From The California Institute of Technology: “Jupiter’s Moon Io has been Volcanically Active for Billions of Years”

Caltech Logo

From The California Institute of Technology

4.18.24
Lori Dajose
(626) 395‑1217
ldajose@caltech.edu

Jupiter’s moon IO imaged by NASA Galileo spacecraft in 1999.

Jupiter’s moon Io is the most volcanically active place in the solar system. During its 1.8-day orbit, this moon is gravitationally squeezed by Jupiter, leading to volcanic eruptions larger than any on Earth today.

2
Illustration of the sources, sinks, and transport processes controlling the chemical and isotopic species in/on/around Io. Credit: Chuck Carter and James Tuttle Keane / Keck Institute for Space Studies.

Io, Europa, and Ganymede are in an orbital configuration known as a Laplace resonance: For every orbit of Ganymede (the farthest of the three from Jupiter), Europa completes exactly two orbits, and Io completes exactly four. In this configuration, the moons pull on each other gravitationally in such a way that they are forced into elliptical, rather than round, orbits. Such orbits allow Jupiter’s gravity to heat the moons’ interiors, causing Io’s volcanism and adding heat to the subsurface liquid ocean on icy Europa.

How long has Io been experiencing volcanic upheaval? In other words, how long have Jupiter’s moons been in this configuration?

Two new studies from Caltech researchers measure sulfur isotopes within Io’s atmosphere and determine that the moons have been locked in this resonant dance for billions of years. Europa’s liquid ocean has long been considered a potential location for life to evolve, and understanding exactly how long these moons’ orbits have been this way is crucial for characterizing its long-term habitability. The papers appear in the journals Science and JGR-Planets on April 18.

On Earth, we can find signatures of past events through fossils and craters. Io, however, is perpetually transforming, so its surface is only about a million years old, while the moon itself is around 4.5 billion years old. To understand how long this Jovian moon has been experiencing volcanism, the researchers examined the chemicals in its atmosphere.

Io has no water, so the main component of the gases spewing from its volcanoes is sulfur, leading to an atmosphere that is 90 percent sulfur dioxide. During Io’s dynamic volcanic cycles, the gases near the surface become subsumed back into the interior and are regurgitated again into the atmosphere.

The sulfur atoms on Io have a few different forms, or isotopes. Isotopes are variants of a given element with different numbers of neutrons. For example, both sulfur-32 and sulfur-34 have the same number of protons (16), but the former has 16 neutrons, and the latter has 18. Extra neutrons make an element physically heavier, so in Io’s atmosphere, the lighter isotopes are more likely to be located at the top while heavier isotopes are more likely to be at the bottom, near the moon’s surface.

The surface is not the only ever-changing feature on Io—its atmosphere is also being siphoned into space at a rate of 1 ton per second due to collisions with charged particles in Jupiter’s magnetic field. As the lighter sulfur isotope, sulfur-32, is more abundant near the top of the atmosphere where these collisions occur, that isotope gets depleted disproportionately in comparison to its heavier counterpart. Understanding how much of the light sulfur is missing can give clues to how long the moon has been volcanic.

To do this, the researchers utilized the ALMA (Atacama Large Millimeter/submillimeter Array) telescope in Chile—a telescope that is itself surrounded by volcanoes—to measure sulfur isotopes on Io.

The European Southern Observatory [La Observatorio Europeo Austral] [Observatoire européen austral][Europäische Südsternwarte](EU)(CL)/National Radio Astronomy Observatory/National Astronomical Observatory of Japan(JP) ALMA Observatory (CL).

From meteorites, which are remnants from the early solar system, researchers have determined that the solar system formed with a ratio of roughly 23 atoms of sulfur-32 for every one atom of sulfur-34. If Io had been unchanged since its formation, it would have this same ratio today. However, the new study showed that Io has lost 94 to 99 percent of its original sulfur—and that means the moon has been volcanically active for billions of years while losing sulfur to space the entire time.

The duration of Io’s volcanism indicates that it became locked into an orbital resonance with Europa and Ganymede very soon after the moons’ formation. This supports predictions from models over the past 20 years that show these Galilean moons—Io, Europa, Ganymede—should enter this resonance very early on after their formation.

“The Jovian system is just one of many examples of moons, and even exoplanets, that occur in these types of resonances,” says Katherine de Kleer, assistant professor of planetary science and astronomy, Hufstedler Family Scholar, and the Science paper’s first author. “The tidal heating that is caused by such resonances is a major heat source for moons and can power their geological activity. Io is the most extreme example of this, so we use it as a laboratory for understanding tidal heating in general.”

In the JGR-Planets paper, led by former Caltech postdoctoral scholar Ery Hughes, the team conducted sophisticated modeling of Io’s sulfur system to explore potential scenarios for the moon’s history, including some in which Io was even more volcanically active in the past than it is today.

“Because lots of the light sulfur is missing, the atmosphere we measure today is relatively ‘heavy’ in terms of sulfur. Key to achieving such heavy sulfur in Io’s atmosphere is the process of burying the heavy sulfur back into Io’s interior, so that it can be released by volcanoes over and over again,” says Hughes, now a volcanic fluid geochemist with GNS Science in New Zealand. “Our modeling shows that sulfur gets trapped in the crust of Io by reactions between the sulfur-rich frosts, which are deposited from the atmosphere and the magma itself, allowing it to be eventually buried into Io’s interior.”

The researchers next aim to learn what other gases Io may have lost over the course of its long dynamic history. For example, while Io appears to contain no water, the other Galilean moons have plenty. Did Io once have water in its interior and subsequently lose it through volcanism?

See the full article here .

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.


five-ways-keep-your-child-safe-school-shootings


Please help promote STEM in your local schools.

Stem Education Coalition

Caltech campus

The California Institute of Technology is a private research university in Pasadena, California. The university is known for its strength in science and engineering, and is one among a small group of institutes of technology in the United States which is primarily devoted to the instruction of pure and applied sciences.

The California Institute of Technology was founded as a preparatory and vocational school by Amos G. Throop in 1891 and began attracting influential scientists such as George Ellery Hale, Arthur Amos Noyes, and Robert Andrews Millikan in the early 20th century. The vocational and preparatory schools were disbanded and spun off in 1910 and the college assumed its present name in 1920. In 1934, The California Institute of Technology was elected to the Association of American Universities, and the antecedents of National Aeronautics and Space Administration ‘s Jet Propulsion Laboratory, which The California Institute of Technology continues to manage and operate, were established between 1936 and 1943 under Theodore von Kármán.

The California Institute of Technology has six academic divisions with strong emphasis on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. First-year students are required to live on campus, and 95% of undergraduates remain in the on-campus House System at The California Institute of Technology. Although The California Institute of Technology has a strong tradition of practical jokes and pranks, student life is governed by an honor code which allows faculty to assign take-home examinations. The The California Institute of Technology Beavers compete in 13 intercollegiate sports in the NCAA Division III’s Southern California Intercollegiate Athletic Conference (SCIAC).

There are many Nobel laureates who have been affiliated with The California Institute of Technology, including alumni and faculty members (Linus Pauling being the only individual in history to win two unshared prizes). In addition, Fields Medalists and Turing Award winners have been affiliated with The California Institute of Technology. Crafoord Laureates and non-emeritus faculty members (as well as many emeritus faculty members) who have been elected to one of the United States National Academies. There are or have been Chief Scientists of the U.S. Air Force and numerous United States National Medal of Science or Technology winners. Many faculty members are associated with the Howard Hughes Medical Institute as well as National Aeronautics and Space Administration. According to a Pomona College study, The California Institute of Technology ranked very highly in the U.S. for the percentage of its graduates who go on to earn a PhD.

Research

The California Institute of Technology is classified among “R1: Doctoral Universities – Very High Research Activity”. Caltech was elected to The Association of American Universities in 1934 and remains a research university with “very high” research activity, primarily in STEM fields. The largest federal agencies contributing to research are National Aeronautics and Space Administration; National Science Foundation; Department of Health and Human Services; Department of Defense, and Department of Energy.

The California Institute of Technology has over 739,000 square feet (68,700 m^2) dedicated to research: 330,000 square feet (30,700 m^2) to physical sciences, 163,000 square feet (15,100 m^2) to engineering, and 160,000 square feet (14,900 m^2) to biological sciences.

In addition to managing NASA-JPL/Caltech , The California Institute of Technology also operates the Caltech Palomar Observatory; The Owens Valley Radio Observatory along with the New Jersey Institute of Technology; the Caltech Submillimeter Observatory; the W. M. Keck Observatory at the Maunakea Observatory along with the University of California; the Laser Interferometer Gravitational-Wave Observatory at Livingston, Louisiana and Hanford, Washington along with the Massachusetts Institute of Technology; and Kerckhoff Marine Laboratory in Corona del Mar, California. The Institute launched the Kavli Nanoscience Institute at The California Institute of Technology in 2006; the Keck Institute for Space Studies in 2008; and is also the current home for the Einstein Papers Project. The Spitzer Science Center, part of the Infrared Processing and Analysis Center located on The California Institute of Technology campus, is the data analysis and community support center for NASA’s Spitzer Infrared Space Telescope [no longer in service] .

Caltech Palomar Observatory. Credit: The California Institute of Technology, Altitude 1,713 m (5,620 ft), located in San Diego County, California.

Caltech Palomar Observatory 200 inch Hale Telescope located in San Diego County, California. Altitude 1,713 m (5,620 ft).

Caltech Palomar Samuel Oschin 48 inch Telescope, located in San Diego County, California, altitude 1712 m (5617 ft). Credit: Caltech.

California Institute of Technology and New Jersey Institute of Technology The Owens Valley Radio Observatory, Owens Valley, California, Altitude 1,222 m (4,009 ft). Credit: Caltech.

Caltech’s Deep Synoptic Array-2000, or DSA-2000, an array of 2,000 radio antennas planned to be built in the Nevada desert and begin operations in 2027.
W.M. Keck Observatory two ten meter telescopes operated by California Institute of Technology and The University of California , at Maunakea Observatory, Hawai’i, altitude 4,207 m (13,802 ft). Credit: Caltech.

Caltech /MIT Advanced aLigo. Credit: Caltech.

Caltech/MIT Advanced aLigo Hanford, WA installation. Credit: Caltech.

Caltech/MIT Advanced aLigo detector installation Livingston, LA. Credit: Caltech.

The California Institute of Technology partnered with University of California-Los Angeles to establish a Joint Center for Translational Medicine (UCLA-Caltech JCTM), which conducts experimental research into clinical applications, including the diagnosis and treatment of diseases such as cancer.

The California Institute of Technology operates several Total Carbon Column Observing Network stations as part of an international collaborative effort of measuring greenhouse gases globally. One station is on campus.

Leave a comment