Tagged: WIRED Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 4:19 pm on June 19, 2018 Permalink | Reply
    Tags: , Sunway TaihuLight China, , Why the US and China's brutal supercomputer war matters, WIRED   

    From Wired: “Why the US and China’s brutal supercomputer war matters” 

    Wired logo

    Wired

    19 June 2018
    Chris Stokel-Walker

    ORNL IBM AC922 SUMMIT supercomputer. Credit: Carlos Jones, Oak Ridge National Laboratory/U.S. Dept. of Energy

    Thought global arms races are all about ballistic missiles, space or nuclear development? Think again: the new diplomatic frontline is over processing power and computer chips.
    Multi-million dollar projects to eke out an advantage in processing power aren’t really about science, they’re an exercise in soft power.

    A major shift has taken place, with a new claimant to the crown of world’s fastest supercomputer. IBM’s Summit at Oak Ridge National Laboratory in Tennessee uses Power9 CPUs and NVIDIA Tesla V100 GPUs and has 4,068 servers powered by ten petabytes of memory working concurrently to process 200,000 trillion calculations per second – 200 petaflops. That’s a lot of numbers – and here’s one more. Summit’s processing power is 117 petaflops more than the previous record-holder, China’s TaihuLight.

    Sunway TaihuLight, China, US News

    While it may seem significant, it’s actually largely symbolic, says Andrew Jones of the Numerical Algorithms Group, a high-performance computing consultancy. “I put no value on being twice as fast or 20 per cent faster other than bragging rights.”

    That’s not to say that supercomputers don’t matter. They are “being driven by science”, says Jack Dongarra, a computer science professor at the University of Tennessee and the compiler of the world’s top 500 supercomputer list. And science is driven today by computer simulation, he adds – with high-powered computers crucial to carry out those tests.

    Supercomputers can crunch data far faster and more easily than regular computers, making them ideal for handling big data – from cybersecurity to medical informatics to astronomy. “We could quite easily go another four or five orders of magnitude and still find scientific and business reasons to benefit from it,” says Jones.

    Oak Ridge, where Summit is housed, is already soliciting bids for a project called Coral II, the successor to the Coral project which resulted in the Summit supercomputer. The Coral II will involve three separate hardware systems, each of which has a price tag of $600 million, says Dongarra. The goal? To build a supercomputer capable of calculating at a rate of exaflops – five times faster than Summit.

    While they are faster and more powerful, supercomputers are actually not much different from the hardware we interact with on a daily basis, says Jones. “The basic components are the same as a standard server,” he says. But because of their scale, and the complexity involved in programming them to process information as a single, co-ordinated unit, supercomputer projects require significant financial outlay to build, and political support to attract that funding.

    That political involvement transforms them from a simple computational tool into a way of exercising soft power and stoking intercontinental rivalries.

    With Summit, the US has wrested back the title of the world’s most powerful supercomputer for the first time since 2012 – though it still languishes behind China in terms of overall processing power. China is the home of 202 of the 500 most powerful supercomputers, having overtaken the US in November 2017.

    “What’s quite striking is that in 2001 there were no Chinese machines that’d be considered a supercomputer, and today they dominate,” explains Dongarra. The sudden surge of supercomputers in China over the last two decades is an indication of significant investment, says Jones. “It’s more a reflection of who’s got their lobbying sorted than anything else,” he adds.

    Recently, the Chinese leadership has been drifting away “from an aspirational ‘catch-up with the west’ mentality to aspiring to be world class and to lead,” says Jonathan Sullivan, director of the China Policy Institute at the University of Nottingham. “These achievements like the longest bridge, biggest dam and most powerful supercomputer aren’t just practical solutions, they also have symbolic meaning,” he adds.

    Or putting it differently: bragging rights matter enormously to whoever’s on top.

    [TaihuLight is about 2 years old. The Chinese supercomputer people have not been sitting on their hands. They knew this was coming. We will see how long Summit is at the top.]

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Advertisements
     
  • richardmitnick 3:27 pm on April 6, 2018 Permalink | Reply
    Tags: , , , , , , Virginia Trimble, WIRED,   

    From UCSC and UC Irvine via WIRED: Women in STEM – “The Woman Who Knows Everything About the Universe” Virginia Trimble 

    UC Santa Cruz

    UC Santa Cruz

    UC Irvine bloc

    UC Irvine

    WIRED

    1
    For 16 years, Virginia Trimble read every astronomy paper in 23 journals. Now, her review papers are part of the canon. Universitat de València.

    In 1965, physicist Richard Feynman was busy.

    Richard Feynman © Open University

    He was busy winning the Nobel Prize, and he was busy learning to draw. One day during that productive time in his life, he saw astrophysics student Virginia Trimble striding across Caltech’s campus and thought, There’s a good model.

    Soon, she was posing for him a couple Tuesdays a month, in exchange for $5.50 each session and a lot of physics talk. She was studying a nebula, and he was, sometimes, sharing anecdotes that would later appear in one of his books, which featured everything from his bongo playing to his work on the Manhattan Project. Treatment of women in professional and academic situations has changed—and significantly so—since those sixties-California-campus days. Trimble was a student at a university that enrolled few women, in a field that enlisted few women. But her experience at Caltech wasn’t limited to sidelining model gigs. Those early days of learning and research were the beginning of a five-decade career that has turned Trimble into a powerhouse of astronomy.

    I first encountered Trimble’s work when I was an undergraduate astrophysics major. On the first day of seminar, my professor handed out a 101-page stack of paper. Flipping through its 13 sections, he explained that Trimble trawled the scientific journals and collated the year’s cosmic progress into a tome like this one. It wasn’t just a review paper laying out the state of atmospheric studies of Jupiter, or asteroid hunting, or massive star formation. It was all of everything important that had happened the previous year in astronomy—broad, comprehensive, and utterly unusual. Most unusual of all was that it contained jokes.

    Today, new technologies promise to synthesize masses of publication data for scientists. But before artificial intelligence even tried, astronomers had Trimble, who wrote these comprehensive articles every year. For 16 years, she devoted her mind to this task of curation, contextualization, and commentary. And throughout her career, she has largely eschewed long-term research with fancy telescopes, competitive funding, and approving nods from university administrators. Refusing narrow focus, she has gone solo on most of her 850 publications, focusing as much on the nature of doing astronomy as studying the universe itself.

    “I just asked questions,” she says, “and sometimes found a way to answer them.” That’s business as usual for Trimble, who has spent much of her career branching off from the already thin bough of bushwhacking female astronomers.

    When Trimble enrolled at UCLA in the 1960s, she wanted to major in archaeology. But the school only offered that field of study to graduate students. Right there in the A section of the catalog, though, was “astronomy,” a topic that her father informed her she’d always been interested in.

    So she enrolled as an astronomy student, living at home while attending the university’s gifted program. Which she was—gifted. In a 1962 LIFE package about California’s educational system, a journalist profiled Trimble for a piece called Behind a Lovely Face, a 180 I.Q. The title acted surprised that a pretty lady might also have a productive brain—but Trimble quickly made it clear that people should cease to be surprised at her smarts.

    Trimble’s father was right, and she felt drawn to the mysteries of the universe. After she finished her undergraduate degree, Trimble was accepted to a PhD program at Caltech. “It was only later that I looked in their catalog and saw that women were only admitted under exceptional circumstances,” she says, “exceptional” usually meaning “married to a male Caltech admittee.” There, Trimble studied the Crab Nebula, the dust, gas, and plasma sent speeding into space during a supernova explosion whose light reached Earth in 1054.

    Supernova remnant Crab nebula. NASA/ESA Hubble

    To work on this project, she applied for time at Palomar Observatory, an iconic be-domed telescope east of San Diego.


    Caltech Palomar Observatory, located in San Diego County, California, US, at 1,712 m (5,617 ft)

    She was only the third woman to use the telescope, and only the second to actually be granted her own time on it (Vera Rubin, a dark-matter pioneer, was the first).

    Vera Rubin measuring spectra (Emilio Segre Visual Archives AIP SPL)

    Astronomer Vera Rubin at the Lowell Observatory in 1965. (The Carnegie Institution for Science)

    The nebula’s contents are still, these centuries later, lit. They beam out bright radiation across a spectrum of wavelengths. Today, scientists know that a pulsar—the corpse of a massive star, as dense as an atomic nucleus and the size of a city, spinning 30 times a second—lurks at the center and energizes it. But back when Trimble was doing her dissertation, pulsars were just being discovered, and no one knew the Crab hosted one. “It was quite a mystery what kept the thing as bright as it is now,” she says.

    For her doctoral work, she measured the motions of the nebula’s filaments, and found, among other things, that the gas had sped up its flight from the center of the explosion since that explosion had happened (weird!) and that it was around 6,500 light-years away. Discovery was all right, but its details—so many photographic plates, so many similar, tedious observations—wasn’t the most fun. She sang, danced, on the side, to liven life up. But did she enjoy the telescope part? I ask. Going to a mountaintop, commanding a large instrument, gathering her own data about the universe with her own hands?

    “Noooooo,” she says. “It was cold, and I hate being cold.”

    Trimble soon realized she didn’t want to look at the Crab Nebula—or at supernova remnants more generally, or at anything, really—for the rest of her life. She preferred independence to teams. She didn’t want to hand a bunch of her grant money over to UC Irvine, where she became a tenured astronomer. So, instead of all that, she started publishing papers that took an aerial view of the field of astronomy.

    Like any scientist, she liked to wonder. And, when people began asking her to give big talks at conferences, she started wondering more about how science gets made, and why, and by whom. “I always figured this was my opportunity to say something that might not otherwise not get said,” she says. So instead of, say, summarizing the conference’s topic, she analyzed big-picture questions: How did this sub-field become interesting? Why are we worrying about this particular research subject now? Whose work did we leave out at this meeting?

    She wondered whether it paid to go to a good graduate school, in terms of career advancement (it did). She wondered which telescopes birthed the most papers, and found that a huge number of papers came from non-celebrity instruments. She wondered about the narrative arc that led to scientific consensus, and wrote a paper that tracked the progress of different scientific debates—over things like the nature of Jupiter’s Great Red Spot and the existence of dark matter.

    And then there was that time she trolled her colleagues, publishing this paper suggesting that the blue star next to a suspected black hole—the first real black hole candidate—was smaller than people thought. If that was true, it would also mean the black hole was smaller. Too small, in fact, to be a black hole at all. Two different groups instantly set out to prove her incorrect.

    “I knew it was wrong when I suggested doing it,” she says. “It was a way to get people to go out and do observations.”

    Much of her work seems to demand that astronomers think differently, perhaps situate themselves a little more, rather than imagining that their research is standalone, decoupled from larger culture. She’s recently been working, for instance, on a series about how World War I influenced the development of general relativity, and on a chapter for a book about people who maybe should have won the Nobel Prize and didn’t.

    “Is it fun?” I ask.

    “It’s certainly fun,” she says, “or I wouldn’t do it.”

    If Trimble was asking questions other astronomers didn’t think of, or at least didn’t investigate, it may have been because she knew so much more than them. Each year starting in 1991, she read every article—every one—in 23 journals. “I quickly decided whether this was anything I would ever want to know about again,” she says. If it was, it got a line in her notebook (two lines if it was super interesting). When it came time to write, she’d go back to her notebook, cull a bit, organize the entries into topics, and then write what was essentially a historical record of that annum, with the year’s accumulated cosmic knowledge.

    Here’s what she liked best about it: “I got to tell these nasty jokes,” she says. Like this one, from the 2005 paper that I read in college: “If every galaxy has [a black hole], why do people talk about them so much? Well, the same could probably be said about human private parts, which also have in common with black holes a central location and, as a rule, concealing material around.”

    But around 2007, editorial interest in the review declined, around the same time that printing and reading journal articles on paper went out of fashion. “I can’t read 6,000 papers online,” she says. Staring at a screen that long is intense. “I start seeing jagged lightning patterns,” she says.

    Now, no single person knows what all the world’s astronomers do all day. And it would be hard for a younger scientist to take Trimble’s task on again: Academic science doesn’t value broad-mindedness, in practice. It’s a publish or perish world full of big collaborations, in which most people nest in their niche of the knowledge-creation establishment.

    But despite that, the larger astronomical community seems to agree that Trimble’s contributions were valuable. Trimble has been a vice president within the International Astronomical Union and the vice president of the American Astronomical Society, which also gave her the George Van Biesbroeck prize, “for long-term extraordinary or unselfish service to astronomy.” The American Association of Physics Teachers gave her its Klopsteg Memorial Lecture Award, which “recognizes outstanding communication of the excitement of contemporary physics to the general public.”

    But, perhaps most fittingly, the International Astronomical Union recently named an asteroid after her. Now called 9271Trimble, the space rock travels solo, within a belt of others like itself.

    When I called to interview Trimble for this article, she asked if I received the 40 or so scanned pages she sent—the beginning of her memoir. In it, she recounts those posing sessions at Caltech. Feynman “didn’t like silence,” Trimble wrote, so he talked, and sometimes listened. “Heard many of the anecdotes that appear in Surely You’re Joking,” she continued, referring to Feynman’s most-famous book, “and some that don’t.”

    The memoir is obviously unfinished, she says—dozens of pages and not even past her early years. “I got bored,” she explains. “I just got bored.” It was never, after all, Trimble’s style to stick to one topic.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UC Irvine Campus

    Since 1965, the University of California, Irvine has combined the strengths of a major research university with the bounty of an incomparable Southern California location. UCI’s unyielding commitment to rigorous academics, cutting-edge research, and leadership and character development makes the campus a driving force for innovation and discovery that serves our local, national and global communities in many ways.

    With more than 29,000 undergraduate and graduate students, 1,100 faculty and 9,400 staff, UCI is among the most dynamic campuses in the University of California system. Increasingly a first-choice campus for students, UCI ranks among the top 10 U.S. universities in the number of undergraduate applications and continues to admit freshmen with highly competitive academic profiles.

    UCI fosters the rigorous expansion and creation of knowledge through quality education. Graduates are equipped with the tools of analysis, expression and cultural understanding necessary for leadership in today’s world.

    Consistently ranked among the nation’s best universities – public and private – UCI excels in a broad range of fields, garnering national recognition for many schools, departments and programs. Times Higher Education ranked UCI No. 1 among universities in the U.S. under 50 years old. Three UCI researchers have won Nobel Prizes – two in chemistry and one in physics.

    The university is noted for its top-rated research and graduate programs, extensive commitment to undergraduate education, and growing number of professional schools and programs of academic and social significance. Recent additions include highly successful programs in public health, pharmaceutical sciences and nursing science; an expanding education school; and a law school already ranked among the nation’s top 10 for its scholarly impact.

    STEM Icon

    Stem Education Coalition

    UC Santa Cruz

    UC Santa Cruz

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    5
    UCSC alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument. (Photo by Laurie Hatch)

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

     
  • richardmitnick 3:26 pm on March 19, 2018 Permalink | Reply
    Tags: , , , , , , To Understand the Universe Physicists Are Building Their Own, , WIRED   

    FromUBC via Wired: “To Understand the Universe, Physicists Are Building Their Own” 

    U British Columbia bloc

    University of British Columbia

    Wired logo

    Wired

    03.16.18
    Katia Moskvitch

    1
    Inflation is impossible to prove directly. Which is why some physicists want to mimic it in a lab. PASIEKA/GETTY IMAGES.

    Silke Weinfurtner is trying to build the universe from scratch. In a physics lab at the University of Nottingham—close to the Sherwood forest of legendary English outlaw Robin Hood—she and her colleagues will work with a huge superconducting coil magnet, 1 meter across. Inside, there’s a small pool of liquid, whose gentle ripples stand to mimic the matter fluctuations that gave rise to the structures we observe in the cosmos.

    Weinfurtner isn’t an evil genius hell-bent on creating a world of her own to rule. She just wants to understand the origins of the one we already have.

    The Big Bang is by far the most popular model of our universe’s beginnings, but even its fans disagree about how it happened. The theory depends on the existence of a hypothetical quantum field that stretched the universe ultra-rapidly and uniformly in all directions, expanding it by a huge factor in a fraction of a second: a process dubbed inflation. But that inflation or the field responsible for it—the inflaton—is impossible to prove directly. Which is why Weinfurtner wants to mimic it in a lab.

    If the Big Bang theory is right, the baby universe would have been created with tiny ripples—so-called ‘quantum fluctuations’—which got stretched during inflation and turned into matter and radiation, or light. These fluctuations are thought to have eventually magnified to cosmic size, seeding galaxies, stars, and planets. And it’s these tiny ripples that Weinfurtner wants to model with that massive superconducting magnet. Inside, she’ll put a circular tank, some 6 centimeters in diameter, filled with layered water and butanol (the liquids have different densities, so they don’t mix).

    Then, her group of researchers will kick in the artificial gravity distortions. “The strength of the magnetic field varies with its position,” says Richard Hill, one of the paper’s co-authors. “By moving the pool to different regions of the field, the effective gravitational force can be increased or decreased,” he says, “and can even be turned upside-down.”

    By varying gravity, the team hopes to create ripples—but unlike those on a pond, the distortions will appear between the two liquids. “By carefully adjusting the speed of the ripples we can model an inflating universe,” says another team member, Anastasios Avgoustidis. In cosmic inflation, space rapidly expands while the ripples of matter propagate at a constant speed—and in the experiment, the speed of the ripples rapidly decreases as the liquid’s volume remains constant. “The equations describing the propagation of ripples in these two scenarios are identical,” Avgoustidis says.

    That’s important: If the resulting fluctuations look as if they might trigger structures like those found in today’s universe, then we may have had a glimpse of how inflation worked.

    This isn’t the first time Weinfurtner—or anyone else—has tried to mimic cosmic phenomena on a tiny scale. Around the world, astrophysicists can be found in labs, developing ever more sophisticated set-ups using sound waves that travel just like light waves in strong gravitational fields, or magnets to trigger perturbations in fluids and gases.

    Last June, Weinfurtner used a large water tank with a sink in the middle to mimic another difficult-to-observe phenomenon: the superradiance of a black hole. And it was William Unruh, a physicist at the University of British Columbia in Vancouver (and Weinfurtner’s advisor a decade ago), who pioneered the idea of simulating gravity in a lab in 1981. After all, “we cannot rerun the universe—and cannot live long enough to see the results of the experiment if we could,” says Unruh.

    Analog gravity experiments have gotten more sophisticated since Unruh’s first experiment, which used a fluid simulation of gravity to show that the event horizon of a real black hole does to light what a sonic black hole does to sound. In other words: What we can measure and express in the lab can be used to explore properties of astrophysical black holes. It even works for the famous Hawking radiation, the prediction that black holes radiate heat and at some point will totally evaporate. A few years ago, Jeff Steinhauer of the Technion in Haifa, Israel, discovered the radiation’s sonic analog [Nature Physics].

    Simulations are being used to study other aspects of inflation, too. A few years ago, a team led by Christoph Westbrook of CNRS (The French National Center for Scientific Research) in Paris studied the production of quantum particles by ‘wiggling’ a ring Bose Einstein condensate—a state of matter in which the atoms have been cooled to near absolute zero, making them behave as a single quantum object [PACS]. During inflation, the temperature of the universe dropped drastically, before starting to rise again when the inflation ceased with the process called ‘reheating’—leading to the ordinary Big Bang expansion.

    Another experiment last October, led by physicist Stephen Eckel at the Joint Quantum Institute at the National Institute of Standards and Technology and University of Maryland, also used a Bose Einstein condensate to observe the stretching of sound waves—analogous to the stretching, or redshifting, of light that happens as the universe expands. The team also observed an effect similar to the reheating process.

    Weinfurtner says that her ‘novel’ setup can work without a Bose Einstein condensate. That means that the system will be too hot to observe quantum fluctuations directly, says Unruh. But the authors argue that it will be possible to observe the fluctuations via the thermal noise in their system—an analog of quantum noise.

    Their approach, say the authors, will allow them to mimic a long expansion phase, achieving—using the technical language—‘many e-folds,’ a parameter that measures the duration of inflation. Researchers believe that inflation increased the size of the universe by more than a factor of 10^26—or more than 60 e-folds—in just a fraction of a second. The new experiment, if successful, would simulate inflation for much longer period than previous lab set-ups, or have “many more e-folds than any other, enough to put the results beyond doubt,” says Ian Moss of the University of Newcastle. “You need some time to elapse for the system to forget its initial conditions and settle down to the state governed by inflationary fluctuations,” he says.

    “It is possible that they will uncover new physics that help to inform future cosmological models,” says Eckel. “Or, on the reverse, help to test some aspect of future cosmological models.”

    Not everyone is convinced that simulating our universe’s first moments in the lab will help cosmology, though. Ted Jacobson of the University of Maryland thinks that such experiments are “not so much verifying something we are uncertain about, but rather implementing and observing it in a lab.” Why mimic the universe in the lab? “It’s fun. And it may suggest new phenomena we didn’t think of in cosmology,” he says.

    Avi Loeb, an astrophysicist at Harvard University, is not as optimistic. He says that Weinfurtner’s proposed analogy of creating ripples between two fluids in a tank will not extend to the “fundamental physical nature” of quantum fluctuations—because the experiment simply reproduces the equations physicists already use to describe inflation. If these equations are missing a fundamental ingredient, the experiment will not reveal it. “While analog laboratory experiments could incorporate quantum mechanical effects, they do not involve the interplay of quantum mechanics with gravity in the way that black holes and inflation do,” he says.

    Weinfurtner’s experiment is tailored to reproduce our existing notion of inflation, Loeb adds – but it’s not meant to test it at a fundamental level. “The only way to get a discrepancy between the experiment and our notion of inflation is if we did the math wrong for one of these systems. Otherwise, we will learn nothing new,” he says.

    The real test of inflation would be, Loeb says, the production of the substance that propelled it—the inflaton—in the lab. But this would require reaching energies up to a trillion times larger than those achieved in our most powerful particle accelerator, the Large Hadron Collider—and such a test seems unlikely in the near future.

    “Just mimicking the equations of an analogous system is a metaphor to the real system, not an actual test of its fundamental properties,” says Loeb. It’s like “smelling food instead of eating the actual food,” he adds, only “the latter has the real value.”

    That’s true, but sometimes the smells from a kitchen can tell you a lot about what was served for dinner.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U British Columbia Campus

    The University of British Columbia is a global centre for research and teaching, consistently ranked among the 40 best universities in the world. Since 1915, UBC’s West Coast spirit has embraced innovation and challenged the status quo. Its entrepreneurial perspective encourages students, staff and faculty to challenge convention, lead discovery and explore new ways of learning. At UBC, bold thinking is given a place to develop into ideas that can change the world.

     
  • richardmitnick 1:26 pm on January 1, 2018 Permalink | Reply
    Tags: , , WIRED   

    From WIRED: “The Sunny Optimism of Clean Energy Shines Through Tech’s Gloom” 

    Wired logo

    WIRED

    01.01.18
    Clive Thompson

    1
    ZOHAR LAZAR

    The mood around tech is dark these days. Social networks are a cesspool of harassment and lies. On-demand firms are producing a bleak economy of gig labor. AI learns to be racist. Is there anyplace where the tech news is radiant with old-fashioned optimism? Where good cheer abounds?

    Why, yes, there is: clean energy. It is, in effect, the new Silicon Valley—filled with giddy, breathtaking ingenuity and flat-out good news.

    This might seem surprising given the climate-change denialism in Washington. But consider, first, residential solar energy. The price of panels has plummeted in the past decade and is projected to drop another 30 percent by 2022. Why? Clever engineering breakthroughs, like the use of diamond wire to slice silicon wafers into ever-skinnier slabs, producing higher yields with less raw material.

    Manufacturing costs are down. According to US government projections, the fastest-growing occupation of the next 10 years will be solar voltaic installer. And you know who switched to solar power last year, because it was so cheap? The Kentucky Coal Museum.

    Tech may have served up Nazis in social media streams, but, hey, it’s also creating microgrids—a locavore equivalent for the solar set. One of these efforts is Brooklyn-based LO3 Energy, a company that makes a paperback-sized device and software that lets owners of solar-equipped homes sell energy to their neighbors—verifying the transactions using the blockchain, to boot. LO3 is testing its system in 60 homes on its Brooklyn grid and hundreds more in other areas.

    “Buy energy and you’re buying from your community,” LO3 founder Lawrence Or­sini tells me. His chipsets can also connect to smart appliances, so you could save money by letting his system cycle down your devices when the network is low on power. The company uses internet logic—smart devices that talk to each other over a dumb network—to optimize power consumption on the fly, making local clean energy ever more viable.

    But wait, doesn’t blockchain number-crunching use so much electricity it generates wasteful heat? It does. So Orsini invented DareHenry, a rack crammed with six GPUs; while it processes math, phase-­changing goo absorbs the outbound heat and uses it to warm a house. Blockchain cogeneration, people! DareHenry is 4 feet of gorgeous, Victorian­esque steampunk aluminum—so lovely you’d want one to show off to guests.

    Solar and blockchain are only the tip of clean tech. Within a few years, we’ll likely see the first home fuel-cell systems, which convert natural gas to electricity. Such systems are “about 80 percent efficient,” marvels Garry Golden, a futurist who has studied clean energy. (He’s also on LO3’s grid, with the rest of his block.)

    The point is, clean energy has a utopian spirit that reminds me of the early days of personal computers. The pioneers of the 1970s were crazy hackers, hell-bent on making machines cheap enough for the masses. Everyone thought they were nuts, or small potatoes—yet they revolutionized communication. When I look at Orsini’s ­blockchain-based energy-trading routers, I see the Altair. And there are oodles more inventors like him.

    Mind you, early Silicon Valley had something crucial that clean energy now does not: massive federal government support. The military bought tons of microchips, helping to scale up computing. Trump’s band of climate deniers aren’t likely to be buyers of first resort for clean energy, but states can do a lot. California already has, for instance, by creating quotas for renewables. So even if you can’t afford this stuff yourself, you should pressure state and local officials to ramp up their solar energy use. It’ll give us all a boost of much-needed cheer.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 1:19 pm on December 2, 2017 Permalink | Reply
    Tags: , , , , , , , , WIRED   

    From WIRED: “A Hidden Supercluster Could Solve the Mystery of the Milky Way” 

    Wired logo

    WIRED

    12.02.17
    Liz Kruesi

    1
    The Vela supercluster in its wider surroundings: The image displays the smoothed redshift distribution of galaxies in and around the Vela supercluster (larger ellipse; VSC). The centre of the image, so-called the Zone of Avoidance, is covered by the Milky Way (with its stellar fields and dust layers shown in grey scale), which obscures all structures behind it. Colour indicates the distance ranges of all galaxies within 500 – 1000 million light years (yellow is close to the peak of the Vela supercluster, green is nearer and orange further away). The ellipse marks the approximate extent of the Vela Supercluster, crossing the Galactic Plane. The VSC structure was revealed thanks to the new low latitude spectroscopic redshifts. Given its prominence on either side of the plane of the Milky Way it would be highly unlikely for these cosmic large-scale structures not to be connected across the Galactic Plane. The structure may be similar in aggregate mass to the Shapley Concentration (SC, smaller ellipse), although much more extended. The so-called “Great Attractor” (GA), located much closer to the Milky Way, is an example of a large web structure that crosses the Galactic Plane, although much smaller in extent than VSC. The central, dust-shrouded part of the VSC remains unmapped in the current Vela survey. Also visible are the Milky Way’s two satellite galaxies, LMC and SMC, located south of the Galactic plane. Image credit: Thomas Jarrett (UCT)

    2
    An illustration of the Vela Supercluster peeking out from behind the Milky Way’s Zone of Avoidance. Mike Zeng/Quanta Magazine

    Glance at the night sky from a clear vantage point, and the thick band of the Milky Way will slash across the sky. But the stars and dust that paint our galaxy’s disk are an unwelcome sight to astronomers who study all the galaxies that lie beyond our own. It’s like a thick stripe of fog across a windshield, a blur that renders our knowledge of the greater universe incomplete. Astronomers call it the Zone of Avoidance.

    3
    Zone of Avoidance. NASA/Spitzer

    Renée Kraan-Korteweg has spent her career trying to uncover what lies beyond the zone. She first caught a whiff of something spectacular in the background when, in the 1980s, she found hints of a potential cluster of objects on old photographic survey plates. Over the next few decades, the hints of a large-scale structure kept coming.

    Late last year, Kraan-Korteweg and colleagues announced that they had discovered an enormous cosmic structure: a “supercluster” of thousands upon thousands of galaxies. The collection spans 300 million light years, stretching both above and below the galactic plane like an ogre hiding behind a lamppost. The astronomers call it the Vela Supercluster, for its approximate position around the constellation Vela.

    Milky Way Movers

    The Milky Way, just like every galaxy in the cosmos, moves. While everything in the universe is constantly moving because the universe itself is expanding, since the 1970s astronomers have known of an additional motion, called peculiar velocity. This is a different sort of flow that we seem to be caught in. The Local Group of galaxies—a collection that includes the Milky Way, Andromeda and a few dozen smaller galactic companions—moves at about 600 kilometers per second with respect to the leftover radiation from the Big Bang.

    Local Group. Andrew Z. Colvin 3 March 2011

    Andromeda Galaxy Adam Evans

    Small Magellanic Cloud. NASA/ESA Hubble and ESO/Digitized Sky Survey 2

    Large Magellanic Cloud. Adrian Pingstone December 2003

    Over the past few decades, astronomers have tallied up all the things that could be pulling and pushing on the Local Group — nearby galaxy clusters, superclusters, walls of clusters and cosmic voids that exert a non-negligible gravitational pull on our own neighborhood.

    Laniakea supercluster. From Nature The Laniakea supercluster of galaxies R. Brent Tully, Hélène Courtois, Yehuda Hoffman & Daniel Pomarède at http://www.nature.com/nature/journal/v513/n7516/full/nature13674.html. Milky Way is the red dot.

    The biggest tugboat is the Shapley Supercluster, a behemoth of 50 million billion solar masses that resides about 500 million light years away from Earth (and not too far away in the sky from the Vela Supercluster). It accounts for between a quarter and half of the Local Group’s peculiar velocity.

    3
    Shapley Supercluster. http://www.atlasoftheuniverse.com/superc/shapley.html

    The remaining motion can’t be accounted for by structures astronomers have already found. So astronomers keep looking farther out into the universe, tallying increasingly distant objects that contribute to the net gravitational pull on the Milky Way. Gravitational pull decreases with increasing distance, but the effect is partly offset by the increasing size of these structures. “As the maps have gone outward,” said Mike Hudson, a cosmologist at the University of Waterloo in Canada, “people continue to identify bigger and bigger things at the edge of the survey. We’re looking out farther, but there’s always a bigger mountain just out of sight.” So far astronomers have only been able to account for about 450 to 500 kilometers per second of the Local Group’s motion.

    Astronomers still haven’t fully scoured the Zone of Avoidance to those same depths, however. And the Vela Supercluster discovery shows that something big can be out there, just out of reach.

    In February 2014, Kraan-Korteweg and Michelle Cluver, an astronomer at the University of Western Cape in South Africa, set out to map the Vela Supercluster over a six-night observing run at the Anglo-Australian Telescope in Australia. Kraan-Korteweg, of the University of Cape Town, knew where the gas and dust in the Zone of Avoidance was thickest; she targeted individual spots where they had the best chance of seeing through the zone. The goal was to create a “skeleton,” as she calls it, of the structure. Cluver, who had prior experience with the instrument, would read off the distances to individual galaxies.

    That project allowed them to conclude that the Vela Supercluster is real, and that it extends 20 by 25 degrees across the sky. But they still don’t understand what’s going on in the core of the supercluster. “We see walls crossing the Zone of Avoidance, but where they cross, we don’t have data at the moment because of the dust,” Kraan-Korteweg said. How are those walls interacting? Have they started to merge? Is there a denser core, hidden by the Milky Way’s glow?

    And most important, what is the Vela’s Supercluster’s mass? After all, it is mass that governs the pull of gravity, the buildup of structure.

    How to See Through the Haze

    While the Zone’s dust and stars block out light in optical and infrared wavelengths, radio waves can pierce through the region. With that in mind, Kraan-Korteweg has a plan to use a type of cosmic radio beacon to map out everything behind the thickest parts of the Zone of Avoidance.

    The plan hinges on hydrogen, the simplest and most abundant gas in the universe. Atomic hydrogen is made of a single proton and an electron. Both the proton and the electron have a quantum property called spin, which can be thought of as a little arrow attached to each particle. In hydrogen, these spins can line up parallel to each other, with both pointing in the same direction, or antiparallel, pointing in opposite directions. Occasionally a spin will flip—a parallel atom will switch to antiparallel. When this happens, the atom will release a photon of light with a particular wavelength.

    The likelihood of one hydrogen atom’s emitting this radio wave is low, but gather a lot of neutral hydrogen gas together, and the chance of detecting it increases. Luckily for Kraan-Korteweg and her colleagues, many of Vela’s member galaxies have a lot of this gas.

    During that 2014 observing session, she and Cluver saw indications that many of their identified galaxies host young stars. “And if you have young stars, it means they recently formed, it means there’s gas,” Kraan-Korteweg said, because gas is the raw material that makes stars.

    The Milky Way has some of this hydrogen, too—another foreground haze to interfere with observations. But the expansion of the universe can be used to identify hydrogen coming from the Vela structure. As the universe expands, it pulls away galaxies that lie outside our Local Group and shifts the radio light toward the red end of the spectrum. “Those emission lines separate, so you can pick them out,” said Thomas Jarrett, an astronomer at the University of Cape Town and part of the Vela Supercluster discovery team.

    While Kraan-Korteweg’s work over her career has dug up some 5,000 galaxies in the Vela Supercluster, she is confident that a sensitive enough radio survey of this neutral hydrogen gas will triple that number and reveal structures that lie behind the densest part of the Milky Way’s disk.

    That’s where the MeerKAT radio telescope enters the picture. Located near the small desert town of Carnarvon, South Africa, the instrument will be more sensitive than any radio telescope on Earth. Its 64th and final antenna dish was installed in October, although some dishes still need to be linked together and tested. A half array of 32 dishes should be operating by the end of this year, with the full array following early next year.

    SKA Meerkat telescope, 90 km outside the small Northern Cape town of Carnarvon, SA

    Kraan-Korteweg has been pushing over the past year for observing time in this half-array stage, but if she isn’t awarded her requested 200 hours, she’s hoping for 50 hours on the full array. Both options provide the same sensitivity, which she and her colleagues need to detect the radio signals of neutral hydrogen in thousands of individual galaxies hundreds of light years away. Armed with that data, they’ll be able to map what the full structure actually looks like.

    Cosmic Basins

    Hélène Courtois, an astronomer at the University of Lyon, is taking a different approach to mapping Vela. She makes maps of the universe that she compares to watersheds, or basins. In certain areas of the sky, galaxies migrate toward a common point, just as all the rain in a watershed flows into a single lake or stream. She and her colleagues look for the boundaries, the tipping points of where matter flows toward one basin or another.

    A few years ago, Courtois and colleagues used this method to attempt to define our local large-scale structure, which they call Laniakea. The emphasis on defining is important, Courtois explains, because while we have definitions of galaxies and galaxy clusters, there’s no commonly agreed-upon definition for larger-scale structures in the universe such as superclusters and walls.

    Part of the problem is that there just aren’t enough superclusters to arrive at a statistically rigorous definition. We can list the ones we know about, but as aggregate structures filled with thousands of galaxies, superclusters show an unknown amount of variation.

    Now Courtois and colleagues are turning their attention farther out. “Vela is the most intriguing,” Courtois said. “I want to try to measure the basin of attraction, the boundary, the frontier of Vela.” She is using her own data to find the flows that move toward Vela, and from that she can infer how much mass is pulling on those flows. By comparing those flow lines to Kraan-Korteweg’s map showing where the galaxies physically cluster together, they can try to address how dense of a supercluster Vela is and how far it extends. “The two methods are totally complementary,” Courtois added.

    The two astronomers are now collaborating on a map of Vela. When it’s complete, the astronomers hope that they can use it to nail down Vela’s mass, and thus the puzzle of the remaining piece of the Local Group’s motion—“that discrepancy that has been haunting us for 25 years,” Kraan-Korteweg said. And even if the supercluster isn’t responsible for that remaining motion, collecting signals through the Zone of Avoidance from whatever is back there will help resolve our place in the universe.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 12:21 pm on September 11, 2017 Permalink | Reply
    Tags: , , WIRED   

    From WIRED: “The Astonishing Engineering Behind America’s Latest, Greatest Supercomputer” 

    Wired logo

    WIRED

    1
    HOTLITTLEPOTATO

    If you want to do big, serious science, you’ll need a serious machine. You know, like a giant water-cooled computer that’s 200,000 times more powerful than a top-of-the-line laptop and that sucks up enough energy to power 12,000 homes.

    You’ll need Summit, a supercomputer nearing completion at the Oak Ridge National Laboratory in Tennessee.

    ORNL IBM Summit Supercomputer

    When it opens for business next year, it’ll be the United States’ most powerful supercomputer and perhaps the most powerful in the world. Because as science gets bigger, so too must its machines, requiring ever more awesome engineering, both for the computer itself and the building that has to house it without melting. Modeling the astounding number of variables that affect climate change, for instance, is no task for desktop computers in labs. Some goes for genomics work and drug discovery and materials science. If it’s wildly complex, it’ll soon course through Summit’s circuits.

    Summit will be five to 10 times more powerful than its predecessor, Oak Ridge’s Titan supercomputer, which will continue running its science for about a year after Summit comes online.

    ORNL Cray Titan XK7 Supercomputer

    (Not that there’s anything wrong with Titan. It’s just that at 5 years old, the machine is getting on in years by supercomputer standards.) But it’ll be pieced together in much the same way: cabinet after cabinet of so-called nodes. While each node for Titan, all 18,688 of them, consists of one CPU and one GPU, with Summit it’ll be two CPUs working with six GPUs.

    2
    Diagram showing how chilled water is delivered to the building.
    Heery International

    Think of the GPU as a turbocharger for the CPU in this relationship. While not all supercomputers use this setup, known as a heterogeneous architecture, those that do get a boost―each of the 4,600 nodes in Summit can manage 40 teraflops. So at peak performance, Summit will hit 200 petaflops, a petaflop being one million billion operations a second. “So we envision research teams using all of those GPUs on every single node when they run, that’s sort of our mission as a facility,” says Stephen McNally, operations manager.

    Performing all those operations sucks up a lot of power and generates a ton of heat. That poses a daunting challenge for Heery, the company charged with preventing Summit from overheating and powering the building that houses it. Heery’s piping in 20 megawatts of electricity (the supercomputer itself will run on 15 megawatts), enough juice to power a decent-sized city. “12,000 Southern homes with their air conditioners cranking would be roughly 20 megawatts of power,” says George Wellborn, senior associate at Heery. Luckily, Oak Ridge is hooked up to the Tennessee Valley Authority, which in Tennessee alone has a generating capacity of nearly 20,000 megawatts from 19 hydroelectric dams, two nuclear power plants, and too many other sources to get into here.

    Another engineering pickle: Each of the supercomputer’s 4,600 nodes needs to be cooled individually. Summit will use water. (Titan uses a refrigerant. You could also cool your electronics in a bath of mineral oil, if you were so inclined.) “Every one of those nodes is using a cold plate technology, where we’re putting water through a cold plate that’s directly on top,” says Jim Rogers, director for computing and facilities. “So 70 percent of the heat that’s generated by this thing can be absorbed by that cold plate.”

    3
    Overhead view of Summit. Heery International

    Curiously, this isn’t super-chilled water―it’s a comfortable 70 degrees Fahrenheit. Why? Because if you drop the temperature too much, you’ll form dew, which is a great way to ruin a supercomputer. “You have to have higher flow rates to carry the heat away,” Rogers says (we’re talking a max flow of nearly 8,000 gallons per minute), “but that tradeoff is good in terms of energy efficiency and operating cost.”

    Summit still has to … summit some final steps before it can start crunching heavy-duty science. Its cabinets should all be installed by late October, then it will undergo a year of testing and debugging. But soon enough, one of the most impressive devices humankind has ever assembled will go node to node with the best supercomputers in the world.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 3:02 pm on June 6, 2017 Permalink | Reply
    Tags: An IBM Breakthrough Ensures Silicon Will Keep Shrinking, , , , WIRED   

    From WIRED: “An IBM Breakthrough Ensures Silicon Will Keep Shrinking” 

    Wired logo

    WIRED

    1
    IBM scientists at the SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering’s NanoTech Complex in Albany, NY prepare test wafers with 5nm silicon nanosheet transistors, loaded into the front opening unified pod, or FOUPs, to test an industry-first process of building 5nm transistors using silicon nanosheets.Connie Zhou

    The limits of silicon have not been reached quite yet.

    Today, an IBM-led group of researchers have detailed a breakthrough transistor design, one that will enable processors to continue their Moore’s Law march toward smaller, more affordable iterations. Better still? They achieved it not with carbon nanotubes or some other theoretical solution, but with an inventive new process that actually works, and should scale up to the demands of mass manufacturing within several years.

    That should also, conveniently enough, be just in time to power the self-driving cars, on-board artificial intelligence, and 5G sensors that comprise the ambitions of nearly every major tech player today—which was no sure thing.

    5nm Or Bust

    For decades, the semiconductor industry has obsessed over smallness, and for good reason. The more transistors you can squeeze into a chip, the more speed and power efficiency gains you reap, at lower cost. The famed Moore’s Law is simply the observation made by Intel co-founder Gordon Moore, in 1965, that the number of transistors had doubled every year. In 1975, Moore revised that estimate to every two years. While the industry has fallen off of that pace, it still regularly finds ways to shrink.

    Doing so has required no shortage of inventiveness. The last major breakthrough came in 2009, when researchers detailed a new type of transistor design called FinFET. The first manufacturing of a FinFET transistor design in 2012 gave the industry a much-needed boost, enabling processors made on a 22-nanometer process. FinFET was a revolutionary step in its own right, and the first major shift in transistor structure in decades. Its key insight was to use a 3-D structure to control electric current, rather than the 2-D “planar” system of years past.

    ”Fundamentally, FinFET structure is a single rectangle, with the three sides of the structure covered in gates,” says Mukesh Khare, vice president of semiconductor research for IBM Research. Think of the transistor as a switch; applying different voltages to the gate turns the transistor “on” or “off.” Having three sides surrounded by gates maximizes the amount of current flowing in the “on” state, for performance gains, and minimizes the amount of leakage in the “off” state, which improves efficiency.

    But just five years later, those gains already threaten to run dry. “The problem with FinFET is it’s running out of steam,” says Dan Hutcheson, CEO of VLSI Research, which focuses on semiconductor manufacturing. While FinFET underpins today’s bleeding-edge 10nm process chips, and should be sufficient for 7nm as well, the fun stops there. “Around 5nm, in order to keep the scaling and transistor working, we need to move to a different structure,” Hutcheson says.

    Enter IBM.

    Rather than FinFET’s vertical fin structure, the company—along with research partners GlobalFoundries and Samsung—has gone horizontal, layering silicon nanosheets in a way that effectively results in a fourth gate.

    3
    A scan of IBM Research Alliance’s 5nm transistor, built using an industry-first process to stack silicon nanosheets as the device structure.IBM

    “You can imagine that FinFET is now turned sideways, and stacked on top of each other,” says Khare. For a sense of scale, in this architecture electrical signals pass through a switch that’s the width of two or three strands of DNA.

    “It’s a big development,” says Hutcheson. “If I can make the transistor smaller, I get more transistors in the same area, which means I get more compute power in the same area.” In this case, that number leaps from 20 billion transistors in a 7nm process to 30 billion on a 5nm process, fingernail-sized chip. IBM pegs the gains at either 40 percent better performance at the same power, or 75 percent reduction in power at the same efficiency.

    Just in Time

    The timing couldn’t be better.

    Actual processors built off of this new structure aren’t expected to hit the market until 2019 at the earliest. But that roughly lines up with industry estimates for broader adoption of everything from self-driving cars to 5G, innovations that can’t scale without a functional 5nm process in place.

    4
    IBM Research scientist Nicolas Loubet holds a wafer of chips with 5nm silicon nanosheet transistors manufactured using an industry-first process that can deliver 40 percent performance enhancement at fixed power, or 75 percent power savings at matched performance.Connie Zhou

    “The world’s sitting on this stuff, artificial intelligence, self-driving cars. They’re all highly dependent on more efficient computing power. That only comes from this type of technology,” says Hutcheson. “Without this, we stop.”

    Take self-driving cars as a specific example. They may work well enough today, but they also require tens of thousands of dollars worth of chips to function, an impractical added cost for a mainstream product. A 5nm process drives those expenses way down. Think, too, of always-on IoT sensors that will collect constant streams of data in a 5G world. Or more practically, think of smartphones that can last two or three days on a charge rather than one, with roughly the same-sized battery. And that’s before you hit the categories that no one’s even thought of yet.

    “The economic value that Moore’s Law generates is unquestionable. That’s where innovations such as this one come into play, to extend scaling not by traditional ways but coming up with innovative structures,” says Khare.

    Widespread adoption of many of those technologies is still years away. And success in all of them will require a confluence of both technological and regulatory progress. At least when they get there, though, the tiny chips that make it all work will be right there waiting for them.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 5:22 pm on June 4, 2017 Permalink | Reply
    Tags: , , , , , , , WIRED   

    From WIRED: “Cosmic Discoveries Fuel a Fight Over the Universe’s Beginnings” 

    Wired logo

    06.04.17
    Ashley Yeager

    1
    Light from the first galaxies clears the universe. ESO/L. Calçada

    Not long after the Big Bang, all went dark. The hydrogen gas that pervaded the early universe would have snuffed out the light of the universe’s first stars and galaxies. For hundreds of millions of years, even a galaxy’s worth of stars—or unthinkably bright beacons such as those created by supermassive black holes—would have been rendered all but invisible.

    Eventually this fog burned off as high-energy ultraviolet light broke the atoms apart in a process called reionization.

    Reionization era and first stars, Caltech

    But the questions of exactly how this happened—which celestial objects powered the process and how many of them were needed—have consumed astronomers for decades.

    Now, in a series of studies, researchers have looked further into the early universe than ever before. They’ve used galaxies and dark matter as a giant cosmic lens to see some of the earliest galaxies known, illuminating how these galaxies could have dissipated the cosmic fog. In addition, an international team of astronomers has found dozens of supermassive black holes—each with the mass of millions of suns—lighting up the early universe. Another team has found evidence that supermassive black holes existed hundreds of millions of years before anyone thought possible. The new discoveries should make clear just how much black holes contributed to the reionization of the universe, even as they’ve opened up questions as to how such supermassive black holes were able to form so early in the universe’s history.

    First Light

    In the first years after the Big Bang, the universe was too hot to allow atoms to form. Protons and electrons flew about, scattering any light. Then after about 380,000 years, these protons and electrons cooled enough to form hydrogen atoms, which coalesced into stars and galaxies over the next few hundreds of millions of years.

    Starlight from these galaxies would have been bright and energetic, with lots of it falling in the ultraviolet part of the spectrum. As this light flew out into the universe, it ran into more hydrogen gas. These photons of light would break apart the hydrogen gas, contributing to reionization, but as they did so, the gas snuffed out the light.

    2
    Lucy Reading-Ikkanda/Quanta Magazine

    To find these stars, astronomers have to look for the non-ultraviolet part of their light and extrapolate from there. But this non-ultraviolet light is relatively dim and hard to see without help.

    A team led by Rachael Livermore, an astrophysicist at the University of Texas at Austin, found just the help needed in the form of a giant cosmic lens.

    Gravitational Lensing NASA/ESA

    These so-called gravitational lenses form when a galaxy cluster, filled with massive dark matter, bends space-time to focus and magnify any object on the other side of it. Livermore used this technique with images from the Hubble Space Telescope to spot extremely faint galaxies from as far back as 600 million years after the Big Bang—right in the thick of reionization.

    NASA/ESA Hubble Telescope

    In a recent paper that appeared in The Astrophysical Journal, Livermore and colleagues also calculated that if you add galaxies like these to the previously known galaxies, then stars should be able to generate enough intense ultraviolet light to reionize the universe.

    Yet there’s a catch. Astronomers doing this work have to estimate how much of a star’s ultraviolet light escaped its home galaxy (which is full of light-blocking hydrogen gas) to go out into the wider universe and contribute to reionization writ large. That estimate—called the escape fraction—creates a huge uncertainty that Livermore is quick to acknowledge.

    In addition, not everyone believes Livermore’s results. Rychard Bouwens, an astrophysicist at Leiden University in the Netherlands, argues in a paper submitted to The Astrophysical Journal that Livermore didn’t properly subtract the light from the galaxy clusters that make up the gravitational lens.

    6

    As a result, he said, the distant galaxies aren’t as faint as Livermore and colleagues claim, and astronomers have not found enough galaxies to conclude that stars ionized the universe.

    If stars couldn’t get the job done, perhaps supermassive black holes could. Beastly in size, up to a billion times the mass of the sun, supermassive black holes devour matter. They tug it toward them and heat it up, a process that emits lots of light and creates luminous objects that we call quasars. Because quasars emit way more ionizing radiation than stars do, they could in theory reionize the universe.

    The trick is finding enough quasars to do it. In a paper posted to the scientific preprint site arxiv.org last month, astronomers working with the Subaru Telescope announced the discovery of 33 quasars that are about a 10th as bright as ones identified before.


    NAOJ/Subaru Telescope at Mauna Kea Hawaii, USA

    With such faint quasars, the astronomers should be able to calculate just how much ultraviolet light these supermassive black holes emit, said Michael Strauss, an astrophysicist at Princeton University and a member of the team.

    The researchers haven’t done the analysis yet, but they expect to publish the results in the coming months.

    The oldest of these quasars dates back to around a billion years after the Big Bang, which seems about how long it would take ordinary black holes to devour enough matter to bulk up to supermassive status.

    This is why another recent discovery [ApJ] is so puzzling. A team of researchers led by Richard Ellis, an astronomer at the European Southern Observatory, was observing a bright, star-forming galaxy seen as it was just 600 million years after the Big Bang.

    The galaxy’s spectrum—a catalog of light by wavelength—appeared to contain a signature of ionized nitrogen. It’s hard to ionize ordinary hydrogen, and even harder to ionize nitrogen. It requires more higher-energy ultraviolet light than stars emit. So another strong source of ionizing radiation, possibly a supermassive black hole, had to exist at this time, Ellis said.

    One supermassive black hole at the center of an early star-forming galaxy might be an outlier. It doesn’t mean there were enough of them around to reionize the universe. So Ellis has started to look at other early galaxies. His team now has tentative evidence that supermassive black holes sat at the centers of other massive, star-forming galaxies in the early universe. Studying these objects could help clarify what reionized the universe and illuminate how supermassive black holes formed at all. “That is a very exciting possibility,” Ellis said.

    All this work is beginning to converge on a relatively straightforward explanation for what reionized the universe. The first population of young, hot stars probably started the process, then drove it forward for hundreds of millions of years. Over time, these stars died; the stars that replaced them weren’t quite so bright and hot. But by this point in cosmic history, supermassive black holes had enough time to grow and could start to take over. Researchers such as Steve Finkelstein, an astrophysicist at the University of Texas at Austin, are using the latest observational data and simulations of early galactic activity to test out the details of this scenario, such as how much stars and black holes contribute to the process at different times.

    His work—and all work involving the universe’s first billion years—will get a boost in the coming years after the 2018 launch of the James Webb Space Telescope, Hubble’s successor, which has been explicitly designed to find the first objects in the universe.

    NASA/ESA/CSA Webb Telescope annotated

    Its findings will probably provoke many more questions, too.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 3:26 pm on May 19, 2017 Permalink | Reply
    Tags: , , Chemists Are One Step Closer to Manipulating All Matter, Controlling a single molecule’s behavior, David Wineland, , , WIRED   

    From WIRED: “Chemists Are One Step Closer to Manipulating All Matter” 

    Wired logo

    WIRED

    Date of Publication: 05.11.17.
    05.11.17
    Nick Stockton

    1
    Getty Images

    For all their periodic tables, styrofoam ball-and-pencil models, and mouth-garbling vocabulary, chemists really don’t know jack about molecules.

    Part of the problem is they can’t really control what molecules do. Molecules spin, vibrate, and trade electrons, all of which affect the way they react with other molecules. Of course, scientists know enough about those scaled-up reactions to do things like make concrete, refine gasoline, and brew beer. But if you’re trying to use individual molecules as tools, or manipulate them so precisely that you can snap them together like Lego pieces, you need better control. Scientists aren’t all the way there yet, but recently scientists at the National Institute of Standards and Technology solved an early challenge: controlling a single molecule’s behavior.

    At the very basic level, controlling a molecule would let scientists learn more about it. “This is a long-standing problem,” says Dietrich Leibfried, a physicist with NIST’s Ion Storage Group in Boulder, Colorado. “Everything around us is made out of molecules, but it’s hard to precisely find out about them.” And that would have practical applications. For instance, NIST keeps tables of molecular properties that astrophysicists consult when they’re reading the spectral signatures of faraway stars and exoplanets. Filling in those blanks would support predictions of whether some exoplanet can support life. With enough control, scientists won’t just get a better look at molecules—they’ll manipulate matter.

    But for now, they are still experimenting. Scientists know how to control atoms using cold vacuum and lasers—so at NIST, scientists’ limited molecular control builds on that knowledge. Their research, published yesterday in Nature, describes their experiment: They begin with a vacuum chamber, a 3-inch box containing a tiny electrode, which itself holds a single positively charged calcium atomic ion. Then come the molecules: Ionized hydrogen gas, which the scientists leak into the vacuum chamber until a single H2 reacts with the calcium atom.

    Now the ionized atom and the ionized molecule are trapped together. But they’re repelled by their positive charges, and the force of the repulsion sends them vibrating—like two magnets when you bring them close. They’re also spinning, like a lopsided barbell hurled into the air.

    So the scientists set out to freeze the pair in place, again calling on their skills of atomic control. First they fire a low-energy laser at the calcium atom, cooling it and stopping its motion—and because it’s coupled to the hydrogen molecule, the hydrogen stops vibrating as well. That’s the easy part. The calcium-hydride is still rotating. “That rotation, the spinning along the horizontal or vertical plane, is the hardest thing to control,” says Leibfried. Imagine trying to stick Legos together if they were spinning independently. Leibfried and his group do know how to stop, and even alter the spinning. They figured that out last year using lasers tuned to specific frequencies.

    All that rigamarole is worthless if you don’t know which way the molecule is pointing, though. And if you want to check in on the molecule—by firing another laser—you set it into random motion once again. So instead the NIST scientists fire a teeny tiny laser at the calcium atom, causing it to wiggle. Because it is connected to the hydrogen molecule, it picks up on the molecule’s state. And Leibfried and his team can “read” that state by examining the way the laser’s light scatters when it encounters the calcium atom. The whole intricate choreography between them lasts about a millisecond, and at the end they can see if the molecule behaved as it was directed.

    So what’s the point of all that? If you can control with certainty the orientation of a molecule, it’s one step closer to sticking them together exactly how you want—no more tossing compounds in a beaker and praying for the right kind of bubbles. Or, to return to the Lego analogy, you can understand—and manipulate—how molecules stick together.

    This discovery builds off work done by Leibfried’s mentor, Nobel winner David Wineland, who did the foundational atomic control work behind atomic clocks based on single trapped ions. But unlike atomic clocks—which changed the scale at which scientists could measure time, and led to breakthroughs like GPS—this process isn’t ready to revolutionize chemistry just yet. Scientists need to fine-tune their control, and have yet to proof the concept on molecules besides hydrogen. Having just one molecule would be like trying to build a city from Legos using only 2×4 bricks.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 2:48 pm on April 30, 2017 Permalink | Reply
    Tags: Angela Olinto, , , , , EUSO-SPB-Extreme Universe Space Observatory Super Pressure Balloon, , WIRED,   

    From WIRED: “Women in STEM -“A Cosmic-Ray Hunter Closes in on Super-Energetic Particles” Angela Olinto 

    Wired logo

    Wired

    1
    Angela Olinto in Wanaka, New Zealand, in March.Alpine Images for Quanta Magazine

    On April 25, at 10:50 am local time, a white helium balloon ascended from Wanaka, New Zealand, and lifted Angela Olinto’s hopes into the stratosphere. The football stadium-size NASA balloon, now floating 20 miles above the Earth, carries a one-ton detector that Olinto helped design and see off the ground. Every moonless night for the next few months, it will peer out at the dark curve of the Earth, hunting for the fluorescent streaks of mystery particles called “ultrahigh-energy cosmic rays” crashing into the sky. The Extreme Universe Space Observatory Super Pressure Balloon (EUSO-SPB) experiment will be the first ever to record the ultraviolet light from these rare events by looking down at the atmosphere instead of up. The wider field of view will allow it to detect the streaks at a faster rate than previous, ground-based experiments, which Olinto hopes will be the key to finally figuring out the particles’ origin.

    Olinto, the leader of the seven-country EUSO-SPB experiment, is a professor of astrophysics at the University of Chicago. She grew up in Brazil and recalls that during her “beach days in Rio” she often wondered about nature. Over the 40 years since she was 16, Olinto said, she has remained captivated by the combined power of mathematics and experiments to explain the universe. “Many people think of physics as hard; I find it so elegant, and so simple compared to literature, which is really amazing, but it’s so varied that it’s infinite,” she said. “We have four forces of nature, and everything can be done mathematically. Nobody’s opinions matter, which I like very much!”

    Olinto has spent the last 22 years theorizing about ultra high-energy cosmic rays. Composed of single protons or heavier atomic nuclei, they pack within quantum proportions as much energy as baseballs or bowling balls, and hurtle through space many millions of times more energetically than particles at the Large Hadron Collider, the world’s most powerful accelerator. “They’re so energetic that theorists like me have a hard time coming up with something in nature that could reach those energies,” Olinto said. “If we didn’t observe these cosmic rays, we wouldn’t believe they actually would be produced.”

    Olinto and her collaborators have proposed that ultrahigh-energy cosmic rays could be emitted by newly born, rapidly rotating neutron stars, called “pulsars.” She calls these “the little guys,” since their main competitors are “the big guys”: the supermassive black holes that churn at the centers of active galaxies. But no one knows which theory is right, or if it’s something else entirely. Ultrahigh-energy cosmic rays pepper Earth so sparsely and haphazardly—their paths skewed by the galaxy’s magnetic field—that they leave few clues about their origin. In recent years, a hazy “hot spot” of the particles coming from a region in the Northern sky seems to be showing up in data collected by the Telescope Array in Utah.

    3
    Cosmic Ray Telescope Array Project at Delta, Utah by Roger J. Wendell – 08

    But this potential clue has only compounded the puzzle: Somehow, the alleged hot spot doesn’t spill over at all into the field of view of the much larger and more powerful Pierre Auger Observatory in Argentina.

    Pierre Auger Observatory Pierre Auger Observatory in the western Mendoza Province, Argentina, near the Andes

    To find out the origin of ultrahigh-energy cosmic rays, Olinto and her colleagues need enough data to produce a map of where in the sky the particles come from—a map that can be compared with the locations of known cosmological objects. “In the cosmic ray world, the big dream is to point,” she said during an interview at a January meeting of the American Physical Society in Washington, DC.

    She sees the current balloon flight as a necessary next step. If successful, it will serve as a proof of principle for future space-based ultrahigh-energy cosmic-ray experiments, such as her proposed satellite detector, Poemma (Probe of Extreme Multi-Messenger Astrophysics).

    5
    The POEMAS system to monitor the sun at 45/90 GHz with circular polarization. Guigue

    While in New Zealand in late March preparing for the balloon launch, Olinto received the good news from NASA that Poemma had been selected for further study.

    Olinto wants answers, and she has an ambitious timeline for getting them. An edited and condensed version of our conversations in Washington and on a phone call to New Zealand follows.

    QUANTA MAGAZINE: What was your path to astrophysics and ultrahigh-energy cosmic rays?

    ANGELA OLINTO: I was really interested in the basic workings of nature: Why three families of quarks? What is the unified theory of everything? But I realized how many easier questions we have in astrophysics: that you could actually take a lifetime and go answer them. Graduate school at MIT showed me the way to astrophysics — how it can be an amazing route to many questions, including how the universe looks, how it functions, and even particle physics questions. I didn’t plan to study ultrahigh-energy cosmic rays; but every step it was, “OK, it looks promising.”

    6
    Extreme Universe Space Observatory Super Pressure Balloon (EUSO-SPB)

    How long have you been trying to answer this particular question?

    In 1995, we had a study group at Fermilab for ultrahigh-energy cosmic rays, because the AGASA (Akeno Giant Air Shower Array) experiment was seeing these amazing events that were so energetic that the particles broke a predicted energy limit known as the “GZK cutoff.” I was studying magnetic fields at the time, and so Jim Cronin, who just passed away last year in August—he was a brilliant man, charismatic, full of energy, lovely man—he asked that I explain what we know about cosmic magnetic fields. At that time the answer was not very much, but I gave him what we did know. And because he invited me I got to learn what he was up to. And I thought, wow, this is pretty interesting.

    Later you helped plan and run Pierre Auger, an array of detectors spread across 3,000 square kilometers of Argentinian grassland. Did you actually go around and persuade farmers to let you put detectors on their land?

    Not me; it was the Argentinian team who did the amazing job of talking to everybody. The American team helped build a planetarium and a school in that area, so we did interact with them, but not directly on negotiations over land. In Argentina it was like this: You get a big fraction of folks who are very excited and part of it from the beginning. Gradually you got through the big landowners. But eventually we had a couple who were really not interested. So we had two regions in the middle of the array that were empty of the detectors for quite some time, and then we finally closed it.

    Space is much easier in that sense; it’s one instrument and no one owns the atmosphere. On the other hand, the nice thing about having all the farmers involved is that Malargüe, the city in Argentina that has had the detectors deployed, has changed completely. The students are much more connected to the world and speak English. Some are coming to the US for undergraduate and even graduate school eventually. It’s been a major transformation for a small town where nobody went to college before. So that was pretty amazing. It took a huge outreach effort and a lot of time, but this was very important, because we needed them to let us in.

    Why is space the next step?

    To go the next step on the ground—to get 30,000 square kilometers instrumented—is something I tried to do, but it’s really difficult. It’s hard enough with 3,000; it was crazy to begin with, but we did it. To get to the next order of magnitude seems really difficult. On the other hand, going to space you can see 100 times more volume of air in the same minute. And then we can increase by orders of magnitude the ability to see ultrahigh-energy cosmic rays, see where they are coming from, how they are produced, what objects can reach these kinds of energies.

    What will we learn from EUSO-SPB?

    We will not have enough data to revolutionize our understanding at this point, but we will show how it can be done from space. The work we do with the balloon is really in preparation for something like Poemma, our proposed satellite experiment. We plan to have two telescopes free-flying and communicating with each other, and by recording cosmic-ray events with both of the them we should be able to also reproduce the direction and composition very precisely.

    Speaking of Poemma, do you still teach a class called Cosmology for Poets?

    We don’t call it that anymore, but yes. What it entails is teaching nonscience majors what we know about the history of the universe: what we’ve learned and why we think it is the way it is, how we measure things and how our scientific understanding of the history of the universe is now pretty interesting. First, we have a story that works brilliantly, and second, we have all kinds of puzzles like dark matter and dark energy that are yet to be understood. So it gives the sense of the huge progress since I started looking at this. It’s unbelievable; in my lifetime it’s changed completely, and mostly due to amazing detections and observations.

    One thing I try to do in this course is to mix in some art. I tell them to go to a museum and choose an object or art piece that tells you something about the universe—that connects to what we talked about in class. And here my goal is to just make them dream a bit free from all the boundaries of science. In science there’s right and wrong, but in art there are no easy right and wrong answers. I want them to see if they can have a personal attachment to the story I told them. And I think art helps me do that.

    You’ve said that when you left Brazil for MIT at 21, you were suffering from a serious muscle disease called polymyositis, which also recurred in 2006. Did those experiences contribute to your drive to push the field forward?

    I think this helps me not get worked up about small stuff. There are always many reasons to give up when working on high-risk research. I see some colleagues who get worked up about things that I’m like, whatever, let’s just keep going. And I think that attitude to minimize things that are not that big has to do with being close to death. Being that close, it’s like, well, everything is positive. I’m very much a positive person and most of the time say, let’s keep pushing. I think having a question that is not answered that is well posed is a very good incentive to keep moving.

    Between the “big guys” and the “little guys”—black holes versus pulsating neutron stars—what’s your bet for which ones produce ultrahigh-energy cosmic rays?

    I think it’s 50-50 at this point—both can do it and there’s no showstopper on either side—but I root always for the underdog. It looks like ultrahigh-energy cosmic rays have a heavier composition, which helps the neutron star case, since we had heavy elements in our neutron star models from the beginning. However, it’s possible that supermassive black holes do the job, too, and basically folks just imagine that the bigger the better, so the supermassive black holes are usually a little bit ahead. It could be somewhere in the middle: intermediate-mass black holes. Or ultrahigh-energy cosmic rays could be related to other interesting phenomena, like fast radio bursts, or something that we don’t know anything about.

    When do you think we’ll know for sure?

    You know how when you climb the mountain—I rarely look at where I’m going. I look at the next two steps. I know I’m going to the top but I don’t look at the top, because it’s difficult to do small steps when the road is really long. So I don’t try to predict exactly. But I would imagine—we have a decadal survey process, so that takes quite some time, and then we have another decade—so let’s say, in the 2030s we should know the answer.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: