Tagged: SETI Institute Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:35 am on May 1, 2016 Permalink | Reply
    Tags: , , , , , SETI Institute   

    From Science Alert: “Physicists have calculated that we’re *probably* not the only advanced civilisation ever in the Universe” 


    Science Alert

    29 APR 2016

    Trying to find an answer to the question of whether humanity is all alone in the cosmos is what the search for extraterrestrial intelligence (SETI) is all about, and a new equation ought to give hope to the sky-watching optimists among us.

    SETI Institute
    SETI/Allen Telescope Array situated at the Hat Creek Radio Observatory, 290 miles (470 km) northeast of San Francisco, California, USA
    SETI Institute; SETI/Allen Telescope Array situated at the Hat Creek Radio Observatory

    SETI@home, BOINC project at UC Berkeley Space Science Lab
    SETI@home, BOINC project at UC Berkeley Space Science Lab

    At least, kind of. Instead of seeking to estimate whether technologically advanced species currently exist elsewhere in the Universe – the focus of the famous but arguably flawed Drake equation – the researchers are interested in a broader question: are we the only advanced civilisation ever? And by their calculations, the odds are against us being unique.

    Drake Equation, Frank Drake, Seti Institute
    Drake Equation, Frank Drake, SETI Institute

    According to astronomer Adam Frank from the University of Rochester, one of the problems with the Drake equation is that it incorporates the hypothetical length of time advanced civilisations exist for – something we’re perhaps not well equipped to be speculating about.

    “The fact that humans have had rudimentary technology for roughly 10,000 years doesn’t really tell us if other societies would last that long or perhaps much longer,” says Frank.

    But by reformulating the equation to look at the history of the whole Universe instead, the team argues that they can avoid the ambiguity of longevity estimates.

    “Rather than asking how many civilisations may exist now, we ask ‘Are we the only technological species that has ever arisen?'” said fellow researcher Woodruff Sullivan from the University of Washington. “This shifted focus eliminates the uncertainty of the civilisation lifetime question and allows us to address what we call the ‘cosmic archaeological question’ – how often in the history of the universe has life evolved to an advanced state?”

    Given that this calculation would still involve a lot of unknowns, the team frames the question by calculating the odds against intelligent life occurring elsewhere in the Universe.

    Armed with new knowledge about exoplanet occurrence and habitability zones since the Drake equation was formulated back in 1961, the researchers calculate that human civilisation is likely to be unique in history only if the odds of a civilisation developing on a habitable planet are less than about 1 in 10 billion trillion.

    In other words, while the chances of technologically advanced species developing on alien worlds might be slim per Drake’s equation, they’d have to be really, really, really slim for there to have never been any other advanced civilisations existing ever in the Universe.

    “One in 10 billion trillion is incredibly small,” said Frank. “To me, this implies that other intelligent, technology producing species very likely have evolved before us.”

    But while the hypothesis might give hope to those who’d like to think we’re not totally alone on our little rock in space, the extreme breadth of the team’s temporal analysis comes with some harsh reality. Over such a long time frame, impermanent civilisations would be extremely unlikely to exist alongside one another at any moment in time.

    “The Universe is more than 13 billion years old,” said Sullivan. “That means that even if there have been a thousand civilisations in our own galaxy, if they live only as long as we have been around – roughly 10,000 years – then all of them are likely already extinct. And others won’t evolve until we are long gone.”

    But on the bright side, perhaps the importance of the research isn’t in pointing out the unlikeliness of bumping into our cosmic neighbours, so much as saying that: yes, once upon a time, somebody else was probably out there – and they likely looked up at the sky wondering about us too.

    “From a fundamental perspective the question is ‘has it ever happened anywhere before?'” says Frank. “And it is astonishingly likely that we are not the only time and place that an advanced civilisation has evolved.”

    The findings are reported in Astrobiology*.

    *Science paper:
    A New Empirical Constraint on the Prevalence of Technological Species in the Universe

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

  • richardmitnick 5:36 pm on March 31, 2016 Permalink | Reply
    Tags: , , , Extraterrestrial life, , SETI Institute   

    From SETI: “New Search for Signals from 20,000 Star Systems Begins” 

    SETI Institute

    March 30 2016
    No writer credit found

    The SETI Institute has inaugurated a greatly expanded hunt for deliberately produced radio signals that would indicate the presence of extraterrestrial intelligence. Over the course of the next two years, it will scrutinize the vicinities of 20,000 so-called red dwarf stars.

    SETI/Allen Telescope Array
    SETI/Allen Telescope Array

    “Red dwarfs – the dim bulbs of the cosmos – have received scant attention by SETI scientists in the past,” notes Institute engineer Jon Richards. “That’s because researchers made the seemingly reasonable assumption that other intelligent species would be on planets orbiting stars similar to the Sun.”

    This conservative assessment was bolstered by the argument that few planets were likely to be found in the habitable zone of a red dwarf star, simply because that zone is far narrower than for brighter stars like the Sun. Additionally, any worlds that were in this zone would be orbiting so close to their suns that they would quickly become tidally locked – with one hemisphere perpetually facing the star. It was assumed that this would produce a planet that was intolerably hot on one side, and brutally cold on the other, ruling it out as an abode for life.

    However, more recent research has indicated that, if these worlds have oceans and atmospheres, heat would be transported from the lit side to the dark, and a significant fraction of the planet would be habitable. In addition, exoplanet data have suggested that somewhere between one sixth and one half of red dwarf stars have planets in their habitable zones, a percentage comparable to, and possibly greater, than for Sun-like stars.

    “Significantly, three-fourths of all stars are red dwarfs,” notes SETI Institute astronomer Seth Shostak. “That means that if you observe a finite set of them – say the nearest twenty thousand – then on average they will be at only half the distance of the nearest twenty thousand Sun-like stars.”

    Closer stars mean that any signals would be stronger.

    Also, red dwarfs burn for a period of time that’s greater than the current age of the universe: every red dwarf ever born is still shining today. They are, on average, billions of years older than stars than Sun-like stars.

    “This may be one instance in which older is better,” Shostak says. “Older solar systems have had more time to produce intelligent species.”

    The search is being conducted on the SETI Institute’s Allen Telescope Array, located in the Cascade Mountains of northern California. This grouping of 42 antennas can currently observe three stars simultaneously.

    “We’ll scrutinize targeted systems over several frequency bands between 1 and 10 GHz,” says Institute scientist Gerry Harp. “Roughly half of those bands will be at so-called ‘magic frequencies’ – places on the radio dial that are directly related to basic mathematical constants. It’s reasonable to speculate that extraterrestrials trying to attract attention might generate signals at such special frequencies.”

    The new red dwarf survey is planned to take two years. Targets are being chosen from a list of approximately 70,000 red dwarfs compiled by Boston University astronomer Andrew West. The search will also incorporate relevant new data as generated by NASA’s TESS (Transiting Exoplanet Survey Satellite) project, which will examine nearby stars, including red dwarfs, for planets.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

  • richardmitnick 11:50 pm on January 22, 2016 Permalink | Reply
    Tags: , , Planet Nine: Are We Not That Special?, Planet Nine: What Would It Mean?, , SETI Institute   

    From SETI Institute: “Planet Nine: Are We Not That Special?” And “Planet Nine: What Would It Mean?” 

    SETI Institute


    [This post interweaves two separate and distinct writings by Seth Shostak. Normal font is from the SETI web article, “Planet Nine: Are We Not That Special?” . The italic is from the SETI email,”Planet Nine: What Would It Mean?”. I have included all of the internet article and most of the email article. Links to both are below.]

    SETI Seth Shostak
    Seth Shostak, Senior Astronomer

    Is there a planet ten times the mass of Earth hanging out in the dismal and distant fringes of our solar system?

    It could be the first new planet discovered in the last 170 years — or at least the last 85, if you’re one of those stubborn folk who still insist on calling Pluto a planet.

    Two researchers at Caltech, Mike Brown and Konstantin Batygin, have reported phenomena that they interpret as smoking gun evidence for a world roughly 500 times farther from the Sun than our own.

    The evidence consists of a strange alignment of some so-called Kuiper Belt objects – ice-ball worlds similar to Pluto that populate the farthest realms of the solar system.

    Kuiper Belt
    Kuiper Belt

    About a dozen of these KBO’s seem to have orbits that are similarly aligned – an unlikely situation, akin to throwing a handful of pencils onto a table and finding that they pretty much all point in the same direction.

    Planet Nine orbit image
    A predicted consequence of Planet Nine is that a second set of confined objects should also exist. These objects are forced into positions at right angles to Planet Nine and into orbits that are perpendicular to the plane of the solar system. Five known objects (blue) fit this prediction precisely.Credit: Caltech/R. Hurt (IPAC) [Diagram was created using WorldWide Telescope.]

    What could account for this bizarre orientation? On the basis of computer simulations, the Caltech astronomers conclude that the most likely explanation is that the KBOs are being nudged into these orbits by the gravitational interactions with a planet roughly twice the diameter of Earth. This object would be located on the side of the solar system opposite to the lined-up Kuiper Belt objects.

    No one has actually seen this putative planet with a telescope, but you can bet that many are looking. It will take a large instrument to bring the object into view, as sunlight so far out in the solar system would be 300 thousand times weaker than on Earth. In addition, the exact position of this hefty planet is unknown – so the search has to cover a relatively large amount of sky. It’s a bit like finding a floating volleyball in the ocean from 40,000 feet, when you don’t have a good fix on the volleyball’s location. Still, Batygin estimates that the planet might be discovered within eight years or so.

    And what is the significance of “Planet 9,” as it’s being called? For those who look for biology beyond Earth, such a world would make our solar system more in keeping with those we find around other stars. Many of the so-called exoplanets discovered by the Kepler mission and other telescopes are what are called “Super Earths” – worlds that are up to ten times the mass of our home planet. Until now, we didn’t think that our solar system had a Super Earth.

    For those in the know about science history, this is all reminiscent of work done by two mathematically adept young astronomers in 1845 — one French and the other British. Each had independently reckoned that irregularities in the orbit of Uranus might be caused by a planet still farther from the Sun. It took almost a year before that planet was seen and recognized in a telescope. We call it Neptune. It’s fair to say that Neptune was discovered with pencil and paper, and it now seems that history might repeat itself with Planet 9.

    Some folks, seduced by apocalyptic visions, will say that this work supports claims that have been made for decades that a malevolent planet named Nibiru is prowling the solar system and will (soon) sail by Earth, causing tsunamis, earthquakes, and scenes of destruction hitherto envisioned only by Industrial Light and Magic.

    Well, forget that. Planet 9, if it’s really out there, will never come closer to Earth than about 20 billion miles, a distance 40 times farther than Jupiter. And, as you may readily note, Jupiter — although heavier and closer — is not messing with your gusto-grabbing lifestyle.

    Then there’s this: Planet 9 is far enough away that if you landed a telescope on it, you could use the Sun as a gravitational lens, producing the mother of all telescopes. It would be an instrument whose capabilities would dwarf anything on Earth or in orbit. Sure, no one’s about to rocket telescope hardware to Planet 9 anytime soon, but that’s not the same as never.

    And finally, for those who look for biology beyond Earth, Planet 9 would offer some encouraging news. In the past five years, we’ve found thousands of so-called exoplanets — worlds around other stars. Many of these are “Super Earths” — worlds larger than our own, and up to about ten times more massive. Until now, we didn’t think our solar system had a Super Earth. That made it seem special.

    But if the predictions are correct – if Planet 9 actually exists – then our solar system will better comport with many of those we find elsewhere. And if our solar system is not so special, then there’s added reason to suspect that the biology it has spawned may not be so unusual either.

    See the full internet article here . See the full email article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

  • richardmitnick 5:35 pm on January 21, 2016 Permalink | Reply
    Tags: , , , , , SETI Institute   

    From GIZMODO: “How Should We Look For Aliens?” 

    GIZMODO bloc


    Mika McKinnon

    The search for extraterrestrial life is the ultimate hybrid of creativity and science, the quest to discover something we can’t even describe yet. Jill Tarter embodies that creativity in her work with the SETI Institute, and is the subject of a special video released today.

    WeTransfer’s Creative Class is an online series highlighting creative people doing cool things in the world. This season, the series features SETI Institute astronomer Jill Tarter, the real-life inspiration for Carl Sagan’s Dr. Ellie Arroway in Contact.

    Tarter chatted with Gizmodo about the role of creativity in the search for intelligent aliens, exclaiming, “You have to try to think creative[ly]about how do you discover what you really can’t imagine!”

    SETI Jill Tarter
    Jill Tarter, real-life alien-hunting astronomer

    “I like to say we’re looking for photons, but maybe it’s zeta rays that the advanced technologies of the universe are using to communicate,” Tarter offered as an analogy. “I don’t know what a zeta ray is because we haven’t invented it yet. We don’t understand that physics yet. Maybe that’s in our future.”

    We haven’t found aliens yet, so we need to keep expanding the very way that we search. “How do you look at the universe in new ways that will allow you to find things you that you didn’t imagine?” Tarter said. “[Astronomer Martin Harwit] made this case for essentially venture investing in the astronomical sciences because every time you open up a new observation space, we found something we didn’t expect!”

    Astronomy is full of such examples. Tarter recounts the iconic discovery of pulsars that started in 1965-66, when a team of graduate students built a new type of radio telescope:

    Jocelyn Bell and her colleagues spent the summer nailing up kilometers of wire and fence posts to make a low-frequency detector. They made it for a very scientific goal, but yet when Jocelyn was looking at the data, she found these little bits scruff. She was curious enough and systematic enough to follow up on them.

    Suddenly, wow! There are radio beacons out there more precise than any clock we’ve built. There are entire stars, neutron stars, that are spinning around several times a second. Unbelievable! They found it because they had a new tool. They had a different way of looking at the universe.

    This happens again and again and again. Every time we invent a new tool, discoveries follow. “I think being creative, building new ways to look at the universe, can lead to amazing results.” Tarter said. “You don’t do that if you think, ‘Well, I’m going to do today what I did yesterday.’”

    Our conversation with Tarter was so interesting and so long that we couldn’t transcribe it all in just one night. Instead, check out her Creative Class special here.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    “We come from the future.”

    GIZMOGO pictorial

  • richardmitnick 12:45 am on January 10, 2016 Permalink | Reply
    Tags: , , , , SETI Institute   

    From INVERSE: Seth Shostak and Alien Life 



    Temp 1

    For over 15 years now, Seth Shostak has overseen the search for alien life from the SETI Institute’s Mountain View headquarters. Shostak, who was recently awarded the Carl Sagan Prize for Science Popularization, sees his work as scientifically critical and culturally paramount. The search for extraterrestrial intelligence has traditionally helped build and contextualize excitement for other space sciences. In a sense, Shostak’s job is to survey the stars. In another sense, his job is to help people understand the potential upside of that activity: the ultimate discovery.

    Inverse spoke with Shostak about the award, the evolution of SETI research, Carl Sagan’s legacy, and why the prospect of finding alien life is more exciting and realistic than ever before.

    What are some of the big challenges you run into when talking to the public about astronomy and SETI? Who do you find yourself talking to?

    Normally I give 50 to 60 talks a year, so that’s like once a week or something like that. I’m also a lecturer on things like tours and cruises, where you reach a lot of the general public. I normally talk about science, sometimes about history. More particularly, astronomy and SETI.

    Who shows up? It’s not the people who don’t find it interesting. It’s not the people who don’t believe it might be true. It’s the people who do find it interesting and do think it might be true. The only hurdle is to make sure you present it in a way that keeps your eyeballs open.

    Where you do hit a hurdle is when you do have to give a talk to a non-self selected audience because then they may or may not be interested but they’re forced to be there. The local rotary club, for example… That also applies to schools. I usually accept any of those invitations, as long as I don’t have to go very far, because I think talking to kids is a different business than talking to adults. You talk to an adult, they like it or not, but a couple hours later they’re back to where they were. But with kids that’s not true.

    Temp 2

    Describe the evolution in SETI research over the last few years. It seems your work is being taken much more seriously by the public, which might have been skeptical before. Why would you guess that is?

    I think that you’ve probably hit on it. The public interest is interested in aliens for the same reasons the public is interested in dinosaurs. You’re probably hardwired to be interested in both those things. If you don’t have interest in that, if you don’t care about the things with big teeth that live near your cave, you might not care to stay and live in the same gene pool. For aliens, it’s similar: If there’s another tribe on the other side of the hill, it pays to know about those guys because they might be competitors, they might be mates.

    I think the intrinsic interest is there. I think there may be truth to SETI being taken more seriously by the public and it may be a consequence of the discovery of exoplanets filtering down to the public.

    When it comes to 2015, what were the biggest accomplishments made in SETI research?

    Well in the past year obviously there was a breakthrough initiative from the Listen initiative. That’s not going to affect us at the SETI Institute unfortunately, because that $100 million all goes to the Berkeley SETI Research Center. So the big discussion around here is about where are we going to get our funding? That’s a perpetual problem ever since federal funding was cancelled in 1993. Ever since then it’s been running on donations. It’s not a very expensive thing, but on the other hand it’s hard to raise so many donations. So that’s a perennial problem.

    In terms of the science, we now know three or four other planets that might be potentially habitable. They look like they might have the conditions necessary for life. You could say that’s a big step forward. It is, but not because you can aim your antennae at these planets, which we could always do.

    Allen Telescope Array

    With increased potential for habitability, there’s a bigger chance something alive exists there. You could have aimed your telescope to Europa for most of its four and a half billion years of existence and not picked up a thing.

    It turns out the percentage of worlds that could sustain biology is reasonably high. In fact that’s the picture that has come into focus in the last year. There’s some papers that estimate the frequency of habitable planets, planets that could be somewhat similar to Earth. If you look at 10 stars on average, maybe one of them has a planet sort of like Earth. That planet number is definitely uncertain, but it’s a substantial fraction. One, five, 10, 20 percent of all stars are likely to have a planet that you can build condos on and I think that’s an encouraging thing for studying. When I started we didn’t know if there were any planets out there, let alone any that were good.

    What do you think the future holds for SETI? What are you hoping to see in the next year?

    Well, obviously, the first thing I’m going to say is I’m hoping we get some money here so that we can continue. SETI’s always on the edge of coming apart for a lack of money. It’s a very iffy thing because you can’t guarantee success, but what you can guarantee is that if you do have success it’ll be one of the biggest stories ever. It’s one of those dark horses in the science race — you just need people to bet on it. So monetary priority is number 1.

    We also built new receivers for the Allen Telescope, which is what we use in our experiments and we can use that everyday. That gives us the opportunity to do experiments where we take a certain class of stars which we think might be better for having habitable worlds and look at tens of thousands of them. Nobody’s been able to do that in the past! No one’s been able to look at tens of thousands of targets in a reasonable amount of time. How many of them have technological biology? That’s going to be a considerably lower fraction.

    There are a trillion planets in the Milky Way and it strains my credulity to think they’re all sterile. I don’t buy into that. We really won the lottery and I never win the lottery! I think the big thing is to be pertinent in not only receivers but also the number of channels a receiver can monitor. It’s thousands now, but then it’ll be tens of millions and then hundreds of millions. That means that the experiment keeps speeding up. That’s just technology and that’s what gives me hope that in the near future we’ll be able to look at near star systems and pick up a signal.

    Photos via Allen Telescope Array and Frederick M. Brown/Getty Images

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

  • richardmitnick 6:22 pm on December 9, 2015 Permalink | Reply
    Tags: , , SETI Institute   

    From SETI Institute: “Looking For Deliberate Radio Signals From KIC 8462852” 

    SETI Institute

    November 05 2015
    Gerry Harp
    SETI Institute
    Email: gharp@seti.org
    Tel: +1 650 960 4576

    Doug Vakoch
    SETI Institute
    Email: dvakoch@seti.org
    Tel: +1 650 960 4514

    Seth Shostak
    SETI Institute
    Email: seth@seti.org
    Tel: +1 650 960-4530

    Could there be intelligent life in the star system KIC 8462852?

    Star KIC 8462852 in infrared (2MASS survey) and ultraviolet (GALEX).

    2MASS Telescope
    2MASS telescope interior

    NASA Galex telescope

    A recent analysis of data collected by the Kepler space telescope has shown that this star, informally known as Tabby’s Star, evidences aperiodic dimming of 20 percent and more.

    NASA Kepler Telescope

    While several natural explanations for this strong change in luminosity have been proposed, one possibility is that a technologically adept civilization has built megastructures in orbit around star, causing the dimming.

    One example of a large-scale astroengineering project would be the construction of a so-called Dyson swarm of solar panels for large-scale energy collection. Other possible structures include artificial space habitats, or a planet-size or larger occulting object intended to provide a long-lasting signal to other galactic inhabitants.

    In order to investigate the possibility of a deliberate cause of KIC 8462852’s unusual behavior, the SETI Institute has trained its Allen Telescope Array [ATA] on this star for more than two weeks.

    Allen Telescope Array

    The Array consists of 42 antennas, each 6 meters in size, and is located approximately 500 km north of San Francisco in the Cascade Mountains.

    Two different types of radio signals were sought: (1) Narrow-band signals, of order 1 Hz in width, such as would be generated as a “hailing signal” for societies wishing to announce their presence. This is the type of signal most frequently looked for by radio SETI experiments. (2) Broad-band signals that might be due to beamed propulsion within this star system. If astroengineering projects are really underway in the vicinity of KIC 8462852, one might reasonably expect the presence of spacecraft to service this activity. If these craft are propelled by intense microwave beams, some of that energy might manifest itself as broad-band radio leakage.

    “This is the first time we’ve used the Allen Telescope Array to look for relatively wide-band signals, a type of emission that is generally not considered in SETI searches,” said SETI Institute scientist Gerry Harp.

    Analysis of the Array data show no clear evidence for either type of signal between the frequencies of 1 and 10 GHz. This rules out omnidirectional transmitters of approximately 100 times today’s total terrestrial energy usage in the case of the narrow-band signals, and ten million times that usage for broad band emissions.

    While these limits are relatively high – a fact due primarily to the large distance (>1400 light-years) of KIC 8462852 – one should note the following: (1) The required transmitter power for the narrow-band signals could be reduced enormously if the signal is being deliberately beamed in our direction. (2) Microwave propulsion schemes would undoubtedly be beamed as well, and that would also reduce the minimum transmitter power necessary for detection by the Array.

    Finally, note that any society able to build a Dyson swarm would have access to energy at a level approaching 1027 watts. Even omnidirectional transmitters would be detectable if only a tiny percentage of this energy were used for signaling.

    “The history of astronomy tells us that every time we thought we had found a phenomenon due to the activities of extraterrestrials, we were wrong,” notes Institute astronomer Seth Shostak. “But although it’s quite likely that this star’s strange behavior is due to nature, not aliens, it’s only prudent to check such things out.”

    Observations will continue, but so far no evidence of deliberately produced radio signals has been found in the direction of KIC 8462852.

    This work can be found at http://arxiv.org/abs/1511.01606

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

    • Matthew Wright 10:29 pm on December 9, 2015 Permalink | Reply

      It seems to me that a lot of the logic behind SETI assumed that the putative aliens would be like us, in the sense of building an expanding civilisation employing radio transmission. Really? A sample size of one is, I think, insufficient to generalise.


  • richardmitnick 6:34 pm on November 12, 2015 Permalink | Reply
    Tags: , , , SETI Institute   

    From SETI Institute: “Gemini Planet Imager Exoplanet Survey — One Year Into The Survey” 

    SETI Institute

    November 12 2015
    Media Contacts:

    Peter Michaud
    Public Information and Outreach
    Gemini Observatory, Hilo, HI
    Email: pmichaud”at”gemini.edu
    Cell: (808) 936-6643

    Seth Shostak
    SETI Institute
    Email: sshostak”at”seti.org
    Phone: +1-650-960-4530

    Science Contacts:

    Franck Marchis
    SETI Institute
    Email: fmarchis”at”seti.org
    Phone: +1-510-599-0604

    Eric Nielsen
    SETI Institute
    Email: enielsen”at”seti.org
    Phone: +1-408-394-4582

    Li-Wei Hung
    University of California, Los Angeles
    Email: liweih”at”astro.ucla.edu
    Phone: +1 310-794-5582

    The SETI Institute press release.

    Orbital motion of 51 Eri b detected between two H-band observations taken with the Gemini Planet Imager in December 2014 and September 2015. From this motion, and additional observations of the system, the team of astronomers confirmed that this point of light below the star is indeed a planet orbiting 51 Eri and not a brown dwarf passing along our line of sight. (credit: Christian Marois & the GPIES team)

    The Gemini Planet Imager Exoplanet Survey (GPIES) is an ambitious three-year study dedicated to imaging young Jupiters and debris disks around nearby stars using the GPI instrument installed on the Gemini South telescope in Chile.

    Gemini Planet Imager

    Gemini South telescope
    Gemini South

    On November 12, at the 47th annual meeting of the AAS’s Division for Planetary Sciences in Washington DC, Franck Marchis, Chair of the Exoplanet Research Thrust of the SETI Institute and a scientist involved in the project since 2004, will report on the status of the survey, emphasizing some discoveries made in its first year.

    Led by Bruce Macintosh from Stanford University, the survey began a year ago and has already been highly successful, with several findings already published in peer-reviewed journals.

    “This very large survey is observing 600 young stars to look for two things: giant planets orbiting them and debris disks. In our first year, we have already found what GPI was designed to discover — a young Jupiter in orbit around a nearby star,” said Marchis. This discovery was announced in an article published in Science on Oct. 2, 2015 [http://www.sciencemag.org/content/350/6256/64], with an impressive list of 88 co-authors from 39 institutions located in North and South America. “This is modern astronomy at its best,” said Marchis. “These large projects gather energy and creativity from many groups of researchers at various institutions, enabling them to consider different strategies to improve the on-sky efficiency of the instrument and its scientific output.”

    The survey was officially launched in November 2014. Eight observing runs allowed the study of approximately 160 targets, or a quarter of the sample. Other parts of the survey are more frustrating, though. Due to the incipient El Nino, weather in Chile is worse than expected, with clouds, rain, snow, and atmospheric turbulence too severe even for GPI to fix. Since late June, out of the last 20 nights that team members have spent at the telescope, they’ve only gotten a few hours of good quality data Despite this loss, over which the team of course had no control, they have already published ten peer-reviewed papers in the last year. Two of the findings are described below.

    GPI data has revealed that 51 Eri b, the recently discovered Jupiter-like exoplanet around the nearby star 51 Eridani [http://www.gemini.edu/node/12403], indeed has an atmosphere of methane and water, and likely has a mass twice that of Jupiter. The team has continued to observe this planetary system, and observations recorded on Sept. 1, 2015, are most consistent with a planet orbiting 51 Eri and not a brown dwarf passing along our line of sight.

    “Thanks to GPI’s incredible precision, we can demonstrate that the odds are vanishingly small that 51 Eri b is actually a brown dwarf that has a chance alignment with this star. In fact it’s five times more likely that I’ll be struck by lightning this year than future data will show this is not a planet orbiting 51 Eri” said Eric Nielsen, a postdoctoral scholar at the SETI Institute and one of the authors of the paper recently accepted for publication in the Astrophysical Journal Letters [http://arxiv.org/abs/1509.07514]. Another author of this study, SETI Research Experience for Undergraduates student Sarah Blunt, analyzed the motion of 51 Eri b and found it to be completely consistent with a planet on an approximately 40-year orbit around its host star.

    The team has also discovered and imaged disks of dusty debris around several stars. Astronomers believe that these are planetary systems that are still forming their planets. Some have complex structures because they host planets and fragments of the asteroidal and cometary materials that formed those planets. One such system is HD 131835: a massive 15 Myr-old star located 400 light-years from Earth. Using GPI’s high-contrast capability, the team imaged this disk for the first time in near-infrared light in May 2015.

    “The disk shows different morphology when observed in different wavelengths. Unlike the extended disk previously imaged in thermal emission, our GPI observations show a disk that has a ring-like structure, indicating that the large grains are distributed differently from the small ones. In addition, we discovered an asymmetry in the disk along its major axis. What causes this disk to be asymmetric is the subject of ongoing investigation, “ said Li-Wei Hung, a graduate student in the UCLA Department of Physics and Astronomy and lead author of the article submitted to the Astrophysical Journal Astrophysical Journal Letters [http://arxiv.org/abs/1502.02035]. As asymmetries like the one seen in the system may be due to the gravitational influence of an unseen planet, more detailed observational study could one day confirm its existence.

    As the GPIES survey enters in its second year, we are collaborating with the Gemini Observatory to continue to improve the instrument. The Gemini South telescope primary mirror was recently re-coated with silver to improve reflectivity, and the GPI instrument was equipped with a new cooling system to optimize performance.

    “Continued collaboration between the Gemini Observatory and the GPIES collaboration has worked really well — we’re learning a lot about how it performs in the field and interacts with the atmosphere, and are working to make GPI an even a better instrument to see even fainter and closer planets,” said Bruce Macintosh, principal investigator of the project and professor at Stanford University.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

  • richardmitnick 9:32 am on October 27, 2015 Permalink | Reply
    Tags: , , , SETI Institute   

    From Seth Shostak at SETI Institute: “The Mysterious Star KIC 8462852” 

    SETI Institute


    SETI Seth Shostak
    Dr. Seth Shostak wrote this article

    The SETI Institute is following up on the possibility that the stellar system KIC 8462852 might be home to an advanced civilization.

    This star, slightly brighter than the Sun and more than 1400 light-years away, has been the subject of scrutiny by NASA’s Kepler space telescope.

    NASA Kepler Telescope

    It has shown some surprising behavior that’s odd even by the generous standards of cosmic phenomena. KIC 8462852 occasionally dims by as much as 20 percent, suggesting that there is some material in orbit around this star that blocks its light.

    For various reasons, it’s obvious that this material is not simply a planet. A favored suggestion is that it is debris from comets that have been drawn into relatively close orbit to the star.

    But another, and obviously intriguing, possibility is that this star is home to a technologically sophisticated society that has constructed a phalanx of orbiting solar panels (a so-called Dyson swarm) that block light from the star.

    To investigate this idea, we have been using the Allen Telescope Array [ATA] to search for non-natural radio signals from the direction of KIC 8462852. This effort is looking for both narrow-band signals (similar to traditional SETI experiments) as well as somewhat broader transmissions that might be produced, for example, by powerful spacecraft.


    But what if ET isn’t signaling at radio frequencies? Our ATA observations are being augmented by a search for brief but powerful laser pulses. These observations are being conducted by the Boquete Optical SETI Observatory in Panama, part of a nascent global network of optical SETI observatories.

    Both the observations and the data analysis are now underway. Once the latter is concluded, we will, of course, make them known here and in the professional journals.

    On the basis of historical precedent, it’s most likely that the the dimming of KIC 8462852 is due to natural causes. But in the search for extraterrestrial intelligence, any suggestive clues should, of course, be further investigated – and that is what the SETI Institute is now doing.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

  • richardmitnick 1:57 pm on September 29, 2015 Permalink | Reply
    Tags: , , , SETI Institute   

    From Seth Shostak at SETI Institute: “NASA’s Big Mars Story” 

    SETI Institute

    September 28, 2015
    SETI Seth Shostak
    By Seth Shostak, Senior Astronomer and Director of the Center for SETI Research


    Every time NASA ballyhoos a press conference to announce an exciting discovery about Mars, the public bets heavily that the news will either be about water (What, again?) or life (Finally!)

    This week’s communique is about both, and neither. But there’s no gainsaying the fact that it’s exciting.

    It concerns the seasonally changing features on crater walls and other vertical topography, known as recurrent slope lineae.

    An image combining orbital imagery with 3-D modeling shows flows that appear in spring and summer on a slope inside Mars’ Newton crater. Sequences of observations recording the seasonal changes at this site and a few others with similar flows might be evidence of salty liquid water active on Mars today. Evidence for that possible interpretation is presented in a report by McEwen et al. in the Aug. 5, 2011, edition of Science.

    This image has been reprojected to show a view of a slope as it would be seen from a helicopter inside the crater, with a synthetic Mars-like sky. The source observation was made May 30, 2011, by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter.

    NASA Mars Reconnaisance HiRise Camera

    NASA Mars Reconnaisence Orbiter
    Mars Reconnaissance Orbiter

    Color has been enhanced. The season was summer at the location, 41.6 degrees south latitude, 202.3 degrees east longitude.

    The flow features are narrow (one-half to five yards or meters wide), relatively dark markings on steep (25 to 40 degree) slopes at several southern hemisphere locations. Repeat imaging by HiRISE shows the features appear and incrementally grow during warm seasons and fade in cold seasons.

    HiRISE is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace & Technologies Corp., Boulder, Colo. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA’s Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the spacecraft.
    Other imagery related to these new findings from the Mars Reconnaissance Orbiter is at http://www.nasa.gov/mission_pages/MRO/multimedia/gallery/gallery-index.html .

    These things look like long, dark fingers running downhill, and they become prominent when summertime Mars warms up to temperatures that, while cold for Earth, are considered balmy on the Red Planet.

    The lineae resemble seepage – melt water just below the dry, martian surface that’s oozing its way downhill. Now, researchers using spectral analysis from an orbiter have determined that it most likely is water – not any of the other possible phenomena. That’s a strong indicator that there are subsurface reservoirs at very shallow depth on Mars. In other words, Mars apparently has lakes today; they’re just covered by a rusty, dusty carapace of boring dirt.

    Now many astrobiologists think that the Red Planet was once a kinder, gentler world. Three or four billion years ago or thereabouts, Mars may have had occasional rivers, lakes and even oceans on its surface. The canyons and lakebeds are all dry as dandruff today, but given the ubiquity of the lineae, subsurface aquifers could still be present in abundance.

    And so the scenario is as obvious as it is compelling: In its youth, Mars may have actually spawned single-celled life. As conditions slowly deteriorated, this life adapted to whatever environments were still around – including within the pitch-dark, subsurface aquifers. It could still be enjoying a cryptic lifestyle today.

    Knowing this, how might we find these microscopic Martians? NASA tried looking for life on the Red Planet in the 1970s with its highly sophisticated Viking landers.

    NASA Viking 1 Lander
    Viking 1 Lander

    But the experiments had limited sensitivity, and the results – at least according to some – were ambiguous.

    The lesson learned? Hunting for extant life is difficult. After all, you have to look in the right place. And of course there’s also the sobering possibility that biology is entirely past tense on the Red Planet. It’s dead, Jim.

    Consequently, for years the space agency has adopted a more promising tactic. Better, it figures, to first learn more about the history of the Red Planet, and pinpoint places where life could have once existed. After all, in any reasonable scenario involving Martians, there’s got to be a lot more dead life than extant life. Living critters don’t pile up, but dead ones do.

    That’s why the Curiosity rover, now making its way up Mount Sharp at the center of Gale Crater, is hoping to unravel the geologic history of Mars – not to look for life itself.

    NASA Mars Curiosity Rover

    Its job is to see if there are places where biology may have once existed.

    But NASA’s announcement that the lineae are most likely wet streaks due to salty, subsurface water could change the game plan. They are like signs on Treasure Island, screaming “dig here!”

    And while future spacecraft will undoubtedly try to do that, there’s a chance for more immediate action. Jim Green, NASA’s Planetary Science Division Director, told me that there could be some of these lineae on Mount Sharp, and possibly accessible to Curiosity. That’s a seductive, and unexpected diversion for the plucky rover.

    Today’s news suggests that underwater aquifers – refuges where microscopic Martians might wiggle and float – may underlie much of the planet, like a layer of subcutaneous fat. This may greatly increase the incentive to switch our efforts on Mars from looking for habitats where life might have once thrived, to exploring habitats where it might be thriving today. Just drill down a very short distance into the wet and muddy basement of the dry martian landscape, and look for life.

    Instead of counting on biology from 3 billion years ago that’s well-and-truly dead, this news about the true nature of the perplexing martian lineae urges us to discover what centuries of peering at the Red Planet with telescopes and orbiters was never able to do: Find the Martians.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

  • richardmitnick 7:39 pm on September 28, 2015 Permalink | Reply
    Tags: , , , SETI Institute   

    From SETI Institute: “The Meaning of NASA’s Announcement: More Profound Than You Think” 

    SETI Institute

    Nathalie A. Cabrol

    NASA just announced that the Mars Reconnaissance Orbiter data show that recurring slope lineae (RSL) are formed by water flowing at the surface of Mars today. This is big news. No, let me rephrase that: This is huge news … but not necessarily for the reasons emphasized by most headlines.

    Orbital image showing Martian slopes potentially created by water.

    Here’s why:

    We have known for years that brines are flowing in gullies every spring and summer. The big news is not really that.

    The big news is first about the fact that the RSLs are a scientific mystery that has vexed scientists for years. We can now say, “mystery solved”! And solving that mystery has taken years of not only collecting images and looking for changes. On their own, these would not be enough to close that case. It was also about collecting spectra and mineralogical data, and thinking about converging evidence. It is about the resilience of a team that has used to its best science by testing hypotheses over thousands of observations. Reward after frustration.

    But where the news becomes really huge is when we realize what it really means that, indeed, water also forms the RSLs, and this is the real import of this discovery. It means that water is more abundant, and flowing more freely in more places on Mars than we had ever anticipated!

    For all of us passionate about the search for life on Mars, this news is beyond exciting. Water is one of the key ingredients for life – not the only one, but one that is essential for life’s chemistry and metabolic activity. That gives one more chance for life to still be on Mars, if it had ever appeared early on.

    Once again, water alone could not do it but we also know that there was volcanic activity recently on Mars (in geologic terms ~ 500,000 years to a few million years ago.) This means that energy was there not long ago and, sheltered from cosmic rays and ultraviolet under the surface, life might just have found a way to survive. This makes the upcoming Mars 2020 and ExoMars missions all the more exciting. It also makes it a bit of more complicated to select landing sites for our landers.

    NASA Mars 2020 orbiter
    NASA Mars 2020

    ESA ExoMars

    As I mentioned, the presence of water increases the chances that life might have survived, and those regions where water is flowing today have become special regions overnight. It is now in the hands of the planetary protection folks to think about how to explore them.

    Looking a bit farther into the future, more water on Mars is also very positive news for human exploration as it promises more resources for humans to produce their own fuel and other needs on Mars.

    Yes, today’s announcement was huge.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc

Get every new post delivered to your Inbox.

Join 553 other followers

%d bloggers like this: