From temblor : “New eruption at Fagradalsfjall Volcano follows days of seismic swarms”
8.4.22
Melissa Scruggs, Ph.D.
Eruption at Fagradasfjall. Credit: Edward Marshall.
After days of elevated earthquake activity on the Reykjanes Peninsula, Iceland’s Fagradalsfjall volcano began erupting at 1:18 p.m. Wednesday afternoon, local time. Roughly 5,000 earthquakes have been detected on the peninsula since July 30, according to the Icelandic Meteorological Office — including a magnitude-5.4 event felt in Reykjavik on July 31. These earthquakes accompanied ground deformation near the site of last year’s eruption, indicating magma movement toward the surface.
Currently, small lava fountains are erupting from a 300-meter-long (1,000-foot), northeast-southwest trending crack on the northern edge of the 2021 lava flow, according to researchers from the University of Iceland and Icelandic Meteorological Office who surveyed the new eruption. Lava is steadily erupting between five and ten times faster than the lava that erupted at the start of the 2021 eruption. Already, along the fissure, ridges of solidified lava have started to form.
Fagradalsfjall volcano
Time11.12.27
Why is Iceland so volcanically active?
Iceland is home to 34 active volcanoes, averaging one eruption every four years. Volcanoes are so common in Iceland because of its unique tectonic setting; it is located above a mantle plume — a hot, buoyant bit of Earth’s mantle that rises upwards, bringing magma to the surface — and on top of the plate boundary where the North American and Eurasian plates incrementally inch apart. As the plates move away from each other, hot, less dense mantle rock rises upwards to fill the space in between the plates. High pressures deep in the Earth keep the mantle solid, but at the shallow depths underneath spreading ridges, lower pressures force hot mantle rocks to melt, generating basaltic magma. This process is called decompression melting. The new, buoyant magma ascends through the thin crust, often erupting at linear vents called fissures and creating new land.
Eruptions at Icelandic volcanoes are generally not explosive. Typically, flows of hot, runny basaltic lava pour out of fissures or fountain toward the sky in what’s called an effusive eruption. Although effusive eruptions are not as violent as their explosive counterparts, lava flows can still damage infrastructure, and large quantities of volcanic gases can affect air quality for nearby populations.
The 2021 fissure eruption of Fagradalsfjall produced spectacular lava flows, lava fountains and built-up spatter cones along a linear fissure for the first time in roughly six thousand years. A similar eruption is now underway. Credit: Courtesy A. Shevchenko and E. Zorn (GFZ Germany).
An unsurprising spectacle
This week’s eruption was not entirely unexpected by scientists monitoring the volcano, as heightened earthquake activity and uplift in the ground surface can indicate magma moving beneath a volcano. As magma travels toward the surface via underground conduits called dikes, the leading tip of the dike can cause the crust to fracture as it tunnels forward, triggering earthquakes.
Volcano Monitoring—Earthquake signals (educational)
Similar earthquakes and significant ground deformation occurred in the months before the 2021 eruption of Fagradalsfjall, as a nine kilometer (about five and a half miles) long, narrow body of magma intruded into the rift zone. The dike responsible for this new eruption is located only one kilometer (about half a mile) below the surface, says Magnús Tumi Guðmundsson, a geophysicist at the University of Iceland.
What can we expect next from Fagradalsfjall?
Though predicting exactly what a volcano will do in the future is not possible, scientists often use past eruptions to anticipate future eruptive behavior. With few exceptions, Icelandic volcanoes erupt effusively, producing spectacular basaltic lava fountains and flows, along with large quantities of dangerous volcanic gases. Scientists cannot predict exactly when an eruption will begin or end, but instead forecast what might happen, based on changes in volcanic activity.
In addition to monitoring earthquakes and volcanic gases, scientists are examining lava chemistry to get a better idea of how the magma is changing as the eruption progresses, says Frances Deegan, a volcanologist at the Swedish Research Council. This new batch of magma could have the same origins as the magma involved in last year’s eruption, says Deegan, but scientists will need to compare newly collected samples to the 2021 lavas [above] to determine if there have been significant changes to the magma plumbing system in the past eight months.
The Icelandic Meteorologic Office expects no damage to infrastructure at the moment, and the Icelandic Civil Defense lowered its Public Safety Level to reflect the lower threat posed by the volcano. For now, the primary problem appears to be negative air quality, which the Icelandic Meteorological Office is monitoring.
Fagradalsfjall captured the attention of the world last year with its spectacular cones and lavafalls, lava fountains and flows. It seems that in 2022 it is poised to do the same.
References
Flis, A. (2022, August 1). A strong burst of nearly 4000 earthquakes occurs in Iceland, causing an increased risk of a new volcanic eruption as we head into August. Severe Weather Europe. https://www.severe-weather.eu/news/powerful-earthquake-swarm-volcano-iceland-seismic-activity-2022-fa/
Gudmundsson, A., Bazargan, M., Hobé, A., Selek, B., & Tryggvason, A. (2021) Dike-Segment Propagation, Arrest, and Eruption at Fagradalsfjall, Iceland. Presented at the AGU 2021 Fall Meeting, New Orleans, LA and virtual. https://doi.org/10.1002/essoar.10508827.3
Heimisson, E., & Segall, P. (2020) Physically consistent modeling of dike-induced deformation and seismicity: application to the 2014 Bardarbunga Dike, Iceland. Journal of Geophysical Research Solid Earth. https://doi.org/10.1029/2019JB018141
Jonsdottir, K., Cubuk Sabuncu, Y., Geirsson, H., Klaasen, S., Caudron, C., Lecocq, T., Barsotti, S., Barnie, T., Sigmundsson, F., Oddsson, B., Gudmundsson, M., Parks, M., Fichtner, A., Thrastarson, S., & Paitz, P. (2021) Seismic Monitoring of the 2021 Fagradalsfjall Eruption, SW Iceland. Presented at the AGU 2021 Fall Meeting, New Orleans, LA and virtual. https://ui.adsabs.harvard.edu/abs/2021AGUFM.V23B..05J/abstract
Further Reading
Larsen, G. & Guðmundsson, M.T. (2016 March 7). Katla. In: Oladottir, B., Larsen, G. & Guðmundsson, M. T. Catalogue of Icelandic Volcanoes. IMO, UI and CPD-NCIP. Retrieved from http://icelandicvolcanoes.is/?volcano=KRY
See the full article here .
five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.
Stem Education Coalition
_____________________________________________________________________________________
Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.
The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.
Get the app in the Google Play store.
Smartphone network spatial distribution (green and red dots) on December 4, 2015
Meet The Quake-Catcher Network
The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.
After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).
The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).
The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).
There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.
Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.
USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.
If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.
BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.
Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.
Below, the QCN Quake Catcher Network map
ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.
Watch a video describing how ShakeAlert works in English or Spanish.
The primary project partners include:
United States Geological Survey
California Governor’s Office of Emergency Services (CalOES)
California Geological Survey
California Institute of Technology
University of California Berkeley
University of Washington
University of Oregon
Gordon and Betty Moore Foundation
The Earthquake Threat
Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.
Part of the Solution
Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.
Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.
System Goal
The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.
Current Status
The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.
In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.
This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.
Authorities
The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.
For More Information
Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
rdegroot@usgs.gov
626-583-7225
ShakeAlert Implementation Plan
About Early Warning Labs, LLC
Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.
EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.
EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.
EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.
EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.
Earthquake Early Warning Introduction
The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.
The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.
ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.
ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.
Earthquake Early Warning Background
The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.
Earthquake early warning can provide enough time to:
Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
Initiate mass notification procedures
Open fire-house doors and notify local first responders
Slow and stop trains and taxiing planes
Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
Move people away from dangerous machines or chemicals in work environments
Shut down gas lines, water treatment plants, or nuclear reactors
Automatically shut down and isolate industrial systems
However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.
Reply