Tagged: UC Berkeley Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:54 am on August 31, 2017 Permalink | Reply
    Tags: Berkeley SETI Research Center, Breakthrough Listen, , , UC Berkeley   

    From UC Berkeley: “Distant galaxy sends out 15 high-energy radio bursts” 

    UC Berkeley

    UC Berkeley

    August 30, 2017
    Robert Sanders
    rlsanders@berkeley.edu

    Breakthrough Listen, an initiative to find signs of intelligent life in the universe, has detected 15 brief but powerful radio pulses emanating from a mysterious and repeating source – FRB 121102 – far across the universe.

    Breakthrough Listen Project

    Fast radio bursts are brief, bright pulses of radio emission from distant but largely unknown sources, and FRB 121102 is the only one known to repeat: more than 150 high-energy bursts have been observed coming from the object, which was identified last year as a dwarf galaxy about 3 billion light years from Earth.

    2
    A sequence of 14 of the 15 detected bursts illustrate their dispersed spectrum and extreme variability. The streaks across the colored energy plot are the bursts appearing at different times and different energies because of dispersion caused by 3 billion years of travel through intergalactic space. In the top frequency spectrum, the dispersion has been removed to show the 300 microsecond pulse spike. Capturing this diverse set of bursts was made possible by the broad bandwidth that can be processed by the Breakthrough Listen backend at the Green Bank Telescope.



    GBO radio telescope, Green Bank, West Virginia, USA

    Possible explanations for the repeating bursts range from outbursts from rotating neutron stars with extremely strong magnetic fields – so-called magnetars – to a more speculative idea: They are directed energy sources, powerful laser bursts used by extraterrestrial civilizations to power spacecraft, akin to Breakthrough Starshot’s plan to use powerful laser pulses to propel nano-spacecraft to our solar system’s nearest star, Proxima Centauri.

    Breakthrough Starshot

    “Bursts from this source have never been seen at this high a frequency,” said Andrew Siemion, director of the Berkeley SETI Research Center and of the Breakthrough Listen program.

    As astronomers around the globe try to understand the mechanism generating fast radio bursts, they have repeatedly turned their radio telescopes on FRB 121102. Siemion and his team alerted the astronomical community to the high-frequency activity via an Astronomer’s Telegram on Monday evening, Aug. 28.

    “As well as confirming that the source is in a newly active state, the high resolution of the data obtained by the Listen instrument will allow measurement of the properties of these mysterious bursts at a higher precision than ever possible before,” said Breakthrough Listen postdoctoral researcher Vishal Gajjar, who discovered the increased activity.

    First detected with the Parkes Telescope in Australia, fast radio bursts have now been seen by several radio telescopes around the world.

    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia

    FRB 121102 was discovered on Nov. 2, 2012, (hence its name) and in 2015 it was the first fast radio burst seen to repeat, ruling out theories of bursts’ origins that involved the catastrophic destruction of the progenitor, at least in this instance.

    Regardless of FRB 121102’s ultimate source, when the recently detected pulses left their host galaxy, our solar system was less than 2 billion years old, noted Steve Croft, a Breakthrough Listen astronomer at UC Berkeley. Life on Earth consisted only of single-celled organisms; it would be another billion years before even the simplest multi-cellular life began to evolve.

    As part of Breakthrough Listen’s program to observe nearby stars and galaxies for signatures of extraterrestrial technology, the project science team at UC Berkeley added FRB 121102 to its list of targets. In the early hours of Saturday, Aug. 26, Gajjar observed that area of the sky using the Breakthrough Listen backend instrument at the Green Bank Telescope in West Virginia.

    The instrument accumulated 400 terabytes (a million million bytes) of data over a five-hour period, observing across the entire 4 to 8 GHz frequency band. This large dataset was searched for signatures of short pulses from the source over a broad range of frequencies, with a characteristic dispersion, or delay as a function of frequency, caused by the presence of gas in space between Earth and the source. The distinctive shape that the dispersion imposes on the initial pulse is an indicator of the amount of material between us and the source, and hence an indicator of the distance to the host galaxy.

    Analysis by Gajjar and the Breakthrough Listen team revealed 15 new pulses from FRB 121102. The observations show for the first time that fast radio bursts emit at higher frequencies than previously observed, with the brightest emission occurring at around 7 GHz.

    “The extraordinary capabilities of the backend receiver, which is able to record several gigahertz of bandwidth at a time, split into billions of individual channels, enable a new view of the frequency spectrum of FRBs, and should shed additional light on the processes giving rise to FRB emission.” Gajjar said.

    “Whether or not fast radio bursts turn out to be signatures of extraterrestrial technology, Breakthrough Listen is helping to push the frontiers of a new and rapidly growing area of our understanding of the universe around us,” Siemion said.

    See the full article here .
    Previously noted briefly here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Founded in the wake of the gold rush by leaders of the newly established 31st state, the University of California’s flagship campus at Berkeley has become one of the preeminent universities in the world. Its early guiding lights, charged with providing education (both “practical” and “classical”) for the state’s people, gradually established a distinguished faculty (with 22 Nobel laureates to date), a stellar research library, and more than 350 academic programs.

    UC Berkeley Seal

    Advertisements
     
  • richardmitnick 2:55 pm on August 5, 2017 Permalink | Reply
    Tags: , California, , Climate policies study shows Inland Empire economic boon, , , UC Berkeley   

    From UC Berkeley: “Climate policies study shows Inland Empire economic boon” 

    UC Berkeley

    UC Berkeley

    August 3, 2017
    Jacqueline Sullivan

    1
    UC Berkeley researchers found that the proliferation of renewable energy plants — like the San Gorgonio Pass wind farm shown above — is responsible for over 90 percent of the direct benefit of California’s climate and clean energy policies in the Inland Empire. (iStock photo).

    According to the first comprehensive study of the economic effects of climate programs in California’s Inland Empire, Riverside and San Bernardino counties experienced a net benefit of $9.1 billion in direct economic activity and 41,000 jobs from 2010 through 2016.

    Researchers at UC Berkeley’s Center for Labor Research and Education and the Center for Law, Energy and the Environment at Berkeley Law report that many of these jobs were created by one-time construction investments associated with building renewable energy power plants. These investments, they say, helped rekindle the construction industry, which experienced major losses during the Great Recession.

    When accounting for the spillover effects, the researchers report in their study commissioned by nonpartisan, nonprofit group Next 10, that state climate policies resulted in a total of $14.2 billion in economic activity and more than 73,000 jobs for the region during the same seven years.

    Study focal points

    2
    Inland Empire residents are at especially high risk for pollution-related health conditions. This hazy view from a Rancho Cucamonga street attests to the region’s smog problem. (Photo by Mikeetc via Creative Commons).

    Because smog in San Bernardino and Riverside counties is consistently among the worst in the state, residents are at especially high risk of pollution-related health conditions.

    “California has many at-risk communities — communities that are vulnerable to climate change, but also vulnerable to the policy solutions designed to slow climate change,” said Betony Jones, lead author of the report and associate director of the Green Economy Program at UC Berkeley’s Center for Labor Research and Education.

    In the Inland Empire, per capita income is approximately $23,000, compared to the state average of $30,000, and 17.5 percent of the residents of Riverside and San Bernardino counties live below the poverty line, compared to 14.7 percent of all Californians.

    The Net Economic Impacts of California’s Major Climate Programs in the Inland Empire study comes out right after the state’s recent decision to extend California’s cap-and-trade program, and as other states and countries look to California as a model.

    Cap-and-trade

    After accounting for compliance spending and investment of cap-and-trade revenue, researchers found cap and trade had net economic impacts of $25.7 million in San Bernardino and Riverside counties in the first four years of the program, from 2013 to 2016.

    That includes $900,000 in increased tax revenue and net employment growth of 154 jobs through the Inland Empire economy. When funds that have been appropriated but have not yet been spent are included, projected net economic benefits reach nearly $123 million, with 945 jobs created and $5.5 million in tax revenue.

    Proliferation of renewables

    The researchers found that the proliferation of renewable energy plants is responsible for over 90 percent of the direct benefit of California’s climate and clean energy policies in the Inland Empire. As of October 2016, San Bernardino and Riverside Counties were home to more than 17 percent of the state’s renewable generation capacity, according the California Energy Commission.

    3
    Researchers found that altogether, renewables like the solar panels pictured above, contributed more than 60,000 net jobs to the regional economy over seven years. (iStock photo)

    “Even after accounting for construction that would have taken place in a business-as-usual scenario, new renewable power plants created the largest number of jobs in the region over the seven-year period, generating 29,000 high-skilled, high-quality construction jobs,” said Jones.

    The authors compared the jobs created in the generation of renewable electricity with those that would have been created by maintaining natural gas electricity generation. “While renewables create fewer direct jobs, the multiplier effects are greater in the Inland Empire economy,” Jones said. “Altogether, renewable generation contributed over 60,000 net jobs to the regional economy over seven years.”

    Rooftop solar, energy efficiency programs

    The report looks at the costs and benefits of the California Solar Initiative, the federal renewables Investment Tax Credit, and investor-owned utility energy efficiency programs, which provide direct incentives for solar installation and energy efficiency retrofits at homes, businesses and institutions. These programs provided about $1.1 billion in subsidies for distributed solar and $612 million for efficiency in the Inland Empire between 2010 and 2016.

    While researchers calculated benefits for these two programs separately, they identified the costs of these programs to electricity ratepayers together. When the benefits are weighed against these costs, the total net impact of both programs resulted in the creation of more than 12,000 jobs and $1.68 billion across the economy over the seven years studied.

    The report’s authors suggest that officials and/or policymakers:

    Develop a comprehensive program for transportation, the greatest challenge facing in California’s climate goals;
    Expand energy efficiency programs to reduce energy use in the existing building and housing stock while reducing energy costs and creating jobs and economic activity;
    Ensure that the Inland Empire receives appropriate statewide spending based on its economic and environmental needs;
    Develop transition programs for workers and communities affected by the decline of the Inland Empire’s greenhouse gas-emitting industries.

    “California continues to demonstrate leadership on climate and clean energy, and results like these show that California’s models can be exported,” said Ethan Elkind, climate director at the UC Berkeley Center for Law, Energy and the Environment.

    Noel Perry, founder of Next 10, said the report gives policymakers and stakeholders the concrete data needed to weigh policy options and investments in the Inland Empire and beyond.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Founded in the wake of the gold rush by leaders of the newly established 31st state, the University of California’s flagship campus at Berkeley has become one of the preeminent universities in the world. Its early guiding lights, charged with providing education (both “practical” and “classical”) for the state’s people, gradually established a distinguished faculty (with 22 Nobel laureates to date), a stellar research library, and more than 350 academic programs.

    UC Berkeley Seal

     
  • richardmitnick 4:23 pm on June 14, 2017 Permalink | Reply
    Tags: , , , , , UC Berkeley   

    From UC Berkeley: “New evidence that all stars are born in pairs” 

    UC Berkeley

    UC Berkeley

    June 13, 2017
    Robert Sanders
    rlsanders@berkeley.edu

    Did our sun have a twin when it was born 4.5 billion years ago?

    1
    Radio image of a very young binary star system, less than about 1 million years old, that formed within a dense core (oval outline) in the Perseus molecular cloud. All stars likely form as binaries within dense cores. (SCUBA-2 survey image by Sarah Sadavoy, CfA)

    Almost certainly yes — though not an identical twin. And so did every other sunlike star in the universe, according to a new analysis by a theoretical physicist from UC Berkeley and a radio astronomer from the Smithsonian Astrophysical Observatory at Harvard University.

    Many stars have companions, including our nearest neighbor, Alpha Centauri, a triplet system.

    Centauris Alpha Beta Proxima 27, February 2012. Skatebiker

    Astronomers have long sought an explanation. Are binary and triplet star systems born that way? Did one star capture another? Do binary stars sometimes split up and become single stars?

    Astronomers have even searched for a companion to our sun, a star dubbed Nemesis because it was supposed to have kicked an asteroid into Earth’s orbit that collided with our planet and exterminated the dinosaurs. It has never been found.

    The new assertion is based on a radio survey of a giant molecular cloud filled with recently formed stars in the constellation Perseus, and a mathematical model that can explain the Perseus observations only if all sunlike stars are born with a companion.

    “We are saying, yes, there probably was a Nemesis, a long time ago,” said co-author Steven Stahler, a UC Berkeley research astronomer.

    “We ran a series of statistical models to see if we could account for the relative populations of young single stars and binaries of all separations in the Perseus molecular cloud, and the only model that could reproduce the data was one in which all stars form initially as wide binaries. These systems then either shrink or break apart within a million years.”

    2
    A radio image of a triple star system forming within a dusty disk in the Perseus molecular cloud obtained by the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile. (Image: Bill Saxton, ALMA (ESO/NAOJ/NRAO), NRAO/AUI/NSF)

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

    In this study, “wide” means that the two stars are separated by more than 500 astronomical units, or AU, where one astronomical unit is the average distance between the sun and Earth (93 million miles). A wide binary companion to our sun would have been 17 times farther from the sun than its most distant planet today, Neptune.

    Based on this model, the sun’s sibling most likely escaped and mixed with all the other stars in our region of the Milky Way galaxy, never to be seen again.

    “The idea that many stars form with a companion has been suggested before, but the question is: how many?” said first author Sarah Sadavoy, a NASA Hubble fellow at the Smithsonian Astrophysical Observatory. “Based on our simple model, we say that nearly all stars form with a companion. The Perseus cloud is generally considered a typical low-mass star-forming region, but our model needs to be checked in other clouds.”

    The idea that all stars are born in a litter has implications beyond star formation, including the very origins of galaxies, Stahler said.

    Stahler and Sadavoy posted their findings in April on the arXiv server. Their paper has been accepted for publication in the Monthly Notices of the Royal Astronomical Society.

    Stars birthed in ‘dense cores’

    Astronomers have speculated about the origins of binary and multiple star systems for hundreds of years, and in recent years have created computer simulations of collapsing masses of gas to understand how they condense under gravity into stars. They have also simulated the interaction of many young stars recently freed from their gas clouds. Several years ago, one such computer simulation by Pavel Kroupa of the University of Bonn led him to conclude that all stars are born as binaries.

    3
    This infrared image from the Hubble Space Telescope contains a bright, fan-shaped object (lower right quadrant) thought to be a binary star that emits light pulses as the two stars interact. The primitive binary system is located in the IC 348 region of the Perseus molecular cloud and was included in the study by the Berkeley/Harvard team. (Image: NASA, ESA and J. Muzerolle, STScI)

    NASA/ESA Hubble Telescope

    Yet direct evidence from observations has been scarce. As astronomers look at younger and younger stars, they find a greater proportion of binaries, but why is still a mystery.

    “The key here is that no one looked before in a systematic way at the relation of real young stars to the clouds that spawn them,” Stahler said. “Our work is a step forward in understanding both how binaries form and also the role that binaries play in early stellar evolution. We now believe that most stars, which are quite similar to our own sun, form as binaries. I think we have the strongest evidence to date for such an assertion.”

    According to Stahler, astronomers have known for several decades that stars are born inside egg-shaped cocoons called dense cores, which are sprinkled throughout immense clouds of cold, molecular hydrogen that are the nurseries for young stars. Through an optical telescope, these clouds look like holes in the starry sky, because the dust accompanying the gas blocks light from both the stars forming inside and the stars behind. The clouds can, however, be probed by radio telescopes, since the cold dust grains in them emit at these radio wavelengths, and radio waves are not blocked by the dust.

    The Perseus molecular cloud is one such stellar nursery, about 600 light-years from Earth and about 50 light-years long. Last year, a team of astronomers completed a survey that used the Very Large Array [see above], a collection of radio dishes in New Mexico, to look at star formation inside the cloud. Called VANDAM, it was the first complete survey of all young stars in a molecular cloud, that is, stars less than about 4 million years old, including both single and mulitple stars down to separations of about 15 astronomical units. This captured all multiple stars with a separation of more than about the radius of Uranus’ orbit — 19 AU — in our solar system.

    4
    A dark molecular cloud, Barnard 68, is filled with gas and dust that block the light from stars forming inside as well as stars and galaxies located behind it. These and other stellar nurseries, like the Perseus molecular cloud, can only be probed by radio waves. Credit: FORS Team, 8.2-meter VLT Antu, ESO

    ESO/VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

    ESO/FORS1

    Stahler heard about the survey after approaching Sadavoy, a member of the VANDAM team, and asking for her help in observing young stars inside dense cores. The VANDAM survey produced a census of all Class 0 stars – those less than about 500,000 years old – and Class I stars – those between about 500,000 and 1 million years old. Both types of stars are so young that they are not yet burning hydrogen to produce energy.

    Sadavoy took the results from VANDAM and combined them with additional observations that reveal the egg-shaped cocoons around the young stars. These additional observations come from the Gould Belt Survey with SCUBA-2 on the James Clerk Maxwell Telescope in Hawaii.


    East Asia Observatory James Clerk Maxwell telescope, Mauna Kea, Hawaii, USA

    By combining these two data sets, Sadavoy was able to produce a robust census of the binary and single-star populations in Perseus, turning up 55 young stars in 24 multiple-star systems, all but five of them binary, and 45 single-star systems.

    Using these data, Sadavoy and Stahler discovered that all of the widely separated binary systems — those with stars separated by more than 500 AU — were very young systems, containing two Class 0 stars. These systems also tended to be aligned with the long axis of the egg-shaped dense core. The slightly older Class I binary stars were closer together, many separated by about 200 AU, and showed no tendency to align along the egg’s axis.

    “This has not been seen before or tested, and is super interesting,” Sadavoy said. “We don’t yet know quite what it means, but it isn’t random and must say something about the way wide binaries form.”

    Egg-shaped cores collapse into two centers

    Stahler and Sadavoy mathematically modeled various scenarios to explain this distribution of stars, assuming typical formation, breakup and orbital shrinking times. They concluded that the only way to explain the observations is to assume that all stars of masses around that of the sun start off as wide Class 0 binaries in egg-shaped dense cores, after which some 60 percent split up over time. The rest shrink to form tight binaries.

    “As the egg contracts, the densest part of the egg will be toward the middle, and that forms two concentrations of density along the middle axis,” he said. “These centers of higher density at some point collapse in on themselves because of their self-gravity to form Class 0 stars.”

    “Within our picture, single low-mass, sunlike stars are not primordial,” Stahler added. “They are the result of the breakup of binaries. ”

    Their theory implies that each dense core, which typically comprises a few solar masses, converts twice as much material into stars as was previously thought.

    Stahler said that he has been asking radio astronomers to compare dense cores with their embedded young stars for more than 20 years, in order to test theories of binary star formation. The new data and model are a start, he says, but more work needs to be done to understand the physics behind the rule.

    Such studies may come along soon, because the capabilities of a now-upgraded VLA and the ALMA telescope in Chile, plus the SCUBA-2 survey in Hawaii, “are finally giving us the data and statistics we need. This is going to change our understanding of dense cores and the embedded stars within them,” Sadavoy said.

    RELATED INFORMATION

    Embedded binaries and their dense cores (accepted in MNRAS)
    VANDAM website
    Gould Belt Survey website

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Founded in the wake of the gold rush by leaders of the newly established 31st state, the University of California’s flagship campus at Berkeley has become one of the preeminent universities in the world. Its early guiding lights, charged with providing education (both “practical” and “classical”) for the state’s people, gradually established a distinguished faculty (with 22 Nobel laureates to date), a stellar research library, and more than 350 academic programs.

    UC Berkeley Seal

     
  • richardmitnick 8:08 am on May 11, 2017 Permalink | Reply
    Tags: , , , , , UC Berkeley,   

    From UC Berkeley: “Waves of lava seen in Io’s largest volcanic crater” 

    UC Berkeley

    UC Berkeley

    May 10, 2017
    Robert Sanders
    rlsanders@berkeley.edu

    1
    On March 8, 2015, Jupiter’s moon Europa passed in front of Io, allowing detailed mapping of the bright volcanic crater called Loki Patera (upper left). (Katherine de Kleer image.)

    Taking advantage of a rare orbital alignment between two of Jupiter’s moons, Io and Europa, researchers have obtained an exceptionally detailed map of the largest lava lake on Io, the most volcanically active body in the solar system.

    On March 8, 2015, Europa passed in front of Io, gradually blocking out light from the volcanic moon. Because Europa’s surface is coated in water ice, it reflects very little sunlight at infrared wavelengths, allowing researchers to accurately isolate the heat emanating from volcanoes on Io’s surface.

    The infrared data showed that the surface temperature of Io’s massive molten lake steadily increased from one end to the other, suggesting that the lava had overturned in two waves that each swept from west to east at about a kilometer (3,300 feet) per day.

    Overturning lava is a popular explanation for the periodic brightening and dimming of the hot spot, called Loki Patera after the Norse god. (A patera is a bowl-shaped volcanic crater.) The most active volcanic site on Io, which itself is the most volcanically active body in the solar system, Loki Patera is about 200 kilometers (127 miles) across. The hot region of the patera has a surface area of 21,500 square kilometers, larger than Lake Ontario.

    Earthbound astronomers first noticed Io’s changing brightness in the 1970s, but only when the Voyager 1 and 2 spacecraft flew by in 1979 did it become clear that this was because of volcanic eruptions on the surface. Despite highly detailed images from NASA’s Galileo mission in the late 1990s and early 2000s, astronomers continue to debate whether the brightenings at Loki Patera – which occur every 400 to 600 days – are due to overturning lava in a massive lava lake, or periodic eruptions that spread lava flows over a large area.
    “If Loki Patera is a sea of lava, it encompasses an area more than a million times that of a typical lava lake on Earth,” said Katherine de Kleer, a UC Berkeley graduate student and the study’s lead author. “In this scenario, portions of cool crust sink, exposing the incandescent magma underneath and causing a brightening in the infrared.”


    A simulation of two resurfacing waves sweeping around Loki Patera at different rates and converging in the southeast corner. (Katherine de Kleer video)

    “This is the first useful map of the entire patera,” said co-author Ashley Davies, of the Jet Propulsion Laboratory in Pasadena, who has studied Io’s volcanoes for many years. “It shows not one but two resurfacing waves sweeping around the patera. This is much more complex than what was previously thought”.

    “This is a step forward in trying to understand volcanism on Io, which we have been observing for more than 15 years, and in particular the volcanic activity at Loki Patera,” said Imke de Pater, a UC Berkeley professor of astronomy.

    De Kleer is lead author of a paper reporting the new findings that will be published May 11 in the journal Nature.

    Binocular telescope turns two eyes on Io

    The images were obtained by the twin 8.4-meter (27.6-foot) mirrors of the Large Binocular Telescope Observatory in the mountains of southeast Arizona, linked together as an interferometer using advanced adaptive optics to remove atmospheric blurring.

    U Arizona Large Binocular Telescope, Mount Graham, Arizona, USA

    The facility is operated by an international consortium headquartered at the University of Arizona in Tucson.


    Animation of Europa sweeping across Loki Patera and obscuring different portions of its floor. The lower panels show the infrared intensity of the lava lake as a function of time as it is covered (ingress) and uncovered (egress) by Europa. The red curve is the best-fit map to the observations. (Katherine de Kleer video)

    “Two years earlier, the LBTO had provided the first ground-based images of two separate hot spots within Loki Patera, thanks to the unique resolution offered by the interferometric use of LBT, which is equivalent to what a 23-meter (75-foot) telescope would provide,” noted co-author and LBTO director Christian Veillet. “This time, however, the exquisite resolution was achieved thanks to the observation of Loki Patera at the time of an occultation by Europa.”

    Europa took about 10 seconds to completely cover Loki Patera. “There was so much infrared light available that we could slice the observations into one-eighth-second intervals during which the edge of Europa advanced only a few kilometers across Io’s surface,” said co-author Michael Skrutskie, of the University of Virginia, who led the development of the infrared camera used for this study. “Loki was covered from one direction but revealed from another, just the arrangement needed to make a real map of the distribution of warm surface within the patera.”

    These observations gave the astronomers a two-dimensional thermal map of Loki Patera with a resolution better than 10 kilometers (6.25 miles), 10 times better than normally possible with the LBT Interferometer at this wavelength (4.5 microns). The temperature map revealed a smooth temperature variation across the surface of the lake, from about 270 Kelvin at the western end, where the overturning appeared to have started, to 330 Kelvin at the southeastern end, where the overturned lava was freshest and hottest.
    Using information on the temperature and cooling rate of magma derived from studies of volcanoes on Earth, de Kleer was able to calculate how recently new magma had been exposed at the surface. The results – between 180 and 230 days before the observations at the western end and 75 days before at the eastern – agree with earlier data on the speed and timing of the overturn.

    Interestingly, the overturning started at different times on two sides of a cool island in the center of the lake that has been there ever since Voyager photographed it in 1979.

    2
    A heat map of Io’s lava lake Loki Patera, showing how the surface is cooler in the northwest (1 and 2) where the lava overturn began, and hottest in the southeast (3), where the hotter magma was more recently exposed. The entire lake surface overturned in about three months time. Katherine de Kleer graphic.

    “The velocity of overturn is also different on the two sides of the island, which may have something to do with the composition of the magma or the amount of dissolved gas in bubbles in the magma,” de Kleer said. “There must be differences in the magma supply to the two halves of the patera, and whatever is triggering the start of overturn manages to trigger both halves at nearly the same time but not exactly. These results give us a glimpse into the complex plumbing system under Loki Patera.”

    Lava lakes like Loki Patera overturn because the cooling surface crust slowly thickens until it becomes denser than the underlying magma and sinks, pulling nearby crust with it in a wave that propagates across the surface. According to de Pater, as the crust breaks apart, magma may spurt up as fire fountains, akin to what has been seen in lava lakes on Earth, but on a smaller scale.

    4
    From their infrared measurements, the team deduced the age of the lava at the surface of Loki Patera. The youngest is in the lower right, having overturned most recently, about 75 days before the observations. Katherine de Kleer graphic.De Kleer and de Pater are eager to observe other Io occultations to verify their findings, but they’ll have to wait until the next alignment in 2021. For now, de Kleer is happy that the interferometer linking the two telescopes, the adaptive optics on each and the unique occultation came together as planned that night two years ago.

    “We weren’t sure that such a complex observation was even going to work,” she said, “but we were all surprised and pleased that it did.”

    In addition to de Kleer, Skrutskie, Davies, Veillet and de Pater, co-authors of the paper are J. Leisenring, P. Hinz, E. Spalding and A. Vaz of the University of Arizona’s Steward Observatory, and Al Conrad of the Large Binocular Telescope Observatory, A. Resnick of Amherst College, V. Bailey of Stanford University, D. Defrère of the University of Liège, A. Skemer of UC Santa Cruz and C.E. Woodward of the University of Minnesota.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Founded in the wake of the gold rush by leaders of the newly established 31st state, the University of California’s flagship campus at Berkeley has become one of the preeminent universities in the world. Its early guiding lights, charged with providing education (both “practical” and “classical”) for the state’s people, gradually established a distinguished faculty (with 22 Nobel laureates to date), a stellar research library, and more than 350 academic programs.

    UC Berkeley Seal

     
  • richardmitnick 12:43 pm on May 3, 2017 Permalink | Reply
    Tags: , , SPACE SCIENCE LAB, UC Berkeley   

    From SSL at UC Berkeley: “Solar Array Cooling System Coming Together on Solar Probe Plus” 

    UC Berkeley

    UC Berkeley

    Space Science Labs UC Berkeley

    Space Science Lab

    2
    The Solar Array Cooling System on Solar Probe Plus has one critical job – to protect the NASA spacecraft’s solar arrays from incineration as it moves through the blazing atmosphere of the sun.

    Several key elements of that system are now on board the spacecraft, installed last week during ongoing integration and test operations at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. On April 5, engineers carefully attached the deck that holds the solar array cooling system components, solar array cooling system radiators and the truss structure assembly, or TSA. The TSA will support the spacecraft’s signature 8-foot-wide, 4.5-inch-thick carbon-carbon foam heat shield, as well components from the FIELDS experiment and Solar Wind Electrons, Alphas and Protons (SWEAP) suite that will make direct measurements of the charged particles and electrical fields in the solar environment.

    Solar Probe Plus is on track for launch during a 20-day window that opens July 31, 2018. Integration and testing will continue at APL through November; after that, the spacecraft will be moved to NASA Goddard Space Flight Center in Greenbelt, Maryland, for four months of final space-environmental testing, it is then shipped to Kennedy Space Center/Cape Canaveral Air Force Station, Florida, in March 2018 for final launch preparations. APL designed, is building, and will operate Solar Probe Plus for NASA.

    3
    Mission integration and test team members secure the deck holding the structure assembly and several other critical thermal-protection components atop NASA’s Solar Probe Plus spacecraft body on April 5, 2017, in the cleanroom at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland. NASA/Johns Hopkins University Applied Physics Laboratory

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Founded in the wake of the gold rush by leaders of the newly established 31st state, the University of California’s flagship campus at Berkeley has become one of the preeminent universities in the world. Its early guiding lights, charged with providing education (both “practical” and “classical”) for the state’s people, gradually established a distinguished faculty (with 22 Nobel laureates to date), a stellar research library, and more than 350 academic programs.

    UC Berkeley Seal

     
  • richardmitnick 8:43 am on February 16, 2017 Permalink | Reply
    Tags: , , , UC Berkeley   

    From UC Berkeley: “UC Berkeley, NASA looking for citizen scientists to help find Planet 9” 

    UC Berkeley

    UC Berkeley

    February 15, 2017
    Robert Sanders
    rlsanders@berkeley.edu

    1
    A previously cataloged brown dwarf named WISE 0855−0714 shows up as a moving
    orange dot (upper left) in this loop of WISE images spanning five years. By viewing
    movies like this, anyone can help discover more brown dwarfs or even a 9th planet. (NASA/WISE images)

    Elusive planets and dim failed stars may be lurking around the edges of our solar system, and astronomers from NASA and UC Berkeley want the public’s help to hunt them down.

    Through a new website called Backyard Worlds: Planet 9, anyone can now help search for objects far beyond the orbit of our farthest planet, Neptune, by viewing brief “flipbook” movies made from images captured by NASA’s Wide-field Infrared Survey Explorer (WISE) mission. A faint spot seen moving through background stars might be a new and distant planet orbiting the sun or a nearby brown dwarf.

    NASA/WISE Telescope
    NASA/WISE Telescope

    WISE’s infrared images cover the entire sky about six times over. This has allowed astronomers to search the images for faint, glowing objects that change position over time, which means they are relatively close to Earth. Objects that produce their own faint infrared glow would have to be large, Neptune-size planets or brown dwarfs, which are slightly smaller than stars.

    UC Berkeley postdoctoral researcher Aaron Meisner, a physicist who specializes in analyzing WISE images, has automated the search using computers, but he jumped at the idea by NASA astronomer Marc Kuchner to ask the public to eyeball the millions of WISE images. NASA and its collaborators, including UC Berkeley, are launching the planet and brown dwarf search Feb. 15.

    “Automated searches don’t work well in some regions of the sky, like the plane of the Milky Way galaxy, because there are too many stars, which confuses the search algorithm,” said Meisner, who last month published the results of an automated survey of 5 percent of the WISE data, which revealed no new objects. Online volunteers “using the powerful ability of the human brain to recognize motion” may be luckier, he said.

    “Backyard Worlds: Planet 9 has the potential to unlock once-in-a-century discoveries, and it’s exciting to think they could be spotted first by a citizen scientist,” he added.

    “There are just over four light-years between Neptune, the farthest known planet in our solar system, and Proxima Centauri, the nearest star, and much of this vast territory is unexplored,” said Kuchner, the lead researcher and an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

    Centauris Alpha Beta Proxima 27, February 2012. Skatebiker
    Centauris Alpha Beta Proxima 27, February 2012. Skatebiker

    “Because there’s so little sunlight, even large objects in that region barely shine in visible light. But by looking in the infrared, WISE may have imaged objects we otherwise would have missed.”

    Planet 9

    People have long theorized about unknown planets far beyond Neptune and the dwarf planet Pluto, but until recently there was no evidence to support the idea. Last year, however, Caltech astronomers Mike Brown and Konstantin Batygin found indirect evidence for the existence of an as-yet-unseen ninth planet in the solar system’s outer reaches. This “Planet 9” would be similar in size to Neptune, but up to a thousand times farther from the sun than Earth, and would orbit the sun perhaps once every 15,000 years. It would be so faint as to have so far evaded discovery.


    Video courtesy of the American Museum of Natural History.

    At the moment, the existence of Planet 9 is still under debate. Meisner thinks it’s more likely that volunteers will find brown dwarfs in the solar neighborhood. While Planet 9 would look very blue in WISE time-lapse animations, brown dwarfs would look very red and move across the sky more slowly.

    WISE images have already turned up hundreds of previously unknown brown dwarfs, including the sun’s third- and fourth-closest known neighbors. He hopes that the Backyard Worlds search will turn up a new nearest neighbor to our sun.

    “We’ve pre-processed the WISE data we’re presenting to citizen scientists in such a way that even the faintest moving objects can be detected, giving us an advantage over all previous searches,” Meisner said. Moving objects flagged by participants will be prioritized by the science team for later follow-up observations by professional astronomers. Participants will share credit for their discoveries in any scientific publications that result from the project.

    2
    A very blue Neptune-like planet, dubbed Planet 9, may be lurking dozens of times further from the sun than Pluto, as depicted in this artist’s rendering. Citizen scientists who join the Backyard Worlds: Planet 9 project may be the first to spot it. (NASA image)

    WISE and NEOWISE

    The WISE telescope scanned the entire sky between 2010 and 2011, producing the most comprehensive survey at mid-infrared wavelengths currently available. With the completion of its primary mission, WISE was shut down in 2011, then reactivated in 2013 and given a new mission: assisting NASA’s efforts to identify potentially hazardous near-Earth objects, which are asteroids and comets in the vicinity of our planet. The mission was renamed the Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE).

    The new website uses all of the WISE and NEOWISE data to search for unknown objects in and beyond our own solar system, including the putative Planet 9. If Planet 9 exists and is as bright as some predict, it could show up in WISE data.

    Meisner said WISE is uniquely suited for discovering extremely cold brown dwarfs, which can be invisible to the biggest ground-based telescopes despite being very close.

    “Brown dwarfs form like stars but evolve like planets, and the coldest ones are much like Jupiter,” said team member Jackie Faherty, an astronomer at the American Museum of Natural History in New York. “By using Backyard Worlds: Planet 9, the public can help us discover more of these strange rogue worlds.”

    Backyard Worlds: Planet 9 is a collaboration between NASA, UC Berkeley, the American Museum of Natural History in New York, Arizona State University, the Space Telescope Science Institute in Baltimore and Zooniverse, a collaboration of scientists, software developers and educators that collectively develops and manages citizen-science projects on the internet. Zooniverse will spread the word among its many citizen volunteers

    NASA’s Jet Propulsion Laboratory in Pasadena, California, manages and operates WISE, part of NASA’s Explorers Program.

    Meisner, who specializes in creating high-resolution maps of the universe, is also currently working on the Dark Energy Spectroscopic Instrument, a project at Lawrence Berkeley National laboratory that seeks to learn how mysterious dark energy affects the expansion of the universe.

    LBNL/DESI spectroscopic instrument on the Mayall 4-meter telescope at Kitt Peak National Observatory starting in 2018
    LBNL/DESI spectroscopic instrument on the Mayall 4-meter telescope at Kitt Peak National Observatory starting in 2018

    Follow Backyard Worlds: Planet 9 on Facebook or Twitter, @backyardworlds.

    RELATED INFORMATION

    Backyard Worlds: Planet 9 Zooniverse Project
    Searching for Planet Nine with Coadded WISE and NEOWISE-Reactivation Images
    FindPlanetNine Blog [link did not work]

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Founded in the wake of the gold rush by leaders of the newly established 31st state, the University of California’s flagship campus at Berkeley has become one of the preeminent universities in the world. Its early guiding lights, charged with providing education (both “practical” and “classical”) for the state’s people, gradually established a distinguished faculty (with 22 Nobel laureates to date), a stellar research library, and more than 350 academic programs.

    UC Berkeley Seal

     
  • richardmitnick 1:59 pm on December 17, 2016 Permalink | Reply
    Tags: , Boy in the bubble, , , , UC Berkeley   

    From UC Berkeley: “From a single genetic mutation, secrets of ‘boy in the bubble’ disease revealed” 

    UC Berkeley

    UC Berkeley

    December 15, 2016
    Brett Israel
    brett.israel@berkeley.edu

    UC Berkeley was part of an interdisciplinary, international research team that has identified the rare genetic mutation responsible for a unique case of “boy in the bubble” disease, known as severe combined immunodeficiency (SCID), a deadly immune system disorder. The researchers found that the cause was a mutated version of a gene called BCL11B, which also plays an unexpected role in the normal processes of immune system development.

    1
    World of his own: David Vetter (Photo: Courtesy Baylor College of Medicine Archives) http://i2.mirror.co.uk/incoming/article3196066.ece/ALTERNATES/s810/The-Boy-in-the-Bubble.jpg. Just a single case chosen at random from many.

    The discovery of this genetic mutation is the latest of several breakthroughs from this team, which has been accomplished by analyzing exomes — the roughly 2 percent of DNA that contains the instructions for building proteins — to identify the cause of mysterious immunological diseases in newborns.

    “This is a gene that had never been associated with SCID before, which required more advanced genome analysis techniques to discover,” said Berkeley computational biologist Steven Brenner, co-author of the study. “Moreover, unlike variants in every other known SCID gene, this mutation is dominant, which means you only need one copy of this mutation to disrupt multiple aspects of development.”

    The study was published Dec. 1 in the New England Journal of Medicine. The research article was accompanied by a perspective by Michael Lenardo, chief of the Molecular Development of the Immune System Section at the National Institute of Allergy and Infectious Diseases, commissioned by the journal. Lenardo wrote that the study is “an exciting example of recent achievements in the application of contemporary molecular genomics to clinical medicine, especially with regard to congenital diseases…This study reflects remarkable advances in molecular diagnosis.”

    The infant patient featured in the new study was identified through a population-based neonatal screening approach for SCID, which was developed in 2005 by Jennifer Puck, the study’s senior author and a UCSF professor of immunology and pediatrics. The screening indicated a severely compromised immune system, leaving the patient open to a likely fatal series of infections. However, UCSF doctors performed a bone marrow transplant, the standard of care for SCID, which provided the infant with a fully functional immune system.

    In addition to SCID, however, the infant was born with a constellation of abnormal features including craniofacial deformities, loose skin, excess body hair and neurological abnormalities, which suggested that a single rare genetic defect could underlie the patient’s disease.

    In part to determine whether the infant’s parents were carriers of a genetic mutation that could be passed on to future children, the research team set out to scan the genomes of both infant and parents for mutations that could be responsible for the disease. Researchers at UC Berkeley and UCSF built on their productive collaboration with researchers at Tata Consultancy Services to use next-generation exome sequencing to identify a single mutation present in the infant but not the parents — referred to as a de novo mutation — in the BCL11B gene, which had previously been associated primarily with lymphatic cancer. So finding the BLC11B mutation to be causative for SCID was a surprise.

    “We’re entering a new era of genomic medicine,” Puck said. “Our technology has progressed to the point that we can learn a great deal about a disease, and even learn important new facts about normal biology, from just a single patient. In this case we were able to unearth the potentially unique underlying genetic cause of one patient’s disease and come away with brand new understanding of how the immune system develops.”

    In order to understand the biological effects of the patient’s mutation, the researchers collaborated with the team of David Wiest at Fox Chase Cancer Center, in Philadelphia, to introduce the patient’s mutated form of BCL11B into zebrafish, whose immune systems are similar to those of humans. They found that the mutated form of BCL11B produced abnormalities in the zebrafish that mimicked those observed in the patient, including not only a disabled immune system but also similar craniofacial abnormalities. Blocking the mutated gene and replacing it with the normal human gene in embryonic zebrafish reversed all these symptoms, strongly suggesting that abnormal BCL11B was the cause of the symptoms seen in both zebrafish and the human patient.

    The normal BCL11B protein binds to DNA at sites across the genome to activate a wide variety of developmental genes in a precisely orchestrated sequence. Experiments revealed that the BCL11B gene mutation identified in the new study disrupts this protein’s ability to bind to DNA, thereby resulting in the wide array of immunological, neurological and craniofacial disruptions seen in both the human patient and in zebrafish.

    “In this case, however, a mutation in BCL11B turned the protein it produces into a monkey wrench that disrupted many different systems in the body,” Puck said.

    According to Puck, the findings illustrate the power of deeply studying rare diseases in individual patients: “We may never get another patient just like this one,” she said. “But as a result of studying this one case we were able to learn so much about a critical gene in a critical pathway that hadn’t been appreciated before.”

    The research was supported by the National Institutes of Health, Tata Consultancy Services, the Commonwealth of Pennsylvania, the M.D. Anderson Cancer Center, the Fox Chase Cancer Center, the Jeffrey Modell Foundation, the Lisa and Douglas Goldman Fund and the Michelle Platt-Ross Foundation.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Founded in the wake of the gold rush by leaders of the newly established 31st state, the University of California’s flagship campus at Berkeley has become one of the preeminent universities in the world. Its early guiding lights, charged with providing education (both “practical” and “classical”) for the state’s people, gradually established a distinguished faculty (with 22 Nobel laureates to date), a stellar research library, and more than 350 academic programs.

    UC Berkeley Seal

     
  • richardmitnick 10:20 pm on December 15, 2016 Permalink | Reply
    Tags: NASA GOLD, NASA ICON, UC Berkeley   

    From UC Berkeley: “Two NASA satellites slated for 2017 launch will focus on edge of space” 

    UC Berkeley

    UC Berkeley

    December 14, 2016
    Robert Sanders
    rlsanders@berkeley.edu

    1
    NASA’s ICON and GOLD missions will take complementary observations of Earth’s ionosphere and upper atmosphere. NASA image.

    1
    Ionospheric Connection Explorer, or ICON

    2
    NASA’s Global-scale Observations of the Limb and Disk (GOLD) sensor will be hosted on the SES-14 satellite. SES-14 will use a bus like SES-12 (above). Credit: Airbus Defence and Space

    Scientists at UC Berkeley’s Space Sciences Laboratory are preparing for the 2017 launch of an Earth-orbiting satellite to discover how storms in the atmosphere affect storms in the ionosphere.

    The ionosphere is the edge of space where the sun ionizes the air in Earth’s atmosphere to create constantly shifting streams and sheets of charged particles.

    The NASA-funded satellite, called the Ionospheric Connection Explorer, or ICON, will complement observations from a sister satellite also scheduled for launch in 2017: the Global Observations of the Limb and Disk, or GOLD. GOLD is being led by the University of Central Florida, though UC Berkeley space scientist Scott England works on both missions.

    While ICON will orbit Earth at an altitude of 350 miles, observing airglow from charged particles in the ionosphere and neutral particles in the atmosphere, GOLD will take similar measurements while parked in a geostationary orbit 22,000 miles above Earth to get a global view of how the ionosphere changes, England said.

    The goal is to connect what happens in the atmosphere to what happens at the edge of space, and to help understand the disturbances that can lead to severe interference with communications and GPS signals.

    “The ionosphere doesn’t only react to energy input by solar storms,” England said. “Terrestrial weather, like hurricanes and wind patterns, can shape the atmosphere and ionosphere, changing how they react to space weather.

    “We will be using these two missions together to understand how dynamic weather systems are reflected in the upper atmosphere, and how these changes impact the ionosphere.”

    England discussed the upcoming ICON and GOLD missions, both Explorer-class missions managed by the NASA Goddard Spaceflight Center in Maryland, during the annual meeting of the American Geophysical Union in San Francisco.

    See this April 2016 story for more detail about the ICON mission and the scientists who are making it happen.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Founded in the wake of the gold rush by leaders of the newly established 31st state, the University of California’s flagship campus at Berkeley has become one of the preeminent universities in the world. Its early guiding lights, charged with providing education (both “practical” and “classical”) for the state’s people, gradually established a distinguished faculty (with 22 Nobel laureates to date), a stellar research library, and more than 350 academic programs.

    UC Berkeley Seal

     
  • richardmitnick 9:02 pm on December 14, 2016 Permalink | Reply
    Tags: , MyShake app, , UC Berkeley   

    From UC Berkeley: “Quake-detection app captured nearly 400 temblors worldwide” 

    UC Berkeley

    UC Berkeley

    December 14, 2016
    Robert Sanders
    rlsanders@berkeley.edu

    UC Berkeley’s worldwide network of smartphone earthquake detectors has recorded nearly 400 earthquakes since the MyShake app was made available for download in February, with one of the most active areas of the world the fracking fields of Oklahoma.

    1

    2
    From Feb. 12, 2016 – the release date of the MyShake app – until Dec. 1, 2016, 395 earthquakes with confirmed waveforms were detected by MyShake users around the world.

    The Android app harnesses a smartphone’s motion detectors to measure earthquake ground motion, then sends that data back to the Berkeley Seismological Laboratory for analysis. The eventual goal is to send early-warning alerts to users a bit farther from ground zero, giving them seconds to a minute of warning that the ground will start shaking. That’s enough time to take cover or switch off equipment that might be damaged in a quake.

    To date, nearly 220,000 people have downloaded the app, and at any one time, between 8,000 and 10,000 phones are active — turned on, lying on a horizontal surface and connected to a wi-fi network — and thus primed to respond.

    An updated version of the MyShake app will be available for download today (Dec. 14) from the Google Play Store, providing an option for push notifications of recent quakes within a distance determined by the user, and the option of turning the app off until the phone is plugged in, which could extend the life of a single charge in older phones.

    “The notifications will not be fast initially — not fast enough for early warning — but it puts into place the technology to deliver the alerts and we can then work toward making them faster and faster as we improve our real-time detection system within MyShake,” said project leader Richard Allen, a UC Berkeley professor of earth and planetary sciences and director of the seismology lab.

    In a presentation today, during this week’s annual meeting of the American Geophysical Union in San Francisco, UC Berkeley developer and graduate student Qingkai Kong will summarize the app’s performance. Ten months of operation clearly shows that the sensitivity of the smartphone accelerometers and the density of phones in many places are sufficient to provide data quickly enough for early warning. The phones readily detect the first seismic waves to arrive — the less destructive P waves — and send the information to Berkeley in time to issue an alert that the stronger S wave will soon arrive.

    “We already have the algorithm to detect the earthquakes running on our server, but we have to make sure it is accurate and stable before we can start issuing warnings, which we hope to do in the near future,” Kong said.

    3
    The June 10 earthquake near Borrego Springs in San Diego County, a 5.2-magnitude temblor, triggered 103 smartphones with MyShake installed (green dots). The blue star is the epicenter, the red dots are MyShake phones that were not ready to trigger, probably because of human activity, while the yellow-orange dots are phones that were primed but did not trigger.

    The app can detect quakes as small as magnitude 2.5, with the best sensitivity in areas with a greater density of phones. The largest number of phones to record a quake was 103, after the 5.2 magnitude quake that occurred on the San Jacinto fault near Borrego Springs in San Diego County on June 10. Phones 200 kilometers from the epicenter detected that temblor. The largest quake detected occurred on April 16 in Ecuador: a 7.8 magnitude quake that triggered two phones, 170 and 200 kilometers from the epicenter.

    Allen, Kong and their colleagues at Deutsche Telekom’s Silicon Valley Innovation Center believe the app’s performance shows it can complement traditional seismic networks, such as that operated nationally by the U.S. Geological Survey, but can also serve as a stand-alone system in places with few seismic stations, helping to reduce injuries and damage from earthquakes.

    While the app has detected quakes in seismically active areas such as Chile, Mexico, New Zealand, Taiwan, Japan and the West Coast of the U.S., one surprising hot spot has been the traditionally quiet state of Oklahoma. The practice of injecting oil well wastewater deep underground has activated faults in the area to the extent that the state is rattled hundreds of times a year.

    “Oklahoma is now clearly No. 1 in terms of the number of earthquakes in the lower 48 states,” Kong said.

    Most of Oklahoma’s earthquakes are small, but MyShake users in the state, which number only about 200, easily detected the Sept. 3 magnitude 5.8 quake, the strongest ever to hit the state. During that event, 14 phones in the state triggered, but even this relatively small number of phones allowed the seismology lab to peg the magnitude within 1 percent of estimates from ground seismic stations, and located the epicenter to within 4 kilometers (2.5 miles).

    “These initial studies suggest that the data will be useful for a variety of scientific studies of induced seismicity phenomena in Oklahoma, as well as having the potential to provide earthquake early warning in the future,” Kong said.

    He will summarize the Oklahoma data during a poster session on Friday, Dec. 16.


    Richard Allen explains how MyShake can help detect earthquakes and eventually provide early warning for smartphone users. (Video by Roxanne Makasdjian and Stephen McNally)

    The MyShake app and the computer algorithm behind it were developed by Allen, Kong and a team of programmers at the Silicon Valley Innovation Center in Mountain View, California, which is part of the Telekom Innovation Laboratories (T-Labs) operated by Deutsche Telekom, owner of T-Mobile. Louis Schreier, the leader of that team, co-wrote a paper with Allen and Kong on the first six months of MyShake’s observations, published Sept. 29 in the journal Geophysical Research Letters.

    See the full article here .

    YOU CAN HELP CATCH EARTHQUAKES AS THEY HAPPEN RIGHT NOW

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    BOINCLarge

    BOINC WallPaper

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Founded in the wake of the gold rush by leaders of the newly established 31st state, the University of California’s flagship campus at Berkeley has become one of the preeminent universities in the world. Its early guiding lights, charged with providing education (both “practical” and “classical”) for the state’s people, gradually established a distinguished faculty (with 22 Nobel laureates to date), a stellar research library, and more than 350 academic programs.

    UC Berkeley Seal

     
  • richardmitnick 7:32 am on September 23, 2016 Permalink | Reply
    Tags: , , , , Seismic 'CT scans' reveal deep earth dynamics, Seismic tomography, UC Berkeley   

    From Berkeley via phys.org: “Seismic ‘CT scans’ reveal deep earth dynamics” 

    UC Berkeley

    UC Berkeley

    physdotorg
    phys.org

    September 23, 2016
    Wallace Ravven

    1
    A new look 100 miles beneath a massive tectonic plate as it dives under North America has helped clarify the subduction process that generates earthquakes, volcanoes and the rise of the Cascade Range in the Pacific Northwest.

    The largest array of seismometers ever deployed on the seafloor, coupled with hundreds of others operating in the continental U.S., has enabled UC Berkeley researchers to essentially create CT scans of the Juan de Fuca plate and part of the earth’s mantle directly below it.

    The plate, about the size of the state of Michigan, is grinding under the continent along an 800-mile swath that runs from Northern California to Vancouver Island, known as the Cascadia subduction zone.

    The 3-D imaging process, known as seismic tomography, has revealed with unprecedented clarity a huge, buoyant, sausage-shaped region of the upper mantle, or asthenosphere, pressing up on the oceanic plate.

    The imaging casts new light on the competing hypotheses about the drivers of plate tectonics, a dynamic earth process that has been studied for more than 50 years but is still poorly understood.

    Different evidence has led to three different plate movement scenarios: either the plates are pushed from mid-ocean ridges; or they are pulled from their subducting slabs; or their movement is driven by the drag of the viscous mantle material that lies directly below.

    The new research suggests that the third scenario does not apply to the Cascadia subduction zone. Rather, it reveals that a distinct, thin—and difficult to observe—layer separates the plate from the mantle beneath, at least in the Cascadia subduction zone. The layer acts as a kind of berm that the plate rolls over before descending beneath the continent, says UC Berkeley seismologist Richard Allen, leader of the research and co-author of a paper appearing in the Sept. 23 edition of the journal Science.

    “What we observe is an accumulation of low-viscosity material between the plate and the mantle. Its composition acts as a lubricant, and decouples the plate’s movement from the mantle below it,” explains Allen, who is director of the Berkeley Seismological Laboratory and professor and chair of Earth and Planetary Science at Berkeley. The plates may move independently of the mantle below, he adds.

    The finding, he says, will help refine models of plate tectonic dynamics, aiding the long-range effort to understand the connection between tectonics and earthquakes.

    “It is the motion of the plates that causes earthquakes,” Allen says. “Models like this help us understand that linkage so we can be better informed of the coastal hazards.

    “First though, we need to learn if what we find here is typical of subduction zones across the planet, or if it is unique for some reason.”

    Japan has recently deployed a massive seafloor seismic network to study subduction and earthquakes. Allen hopes to next apply the tomography strategy there. Alaska also beckons.

    Lead author on the Science paper is William Hawley, a graduate student in Allen’s lab.

    “Plate tectonics is the most fundamental concept explaining the formation of features we see on the earth’s surface,” Hawley says, “but despite the fact that the concept is simple, we still do not know exactly why or how it operates.

    “If the asthenosphere acts as a lubricant for tectonic plate movement throughout the planet, it will really change our long-term models of the process”—dynamic changes that occur over a 100 million years.

    “Modelers will have to take this lubricating layer into account because it changes the way the mantle and the plates talk to each other.”

    Seismic tomography generates 3-D images of the earth’s interior by measuring how differences in shape, density, rock type and temperature affect the path, speed and amplitude of seismic waves traveling through the planet from an earthquake.

    Much as in CT scans, computers process differences in energy measured at the receiving end to infer interior 3-D detail. CT scans use X-rays as the energy source, while seismic tomography measures energy from seismic waves.

    A dense array of seismometers directly over the region of interest yields the best images and provides the highest resolution of the structures, which can then inform models of the process.

    This study used the data from the largest scale ocean-floor deployment to complement the onshore data already available. Together, they generated the best images of the region to date.

    The four-year seafloor research effort was made possible by the National Science Foundation’s ambitious $20 million Cascadia Initiative. The NSF aimed to spur greater understanding of plate structure, subduction processes, earthquakes and volcanism by deploying seismometers at 120 sites on the ocean floor, arrayed throughout the 95,000-square-mile Juan de Fuca plate.

    Over the four years, the offshore and onshore seismometer array measured thousands of earthquakes throughout the planet, ranging from magnitudes of 5 to about 9 on the Richter scale. The study examined a subset of 321 quakes with magnitudes between about 6 and 7.5.

    Grad students and faculty scientists participated in 24 research cruises to deploy the instruments and move them between two swaths of the Juan de Fuca plate. Several of the seismic tomography cruises invited undergraduate students on the two-week trips. On one Berkeley-led cruise aboard the R/V Thomas Thompson, the undergrads dubbed the trip the “Tom Cruise,” and sent daily video blogs.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About Phys.org in 100 Words

    Phys.org™ (formerly Physorg.com) is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004, Phys.org’s readership has grown steadily to include 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

    Founded in the wake of the gold rush by leaders of the newly established 31st state, the University of California’s flagship campus at Berkeley has become one of the preeminent universities in the world. Its early guiding lights, charged with providing education (both “practical” and “classical”) for the state’s people, gradually established a distinguished faculty (with 22 Nobel laureates to date), a stellar research library, and more than 350 academic programs.

    UC Berkeley Seal

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: