the galaxy than models predict.

“There’s no way to tell between Earth-mass black holes and rogue planets on a case-by-case basis,” DeRocco said. But scientists expect Roman to find 10 times as many objects in this mass range than ground-based telescopes. “Roman will be extremely powerful in differentiating between the two statistically.”

DeRocco led an effort to determine how many rogue planets should be in that mass range, and how many primordial black holes Roman could discern amongst them.

Finding primordial black holes would reveal new information about the very early universe, and would strongly suggest that an early period of inflation did indeed occur. It could also explain a small percentage of the mysterious dark matter scientists say makes up the bulk of our universe’s mass, but have so far been unable to identify.

“This is an exciting example of something extra scientists could do with data Roman is already going to get as it searches for planets,” Sahu said. “And the results are interesting whether or not scientists find evidence that Earth-mass black holes exist. It would strengthen our understanding of the universe in either case.”

The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.

See the full article here.

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.


five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.


Stem Education Coalition


NASA/Goddard Campus

The NASA Goddard Space Flight Center, Greenbelt, MD is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.

GSFC also operates two spaceflight tracking and data acquisition networks (the NASA Deep Space Network and the Near Earth Network); develops and maintains advanced space and Earth science data information systems, and develops satellite systems for the National Oceanic and Atmospheric Administration.

GSFC manages operations for many NASA and international missions including the NASA/ESA Hubble Space Telescope; the Explorers Program; the Discovery Program; the Earth Observing System; INTEGRAL; MAVEN; OSIRIS-REx; the Solar and Heliospheric Observatory ; the Solar Dynamics Observatory; Tracking and Data Relay Satellite System ; Fermi; and Swift. Past missions managed by GSFC include the Rossi X-ray Timing Explorer (RXTE), Compton Gamma Ray Observatory, SMM, COBE, IUE, and ROSAT. Typically, unmanned Earth observation missions and observatories in Earth orbit are managed by GSFC, while unmanned planetary missions are managed by the Jet Propulsion Laboratory (JPL) in Pasadena, California.

Goddard is one of four centers built by NASA since its founding on July 29, 1958. It is NASA’s first, and oldest, space center. Its original charter was to perform five major functions on behalf of NASA: technology development and fabrication; planning; scientific research; technical operations; and project management. The center is organized into several directorates, each charged with one of these key functions.

Until May 1, 1959, NASA’s presence in Greenbelt, MD was known as the Beltsville Space Center. It was then renamed the Goddard Space Flight Center (GSFC), after Robert H. Goddard. Its first 157 employees transferred from the United States Navy’s Project Vanguard missile program, but continued their work at the Naval Research Laboratory in Washington, D.C., while the center was under construction.

Goddard Space Flight Center contributed to Project Mercury, America’s first manned space flight program. The Center assumed a lead role for the project in its early days and managed the first 250 employees involved in the effort, who were stationed at Langley Research Center in Hampton, Virginia. However, the size and scope of Project Mercury soon prompted NASA to build a new Manned Spacecraft Center, now the Johnson Space Center, in Houston, Texas. Project Mercury’s personnel and activities were transferred there in 1961.

The Goddard network tracked many early manned and unmanned spacecraft.

Goddard Space Flight Center remained involved in the manned space flight program, providing computer support and radar tracking of flights through a worldwide network of ground stations called the Spacecraft Tracking and Data Acquisition Network (STDN). However, the Center focused primarily on designing unmanned satellites and spacecraft for scientific research missions. Goddard pioneered several fields of spacecraft development, including modular spacecraft design, which reduced costs and made it possible to repair satellites in orbit. Goddard’s Solar Max satellite, launched in 1980, was repaired by astronauts on the Space Shuttle Challenger in 1984. The Hubble Space Telescope, launched in 1990, remains in service and continues to grow in capability thanks to its modular design and multiple servicing missions by the Space Shuttle.

Today, the center remains involved in each of NASA’s key programs. Goddard has developed more instruments for planetary exploration than any other organization, among them scientific instruments sent to every planet in the Solar System. The center’s contribution to the Earth Science Enterprise includes several spacecraft in the Earth Observing System fleet as well as EOSDIS, a science data collection, processing, and distribution system. For the manned space flight program, Goddard develops tools for use by astronauts during extra-vehicular activity, and operates the Lunar Reconnaissance Orbiter, a spacecraft designed to study the Moon in preparation for future manned exploration.

The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

Leave a comment