Tagged: SKA – Square Kilometre Array Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 7:31 am on January 30, 2020 Permalink | Reply
    Tags: (MOU)-Memorandum of Understanding, , , , , CTA will comprise two arrays on different continents observing gamma rays: one in Chile at ESO’s Cerro Paranal and one in Spain on La Palma in the Canary Islands., , , SKA - Square Kilometre Array, SKA will have radio telescopes in Australia and South Africa.,   

    From SKA: “SKA signs cooperation agreement with Čerenkov Telescope Array” 

    SKA South Africa


    From SKA

    29 January 2020

    The SKA Organisation (SKAO) [all telescope images below] will engage in closer collaboration with the Čerenkov Telescope Array Observatory (CTAO) under a new agreement signed by the two research infrastructures.

    2

    The Memorandum of Understanding (MOU) will facilitate greater sharing of knowledge and expertise in areas including engineering, science, technology and administration.

    SKAO and CTAO are both large international collaborations and have several member countries in common, including many European countries but also astronomy organisations in Australia and South Africa. Like the SKA, which will have radio telescopes in Australia and South Africa, CTA will also comprise two arrays on different continents observing gamma rays: one in Chile at ESO’s Cerro Paranal and one in Spain on La Palma in the Canary Islands.

    The two observatories are due to begin delivering science within just a few years of each other.

    Both have also begun transitions on the governance front; the SKA is becoming an intergovernmental organisation or IGO, while CTAO is becoming a European Research Infrastructure Consortium (ERIC).

    “Both the SKA and CTA are pushing the boundaries of what’s possible technically, scientifically and logistically, and some of the challenges that brings are common to both projects,” says Simon Berry, Director of Strategy for the SKA. “This MOU formalises our relationship, so we can keep learning from each other’s experiences and share expertise for the benefit of both observatories.”

    “In this age of multi-messenger astronomy, building alliances with observatories across the spectrum are critical to achieving our common missions to expand our view and understanding of the Universe,” says Federico Ferrini, CTAO Managing Director. “The CTAO-SKAO partnership was an obvious fit due to our vast similarities, and we are looking forward to the collaboration.”

    While the respective telescopes will observe opposite ends of the spectrum, there are exciting areas of scientific synergy between them. Both radio and gamma rays are a probe of the violent and variable universe, including the study of active galactic nuclei, transient events such as gamma-ray bursts and fast radio bursts, accretion into compact objects and gravitational wave counterparts.

    As the flagship very high-energy gamma-ray observatory for the coming decades, CTA is one of several next-generation facilities targeting other wavelengths or cosmic messengers (detections that do not use photons, such as neutrinos or gravitational waves) which will be complementary to the SKA. Coordinated observations between such facilities can give a more complete picture of astronomical sources and phenomena, resulting in greatly enhanced scientific discoveries.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Australian Square Kilometre Array Pathfinder (ASKAP) is a radio telescope array located at Murchison Radio-astronomy Observatory (MRO) in the Australian Mid West. ASKAP consists of 36 identical parabolic antennas, each 12 metres in diameter, working together as a single instrument with a total collecting area of approximately 4,000 square metres.

    SKA Meerkat telescope, 90 km outside the small Northern Cape town of Carnarvon, SA

    Murchison Widefield Array,SKA Murchison Widefield Array, Boolardy station in outback Western Australia, at the Murchison Radio-astronomy Observatory (MRO)

    SKA Hera at SKA South Africa

    SKA Pathfinder – LOFAR location at Potsdam via Google Images

    About SKA

    The Square Kilometre Arraywill be the world’s largest and most sensitive radio telescope. The total collecting area will be approximately one square kilometre giving 50 times the sensitivity, and 10 000 times the survey speed, of the best current-day telescopes. The SKA will be built in Southern Africa and in Australia. Thousands of receptors will extend to distances of 3 000 km from the central regions. The SKA will address fundamental unanswered questions about our Universe including how the first stars and galaxies formed after the Big Bang, how dark energy is accelerating the expansion of the Universe, the role of magnetism in the cosmos, the nature of gravity, and the search for life beyond Earth. Construction of phase one of the SKA is scheduled to start in 2016. The SKA Organisation, with its headquarters at Jodrell Bank Observatory, near Manchester, UK, was established in December 2011 as a not-for-profit company in order to formalise relationships between the international partners and centralise the leadership of the project.

    The Square Kilometre Array (SKA) project is an international effort to build the world’s largest radio telescope, led by SKA Organisation. The SKA will conduct transformational science to improve our understanding of the Universe and the laws of fundamental physics, monitoring the sky in unprecedented detail and mapping it hundreds of times faster than any current facility.

    Already supported by 10 member countries – Australia, Canada, China, India, Italy, New Zealand, South Africa, Sweden, The Netherlands and the United Kingdom – SKA Organisation has brought together some of the world’s finest scientists, engineers and policy makers and more than 100 companies and research institutions across 20 countries in the design and development of the telescope. Construction of the SKA is set to start in 2018, with early science observations in 2020.

     
  • richardmitnick 7:42 pm on January 29, 2020 Permalink | Reply
    Tags: , , , , , , SKA - Square Kilometre Array   

    From SKA via AAS NOVA: ” Faint Repetitions of an Extragalactic Burst” 

    SKA South Africa


    From SKA

    via

    AASNOVA

    AAS NOVA

    29 January 2020
    Susanna Kohler

    1
    The Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope is responsible for finding a number of fast radio bursts. But could there be fainter flashes that it’s missing? [CSIRO/Alex Cherney]

    New evidence deepens the mystery of fast radio bursts (FRBs), the brief flashes of radio emission stemming from unknown sources beyond our galaxy. Scientists have now discovered faint repeat bursts from one of the brightest FRBs, previously thought to have been a one-off event.

    To Repeat or Not to Repeat

    It was over a decade ago that scientists noticed the first enigmatic, millisecond-duration burst of radio waves from outside of the Milky Way. Since then, we’ve discovered about 100 FRB sources and even identified the host galaxies for several of them. Nonetheless, we still don’t know what causes FRBs, or even whether they’re all the same type of phenomenon.

    2
    FRB 121102, the first fast radio burst found to repeat, was also the first to be localized in the sky. [Gemini Observatory/AURA/NSF/NRC]

    Frederick C Gillett Gemini North Telescope Maunakea, Hawaii, USA, Altitude 4,213 m (13,822 ft)

    FRB properties span a wide range, but one of the biggest distinguishing features has been repetition. While most discovered FRBs have been one-off events — a single bright flash and no evidence of any additional emission from the same region either before or after — around ten FRBs have been found to repeat.

    We successfully localized one repeating FRB to a distant low-mass, low-metallicity dwarf galaxy. The two non-repeating bursts that we’ve localized, on the other hand, are associated with very massive host galaxies. Does this distinction mean that repeating and non-repeating bursts make up two different classes of FRBs? Or are FRBs all the same type of source, and the difference in host galaxies is just random variation?

    Recently, a team of scientists led by Pravir Kumar (Swinburne University of Technology, Australia) has added one more clue to the puzzle: observations of weak repeat bursts from an FRB thought to be non-repeating.

    3
    Artist’s impression of the ASKAP radio telescope finding a fast radio burst. Other observatories are shown joining in follow-up observations. [CSIRO/Andrew Howells]

    What Are We Missing?

    Kumar and collaborators were testing a simple theory: What if FRBs all repeat, but we don’t have the sensitivity to detect the fainter bursts?

    In this scenario, supposed one-off FRBs are actually just the most energetic bursts from repeating sources. If we carefully study very sensitive observations of the region around a non-repeating burst, the team reasoned, we might find evidence of other bursts from the same source.

    The authors chose FRB 171019 as their target — one of the brightest bursts found in a recent survey conducted with the Australian Square Kilometre Array Pathfinder (ASKAP). Kumar and collaborators used ASKAP itself, as well as the 64-meter Parkes radio telescope and the 110-meter Green Bank Telescope, to conduct follow-up observations of the 10’ x 10’ region FRB 171019 was determined to have originated from.

    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia, 414.80m above sea level

    Green Bank Radio Telescope, West Virginia, USA, now the center piece of the GBO, Green Bank Observatory, being cut loose by the NSF

    4
    Timeline of the ASKAP, Parkes, and Green Bank Telescope observations in the direction of FRB 171019. Red circles mark observed bursts. [Kumar et al. 2019]

    Faint Flashes Found
    Though no additional bursts were found in the follow-up ASKAP or Parkes data, two faint bursts were visible in the 820 MHz Green Bank Telescope data, occurring 9 and 20 months after the initial ASKAP burst detection. The inferred distances are consistent with that of FRB 171019, but they are a whopping factor of ~590 fainter than the original burst!

    This discovery lends credence to the idea that more seemingly one-off bright FRBs may actually have faint repetitions that we’ve simply missed — and these sources may be found to repeat if we conduct follow-up with more sensitive telescopes. Understanding this brings us one step closer to discovering the nature of these mysterious sources.

    Citation

    “Faint Repetitions from a Bright Fast Radio Burst Source,” Pravir Kumar et al 2019 ApJL 887 L30.
    https://iopscience.iop.org/article/10.3847/2041-8213/ab5b08

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    1

    AAS Mission and Vision Statement

    The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

    The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
    The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
    The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
    The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
    The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

    Adopted June 7, 2009

    About SKA

    The Square Kilometre Arraywill be the world’s largest and most sensitive radio telescope. The total collecting area will be approximately one square kilometre giving 50 times the sensitivity, and 10 000 times the survey speed, of the best current-day telescopes. The SKA will be built in Southern Africa and in Australia. Thousands of receptors will extend to distances of 3 000 km from the central regions. The SKA will address fundamental unanswered questions about our Universe including how the first stars and galaxies formed after the Big Bang, how dark energy is accelerating the expansion of the Universe, the role of magnetism in the cosmos, the nature of gravity, and the search for life beyond Earth. Construction of phase one of the SKA is scheduled to start in 2016. The SKA Organisation, with its headquarters at Jodrell Bank Observatory, near Manchester, UK, was established in December 2011 as a not-for-profit company in order to formalise relationships between the international partners and centralise the leadership of the project.

    The Square Kilometre Array (SKA) project is an international effort to build the world’s largest radio telescope, led by SKA Organisation. The SKA will conduct transformational science to improve our understanding of the Universe and the laws of fundamental physics, monitoring the sky in unprecedented detail and mapping it hundreds of times faster than any current facility.

    Already supported by 10 member countries – Australia, Canada, China, India, Italy, New Zealand, South Africa, Sweden, The Netherlands and the United Kingdom – SKA Organisation has brought together some of the world’s finest scientists, engineers and policy makers and more than 100 companies and research institutions across 20 countries in the design and development of the telescope. Construction of the SKA is set to start in 2018, with early science observations in 2020.

    Australian Square Kilometre Array Pathfinder (ASKAP) is a radio telescope array located at Murchison Radio-astronomy Observatory (MRO) in the Australian Mid West. ASKAP consists of 36 identical parabolic antennas, each 12 metres in diameter, working together as a single instrument with a total collecting area of approximately 4,000 square metres.

    SKA Meerkat telescope, 90 km outside the small Northern Cape town of Carnarvon, SA


    SKA Meerkat Telescope

    Murchison Widefield Array,SKA Murchison Widefield Array, Boolardy station in outback Western Australia, at the Murchison Radio-astronomy Observatory (MRO)


    SKA Murchison Wide Field Array

    SKA Hera at SKA South Africa

    SKA Pathfinder – LOFAR location at Potsdam via Google Images

     
  • richardmitnick 2:50 pm on October 9, 2019 Permalink | Reply
    Tags: , , , , NenuFAR which stands for New Extension in Nançay Upgrading LOFAR, , SKA - Square Kilometre Array   

    From SKA: “French NenuFAR telescope granted SKA Pathfinder status” 

    SKA South Africa


    From SKA

    10.9.19

    The SKA Organisation has officially recognised NenuFAR, a French radio telescope, as a Pathfinder Project of the SKA telescope.

    NenuFAR Array in France NenuFAR, which stands for New Extension in Nançay Upgrading LOFAR

    NenuFAR, which stands for New Extension in Nançay Upgrading LOFAR, is a new low-frequency radio telescope under construction at the Nançay Observatory near Orleans to extend the existing international LOFAR radio telescope, an array of low frequency antennas spread across eight European countries and centred in the Netherlands.

    “With this announcement, NenuFAR is recognised as an instrument concept paving the way for the new science to be done with the SKA”, said Gilles Theureau, Director of the Nançay Observatory. “It’s excellent news for the project, as well as for the Nançay Observatory.”

    The SKA officially has three precursor telescopes, MeerKAT, ASKAP and MWA. Located at SKA sites in South Africa and Western Australia, these precursors are and will be carrying out scientific studies related to future SKA activities, as well as helping the development and testing of new crucial SKA technologies.

    Unlike precursors, pathfinder telescopes and systems are dotted around the globe. They include the famous Arecibo radio telescope in Puerto Rico, which starred in the James Bond movie “Goldeneye”, the LOFAR low frequency array, which is based in Europe, and the JVLA, in North America, which was famously seen in the hit movie “Contact”, amongst others. They are also engaged in SKA-related technology and science studies. A full list is available here.

    NenuFAR will not only be an extension of LOFAR but also a stand-alone instrument. As an SKA pathfinder, the feedback from the design, construction and operation of NenuFAR will be used by the SKA Organisation to facilitate the development of the SKA.

    “NenuFAR is a promising instrument and the SKA’s low frequency array will certainly benefit from the development and lessons learnt on this project”, said Prof. Philip Diamond, Director General of the SKA Organisation. “We are happy to support the French community’s efforts and look forward to working more closely with our colleagues in France in the near future.”

    “The decision by the SKA Organisation to grant NenuFAR the official status of SKA Pathfinder is an important signal for the French community, recognising our expertise in radioastronomy,” added Denis Mourard, Deputy Director for Science of the Institut National des Sciences de l’Univers of CNRS.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition


    SKA ASKAP Pathefinder Telescope

    SKA Meerkat telescope, 90 km outside the small Northern Cape town of Carnarvon, SA


    SKA Meerkat Telescope

    Murchison Widefield Array,SKA Murchison Widefield Array, Boolardy station in outback Western Australia, at the Murchison Radio-astronomy Observatory (MRO)


    SKA Murchison Wide Field Array

    SKA Hera at SKA South Africa

    SKA Pathfinder – LOFAR location at Potsdam via Google Images

    About SKA

    The Square Kilometre Arraywill be the world’s largest and most sensitive radio telescope. The total collecting area will be approximately one square kilometre giving 50 times the sensitivity, and 10 000 times the survey speed, of the best current-day telescopes. The SKA will be built in Southern Africa and in Australia. Thousands of receptors will extend to distances of 3 000 km from the central regions. The SKA will address fundamental unanswered questions about our Universe including how the first stars and galaxies formed after the Big Bang, how dark energy is accelerating the expansion of the Universe, the role of magnetism in the cosmos, the nature of gravity, and the search for life beyond Earth. Construction of phase one of the SKA is scheduled to start in 2016. The SKA Organisation, with its headquarters at Jodrell Bank Observatory, near Manchester, UK, was established in December 2011 as a not-for-profit company in order to formalise relationships between the international partners and centralise the leadership of the project.

    The Square Kilometre Array (SKA) project is an international effort to build the world’s largest radio telescope, led by SKA Organisation. The SKA will conduct transformational science to improve our understanding of the Universe and the laws of fundamental physics, monitoring the sky in unprecedented detail and mapping it hundreds of times faster than any current facility.

    Already supported by 10 member countries – Australia, Canada, China, India, Italy, New Zealand, South Africa, Sweden, The Netherlands and the United Kingdom – SKA Organisation has brought together some of the world’s finest scientists, engineers and policy makers and more than 100 companies and research institutions across 20 countries in the design and development of the telescope. Construction of the SKA is set to start in 2018, with early science observations in 2020.

     
  • richardmitnick 12:10 pm on July 24, 2019 Permalink | Reply
    Tags: , , , , , , , SKA - Square Kilometre Array,   

    From Niels Bohr Institute: “Probing the beginning of the Universe can soon be done more accurately” 

    University of Copenhagen

    Niels Bohr Institute bloc

    From Niels Bohr Institute

    Measurement of the Cosmic Microwave Background radiation:

    In the Karoo desert in South Africa, scientists from all over the world plan to set up a huge array of telescopes – the Square Kilometer Array (SKA).


    SKA South Africa

    As many as 200 telescopes will be erected in the next decade, in order to achieve the highest possible precision in measuring radiation from the Universe.

    1
    Photograph of the SKA-MPG telescope for which the study was performed. The primary dish has a diameter of 15 meters and can receive signals between 1.7 and 3.5 Gigahertz. It is currently being installed in the South African Karoo desert. © South African Radio Astronomy Observatory (SARAO)

    Among the many scientific goals of the SKA are tests of Einstein’s relativity theory, probing the nature of Dark Energy, and studying the properties of our Galaxy, to name just a few. A team of researchers, amongst them Sebastian von Hausegger, who just finished as a PhD fellow in the Theoretical Particle Physics and Cosmology group of the Niels Bohr Institute, University of Copenhagen, has developed a plan to utilize the very first prototype, the SKA-MPG telescope, in the Karoo in a different way in the near future: the additional knowledge about our Galaxy which this telescope will bring can be used immediately for the study of the Cosmic Microwave Background (CMB), the earliest picture of our Universe. In a detailed study, they investigate the scientific potential of the SKA-MPG telescope – the prototype for those dishes which eventually should be built into the array is built by the German Max Planck Society – and demonstrate the huge advantage already this single dish will have for cosmology. This forecast was led by Aritra Basu from Bielefeld University and is now published in Monthly Notices of the Royal Astronomical Society.

    Separating the foreground from the background

    The Cosmic Microwave Background radiation (CMB) is the afterglow of the forming of our Universe.

    CMB per ESA/Planck

    ESA/Planck 2009 to 2013

    In this respect, it carries the fingerprint of how everything we know and are came to be. If analyzed correctly, it will tell us about the very early universe, perhaps including stories about gravitational waves generated by a process called inflation, the currently leading theory of the Universe’s beginning – obviously, we want to be able to study it as closely and accurately as possible.

    Inflation

    4
    Alan Guth, from Highland Park High School and M.I.T., who first proposed cosmic inflation

    HPHS Owls

    Lambda-Cold Dark Matter, Accelerated Expansion of the Universe, Big Bang-Inflation (timeline of the universe) Date 2010 Credit: Alex MittelmannColdcreation

    Alan Guth’s notes:

    Alan Guth’s original notes on inflation

    However, all measurements we attempt to take of the CMB are disturbed by the radiation emitted by our own Galaxy. This radiation is called `foreground emission’ in the CMB community, to distinguish it from the sought-for cosmic `background’. To reliably remove thisforeground, we must understand exactly what it is, and what is causing it. This is where telescopes like the one shown come into play.

    Sebastian von Hausegger’s work as a PhD student dealt with the problem of foreground separation. “Essentially, you take a picture of the sky at different frequencies, and by tracing the differences of those pictures, you understand what sort of foreground emission they contain. Once that is done properly, the real work with interpreting the background can begin”, Sebastian explains. “The more frequencies you take pictures at – the better your understanding gets of the physical processes, the structure, and the composition of the Milky Way!” The SKA-MPG telescope is able to measure at 2048 different frequencies between 1.7 and 3.5 GHz – many more than previously possible.

    Bringing the radio astronomy and the CMB community together

    Sebastian continues, “The radio emission of our Galaxy is mainly caused by electrons, zooming around in the Galactic disk, and they can do crazy things. As a part of my PhD, I visited the Astroparticle Physics and Cosmology group at Bielefeld University, Germany. The group includes experts on galactic radio emission – the emission we call foreground radiation. I visited them as a representative from the CMB research community, so to say. Our own Galaxy is not that interesting in the grand scale of things, but the insight gained from measurements of its emission can sure help us learn about this grand scale! In this collaboration,we tried to bring the two communities closer together.”

    Motivated by the properties of the telescope, the authors of this study consider a much more ambitious model for the radio-foregrounds than was done in previous efforts. Even considering the impact of the SKA-MPG prototype alone, the level of achievable detail is much higher than with current data and the inferred prospects for CMB analyses are highly promising.

    An array of up to 200 telescopes is the goal

    The ambition of the Square Kilometer Array is to finally place 200 telescopes in the South African desert. The reason for choosing a remote area like a desert for performing their measurements the restriction of radio emission in the surroundings(the Karoo desert has been made a so-called Radio Quiet Zone). The large number of telescopes will give the SKA unprecedented precision. “As we speak, the prototype telescope is being built, and is expected to be completed in the autumn. It will be very interesting to see what the data will tell us, once it is up – not to mention the future data of the entire array”, says Sebastian.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings


    Stem Education Coalition

    Niels Bohr Institute Campus

    Niels Bohr Institute (Danish: Niels Bohr Institutet) is a research institute of the University of Copenhagen. The research of the institute spans astronomy, geophysics, nanotechnology, particle physics, quantum mechanics and biophysics.

    The Institute was founded in 1921, as the Institute for Theoretical Physics of the University of Copenhagen, by the Danish theoretical physicist Niels Bohr, who had been on the staff of the University of Copenhagen since 1914, and who had been lobbying for its creation since his appointment as professor in 1916. On the 80th anniversary of Niels Bohr’s birth – October 7, 1965 – the Institute officially became The Niels Bohr Institute.[1] Much of its original funding came from the charitable foundation of the Carlsberg brewery, and later from the Rockefeller Foundation.[2]

    During the 1920s, and 1930s, the Institute was the center of the developing disciplines of atomic physics and quantum physics. Physicists from across Europe (and sometimes further abroad) often visited the Institute to confer with Bohr on new theories and discoveries. The Copenhagen interpretation of quantum mechanics is named after work done at the Institute during this time.

    On January 1, 1993 the institute was fused with the Astronomic Observatory, the Ørsted Laboratory and the Geophysical Institute. The new resulting institute retained the name Niels Bohr Institute.

    The University of Copenhagen (UCPH) (Danish: Københavns Universitet) is the oldest university and research institution in Denmark. Founded in 1479 as a studium generale, it is the second oldest institution for higher education in Scandinavia after Uppsala University (1477). The university has 23,473 undergraduate students, 17,398 postgraduate students, 2,968 doctoral students and over 9,000 employees. The university has four campuses located in and around Copenhagen, with the headquarters located in central Copenhagen. Most courses are taught in Danish; however, many courses are also offered in English and a few in German. The university has several thousands of foreign students, about half of whom come from Nordic countries.

    The university is a member of the International Alliance of Research Universities (IARU), along with University of Cambridge, Yale University, The Australian National University, and UC Berkeley, amongst others. The 2016 Academic Ranking of World Universities ranks the University of Copenhagen as the best university in Scandinavia and 30th in the world, the 2016-2017 Times Higher Education World University Rankings as 120th in the world, and the 2016-2017 QS World University Rankings as 68th in the world. The university has had 9 alumni become Nobel laureates and has produced one Turing Award recipient

     
  • richardmitnick 3:27 pm on June 26, 2019 Permalink | Reply
    Tags: , , , , , SKA - Square Kilometre Array   

    From SKA: “SKA and ngVLA projects explore scientific alliance 

    SKA South Africa


    From SKA

    1
    Artists’ impressions of the Square Kilometre Array (left), which will operate from 50 MHz – 14 GHz, and the Next Generation Very Large Array (left), which will cover a frequency range from 1.2 – 116 GHz.

    26 June 2019 –

    3
    NRAO ngVLA

    The Next Generation Very Large Array (ngVLA) and Square Kilometre Array (SKA) projects are currently investigating a process to establish a scientific alliance that may result in an exchange of observing time across an unprecedented suite of cutting-edge telescopes spanning more than 3 orders of magnitude in observing frequency (50MHz – 116 GHz)

    Such an alliance will yield unparalleled capabilities for investigating the most pressing astrophysical problems of our time, including the formation and evolution of the Universe, galaxies, stars and planets. While many details about the nature of any such scientific alliance remain to be resolved, both Observatories agreed they should be ambitious in exploring the possibilities of this type of arrangement in future.

    After a productive initial meeting, we look forward to continuing the alliance discussions and meeting again in approximately 18 months, at which time SKA should have begun construction activities and ngVLA will be continuing design/development activities. One tangible outcome of the first meeting was an agreement to hold a joint SKA/ngVLA science meeting in 2021, details to be announced in due course.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition


    SKA ASKAP Pathefinder Telescope

    SKA Meerkat telescope, 90 km outside the small Northern Cape town of Carnarvon, SA


    SKA Meerkat Telescope

    Murchison Widefield Array,SKA Murchison Widefield Array, Boolardy station in outback Western Australia, at the Murchison Radio-astronomy Observatory (MRO)


    SKA Murchison Wide Field Array

    SKA Hera at SKA South Africa

    SKA Pathfinder – LOFAR location at Potsdam via Google Images

    About SKA

    The Square Kilometre Arraywill be the world’s largest and most sensitive radio telescope. The total collecting area will be approximately one square kilometre giving 50 times the sensitivity, and 10 000 times the survey speed, of the best current-day telescopes. The SKA will be built in Southern Africa and in Australia. Thousands of receptors will extend to distances of 3 000 km from the central regions. The SKA will address fundamental unanswered questions about our Universe including how the first stars and galaxies formed after the Big Bang, how dark energy is accelerating the expansion of the Universe, the role of magnetism in the cosmos, the nature of gravity, and the search for life beyond Earth. Construction of phase one of the SKA is scheduled to start in 2016. The SKA Organisation, with its headquarters at Jodrell Bank Observatory, near Manchester, UK, was established in December 2011 as a not-for-profit company in order to formalise relationships between the international partners and centralise the leadership of the project.

    The Square Kilometre Array (SKA) project is an international effort to build the world’s largest radio telescope, led by SKA Organisation. The SKA will conduct transformational science to improve our understanding of the Universe and the laws of fundamental physics, monitoring the sky in unprecedented detail and mapping it hundreds of times faster than any current facility.

    Already supported by 10 member countries – Australia, Canada, China, India, Italy, New Zealand, South Africa, Sweden, The Netherlands and the United Kingdom – SKA Organisation has brought together some of the world’s finest scientists, engineers and policy makers and more than 100 companies and research institutions across 20 countries in the design and development of the telescope. Construction of the SKA is set to start in 2018, with early science observations in 2020.

     
  • richardmitnick 2:26 pm on May 9, 2019 Permalink | Reply
    Tags: SKA - Square Kilometre Array,   

    From University of Cambridge: “Design work on ‘brain’ of world’s largest radio telescope completed” 

    U Cambridge bloc

    From University of Cambridge

    09 May 2019
    Sarah Collins
    sarah.collins@admin.cam.ac.uk

    1
    Artist’s impression of the full Square Kilometre Array at night

    An international group of scientists led by the University of Cambridge has finished designing the ‘brain’ of the Square Kilometre Array (SKA), the world’s largest radio telescope. When complete, the SKA will enable astronomers to monitor the sky in unprecedented detail and survey the entire sky much faster than any system currently in existence.

    The SKA’s Science Data Processor (SDP) consortium has concluded its engineering design work, marking the end of five years’ work to design one of two supercomputers that will process the enormous amounts of data produced by the SKA’s telescopes.

    The SDP consortium, led by the University of Cambridge, has designed the elements that will together form the ‘brain’ of the SKA. SDP is the second stage of processing for the masses of digitised astronomical signals collected by the telescope’s receivers. In total, close to 40 institutions in 11 countries took part.

    The UK government, through the Science and Technology Facilities Council (STFC), has committed £100m to the construction of the SKA and the SKA Headquarters, as its share as a core member of the project. The global headquarters of the SKA Organisation are located in the UK at Jodrell Bank, home to the iconic Lovell Telescope

    “It’s been a real pleasure to work with such an international team of experts, from radio astronomy but also the High-Performance Computing industry,” said Maurizio Miccolis, SDP’s Project Manager for the SKA Organisation. “We’ve worked with almost every SKA country to make this happen, which goes to show how hard what we’re trying to do is.”

    The role of the consortium was to design the computing hardware platforms, software, and algorithms needed to process science data from the Central Signal Processor (CSP) into science data products.

    “SDP is where data becomes information,” said Rosie Bolton, Data Centre Scientist for the SKA Organisation. “This is where we start making sense of the data and produce detailed astronomical images of the sky.”

    To do this, SDP will need to ingest the data and move it through data reduction pipelines at staggering speeds, to then form data packages that will be copied and distributed to a global network of regional centres where it will be accessed by scientists around the world.

    SDP itself will be composed of two supercomputers, one located in Cape Town, South Africa and one in Perth, Australia.

    “We estimate SDP’s total compute power to be around 250 PFlops – that’s 25% faster than IBM’s Summit, the current fastest supercomputer in the world,” said Maurizio. “In total, up to 600 petabytes of data will be distributed around the world every year from SDP –enough to fill more than a million average laptops.”

    Additionally, because of the sheer quantity of data flowing into SDP: some 5 Tb/s, or 100,000 times faster than the projected global average broadband speed in 2022, it will need to make decisions on its own in almost real-time about what is noise and what is worthwhile data to keep.

    The team also designed SDP so that it can detect and remove manmade radio frequency interference (RFI) – for example from satellites and other sources – from the data.

    “By pushing what’s technologically feasible and developing new software and architecture for our HPC needs, we also create opportunities to develop applications in other fields,” said Maurizio.

    High-Performance Computing plays an increasingly vital role in enabling research in fields such as weather forecasting, climate research, drug development and many others where cutting-edge modelling and simulations are essential.

    Professor Paul Alexander, Consortium Lead from Cambridge’s Cavendish Laboratory said: “I’d like to thank everyone involved in the consortium for their hard work over the years. Designing this supercomputer wouldn’t have been possible without such an international collaboration behind it.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Cambridge Campus

    The University of Cambridge (abbreviated as Cantab in post-nominal letters) is a collegiate public research university in Cambridge, England. Founded in 1209, Cambridge is the second-oldest university in the English-speaking world and the world’s fourth-oldest surviving university. It grew out of an association of scholars who left the University of Oxford after a dispute with townsfolk. The two ancient universities share many common features and are often jointly referred to as “Oxbridge”.

    Cambridge is formed from a variety of institutions which include 31 constituent colleges and over 100 academic departments organised into six schools. The university occupies buildings throughout the town, many of which are of historical importance. The colleges are self-governing institutions founded as integral parts of the university. In the year ended 31 July 2014, the university had a total income of £1.51 billion, of which £371 million was from research grants and contracts. The central university and colleges have a combined endowment of around £4.9 billion, the largest of any university outside the United States. Cambridge is a member of many associations and forms part of the “golden triangle” of leading English universities and Cambridge University Health Partners, an academic health science centre. The university is closely linked with the development of the high-tech business cluster known as “Silicon Fen”.

     
  • richardmitnick 2:11 pm on May 9, 2019 Permalink | Reply
    Tags: "Joining the Square Kilometre Array", , , , , MPG-Max Planck Gesellschaft, , SKA - Square Kilometre Array   

    From Max Planck Gesellschaft: “Joining the Square Kilometre Array” 

    From Max Planck Gesellschaft

    May 08, 2019

    Max Planck Society becomes newest member of SKA Organization.

    The Max Planck Society has become the 13th member of the SKA Organisation, following an unanimous vote by the SKA Board of Directors. The decision to accept the application for membership was taken at the 29th Board meeting at SKA Organisation Global Headquarters in the UK.

    The Max Planck Society joins the final phase of the SKA Organisation, which is overseeing the telescope design phase, until the process of transitioning into the SKA Observatory, an intergovernmental organisation (IGO) established by treaty to manage the construction and operation of the SKA, is completed. Any further German engagement with a joining of the SKA Observatory remains to be decided and will be subject to future discussions.

    “I am delighted to welcome the Max Planck Society to the SKA Organisation as our 13th member, a deserved recognition of the significant contributions Germany has made to the SKA project over the years, and particularly in this crucial pre-construction phase”, said Chairperson of the SKA Board of Directors Dr. Catherine Cesarsky.

    German research institutions and industry have been an intrinsic part of SKA-related projects since its earliest days, and have significant involvement in ongoing SKA design activities. In particular, the Max Planck Society provides instrumentation in the form of detectors, data acquisition and analysis systems for South Africa’s world-class MeerKAT telescope, an SKA precursor facility which will become part of SKA-Mid.

    SKA Meerkat telescope, South African design

    “I am extremely pleased to see our German colleagues consolidating their long-lasting involvement in SKA-related activities both at a scientific and industrial level”, added Prof. Philip Diamond, SKA Director-General. “Germany’s great wealth of expertise in radio astronomy, both in science and engineering, will continue to be invaluable as we move ever closer to SKA construction and operations.”

    The Max Planck Society is a non-profit organisation with 84 institutes and research facilities. In collaboration with other German institutions and industry, it has been involved across many areas of SKA design work, including within the Mid Frequency Dish Array, Low Frequency Aperture Array, Central Signal Processor, Science Data Processor, Telescope Manager, Signal and Data Transport consortia, and research and development work within the Phased Array Feeds and Wideband Single Pixel Feeds consortia.

    Among the Max Planck Society’s institutes is the Max Planck Institute for Radio Astronomy (MPIfR) a key player in the SKA’s Dish engineering consortium.


    Max Planck Institute for Radio Astronomy Bonn Germany

    Together with German industry partners, such as the telescope antenna specialists MT Mechatronics (MTM), and international partners, the Dish consortium is responsible for designing the SKA’s mid-frequency array (SKA-Mid), to be deployed in South Africa, The Dish consortium has already delivered two prototype SKA dishes: SKA-P, which is currently being tested in China, and SKA-MPI, funded by the Max Planck Society, which is under construction on the SKA site in South Africa’s Karoo region.

    “The SKA is a great opportunity for astronomers, engineers, physicists and data scientists. Besides becoming an amazing discovery machine, SKA pushes the boundaries of what is technically possible, especially in the handling and analysis of huge amounts of data. The Max Planck Society is in the middle of all these exciting science and technology developments, and we are pleased to now be able to contribute officially to the SKAO efforts”, says Prof Michael Kramer, director at the MPIfR.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Max Planck Society is Germany’s most successful research organization. Since its establishment in 1948, no fewer than 18 Nobel laureates have emerged from the ranks of its scientists, putting it on a par with the best and most prestigious research institutions worldwide. The more than 15,000 publications each year in internationally renowned scientific journals are proof of the outstanding research work conducted at Max Planck Institutes – and many of those articles are among the most-cited publications in the relevant field.

    What is the basis of this success? The scientific attractiveness of the Max Planck Society is based on its understanding of research: Max Planck Institutes are built up solely around the world’s leading researchers. They themselves define their research subjects and are given the best working conditions, as well as free reign in selecting their staff. This is the core of the Harnack principle, which dates back to Adolph von Harnack, the first president of the Kaiser Wilhelm Society, which was established in 1911. This principle has been successfully applied for nearly one hundred years. The Max Planck Society continues the tradition of its predecessor institution with this structural principle of the person-centered research organization.

    The currently 83 Max Planck Institutes and facilities conduct basic research in the service of the general public in the natural sciences, life sciences, social sciences, and the humanities. Max Planck Institutes focus on research fields that are particularly innovative, or that are especially demanding in terms of funding or time requirements. And their research spectrum is continually evolving: new institutes are established to find answers to seminal, forward-looking scientific questions, while others are closed when, for example, their research field has been widely established at universities. This continuous renewal preserves the scope the Max Planck Society needs to react quickly to pioneering scientific developments.

     
  • richardmitnick 3:42 pm on March 14, 2019 Permalink | Reply
    Tags: , , SKA - Square Kilometre Array,   

    From insideHPC: “In a boon for HPC, Founding Members Sign SKA Observatory Treaty” 

    From insideHPC

    March 14, 2019

    1
    The initial signatories of the SKA Observatory Convention. From left to right: UK Ambassdor to Italy Jill Morris, China’s Vice Minister of Science and Technology Jianguo Zhang, Portugal’s Minister for Science, Technology and Higher Education Manuel Heitor, Italian Minister of Education, Universities and Research Marco Bussetti, South Africa’s Minister of Science and Technology Mmamoloko Kubayi-Ngubane, the Netherlands Deputy Director of the Department for Science and Research Policy at the Ministry of Education, Culture and Science Oscar Delnooz, and Australia’s Ambassdor to Italy Greg French (Credit: SKA Organization)

    Earlier this week, countries involved in the Square Kilometre Array (SKA) Project came together in Rome to sign an international treaty establishing the intergovernmental organization that will oversee the delivery of the world’s largest radio telescope.

    SKA Square Kilometer Array

    Ministers, Ambassadors and other high-level representatives from over 15 countries have gathered in the Italian capital for the signature of the treaty which establishes the Square Kilometre Array Observatory (SKAO), the intergovernmental organization (IGO) tasked with delivering and operating the SKA.

    “Today we are particularly honored to sign, right here at the Ministry of Education, University and Research, the Treaty for the establishment of the SKA Observatory” Italian Minister of Education Marco Bussetti who presided over the event, said. “A signature that comes after a long phase of negotiations, in which our country has played a leading role. The Rome Convention testifies the spirit of collaboration that scientific research triggers between countries and people around the world, because science speaks all the languages of the planet and its language connects the whole world. This Treaty – he added – is the moment that marks our present and our future history, the history of science and knowledge of the Universe. The SKA project is the icon of the increasingly strategic role that scientific research has taken on in contemporary society. Research is the engine of innovation and growth: knowledge translates into individual and collective well-being, both social and economic. Participating in the forefront of such an extensive and important international project is a great opportunity for the Italian scientific community, both for the contribution that our many excellences can give and for sharing the big amount of data that SKA will collect and redistribute.”

    Seven countries signed the treaty today, including Australia, China, Italy, The Netherlands, Portugal, South Africa and the United Kingdom. India and Sweden, who also took part in the multilateral negotiations to set up the SKA Observatory IGO, are following further internal processes before signing the treaty. Together, these countries will form the founding members of the new organisation.

    Dr. Catherine Cesarsky, Chair of the SKA Board of Directors, added “Rome wasn’t built in a day. Likewise, designing, building and operating the world’s biggest telescope takes decades of efforts, expertise, innovation, perseverance, and global collaboration. Today we’ve laid the foundations that will enable us to make the SKA a reality.”

    “…SKA will be the largest science facility on the planet, with infrastructure spread across three continents on both hemispheres. Its two networks of hundreds of dishes and thousands of antennas will be distributed over hundreds of kilometres in Australia and South Africa, with the Headquarters in the United Kingdom.”

    SKA South Africa

    Together with facilities like the James Webb Space Telescope, CERN’s Large Hadron Collider, the LIGO gravitational wave detector, the new generation of extremely large optical telescopes and the ITER fusion reactor, the SKA will be one of humanity’s cornerstone physics machines in the 21st century.

    NASA/ESA/CSA Webb Telescope annotated

    LHC

    CERN map


    CERN LHC Tunnel

    CERN LHC particles

    MIT /Caltech Advanced aLigo new bloc


    ITER Tokamak in Saint-Paul-lès-Durance, which is in southern France

    Prof. Philip Diamond, Director-General of the SKA Organization which has led the design of the telescope added: “Like Galileo’s telescope in its time, the SKA will revolutionize how we understand the world around us and our place in it. Today’s historic signature shows a global commitment behind this vision, and opens up the door to generations of ground-breaking discoveries.”

    It will help address fundamental gaps in our understanding of the Universe, enabling astronomers from its participating countries to study gravitational waves and test Einstein’s theory of relativity in extreme environments, investigate the nature of the mysterious fast radio bursts, improve our understanding of the evolution of the Universe over billions of years, map hundreds of millions of galaxies and look for signs of life in the Universe.

    Two of the world’s fastest supercomputers* will be needed to process the unprecedented amounts of data emanating from the telescopes, with some 600 petabytes expected to be stored and distributed worldwide to the science community every year, or the equivalent of over half a million laptops worth of data.

    Close to 700 million euros worth of contracts for the construction of the SKA will start to be awarded from late 2020 to companies and providers in the SKA’s member countries, providing a substantial return on investment for those countries. Spinoffs are also expected to emerge from work to design and build the SKA, with start-ups already being created out of some of the design work and impact reaching far beyond astronomy.


    In this video from the Disruptive Technologies Panel at the HPC User Forum, Peter Braam from Cambridge University presents: Processing 1 EB per Day for the SKA Radio Telescope.

    Over 1,000 engineers and scientists in 20 countries have been involved in designing the SKA over the past five years, with new research programs, educational initiatives and collaborations being created in various countries to train the next generation of scientists and engineers.

    Guests from Canada, France, Malta, New Zealand, the Republic of Korea, Spain and Switzerland were also in attendance to witness the signature and reaffirmed their strong interest in the project. They all confirmed they are making their best efforts to prepare the conditions for a future decision of participation of their respective country in the SKA Observatory.

    The signature concludes three and a half years of negotiations by government representatives and international lawyers, and kicks off the legislative process in the signing countries, which will see SKAO enter into force once five countries including all three hosts have ratified the treaty through their respective legislatures.

    SKAO becomes only the second intergovernmental organization dedicated to astronomy in the world, after the European Southern Observatory (ESO) [What about ESA and ALMA?].

    *Not identified in the article. I have asked for the names and locations of the supercomputers.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Founded on December 28, 2006, insideHPC is a blog that distills news and events in the world of HPC and presents them in bite-sized nuggets of helpfulness as a resource for supercomputing professionals. As one reader said, we’re sifting through all the news so you don’t have to!

    If you would like to contact me with suggestions, comments, corrections, errors or new company announcements, please send me an email at rich@insidehpc.com. Or you can send me mail at:

    insideHPC
    2825 NW Upshur
    Suite G
    Portland, OR 97239

    Phone: (503) 877-5048

     
  • richardmitnick 1:54 pm on February 7, 2019 Permalink | Reply
    Tags: , , , , Now You Can Join the Search for Killer Asteroids, , SKA - Square Kilometre Array, ,   

    From WIRED: “Now You Can Join the Search for Killer Asteroids” 

    Wired logo

    From WIRED

    02.07.19
    Sarah Scoles

    1
    A Hawaii observatory just put the largest astronomical data trove ever online, making it free and accessible so anyone can hunt for new cosmic phenomena. R. White/STScI/PS1 Science Consortium

    If you want to watch sunrise from the national park at the top of Mount Haleakala, the volcano that makes up around 75 percent of the island of Maui, you have to make a reservation. Being at 10,023 feet, the summit provides a spectacular—and very popular, ticket-controlled—view.

    2
    Looking into the Haleakalā crater

    Just about a mile down the road from the visitors’ center sits “Science City,” where civilian and military telescopes curl around the road, their domes bubbling up toward the sky. Like the park’s visitors, they’re looking out beyond Earth’s atmosphere—toward the Sun, satellites, asteroids, or distant galaxies. And one of them, called the Panoramic Survey Telescope and Rapid Response System, or Pan-STARRS, just released the biggest digital astro-dataset ever, amounting to 1.6 petabytes, the equivalent of around 500,000 HD movies.

    Pann-STARS 1 Telescope, U Hawaii, situated at Haleakala Observatories near the summit of Haleakala in Hawaii, USA, altitude 3,052 m (10,013 ft)

    From its start in 2010, Pan-STARRS has been watching the 75 percent of the sky it can see from its perch and recording cosmic states and changes on its 1.4-billion-pixel camera. It even discovered the strange ‘Oumuamua, the interstellar object that a Harvard astronomer has suggested could be an alien spaceship.

    3
    An artist’s rendering of the first recorded visitor to the solar system, ‘Oumuamua.
    Aunt_Spray/Getty Images

    Big surveys like this one, which watch swaths of sky agnostically rather than homing in on specific stuff, represent a big chunk of modern astronomy. They are an efficient, pseudo-egalitarian way to collect data, uncover the unexpected, and allow for discovery long after the lens cap closes. With better computing power, astronomers can see the universe not just as it was and is but also as it’s changing, by comparing, say, how a given part of the sky looks on Tuesday to how it looks on Wednesday. Pan-STARRS’s latest data dump, in particular, gives everyone access to the in-process cosmos, opening up the “time domain” to all earthlings with a good internet connection.

    Pan-STARRS, like all projects, was once just an idea. It started around the turn of this century, when astronomers Nick Kaiser, John Tonry, and Gerry Luppino, from Hawaii’s Institute for Astronomy, suggested that relatively “modest” telescopes—hooked to huge cameras—were the best way to image large skyfields.

    Today, that idea has morphed into Pan-STARRS, a many-pixeled instrument attached to a 1.8-meter telescope (big optical telescopes may measure around 10 meters). It takes multiple images of each part of the sky to show how it’s changing. Over the course of four years, Pan-STARRS imaged the heavens above 12 times, using five different filters. These pictures may show supernovae flaring up and dimming back down, active galaxies whose centers glare as their black holes digest material, and strange bursts from cataclysmic events. “When you visit the same piece of sky again and again, you can recognize, ‘Oh, this galaxy has a new star in it that was not there when we were there a year or three months ago,” says Rick White, an astronomer at the Space Telescope Science Institute, which hosts Pan-STARRS’s archive. In this way, Pan-STARRS is a forerunner of the massive Large Synoptic Survey Telescope, or LSST, which will snap 800 panoramic images every evening, with a 3.2-billion-pixel camera, capturing the whole sky twice a week.

    LSST


    LSST Camera, built at SLAC



    LSST telescope, currently under construction on the El Peñón peak at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes.

    Plus, by comparing bright dots that move between images, astronomers can uncover closer-by objects, like rocks whose path might sweep uncomfortably close to Earth.

    That latter part is not just interesting to scientists, but to the military too. “It’s considered a defense function to find asteroids that might cause us to go extinct,” says White. That’s (at least part of) why the Air Force, which also operates a satellite-tracking system on Haleakala, pushed $60 million into Pan-STARRS’s development. NASA, the state of Hawaii, a consortium of scientists, and some private donations ponied up the rest.

    But when the telescope first got to work, its operations hit some snags. Its initial images were about half as sharp as they should have been, because the system that adjusted the telescope’s mirror to make up for distortions wasn’t working right.

    Also, the Air Force redacted parts of the sky. It used software called “Magic” to detect streaks of light that might be satellites (including the US government’s own). Magic masked those streaks, essentially placing a dead-pixel black bar across that section of sky, to “to prevent the determination of any orbital element of the artificial satellite before the images left the [Institute for Astronomy] servers,” according to a recent paper by the Pan-STARRS group. In December 2011, the Air Force “dropped the requirement,” says the article. The magic was gone, and the scientists reprocessed the original raw data, removing the black boxes.

    The first tranche of data, from the world’s most substantial digital sky survey, came in December 2016. It was full of stars, galaxies, space rocks, and strangeness. The telescope and its associated scientists have already found an eponymous comet, crafted a 3D model of the Milky Way’s dust, unearthed way-old active galaxies, and spotted everyone’s favorite probably-not-an-alien-spaceship, ’Oumuamua.

    The real deal, though, entered the world late last month, when astronomers publicly released and put online all the individual snapshots, including auto-generated catalogs of some 800 million objects. With that dataset, astronomers and regular people everywhere (once they’ve read a fair number of help-me files) can check out a patch of sky and see how it evolved as time marched on. The curious can do more of the “time domain” science Pan-STARRS was made for: catching explosions, watching rocks, and squinting at unexplained bursts.

    Pan-STARRS might never have gotten its observations online if NASA hadn’t seen its own future in the observatory’s massive data pileup. That 1.6-petabyte archive is now housed at the Space Telescope Science Institute, in Maryland, in a repository called the Mikulski Archive for Space Telescopes. The Institute is also the home of bytes from Hubble, Kepler, GALEX, and 15 other missions, mostly belonging to NASA. “At the beginning they didn’t have any commitment to release the data publicly,” says White. “It’s such a large quantity they didn’t think they could manage to do it.” The Institute, though, welcomed this outsider data in part so it could learn how to deal with such huge quantities.

    The hope is that Pan-STARRS’s freely available data will make a big contribution to astronomy. Just look at the discoveries people publish using Hubble data, says White. “The majority of papers being published are from archival data, by scientists that have no connection to the original observations,” he says. That, he believes, will hold true for Pan-STARRS too.

    But surveys are beautiful not just because they can be shared online. They’re also A+ because their observations aren’t narrow. In much of astronomy, scientists look at specific objects in specific ways at specific times. Maybe they zoom in on the magnetic field of pulsar J1745–2900, or the hydrogen gas in the farthest reaches of the Milky Way’s Perseus arm, or that one alien spaceship rock. Those observations are perfect for that individual astronomer to learn about that field, arm, or ship—but they’re not as great for anything or anyone else. Surveys, on the other hand, serve everyone.

    “The Sloan Digital Sky Survey set the standard for these huge survey projects,” says White. Sloan, which started operations in 2000, is on its fourth iteration, collecting light with telescopes at Apache Point Observatory in New Mexico and Las Campanas Observatory in Northern Chile.

    SDSS 2.5 meter Telescope at Apache Point Observatory, near Sunspot NM, USA, Altitude 2,788 meters (9,147 ft)

    Universe map Sloan Digital Sky Survey (SDSS) 2dF Galaxy Redshift Survey

    Carnegie Las Campanas Observatory in the southern Atacama Desert of Chile in the Atacama Region approximately 100 kilometres (62 mi) northeast of the city of La Serena,near the southern end and over 2,500 m (8,200 ft) high

    From the early universe to the modern state of the Milky Way’s union, Sloan data has painted a full-on portrait of the universe that, like those creepy Renaissance portraits, will stick around for years to come.

    Over in a different part of New Mexico, on the high Plains of San Agustin, radio astronomers recently set the Very Large Array’s sights on a new survey. Having started in 2017, the Very Large Array Sky Survey is still at the beginning of its seven years of operation.

    NRAO/Karl V Jansky Expanded Very Large Array, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

    But astronomers don’t have to wait for it to finish its observations, as happened with the first Pan-STARRS survey. “Within several days of the data coming off the telescope, the images are available to everybody,” says Brian Kent, who, since 2012, has worked on the software that processes the data. Which is no small task: For every four hours of skywatching, the telescope spits out 300 gigabytes, which the software then has to make useful and usable. “You have to put the collective smarts of the astronomers into the software,” he says.

    Kent is excited about the same kinds of time-domain discoveries as White is: about seeing the universe at work rather than as a set of static images. Including the chronological dimension is hot in astronomy right now, from these surveys to future instruments like the LSST and the massive Square Kilometre Array, a radio telescope that will spread across two continents.

    SKA Square Kilometer Array

    SKA Murchison Widefield Array, Boolardy station in outback Western Australia, at the Murchison Radio-astronomy Observatory (MRO)


    Australian Square Kilometre Array Pathfinder (ASKAP) is a radio telescope array located at Murchison Radio-astronomy Observatory (MRO) in the Australian Mid West. ASKAP consists of 36 identical parabolic antennas, each 12 metres in diameter, working together as a single instrument with a total collecting area of approximately 4,000 square metres.

    SKA LOFAR core (“superterp”) near Exloo, Netherlands

    SKA South Africa


    SKA Meerkat telescope, 90 km outside the small Northern Cape town of Carnarvon, SA


    SKA Meerkat telescope, 90 km outside the small Northern Cape town of Carnarvon, SA

    SKA Meerkat telescope, South African design

    Now, as of late January, anyone can access all of those observations, containing phenomena astronomers don’t yet know about and that—hey, who knows—you could beat them to discovering.
    Big surveys like this one, which watch swaths of sky agnostically rather than homing in on specific stuff, represent a big chunk of modern astronomy. They are an efficient, pseudo-egalitarian way to collect data, uncover the unexpected, and allow for discovery long after the lens cap closes. With better computing power, astronomers can see the universe not just as it was and is but also as it’s changing, by comparing, say, how a given part of the sky looks on Tuesday to how it looks on Wednesday. Pan-STARRS’s latest data dump, in particular, gives everyone access to the in-process cosmos, opening up the “time domain” to all earthlings with a good internet connection.

    But surveys are beautiful not just because they can be shared online. They’re also A+ because their observations aren’t narrow. In much of astronomy, scientists look at specific objects in specific ways at specific times. Maybe they zoom in on the magnetic field of pulsar J1745–2900, or the hydrogen gas in the farthest reaches of the Milky Way’s Perseus arm, or that one alien spaceship rock. Those observations are perfect for that individual astronomer to learn about that field, arm, or ship—but they’re not as great for anything or anyone else. Surveys, on the other hand, serve everyone.

    “The Sloan Digital Sky Survey set the standard for these huge survey projects,” says White. Sloan, which started operations in 2000, is on its fourth iteration, collecting light with telescopes at Apache Point Observatory in New Mexico and Las Campanas Observatory in Northern Chile. From the early universe to the modern state of the Milky Way’s union, Sloan data has painted a full-on portrait of the universe that, like those creepy Renaissance portraits, will stick around for years to come.

    Over in a different part of New Mexico, on the high Plains of San Agustin, radio astronomers recently set the Very Large Array’s sights on a new survey. Having started in 2017, the Very Large Array Sky Survey is still at the beginning of its seven years of operation. But astronomers don’t have to wait for it to finish its observations, as happened with the first Pan-STARRS survey. “Within several days of the data coming off the telescope, the images are available to everybody,” says Brian Kent, who, since 2012, has worked on the software that processes the data. Which is no small task: For every four hours of skywatching, the telescope spits out 300 gigabytes, which the software then has to make useful and usable. “You have to put the collective smarts of the astronomers into the software,” he says.

    Kent is excited about the same kinds of time-domain discoveries as White is: about seeing the universe at work rather than as a set of static images. Including the chronological dimension is hot in astronomy right now, from these surveys to future instruments like the LSST and the massive Square Kilometre Array, a radio telescope that will spread across two continents.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 2:05 pm on January 28, 2019 Permalink | Reply
    Tags: , , , , , , SKA - Square Kilometre Array, The Netherlands makes €30m commitment to future SKA Observatory   

    From SKA and Netherlands Institute for Radio Astronomy (ASTRON): “The Netherlands makes €30m commitment to future SKA Observatory” 


    From SKA

    and

    ASTRON bloc

    Netherlands Institute for Radio Astronomy

    28 January 2019

    SKA release

    1
    Presentation of the Gemini board to to Science Minister Ingrid van Engelshoven in June 2018 by ASTRON engineers Gijs Schoonderbeek and Paula Fusiara. The Gemini board, developed by ASTRON in collaboration with Australia’s CSIRO and Auckland University of Technology in New Zealand, is designed to process the huge volume of data from the SKA-low telescope. (Credit: ASTRON)

    The Netherlands has announced it will sign the Square Kilometre Array (SKA) Convention at a ceremony to be held in Rome, Italy on 12th March. The Netherlands also confirmed an initial commitment of €30 million to the future SKA Observatory, solidifying its support for the international project.

    The convention will establish the SKA Observatory as an inter-governmental organisation responsible for delivering the construction and operation of the SKA, poised to be the largest and most sensitive radio telescope in the world. Once established, the Observatory will take over from the current SKA Organisation, which has managed the design phase of the multinational endeavour.

    At present, six countries have confirmed their intent to sign the treaty at the ceremony in March including the SKA’s three host countries (Australia, South Africa and the UK, the latter hosting the Headquarters), Italy (which has been leading the 3+-year long negotiation process), Portugal and the Netherlands. Other current member countries of the SKA Organisation are pursuing their own internal processes and are expected to join the founding group of the SKA Observatory at a later stage.

    “This is an extremely welcome announcement coming from our Dutch partners,” said Prof. Philip Diamond, Director-General of the SKA Organisation. “Investing in large-scale projects like the SKA has many benefits for the participating countries, from access to world-class facilities for their scientific community, to bidding for contracts for their industry and developing a competitive edge through innovations in high-technology. It is good to see that the Dutch government, alongside our other partners that are expected to join the SKA Observatory, recognises the value of being part of one of the most ambitious science endeavours of the 21st century.”

    As an existing member of the SKAO, the Netherlands has already made significant contributions to the science and engineering effort behind the SKA, and today’s announcement confirms the country’s long-term commitment to the project. The funding contribution has been allocated by the Dutch Ministry of Education, Culture and Science.

    “These are exciting times for us”, says Prof. Carole Jackson, Director General of the Netherlands Institute for Radio Astronomy (ASTRON), which coordinates the Dutch participation in the SKA. “The Netherlands will be a full partner in this massive global telescope to probe some of the mysteries of the Universe. We are thrilled that the Government has decided to invest in this way.”

    ASTRON Release

    1

    ASTRON, the Netherlands Institute for Radio Astronomy, is excited that the Netherlands will partner in the construction and management of the largest radio telescope in the world, the Square Kilometre Array (SKA). This ambitious project will lead to major discoveries about the nature of our Universe and answer longstanding questions. The Dutch Council of Ministers has decided that the Netherlands will sign the treaty to establish the international SKA observatory. ASTRON coordinates the Dutch participation in the SKA.

    Construction of the SKA will move forward over the next few years. On 12 March 2019 the international partners, now including the Netherlands, will sign a treaty agreement in Rome. The 30 million Euros allocated by the Dutch Ministry of Education, Culture and Science is the basis for Dutch participation to realise the SKA.

    “These are exciting times for us”, says Prof. Carole Jackson, Director General of ASTRON. “The Netherlands will be a full partner in this massive global telescope to probe some of the mysteries of the Universe. We are thrilled that the Government has decided to invest in this way.”

    Nine multinational consortia are finalising the design of the SKA, which is planned to start construction in 2021. ASTRON leads the consortium that develops SKA’s antenna stations in Western Australia and also plays a major role in two other consortia that design solutions to combine and further process the enormous amounts of data produced by the antennas.

    The SKA will be the largest and most sensitive radio telescope in the world. In Western Australia, the telescope will consist of 130,000 antennas spread over 512 antenna fields. The design is based on ASTRON’s Low Frequency Array (LOFAR) telescope.

    ASTRON LOFAR Radio Antenna Bank, Netherlands

    With all these antennas SKA will generate enormous amounts of data: one petabit per second – more than three times the global internet traffic in 2018.

    A network of SKA Regional Centres will process and archive the SKA data , distilling its huge volume into scientific discoveries. The Netherlands will set up a Science Data Center (SDC) to provide employment to highly educated researchers, developers and supporting (ICT) service providers. By combining forces and collaboration with other data-intensive sectors, a public-private, multidisciplinary cluster is created that focuses on data science.

    Dr. Michiel van Haarlem, head of the SKA Office Netherlands at ASTRON, adds: “Within this project it has been agreed that the participating countries receive a proportional share in contracts for the construction of the SKA. Dutch companies and institutions are well positioned to win contracts in many areas, for example for the delivery of elements of the telescope and smart software.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LOFAR is a radio telescope composed of an international network of antenna stations and is designed to observe the universe at frequencies between 10 and 250 MHz. Operated by ASTRON, the network includes stations in the Netherlands, Germany, Sweden, the U.K., France, Poland and Ireland.
    ASTRON-Westerbork Synthesis Radio Telescope
    Westerbork Synthesis Radio Telescope (WSRT)

    ASTRON was founded in 1949, as the Foundation for Radio radiation from the Sun and Milky Way (SRZM). Its original charge was to develop and operate radio telescopes, the first being systems using surplus wartime radar dishes. The organisation has grown from twenty employees in the early 1960’s to about 180 staff members today.


    SKA ASKAP Pathefinder Telescope

    SKA Meerkat telescope, 90 km outside the small Northern Cape town of Carnarvon, SA


    SKA Meerkat Telescope

    Murchison Widefield Array,SKA Murchison Widefield Array, Boolardy station in outback Western Australia, at the Murchison Radio-astronomy Observatory (MRO)


    SKA Murchison Wide Field Array
    About SKA

    The Square Kilometre Arraywill be the world’s largest and most sensitive radio telescope. The total collecting area will be approximately one square kilometre giving 50 times the sensitivity, and 10 000 times the survey speed, of the best current-day telescopes. The SKA will be built in Southern Africa and in Australia. Thousands of receptors will extend to distances of 3 000 km from the central regions. The SKA will address fundamental unanswered questions about our Universe including how the first stars and galaxies formed after the Big Bang, how dark energy is accelerating the expansion of the Universe, the role of magnetism in the cosmos, the nature of gravity, and the search for life beyond Earth. Construction of phase one of the SKA is scheduled to start in 2016. The SKA Organisation, with its headquarters at Jodrell Bank Observatory, near Manchester, UK, was established in December 2011 as a not-for-profit company in order to formalise relationships between the international partners and centralise the leadership of the project.

    The Square Kilometre Array (SKA) project is an international effort to build the world’s largest radio telescope, led by SKA Organisation. The SKA will conduct transformational science to improve our understanding of the Universe and the laws of fundamental physics, monitoring the sky in unprecedented detail and mapping it hundreds of times faster than any current facility.

    Already supported by 10 member countries – Australia, Canada, China, India, Italy, New Zealand, South Africa, Sweden, The Netherlands and the United Kingdom – SKA Organisation has brought together some of the world’s finest scientists, engineers and policy makers and more than 100 companies and research institutions across 20 countries in the design and development of the telescope. Construction of the SKA is set to start in 2018, with early science observations in 2020.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: