Tagged: UCLA Newsroom Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:33 am on October 18, 2018 Permalink | Reply
    Tags: , , , , UCLA Newsroom   

    From UCLA Newsroom: “The evolution of earthquake science” 


    From UCLA Newsroom

    October 11, 2018

    1
    Jonathan Stewart, a professor in the UCLA Department of Civil and Environmental Engineering, at a Los Angeles Department of Water and Power facility.

    It’s a scene of post-mayhem disaster. In front of the Acacia residential building on the west end of the UCLA campus. Victims are everywhere, bleeding, confused, in and out of consciousness. A small boy in a baseball hat and shorts is laid out on a red tarp. “Very low pulse,” says one of the people who helped carry him over, before rushing back to the search and rescue. It’s hard to tell if anyone hears her, given the commotion. Nearby, a woman sits upright, a drop of blood rolling out of her ear and down her cheek, and another woman props her bloodied leg inside a makeshift cardboard splint.

    A few dozen first responders move victims onto colorcoded tarps — green for the most stable, yellow for those in need of a medic and red for the most critical. One of the vested first responders kneels beside the boy to check his pulse, and quickly stands up again. “We have a dead over here,” she calls out. But there’s no time to stop.

    This is the aftermath of a 6.8 magnitude earthquake centered on the Santa Monica Fault just south of campus. It’s the “big one” that Southern Californians had known could one day happen. That day is today.

    Except it’s not. The “victims” are all actors, the injuries painted on and the small boy alive and well. The first responders are volunteers from the Community Emergency Response Team, running a drill to test emergency response procedures on campus.

    While this 6.8 quake didn’t actually happen, through the work of researchers and scientists across UCLA, we know with certainty the probable impact of such a temblor, how to warn those who would feel its shaking, how to plan around its destructive power and even how to ensure that buildings like the Acacia dorms don’t fall. From the deepest motions of our planet’s structure to the foundations of our buildings to the crucial urban systems underpinning modern society, UCLA research is increasing our understanding of how the land beneath us moves and how to survive a major quake.

    It’s estimated that up to 3,000 people died in San Francisco in 1906 as a result of the 7.9 magnitude quake, and more than 140,000 died in the 1923 Great Kanto earthquake in Japan. Fortunately, in more recent years, particularly in the United States, earthquake-caused deaths have been relatively rare. Unlike in the past, when buildings crumbled and crushed the people inside, we now know how to construct buildings that can withstand quakes.

    We learned from buildings that fell. In 1994, a 6.7 magnitude earthquake that struck in the San Fernando Valley destroyed or significantly damaged an estimated 90,000 buildings. Of the approximately 60 people killed, 33 were in buildings that fell. The most common were small apartment buildings perched over space left largely empty for parking. With enough shaking, the apartments come crashing down on the mostly hollow space below.

    Scott Brandenberg, a professor of civil and environmental engineering at the UCLA Henry Samueli School of Engineering and Applied Science, studies the impact of earthquakes on the built environment. He lives in a soft story building.“It’s hard to find buildings in the area I can afford,” he says. Soft story buildings were not designed to resist earthquake forces specified in the current building code and should be evaluated for retrofit. A number of these buildings collapsed during the 1994 Northridge earthquake.

    Today, Brandenberg’s building, as well as thousands of others across the region, have been retrofitted through mandatory retrofit ordinances.

    Learning from the past is key to UCLA’s earthquake research across multiple fields. Brandenberg, for example, is creating an international database on liquefaction, the phenomenon sometimes observed during earthquakes in which soil flows like a liquid, causing land to slide and foundations of buildings to slip away. He and his colleagues are collecting case studies globally that shed light on the consequences of liquefaction. “We’ve never really had a database that was available to the whole community,” says Brandenberg. He hopes broad access to the data will help standardize the science behind liquefaction.

    Researchers can’t wait around for earthquakes to strike; the stakes are too high. Jonathan Stewart, a professor in the Department of Civil and Environmental Engineering, has been collecting global data on earthquake impacts on levees and their associated drinking water systems. His major area: a 1,100-mile network of levees in California that directs water into the State Water Project’s drinking and agricultural water conveyances and prevents salt water intrusion from the San Francisco Bay.

    “A good 40 percent of the water in Southern California is coming through this system,” he says. “So the stability and viability of this system is really a big deal. For the system to work, the whole thing has to work. You can’t just analyze individual sections. So we’ve developed methods to do that.”

    Based on previous seismic activity near levee systems in places like Japan, Stewart and his colleagues can determine the dynamic properties of the peat that makes up much of the structure of the foundation beneath the levees in the Delta, learning how much levees can settle, which can lead to overtopping and cause erosion. They also determine how much soil to keep in reserve to patch breaches that occur. Add in computer modeling, and they can predict worst-case scenarios for disruptions to the system and plan how to respond.

    This type of systemic, model-based thinking is new for earthquake research, a field that has been largely based on observations of specific events. “[Research] was being done on a small-time basis: individual faculty and their grad students working on something, producing a paper, other people doing the same thing, and we get all these disparate documents out there,” Stewart explains. “And then somebody has to figure out what to do with it all. We’re trying to change the paradigm by which this research is done.”

    Practitioners outside the university who are applying this information to the real world say UCLA’s work is making a difference. Ronald T. Eguchi is president and CEO of Long Beach-based ImageCat, which creates earthquake maps and hazard exposure models for buildings and infrastructure. The company serves clients like NASA and FEMA, as well as private insurance companies. Eguchi says the data coming out of UCLA has helped make these maps more accurate.

    “Without [that UCLA] research, I don’t think we’d be able to come up with these quantitative assessments,” he says. “We use that information to [learn] what the extent of displacement or ground failure would be.”

    Useful data can come from surprising sources. Engineering Professor Ertugrul Taciroglu, who studies earthquake effects on urban infrastructure — ports, bridges, power lines — has developed a way to use the abundant images available from Google to visually analyze infrastructures and develop predictive simulation models to quantify their seismic risks.

    “My students and I developed computer codes that will locate each bridge and examine it through Google Street from multiple angles. Our algorithms extract key measurements, such as column heights and cross-sectional dimension. We use those measurements to create a structural analysis model. We intend to do that for all 25,000 bridges in California,” he says. These images are remarkably accurate. Taciroglu says he has checked his models using Google’s images against Caltrans’ original bridge blueprints, and the measurements match up at the sub-inch level.

    Google Earth also has been a rich source of data for power lines and other lifeline transmission corridors that provide electricity across the state. “I can create structural analysis models of power distribution networks by going around with my preprogrammed robot inside Google Earth and extracting where the transmission towers are, the length of the cables, the sag of the cables,” Taciroglu adds. “Because I know where they are, I know what kind of an earthquake shaking we can expect in the future for each structure.”

    Knowing how transmission lines may fail in a big earthquake can show, for example, what hospitals should be better equipped with backup power. Modeling which bridges could fail will help us understand how to prevent parts of cities from being cut off from essential services. Taciroglu says a dream project would be to integrate all this information into one massive model that encompasses the full complexity of an entire urban region and all its interrelated risks. Such a tool would be immensely valuable to government agencies, facility operators and insurance agencies.

    This kind of metropolitan-wide thinking may not be far off. A task force of UCLA earthquake researchers is developing plans to better integrate systems thinking and earthquake consciousness into the operations of city and county entities, such as utilities. “Lifeline infrastructure can be impacted by big earthquakes,” says Ken Hudnut, a geophysicist for Risk Reduction at the U.S. Geological Survey and a lecturer in UCLA’s Department of Civil and Environmental Engineering, who advises the L.A. Mayor’s Office of Resilience.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    UC LA Campus

    For nearly 100 years, UCLA has been a pioneer, persevering through impossibility, turning the futile into the attainable.

    We doubt the critics, reject the status quo and see opportunity in dissatisfaction. Our campus, faculty and students are driven by optimism. It is not naïve; it is essential. And it has fueled every accomplishment, allowing us to redefine what’s possible, time after time.

    This can-do perspective has brought us 12 Nobel Prizes, 12 Rhodes Scholarships, more NCAA titles than any university and more Olympic medals than most nations. Our faculty and alumni helped create the Internet and pioneered reverse osmosis. And more than 100 companies have been created based on technology developed at UCLA.

    Advertisements
     
  • richardmitnick 11:43 am on September 13, 2018 Permalink | Reply
    Tags: , , , , ELFIN-Electron Losses and Fields Investigation CubeSats, UCLA Newsroom   

    From UCLA Newsroom: “UCLA students launch project that’s out of this world” 


    From UCLA Newsroom

    September 11, 2018
    Rebecca Kendall

    1
    UCLA aims to be one of the few universities to ever complete such a sophisticated space science mission — designed and built by students — from beginning to end.

    Five years ago, a group of UCLA undergrads came together with a common goal — to build a small satellite and launch it into space. In the years since, more than 250 students — many of whom are now UCLA graduate students and alumni — have been the mechanical engineers, software developers, thermal and power testers, electronics technicians, mission planners and fabricators of the twin Electron Losses and Fields Investigation CubeSats, known as ELFIN.

    Although UCLA has been building space instruments for NASA and other international space missions for more than 40 years, and members of its faculty have been critical contributors to space science, ELFIN is the first satellite mission built, managed and operated entirely at UCLA. And even more impressive, just about all of it has been done by the students.

    This week, dozens of ELFINers (a nickname earned by those who’ve worked on the satellites), will drive about 150 miles up the California coast from Los Angeles to Vandenberg Air Force Base near Lompoc, to watch the product of their effort ascend into orbit.

    “Just seeing all the hundreds of hours of work, that not just myself but others too, have put into this project, the many sleepless nights, the stressing out that you’re not going to make a deadline — just seeing it go up there … I’m probably going to cry,” said Jessica Artinger, an astrophysics major and geophysics and planetary science minor who will begin her fifth year this fall.

    The two micro-satellites, each weighing about eight pounds and roughly the size of a loaf of bread, will help scientists better understand magnetic storms in near-Earth space. These storms are a typical form of “space weather” that is induced by solar activity, including flares and violent solar eruptions. Some solar outbursts can impact Earth, generating large amounts of invisible electromagnetic energy that transforms our local space environment.


    John Vande Wege/UCLA Broadcast Studio.

    “Magnetic storms are not just interesting space phenomena. They can energize electrons to high energies that can damage or even destroy orbiting satellites we depend on for GPS, communications and weather monitoring,” said Margaret Kivelson, UCLA professor emeritus of space physics. “They can also enhance space electrical currents which flow onto Earth, and could damage the power grid. Space weather research is also crucial for space tourism and space exploration.”

    Currently, scientists’ ability to accurately model and predict space weather is in its infancy, just like meteorology was at the turn of the last century. ELFIN will make headway toward better understanding these phenomena.

    ELFIN will go up as a secondary payload with the ICESat-2 mission at dawn on Saturday, Sept. 15, aboard the trusted Delta II, the final and hopefully 100th consecutive successful launch of this type of rocket. The launch will be streamed live on NASA TV’s YouTube channel, as well as on UCLA social media (follow #uclaELFIN).

    Following the launch, many ELFINers at Vandenberg will come back to the campus command center to eagerly await the first Bruin transmissions from space, which are expected about 10 hours after blast-off. UCLA students will be directly involved in day-to-day mission activities and will have privileged access to ELFIN’s data. They will track and command the satellite via a custom-built antenna atop Knudsen Hall and will download data directly to the mission operations center located in the Earth, planetary and space sciences department. The ELFIN website will have interactive tools so the public can track and listen to the spacecraft as it passes overhead twice a day. The CubeSats are expected to remain in space for two years, after which they will gradually fall out of orbit and burn up in the atmosphere like shooting stars.

    In fall 2017, as head of ELFIN’s fabrication team, Artinger led a small team that worked tirelessly in the EPSS prototyping lab using band saws, drill presses and a CNC machine (which is used to carve and smooth metal parts) to meticulously craft tightly toleranced components to meet their completion deadline.

    “There was a lot of working things out in your head before machining it, especially for safety reasons,” said Artinger, who gave a final inspection by painstakingly sanding each part and then re-measuring each and every hole, comparing them to the technical drawings for accuracy before sending them upstairs to the mechanical team for assembly. The aerospace-grade tolerance requirement across the 13.5-inch long spacecraft, she said, was two thousandths of an inch — about half the thickness of a standard sheet of paper. The team also had to machine the sensitive energetic particle detector frames to an incredibly precise 1/10,000 of an inch, she said.

    Artinger, a transfer student who graduated from Orange Coast College in 2016, plans to become a community college professor and can’t wait to use her ELFIN experience to inspire a new generation of students. She says ELFIN really opened her eyes to the power of mentoring through research and further solidified her commitment to teaching topics related to space science.

    “Maybe we can discover something at the community college I’ll be working at using the actual data from the satellite that I helped build,” she said. “That would be really cool.”

    Ethan Tsai learned about ELFIN when he was a UCLA sophomore. Despite having no background in space science, the former physics major started to work on simple tasks and gained the necessary skills to become the project’s attitude determination and control subsystem lead. Now studying for his master’s in electrical engineering, Tsai is ELFIN’s project manager.

    “I was pretty honored to be able to work on a mission like this,” he said, adding that he never imagined being involved in a NASA mission as an undergraduate. “It wasn’t until about two years into the project that I started to understand and appreciate the quality of the work we were doing and how it’s going to actually affect not just our mission and the students around us but the scientific community as a whole.”

    Tsai said he’s excited about the infrastructure he has helped create to make UCLA a “space campus,” supporting students who will work on future satellite missions.

    The project has been supported with funding from the National Science Foundation and NASA, with technical assistance from the Aerospace Corporation among other industry partners and universities.

    3
    CubeSats like ELFIN pack instruments into a loaf-of-bread sized satellite. UCLA.

    Those who have witnessed the aurora borealis and australis illuminate the skies, also known as the northern and southern lights, have experienced the beauty and power of space weather, likely without even knowing it.

    “The aurora is sort of a TV screen that shows us what happens out in space.” said Vassilis Angelopoulos, a UCLA space physicist who got his doctorate at UCLA and serves as ELFIN’s principal investigator. “Space physicists can tell if something interesting or important is going on in space by looking at the aurora.”

    ELFIN aims to observe the complex sequence whereby magnetic storms form waves near Earth, accelerating and forcing electrons to fall into the atmosphere, while a network of all-sky cameras across North America captures the resulting brightening of the auroral lights. The field of space science benefits from multi-satellite missions like ELFIN because of the ever-growing need to know about the dynamic conditions in space.

    “Just like with atmospheric weather,” Angelopoulos said, “you need multiple space weather buoys to feed their data into our space weather models and be able to make predictions of conditions in the future.”

    CubeSats fill this need because of their compact size, relative affordability ($300,000 compared to several hundred million dollars for a typical research satellite), and how quickly a team can go from prototyping to launch compared to standard-sized satellites. CubeSats uniquely allow students to witness end-to-end satellite mission development, testing and operations all within the span of their undergraduate studies.

    For ELFINers, being part of an endeavor of this magnitude is reward enough, but working on this project also has professional and scientific benefits, Angelopoulos said. In addition to the leadership, interpersonal, problem-solving and technical skills they’ve developed, ELFINers are also contributing to the production of knowledge, something that is incredibly valuable to society and to their careers as scientists and engineers.

    4
    Ethan Tsai works on the flight model assembly for the CubeSat ELFIN. UCLA.

    “As a researcher it’s important to not just analyze data that others collect, but to be involved in designing your own unique experiments to explore new key science questions. This is how space science started, with experiments on small rockets where students were involved in the nuts and bolts of them, and similarly with CubeSats, this is where the future of space science education is headed now,” Angelopoulos said.

    Building on the opportunities that exist here at UCLA, and knowing the impact that experiential learning can have on a student’s academic life, Angelopoulos wanted to find a way to bring CubeSat development into the undergraduate experience.

    “CubeSats are ideal because they create an environment where students from all walks of life, from all disciplines, can come together and practice what they’ve learned during their formal education in the context of a realistic environment,” Angelopoulos said. “This is exactly what academia, industry and research organizations around the country need — and they tell us that. This is the kind of experience they want in people who are applying to graduate school or who are applying to work in industrial firms because these are people who think on their feet and innovate.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC LA Campus

    For nearly 100 years, UCLA has been a pioneer, persevering through impossibility, turning the futile into the attainable.

    We doubt the critics, reject the status quo and see opportunity in dissatisfaction. Our campus, faculty and students are driven by optimism. It is not naïve; it is essential. And it has fueled every accomplishment, allowing us to redefine what’s possible, time after time.

    This can-do perspective has brought us 12 Nobel Prizes, 12 Rhodes Scholarships, more NCAA titles than any university and more Olympic medals than most nations. Our faculty and alumni helped create the Internet and pioneered reverse osmosis. And more than 100 companies have been created based on technology developed at UCLA.

     
  • richardmitnick 8:31 am on September 5, 2018 Permalink | Reply
    Tags: , , , Tandem solar cell design, UCLA Newsroom   

    From UCLA Newsroom: “Dual-layer solar cell developed at UCLA sets record for efficiently generating power” 


    From UCLA Newsroom

    August 30, 2018
    Matthew Chin

    1
    A solar cell developed by UCLA Engineering researchers converts 22.4 percent of incoming energy from the sun, a record for this type of cell. Oszie Tarula/UCLA

    Materials scientists from the UCLA Samueli School of Engineering have developed a highly efficient thin-film solar cell that generates more energy from sunlight than typical solar panels, thanks to its double-layer design.

    The device is made by spraying a thin layer of perovskite — an inexpensive compound of lead and iodine that has been shown to be very efficient at capturing energy from sunlight — onto a commercially available solar cell. The solar cell that forms the bottom layer of the device is made of a compound of copper, indium, gallium and selenide, or CIGS.

    The team’s new cell converts 22.4 percent of the incoming energy from the sun, a record in power conversion efficiency for a perovskite–CIGS tandem solar cell. The performance was confirmed in independent tests at the U.S. Department of Energy’s National Renewable Energy Laboratory. (The previous record, set in 2015 by a group at IBM’s Thomas J. Watson Research Center, was 10.9 percent.) The UCLA device’s efficiency rate is similar to that of the poly-silicon solar cells that currently dominate the photovoltaics market.

    The research, which was published today in Science, was led by Yang Yang, UCLA’s Carol and Lawrence E. Tannas Jr. Professor of Materials Science.

    2
    Qifeng Han, Yang Yang and Lei Meng. Oszie Tarula/UCLA

    “With our tandem solar cell design, we’re drawing energy from two distinct parts of the solar spectrum over the same device area,” Yang said. “This increases the amount of energy generated from sunlight compared to the CIGS layer alone.”

    Yang added that the technique of spraying on a layer of perovskite could be easily and inexpensively incorporated into existing solar-cell manufacturing processes.

    The cell’s CIGS base layer, which is about 2 microns (or two-thousandths of a millimeter) thick, absorbs sunlight and generates energy at a rate of 18.7 percent efficiency on its own, but adding the 1 micron-thick perovskite layer improves its efficiency — much like how adding a turbocharger to a car engine can improve its performance. The two layers are joined by a nanoscale interface that the UCLA researchers designed; the interface helps give the device higher voltage, which increases the amount of power it can export.

    And the entire assembly sits on a glass substrate that’s about 2 millimeters thick.

    “Our technology boosted the existing CIGS solar cell performance by nearly 20 percent from its original performance,” Yang said. “That means a 20 percent reduction in energy costs.”

    He added that devices using the two-layer design could eventually approach 30 percent power conversion efficiency. That will be the research group’s next goal.

    The study’s lead authors are Qifeng Han, a visiting research associate in Yang’s laboratory, and Yao-Tsung Hsieh and Lei Meng, who both recently earned their doctorates at UCLA. The study’s other authors are members of Yang’s research group and researchers from Solar Frontier Corp.’s Atsugi Research Center in Japan.

    The research was supported by the National Science Foundation and the Air Force Office of Scientific Research. Yang and his research group have been working on tandem solar cells for several years and their accomplishments include developing transparent tandem solar cells that could be used in windows.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC LA Campus

    For nearly 100 years, UCLA has been a pioneer, persevering through impossibility, turning the futile into the attainable.

    We doubt the critics, reject the status quo and see opportunity in dissatisfaction. Our campus, faculty and students are driven by optimism. It is not naïve; it is essential. And it has fueled every accomplishment, allowing us to redefine what’s possible, time after time.

    This can-do perspective has brought us 12 Nobel Prizes, 12 Rhodes Scholarships, more NCAA titles than any university and more Olympic medals than most nations. Our faculty and alumni helped create the Internet and pioneered reverse osmosis. And more than 100 companies have been created based on technology developed at UCLA.

     
  • richardmitnick 1:49 pm on June 29, 2018 Permalink | Reply
    Tags: ADA-SCID or bubble baby disease, Family travels 7500 miles to save son’s life with treatment developed at UCLA, , , UCLA Newsroom   

    From UCLA Newsroom: “Family travels 7,500 miles to save son’s life with treatment developed at UCLA” 


    From UCLA Newsroom

    June 28, 2018
    Mirabai Vogt-James

    Stem cell gene therapy cures baby with life-threatening immune disorder.

    1
    Hussein El Kerdi before and after his successful treatment for ADA-SCID, also known as bubble baby disease. Courtesy of the El Kerdi family.

    When he was born in September 2015, Hussein El Kerdi looked like a healthy baby boy. No one knew that his immune cells lacked an important enzyme. But the absence of that enzyme would profoundly change the El Kerdi family’s life, sending them on a journey from their small hometown in Lebanon to UCLA. Their one goal: to save Hussein’s life.

    When Hussein was three months old, a physician in Beirut diagnosed Hussein with a life-threatening immune disorder called adenosine deaminase-deficient severe combined immunodeficiency, also known as ADA-SCID or bubble baby disease.

    The disorder is caused by a genetic mutation that results in lack of the adenosine deaminase enzyme, without which immune cells cannot fight infections. Babies with the disease must remain isolated in germ-free environments to avoid exposure to viruses and bacteria. If the disease is not treated, even a minor cold could be fatal, and babies with the condition typically do not survive past their second birthday.

    Dr. Donald Kohn, a physician-scientist at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, has been perfecting a stem cell gene therapy for bubble baby disease for more than three decades. The treatment uses blood-forming stem cells, which have two important properties: They can make exact copies of themselves and they can produce all of the cells that make up the blood system, including immune cells such as T cells.

    Kohn’s treatment involves removing those blood-forming stem cells from the patient’s bone marrow and correcting the genetic mutation by inserting the gene responsible for making adenosine deaminase. The corrected stem cells are then infused back into the patient, where they begin producing a continual supply of healthy immune cells that are capable of fighting infection.

    Kohn, whose work focuses on genetic blood disorders, received approval from the U.S. Food and Drug Administration in 1993 to test the treatment in clinical trials. Since then, 30 out of 30 babies with the condition have been cured in six trials run by Kohn; data from a seventh trial is currently being analyzed.

    2017 study analyzes therapy for bubble baby disease

    In Lebanon, Hussein’s father, Ali, and mother, Zahraa, had heard nothing about the treatment. They were told that there had been no other cases of bubble baby disease in the Middle East, and that Great Britain and the U.S. were the only places where this experimental treatment was available.

    With help from family and friends, the El Kerdis created a plan that would eventually bring them to UCLA. A relative who is a doctor in Michigan emailed Kohn to tell him about Hussein, and Kohn — along with colleagues from the UCLA Broad Stem Cell Research Center, the David Geffen School of Medicine at UCLA and UCLA Mattel Children’s Hospital — began to make arrangements for the El Kerdis’ arrival and Hussein’s treatment.

    In April 2016, the family arrived in Los Angeles; Hussein was six months old and desperately ill.

    “I hadn’t seen a patient like Hussein in 15 or 20 years,” Kohn said. “About three to four weeks in, I thought he wasn’t going to make it through. But he did.”

    Each day leading up to his stem cell gene therapy treatment, Hussein became stronger thanks to the expert care provided by the pediatric intensive care unit at the children’s hospital.

    On July 12, 2016, some of Hussein’s bone marrow was removed and blood-forming stem cells were extracted from it. Two days later, after the cells were genetically modified, they were infused back into Hussein. Over the next couple of months, the stem cells began to create immune cells that produce adenosine deaminase. By the beginning of that September, just a few weeks before his first birthday, Hussein was healthy enough to go home.

    Evangelina’s story: Another baby with the condition is cured

    Before leaving UCLA, the El Kerdis celebrated Hussein’s birthday with Kohn and several of the nurses who cared for him. During the celebration, Ali and Zahraa expressed their gratitude.

    2
    Hussein El Kerdi during his 2016 procedure at UCLA. His father, Ali El Kerdi (with cell phone) looks on. UCLA Broad Stem Cell Research Center.

    “I hope that when Hussein grows up, he comes to the States and gets educated to be a doctor at UCLA,” Ali El Kerdi said. “On behalf of myself and my wife and child, I want to say thank you to Dr. Kohn and to UCLA and to all the people who helped bring this miracle to life.”

    Zahraa El Kerdi said, “I cannot describe my happiness; I’m going back to my family with my child in good health. It’s so exciting, I cannot describe it.”

    Now, nearly two years after the procedure, Hussein is healthy and thriving at home with his family.

    Orchard Therapeutics, a biotechnology company that was launched in 2016, is working to bring the therapy that Hussein received to more patients.

    $20 million grant funds new clinical trial on ADA-SCID

    The company has a research partnership with UCLA to develop the treatment that Kohn created as a frozen product, which would allow it to be used at other medical centers. Kohn is hopeful that the treatment, called OTL-101, will be approved by the FDA in due course so that it can be made available to hospitals across the U.S.

    Kohn is currently conducting clinical trials that test similar stem cell gene therapy techniques for other blood diseases, including sickle cell disease, which is the most common inherited blood disorder in the U.S.

    Kohn is a paid member of the Orchard Therapeutics scientific advisory board; on behalf of the Regents of the University of California, the UCLA Technology Development Group has licensed intellectual property related to the ADA-SCID treatment developed by Kohn to the company.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC LA Campus

    For nearly 100 years, UCLA has been a pioneer, persevering through impossibility, turning the futile into the attainable.

    We doubt the critics, reject the status quo and see opportunity in dissatisfaction. Our campus, faculty and students are driven by optimism. It is not naïve; it is essential. And it has fueled every accomplishment, allowing us to redefine what’s possible, time after time.

    This can-do perspective has brought us 12 Nobel Prizes, 12 Rhodes Scholarships, more NCAA titles than any university and more Olympic medals than most nations. Our faculty and alumni helped create the Internet and pioneered reverse osmosis. And more than 100 companies have been created based on technology developed at UCLA.

     
  • richardmitnick 8:22 am on June 12, 2018 Permalink | Reply
    Tags: A new process for assembling semiconductor devices, The metal atoms are usually different sizes or shapes from the atoms in the semiconductor materials that they’re bonding to which is why small gaps or defects occur, The new method could be used to assemble ultra–energy-efficient nanoscale electronic components or optoelectronic devices, The new procedure uses van der Waals forces — weak electrostatic connections that are activated when atoms are very close to each other, The research is also the first work to validate a scientific theory that originated in the 1930s- The Schottky-Mott rule, Their method joins a semiconductor layer and a metal electrode layer without the atomic-level defects that typically occur, UCLA Newsroom   

    From UCLA Newsroom: “Tiny defects in semiconductors created ‘speed bumps’ for electrons. UCLA researchers cleared the path” 


    From UCLA Newsroom

    June 08, 2018
    Matthew Chin

    New technique could improve electronics’ energy efficiency by removing the microscopic flaws usually formed during manufacturing.

    1
    The new technique (left, foreground) prevents tiny defects from forming by laminating a thin sheet of metal (silver spheres) to the semiconductor layer (yellow), creating a better fit than the current process (right, background).

    UCLA scientists and engineers have developed a new process for assembling semiconductor devices. The advance could lead to much more energy-efficient transistors for electronics and computer chips, diodes for solar cells and light-emitting diodes, and other semiconductor-based devices.

    A paper about the research was published in Nature. The study was led by Xiangfeng Duan, professor of chemistry and biochemistry in the UCLA College, and Yu Huang, professor of materials science and engineering at the UCLA Samueli School of Engineering. The lead author is Yuan Liu, a UCLA postdoctoral fellow.

    Their method joins a semiconductor layer and a metal electrode layer without the atomic-level defects that typically occur when other processes are used to build semiconductor-based devices. Even though those defects are minuscule, they can trap electrons traveling between the semiconductor and the adjacent metal electrodes, which makes the devices less efficient than they could be. The electrodes in semiconductor-based devices are what enable electrons to travel to and from the semiconductor; the electrons can carry computing information or energy to power a device.

    Generally, metal electrodes in semiconductor devices are built using a process called physical vapor deposition. In this process, metallic materials are vaporized into atoms or atomic clusters that then condense onto the semiconductor, which can be silicon or another similar material. The metal atoms stick to the semiconductor through strong chemical bonds, eventually forming a thin film of electrodes atop the semiconductor.

    One issue with that process is that the metal atoms are usually different sizes or shapes from the atoms in the semiconductor materials that they’re bonding to. As a result, the layers cannot form perfect one-to-one atomic connections, which is why small gaps or defects occur.

    “It is like trying to fit one layer of Lego brand blocks onto those of a competitor brand,” Huang said. “You can force the two different blocks together, but the fit will not be perfect. With semiconductors, those imperfect chemical bonds lead to gaps where the two layers join, and those gaps could extend as defects beyond the interface and into the materials.”

    Those defects trap electrons traveling across them, and the electrons need extra energy to get through those spots.

    The UCLA method prevents the defects from forming, by joining a thin sheet of metal atop the semiconductor layer through a simple lamination process. And instead of using chemical bonds to hold the two components together, the new procedure uses van der Waals forces — weak electrostatic connections that are activated when atoms are very close to each other — to keep the molecules “attached” to each other. Van der Waals forces are weaker than chemical bonds, but they’re strong enough to hold the materials together because of how thin they are — each layer is around 10 nanometers thick or less.

    (A nanometer is one-billionth of a meter; for comparison, a human hair is about 100,000 nanometers thick.)

    “Even though they are different in their geometry, the two layers join without defects and stay in place due to the van der Waals forces,” Huang said.

    The research is also the first work to validate a scientific theory that originated in the 1930s. The Schottky-Mott rule proposed the minimum amount of energy electrons need to travel between metal and a semiconductor under ideal conditions.

    Using the theory, engineers should be able to select the metal that allows electrons to move across the junction between metal and semiconductor with the smallest amount of energy. But because of those tiny defects that have always occurred during manufacturing, semiconductor devices have always needed electrons with more energy than the theoretical minimum.

    The UCLA team is the first to verify the theory in experiments with different combinations of metals and semiconductors. Because the electrons didn’t have to overcome the usual defects, they were able to travel with the minimum amount of energy predicted by the Schottky-Mott rule.

    “Our study for the first time validates these fundamental limits of metal–semiconductor interfaces,” Duan said. “It shows a new way to integrate metals onto other surfaces without introducing defects. Broadly, this can be applied to the fabrication of any delicate material with interfaces that were previously plagued by defects.”

    For example, besides electrode contacts on semiconductors, it could be used to assemble ultra–energy-efficient nanoscale electronic components, or optoelectronic devices such as solar cells.

    The paper’s other UCLA authors are graduate students Jian Guo, Enbo Zhu and Sung-Joon Lee, and postdoctoral scholar Mengning Ding. Researchers from Hunan University, China; King Saud University, Saudia Arabia; and Northrop Grumman Corporation also contributed to the study.

    The study builds off of nearly a decade of work by Duan and Huang on using van der Waals forces to integrate materials. A study they led, published in Nature in March 2018, described their use of van der Waals forces to create a new class of 2D materials called monolayer atomic crystal molecular superlattices. In an earlier study, which was published in Nature in 2010, they described their use of van der Waals forces to build high-speed transistors using graphene.

    See the full article here .



    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC LA Campus

    For nearly 100 years, UCLA has been a pioneer, persevering through impossibility, turning the futile into the attainable.

    We doubt the critics, reject the status quo and see opportunity in dissatisfaction. Our campus, faculty and students are driven by optimism. It is not naïve; it is essential. And it has fueled every accomplishment, allowing us to redefine what’s possible, time after time.

    This can-do perspective has brought us 12 Nobel Prizes, 12 Rhodes Scholarships, more NCAA titles than any university and more Olympic medals than most nations. Our faculty and alumni helped create the Internet and pioneered reverse osmosis. And more than 100 companies have been created based on technology developed at UCLA.

     
  • richardmitnick 9:45 am on May 30, 2018 Permalink | Reply
    Tags: , , UCLA Newsroom,   

    From UCLA Newsroom: “On Hawaiian research trip, UCLA students got early look at Kilauea eruption” 


    From UCLA Newsroom

    May 25, 2018
    Joy McCreary

    The geological abnormalities they observed were collected as part of a long-term research effort.

    1
    This U.S. Geological Survey photo from May 22 shows how the fissure complex remains active in Kīlauea volcano’s lower east rift zone.

    About two months ago, a group of UCLA geophysics students watched fountains of bright red-orange lava at Kilauea volcano as they erupted from Halemaumau crater. At the time, the volcano was another fascinating and beautiful geological feature to study. Since then, however, Kilauea has become much more active, and more dangerous.

    Spurred on by more than 100 earthquakes that followed the magnitude 6.9 earthquake on May 5, more than 20 fissures have opened up along the western coast of the big island of Hawaii sending lava into surrounding neighborhoods. On May 17, an explosion sent ash 30,000 feet into the sky as magma interacted with the water table. More than 1,800 residents have been evacuated from Leilani Estates and Lanipuna Gardens, and the governor has declared a state of emergency.

    [For some reason, the U.S.A. citizenry continues to build in areas not fit for building. It is the same on the New Jersey USA shoreline.]

    Even at the time of their trip in March, Paul Davis, professor of geophysics at UCLA who led the excursion, and his students noticed abnormalities in their observations.

    “The increased activity we did witness was part of the build-up to the activity we’re seeing now,” Davis said. He added that the kind of research he and his students conducted on the trip can help scientists learn more about how to predict eruptions like this.

    “We need to understand magma pathways, in order to interpret the way Earth’s surface is deformed and that can help us determine where and when the magma will break out on the surface,” said Davis, who has been studying volcanoes and plate tectonics for 30 years to better understand geology on other planets.

    2
    Jewel Abbate, left, and Aaron Tannenbaum. Fiona McCarthy/UCLA

    The lava, which has destroyed several dozen structures, has been erupting since May 3. The problem has only continued to worsen, and as Davis pointed out, it’s uncertain how long this will continue.

    “I am deeply saddened by the destruction of people’s homes from the recent eruption. The research that is done on the volcano is intended to help better understand what is happening and hopefully predict paths that flows might take,” said Fiona McCarthy, a third-year geophysics major who was one of the 11 students who went.

    Davis and researchers at UCLA have been taking measurements across a dike — a vertical sheet of rock that is a result of magma fracturing the surrounding rock and intruding into the crack, which causes the dikes to resemble veins throughout rock formations — formed in 1973. UCLA geophysics classes made similar trips in 1995 and 1997. Taking measurements helps researchers understand the geophysics of an erupting volcano and provides long term data to compare Hawaii with other planets, and in particular, Mars.

    The most recent trip was the beginning of a quarter-long capstone course, and the culmination of a geophysics degree at UCLA. In the past, students have also been to the San Andreas Fault on the Carrizo Plain in central California; Long Valley Caldera, near Yosemite; an area that stretches from Acapulco on the Pacific coast to Tampico on the Gulf coast of Mexico; the Andes in Peru; and Mount Etna in Sicily, trips partly funded by generous donations. Students were able to put all of their theoretical knowledge into practice as they traversed volcanoes and hiked through the Hawaiian forests to gather data.

    “I was able to finally actually see field work being done, collect data, and now I am fitting models that I have read about for the past couple years to that data. That’s pretty incredible to see,” McCarthy said. “This definitely feels like what I will be doing in the future if I do end up going to grad school or even just out in the workforce.”

    The typical daily schedule mirrored that of a working geophysicist, she said. They would wake up at 6 a.m. for breakfast at 7 on a military base, and then the group would head out for the day hiking to lava fields or driving to the top of Mauna Loa, the largest active volcano on Earth.

    3
    View of Halemaumau crater on Kilauea volcano’s summit at the end of March before it filled with lava and overflowed.

    While in the field, the UCLA students would take readings with a variety of tools and devices. They used very-low-frequency electromagnetic meters and magnetometers to study the Earth’s magnetic fields. They also used self potential probes to measure the electrical potential in Earth’s minerals and gravimeters to monitor the difference in the force of gravity from one place to another. Once they returned to camp in the evenings, the team would upload their data to their computers.

    “The very-low-frequency electromagnetic meter and self potential probes helped us understand what was going on with the water table under the surface. Gravity measurements were taken over Mauna Loa to see how the volcano might affect Earth’s gravity. The magnetometer measured Earth’s magnetic field locally at the volcano to see how it may perturb Earth’s magnetic field,” fourth-year geophysics major Aaron Tannenbaum said.

    According to Davis, part of the uncertainty with how eruptions will continue is the nature of lava itself. When it’s underground (and referred to as magma), it progresses unevenly to the surface. Also, he said, eruptions can be episodic rather than continuous due to blockages or changes in the Earth’s surface.

    “Some conduits are blocked and it takes time for the pressure to build and break the blockage,” Davis said. “Water can seep in from a crater lake or the water table and cause stream generation and pressurization. Water seeping in from the water table at Halemaumau is thought to have caused the May 17 ash eruption of Kilauea.”

    Studying the current eruptions will provide extremely valuable data on the geophysical conditions that occur before a new eruption, Davis said. For example, radar images from satellites show how the ground deformed because of magma intrusion and the magnitude 6.9 earthquake on May 5.

    4
    Students and faculty from UCLA Earth, planetary and space sciences at Hawaiian Volcano Observatory. UCLA.

    Students will spend the remainder of the quarter comparing the measurements from Hawaii to Olympus Mons on Mars. Both the volcanoes demonstrate similar anomalies and studying both volcanoes will help further understand and prepare for future eruptions.

    Taking geophysics students into the field is the best way to prepare students for a myriad of opportunities, whether they are hoping to study natural disasters like volcanic eruptions and earthquakes, to work at NASA studying other planets and exoplanets, to search for resources, or to monitor Earth’s environment. According to Davis field experience, along with data analysis, comparison with theory and hypothesis testing, is the best preparation for such future pursuits.

    “The problem-solving skills I have learned from the day we got on the plane until now are priceless, and I am sure there are plenty more lessons to learn and lots more coding to do,” McCarthy said.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    stem

    Stem Education Coalition

    UC LA Campus

    For nearly 100 years, UCLA has been a pioneer, persevering through impossibility, turning the futile into the attainable.

    We doubt the critics, reject the status quo and see opportunity in dissatisfaction. Our campus, faculty and students are driven by optimism. It is not naïve; it is essential. And it has fueled every accomplishment, allowing us to redefine what’s possible, time after time.

    This can-do perspective has brought us 12 Nobel Prizes, 12 Rhodes Scholarships, more NCAA titles than any university and more Olympic medals than most nations. Our faculty and alumni helped create the Internet and pioneered reverse osmosis. And more than 100 companies have been created based on technology developed at UCLA.

     
  • richardmitnick 11:45 am on May 16, 2018 Permalink | Reply
    Tags: 3D printer that can create complex biological tissues, , , Stereolithography, UCLA Newsroom   

    From UCLA Newsroom: “UCLA engineer develops 3D printer that can create complex biological tissues” 


    From UCLA Newsroom

    May 14, 2018
    Matthew Chin

    1
    The 3D bioprinter designed by Khademhosseini has two key components: a custom-built microfluidic chip (pictured) and a digital micromirror.Amir Miri.

    A UCLA bioengineer has developed a technique that uses a specially adapted 3D printer to build therapeutic biomaterials from multiple materials. The advance could be a step toward on-demand printing of complex artificial tissues for use in transplants and other surgeries.

    “Tissues are wonderfully complex structures, so to engineer artificial versions of them that function properly, we have to recreate their complexity,” said Ali Khademhosseini, who led the study and is UCLA’s Levi James Knight, Jr., Professor of Engineering at the UCLA Samueli School of Engineering. “Our new approach offers a way to build complex biocompatible structures made from different materials.”

    The study was published in Advanced Materials.

    The technique uses a light-based process called stereolithography, and it takes advantage of a customized 3D printer designed by Khademhosseini that has two key components. The first is a custom-built microfluidic chip — a small, flat platform similar in size to a computer chip — with multiple inlets that each “prints” a different material. The other component is a digital micromirror, an array of more than a million tiny mirrors that each moves independently.

    The researchers used different types of hydrogels – materials that, after passing through the printer, form scaffolds for tissue to grow into. The micromirrors direct light onto the printing surface, and the illuminated areas indicate the outline of the 3D object that’s being printed. The light also triggers molecular bonds to form in the materials, which causes the gels to firm into solid material. As the 3D object is printed, the mirror array changes the light pattern to indicate the shape of each new layer.

    The process is the first to use multiple materials for automated stereolithographic bioprinting — an advance over conventional stereolithographic bioprinting, which only uses one type of material. While the demonstration device used four types of bio-inks, the study’s authors write that the process could accommodate as many inks as needed.

    The researchers first used the process to make simple shapes, such as pyramids. Then, they made complex 3D structures that mimicked parts of muscle tissue and muscle-skeleton connective tissues. They also printed shapes mimicking tumors with networks of blood vessels, which could be used as biological models to study cancers. They tested the printed structures by implanting them in rats. The structures were not rejected.

    The study’s other authors include first author Amir Miri, who was a postdoctoral scholar at Harvard Medical School when the study was conducted and is now at Rowan University. The co-senior author is Yu Shrike Zhang of Brigham and Women’s Hospital and Harvard Medical School. The other authors are from University of Santiago de Compostela, Spain; Sharif University of Technology, Iran; and UC San Diego.

    Khademhosseini, who joined UCLA in November 2017, has faculty appointments in bioengineering and in chemical and biomolecular engineering, as well as in the David Geffen School of Medicine at UCLA. He is the director of the Center for Minimally Invasive Therapeutics and an associate director of the California NanoSystems Institute.

    The study was funded by the Office of Naval Research and the National Institutes of Health.

    See the full article here .

    Please help promote STEM in your local schools.

    stem

    Stem Education Coalition

    UC LA Campus

    For nearly 100 years, UCLA has been a pioneer, persevering through impossibility, turning the futile into the attainable.

    We doubt the critics, reject the status quo and see opportunity in dissatisfaction. Our campus, faculty and students are driven by optimism. It is not naïve; it is essential. And it has fueled every accomplishment, allowing us to redefine what’s possible, time after time.

    This can-do perspective has brought us 12 Nobel Prizes, 12 Rhodes Scholarships, more NCAA titles than any university and more Olympic medals than most nations. Our faculty and alumni helped create the Internet and pioneered reverse osmosis. And more than 100 companies have been created based on technology developed at UCLA.

     
  • richardmitnick 12:41 pm on March 27, 2018 Permalink | Reply
    Tags: , CNSI - California NanoSystems Institute, Magnify, , UCLA Newsroom   

    From UCLA Newsroom: “UCLA incubator helps drive innovations, assisting early-stage tech and life science companies” 


    UCLA Newsroom

    March 26, 2018
    Meghan Steele Horan

    1
    Magnify at CNSI provides startup companies, like Octant, with the necessary tools and space to perform hands-on research and development to advance their product. Marc Roseboro/CNSI

    Dr. Chia Soo’s professional life has been dedicated to finding new and innovative treatments to promote skin regeneration for scars from burns or other skin trauma. While performing research at UCLA more than 20 years ago, she found a promising peptide drug for wound healing and eventually founded her own company. But before she could bring it to market, she would need to perform preclinical proof of concept studies, which for her, would require more laboratory space, access to specialized and expensive facilities, and a place to grow her business.

    For Soo, a solution was two buildings away at UCLA’s deep technology incubator called Magnify. Deep technology innovations are those built around unique, protected or hard-to-reproduce technological or scientific advances and pertain to a variety of industries including life sciences, energy, information technology and materials.

    “Magnify was directly responsible for us securing $8 million in Small Business Innovation Research grant funding from the National Institutes of Health to perform preclinical trials,” said Soo, professor and vice chair for research in the division of plastic and reconstructive surgery at the David Geffen School of Medicine at UCLA and founder of Scarless Laboratories. “What Magnify offered was not just a place or a desk, but access to millions of dollars in resources and facilities due to its proximity to the California NanoSystems Institute and UCLA. In order to prove that our drug worked, we needed facilities to be able to do high level research.”

    Scarless Laboratories is an early-stage biotechnology company which has recently completed preclinical trials on a peptide drug for wound healing that could make wound tissue stronger as it heals, or more difficult to rip apart. It could also make wounds heal faster while reducing scarring. This could benefit people suffering from chronic wounds like diabetic ulcers or those undergoing elective surgeries. Scarless is now in the process of submitting an application for Phase I clinical trials, an initial phase of testing that assesses the safety of a drug in a small number of volunteers.

    Housed right on the UCLA campus inside the California NanoSystems Institute, Magnify (formerly known as the CNSI Incubator), helps startups succeed by providing access to high-end scientific equipment and entrepreneurial networking opportunities to reduce the time and money needed to launch. According to a 2017 Milken Institute Report, UCLA attracted more than $1 billion in research funding and also ranks no. 1 in the nation for spinning out companies based on campus research.

    “As one of the world’s top research universities, UCLA has the intellectual capital, infrastructure and sophisticated tools needed to transform ideas into commercial products that will improve peoples’ quality of life around the world,” said Brian Benson, who oversees Magnify as director of entrepreneurship and commercialization at CNSI.

    2
    Magnify at CNSI features state-of-the-art co-working laboratory and office space as well as other critical services and support. Marc Roseboro/CNSI.

    The institute’s members include more than 150 faculty members from 35 departments across UCLA. This diversity of expertise and backgrounds provides a network that fosters powerful collaborations among scientists and researchers from applied mathematics and engineering to the natural and biomedical sciences. Research members from CNSI are involved with almost half of UCLA startups.

    The infrastructure of CNSI offers startup companies access to a collection of advanced instrumentation from the six state-of-the-art CNSI Technology Centers, some of which include optical, electron and scanning probe microscopy, cleanroom fabrication, and tools for analyzing nanomaterials.

    Membership in Magnify offers highly motivated entrepreneurs the ability to conduct key activities like conducting proof-of-concept experiments or building a prototype. This is important for collecting critical data that will inform the design of a final commercial product.

    “Our goal is to help companies reduce the time and capital needed to transform their ideas into a scalable, fundable business,” Benson said. “Magnify provides critical resources including mentorship, business development, and funding advice that can lead to a company’s success.”

    To be eligible for the incubator, companies should have sufficient working capital to achieve critical technical and business milestones such as Series A financing. This type of funding enables development of a commercially viable prototype, while covering incubator fees — which would vary from company to company based on needs — for at least six months. In addition, companies should also be incorporated for less than five years and have an established residence in the incubator.

    Startups in the greater Los Angeles area are encouraged to apply, but preferences will be given to companies with a UCLA affiliation which includes a license of intellectual property owned or controlled by UCLA, sponsored research agreement with UCLA, one active member — either a cofounder or member of the management team — who is a current UCLA faculty, student, staff or alumnus.

    Millibatt, a company co-founded by two UCLA alumni, makes millimeter-scale-sized, rechargeable lithium-ion batteries for items including wearable and medical devices like fitness trackers or pacemakers. At the time of their invention, Leland Smith was pursuing a Ph.D. and Janet Hur was a postdoctoral researcher, both in materials science and engineering. Smith and Hur filed a UCLA provisional patent, formed their company and joined Magnify in late 2016.

    “Right now, we’re building out a small pilot line using CNSI’s facilities as a proof-of-concept for a larger pilot line when we leave the incubator,” Smith said. “Using this pilot line, we’re trying to demonstrate that we could build about 1 million batteries a year.”

    What many young entrepreneurs may not think about is how they will access equipment and order necessary materials for experiments or building prototypes.

    “There are so many things to think about. Where can you get a fume hood, time on an electron microscope, or store chemical waste?” Smith said. “If we had to do things like this on our own without CNSI and Magnify, it easily would have added months of complications for us.”

    Admission to Magnify is through a competitive review process starting with an online application that is initially screened by the Magnify team. Selected applicants are invited to present to the Magnify advisory committee, on a quarterly basis. Acceptance decisions are made by the Magnify director along with input from the advisory committee.

    Magnify is always looking for great startups developing transformative technology to join the innovation ecosystem. If you are a passionate entrepreneur looking to launch a company we encourage you to apply today.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UC LA Campus

    For nearly 100 years, UCLA has been a pioneer, persevering through impossibility, turning the futile into the attainable.

    We doubt the critics, reject the status quo and see opportunity in dissatisfaction. Our campus, faculty and students are driven by optimism. It is not naïve; it is essential. And it has fueled every accomplishment, allowing us to redefine what’s possible, time after time.

    This can-do perspective has brought us 12 Nobel Prizes, 12 Rhodes Scholarships, more NCAA titles than any university and more Olympic medals than most nations. Our faculty and alumni helped create the Internet and pioneered reverse osmosis. And more than 100 companies have been created based on technology developed at UCLA.

     
  • richardmitnick 1:08 pm on March 9, 2018 Permalink | Reply
    Tags: , , , , UCLA Newsroom, UCLA researchers develop a new class of two-dimensional materials   

    From UCLA: “UCLA researchers develop a new class of two-dimensional materials” 


    UCLA Newsroom

    March 08, 2018
    Matthew Chin

    1
    An artist’s concept of two kinds of monolayer atomic crystal molecular superlattices. On the left, molybdenum disulfide with layers of ammonium molecules; on the right, black phosphorus with layers of ammonium molecules. UCLA.

    A research team led by UCLA scientists and engineers has developed a method to make new kinds of artificial “superlattices” — materials comprised of alternating layers of ultra-thin “two-dimensional” sheets, which are only one or a few atoms thick. Unlike current state-of-the art superlattices, in which alternating layers have similar atomic structures, and thus similar electronic properties, these alternating layers can have radically different structures, properties and functions, something not previously available.

    For example, while one layer of this new kind of superlattice can allow a fast flow of electrons through it, the other type of layer can act as an insulator. This design confines the electronic and optical properties to single active layers, and they do not interfere with other insulating layers.

    Such superlattices can form the basis for improved and new classes of electronic and optoelectronic devices. Applications include superfast and ultra-efficient semiconductors for transistors in computers and smart devices, and advanced LEDs and lasers.

    Compared with the conventional layer-by-layer assembly or growth approach currently used to create 2D superlattices, the new UCLA-led process to manufacture superlattices from 2D materials is much faster and more efficient. Most importantly, the new method easily yields superlattices with tens, hundreds or even thousands of alternating layers, which is not yet possible with other approaches.

    This new class of superlattices alternates 2D atomic crystal sheets that are interspaced with molecules of varying shapes and sizes. In effect, this molecular layer becomes the second “sheet” because it is held in place by “van der Waals” forces, weak electrostatic forces to keep otherwise neutral molecules “attached” to each other. These new superlattices are called “monolayer atomic crystal molecular superlattices.”

    The study, published in Nature, was led by Xiangfeng Duan, UCLA professor of chemistry and biochemistry, and Yu Huang, UCLA professor of materials science and engineering at the UCLA Samueli School of Engineering.

    “Traditional semiconductor superlattices can usually only be made from materials with highly similar lattice symmetry, normally with rather similar electronic structures,” Huang said. “For the first time, we have created stable superlattice structures with radically different layers, yet nearly perfect atomic-molecular arrangements within each layer. This new class of superlattice structures has tailorable electronic properties for potential technological applications and further scientific studies.”

    One current method to build a superlattice is to manually stack the ultrathin layers one on top of the other. But this is labor-intensive. In addition, since the flake-like sheets are fragile, it takes a long time to build because many sheets will break during the placement process. The other method is to grow one new layer on top of the other, using a process called “chemical vapor deposition.” But since that means different conditions, such as heat, pressure or chemical environments, are needed to grow each layer, the process could result in altering or breaking the layer underneath. This method is also labor-intensive with low yield rates.

    The new method to create monolayer atomic crystal molecular superlattices uses a process called “electrochemical intercalation,” in which a negative voltage is applied. This injects negatively charged electrons into the 2D material. Then, this attracts positively charged ammonium molecules into the spaces between the atomic layers. Those ammonium molecules automatically assemble into new layers in the ordered crystal structure, creating a superlattice.

    “Think of a two-dimensional material as a stack of playing cards,” Duan said. “Then imagine that we can cause a large pile of nearby plastic beads to insert themselves, in perfect order, sandwiching between each card. That’s the analogous idea, but with a crystal of 2D material and ammonium molecules.”

    The researchers first demonstrated the new technique using black phosphorus as a base 2D atomic crystal material. Using the negative voltage, positively charged ammonium ions were attracted into the base material, and inserted themselves between the layered atomic phosphorous sheets.

    Following that success, the team inserted different types of ammonium molecules with various sizes and symmetries into a series of 2D materials. They found that they could tailor the structures of the resulting monolayer atomic crystal molecular superlattices, which had a diverse range of desirable electronic and optical properties.

    “The resulting materials could be useful for making faster transistors that consume less power, or for creating efficient light-emitting devices,” Duan said.

    The lead author of the study is Chen Wang, a doctoral student advised by Huang and Duan, who are both members of the California NanoSystems Institute. Other study authors are UCLA graduate students and postdoctoral researchers in Duan or Huang’s research groups; researchers from Caltech; Hunan University, China; University of Science and Technology of China; and King Saud University, Saudi Arabia.

    The research was supported by the National Science Foundation and the Office of Naval Research.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UC LA Campus

    For nearly 100 years, UCLA has been a pioneer, persevering through impossibility, turning the futile into the attainable.

    We doubt the critics, reject the status quo and see opportunity in dissatisfaction. Our campus, faculty and students are driven by optimism. It is not naïve; it is essential. And it has fueled every accomplishment, allowing us to redefine what’s possible, time after time.

    This can-do perspective has brought us 12 Nobel Prizes, 12 Rhodes Scholarships, more NCAA titles than any university and more Olympic medals than most nations. Our faculty and alumni helped create the Internet and pioneered reverse osmosis. And more than 100 companies have been created based on technology developed at UCLA.

     
  • richardmitnick 8:58 am on February 27, 2018 Permalink | Reply
    Tags: , Electrode for supercapacitors, Inspired by nature: Design for new electrode could boost supercapacitors’ performance, UCLA Newsroom   

    From UCLA Newsroom: “Inspired by nature: Design for new electrode could boost supercapacitors’ performance” 


    UCLA Newsroom

    February 23, 2018
    Matthew Chin

    1
    The branch-and-leaves design is made up of arrays of hollow, cylindrical carbon nanotubes (the “branches”) and sharp-edged petal-like structures (the “leaves”) made of graphene. Tim Fisher/UCLA Engineering.

    Mechanical engineers from the UCLA Henry Samueli School of Engineering and Applied Science and four other institutions have designed a super-efficient and long-lasting electrode for supercapacitors. The device’s design was inspired by the structure and function of leaves on tree branches, and it is more than 10 times more efficient than other designs.

    The electrode design provides the same amount of energy storage, and delivers as much power, as similar electrodes, despite being much smaller and lighter. In experiments it produced 30 percent better capacitance — a device’s ability to store an electric charge — for its mass compared to the best available electrode made from similar carbon materials, and 30 times better capacitance per area. It also produced 10 times more power than other designs and retained 95 percent of its initial capacitance after more than 10,000 charging cycles.

    Their work is described in the journal Nature Communications.

    Supercapacitors are rechargeable energy storage devices that deliver more power for their size than similar-sized batteries. They also recharge quickly, and they last for hundreds to thousands of recharging cycles. Today, they’re used in hybrid cars’ regenerative braking systems and for other applications. Advances in supercapacitor technology could make their use widespread as a complement to, or even replacement for, the more familiar batteries consumers buy every day for household electronics.

    Engineers have known that supercapacitors could be made more powerful than today’s models, but one challenge has been producing more efficient and durable electrodes. Electrodes attract ions, which store energy, to the surface of the supercapacitor, where that energy becomes available to use. Ions in supercapacitors are stored in an electrolyte solution. An electrode’s ability to deliver stored power quickly is determined in large part by how many ions it can exchange with that solution: The more ions it can exchange, the faster it can deliver power.

    Knowing that, the researchers designed their electrode to maximize its surface area, creating the most possible space for it to attract electrons. They drew inspiration from the structure of trees, which are able to absorb ample amounts of carbon dioxide for photosynthesis because of the surface area of their leaves.

    “We often find inspiration in nature, and plants have discovered the best way to absorb chemicals such as carbon dioxide from their environment,” said Tim Fisher, the study’s principal investigator and a UCLA professor of mechanical and aerospace engineering. “In this case, we used that idea but at a much, much smaller scale — about one-millionth the size, in fact.”

    To create the branch-and-leaves design, the researchers used two nanoscale structures composed of carbon atoms. The “branches” are arrays of hollow, cylindrical carbon nanotubes, about 20 to 30 nanometers in diameter; and the “leaves” are sharp-edged petal-like structures, about 100 nanometers wide, that are made of graphene — ultra thin sheets of carbon. The leaves are then arranged on the perimeter of the nanotube stems. The leaf-like graphene petals also give the electrode stability.

    The engineers then formed the structures into tunnel-shaped arrays, which the ions that transport the stored energy flow through with much less resistance between the electrolyte and the surface to deliver energy than they would if the electrode surfaces were flat.

    The electrode also performs well in acidic conditions and high temperatures, both environments in which supercapacitors could be used.

    Fisher directs UCLA’s Nanoscale Transport Research Group and is a member of the California NanoSystems Institute at UCLA. Lei Chen, a professor at Mississippi State, was the project’s other principal investigator. The first authors are Guoping Xiong of the University of Nevada, Reno, and Pingge He of Central South University. The research was supported by the Air Force Office of Scientific Research.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UC LA Campus

    For nearly 100 years, UCLA has been a pioneer, persevering through impossibility, turning the futile into the attainable.

    We doubt the critics, reject the status quo and see opportunity in dissatisfaction. Our campus, faculty and students are driven by optimism. It is not naïve; it is essential. And it has fueled every accomplishment, allowing us to redefine what’s possible, time after time.

    This can-do perspective has brought us 12 Nobel Prizes, 12 Rhodes Scholarships, more NCAA titles than any university and more Olympic medals than most nations. Our faculty and alumni helped create the Internet and pioneered reverse osmosis. And more than 100 companies have been created based on technology developed at UCLA.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: