Tagged: SETI Institute Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:10 am on February 1, 2018 Permalink | Reply
    Tags: , , , , , , Phoning Home: Is Intelligent Alien Life Really Out There?, , SETI Institute   

    From Futurism: “Phoning Home: Is Intelligent Alien Life Really Out There?” 

    futurism-bloc

    Futurism

    January 31, 2018
    Seth Shostak, SETI Institute

    1
    Tag Hartman-Simkins/Stellan Johnson

    Despite an observable universe sprinkled with several trillion galaxies, each stuffed with a trillion planets, we see no evidence of anyone. No signals, no megastructures, no interstellar rockets. While astronomers routinely uncover puzzling objects in the sky, these always turn out to be manifestations of natural phenomena.

    Without mincing words, we can state that the cosmos has offered us no hint of the presence of beings as clever as, or cleverer than, Homo sapiens.

    It’s tempting to jump from this observational fact to a disappointing conclusion: There’s no one out there. That’s not to say that the universe is sterile. Most astrobiologists seem comfortable with the premise that life might be widespread. But their optimism doesn’t always extend to complex, intelligent life.

    It’s possible that we inhabit a universe whose occupants are mostly pond scum. After decades of seeing semi-humanoid aliens strut across the silver screen, it would be more than a little disappointing to think that the actual cosmic bestiary largely consists of plants and animals that are microscopic, or at best, no smarter than cane toads.

    That situation would make humans very special, a circumstance that seems at odds with the enormous amount of real estate available for life, as well as the billions of years since the Big Bang during which intelligence could arise.

    So, could there be a plausible explanation for why the universe seems so short on keen-witted company?

    Filtering Out Intelligent Life

    Economist Robin Hanson has suggested that life inevitably encounters a barrier on its evolutionary path to thinking critters – a Great Filter that keeps down the average IQ of the universe.

    What could this barrier be? Perhaps life itself is rare because it’s difficult to cook up in the first place. Maybe the transition from single-celled to multi-celled organisms is a bridge too far for most ecosystems. Possibly the emergence of intelligence is a fluke, like winning the Powerball, or perhaps all thinking beings inevitably engineer their own destruction shortly after developing technology.

    The idea that there are insurmountable hurdles in the path to intelligence leads to an interesting corollary. Consider the possibility that we’ll someday find microbes under the dry surface of Mars, or beneath the frozen ice of a moon like Enceladus or Europa. That would tell us that one hurdle – the origin of life – can be removed from the list. After all, if biology began on both Earth and another nearby world, then it’s a safe bet that it’s commonplace. No strong filter there.

    If we were to discover more sophisticated life somewhere, perhaps equivalent to trilobites or dinosaurs, that would also eliminate some of the postulated filters. Indeed, Nick Bostrom, at Oxford University, has said that it would be horrifyingly bad news to find such complex organisms on another world. Doing so would tell us that the Great Filter is in our future, not our past, and we are doomed. Homo sapiens will come up against a wall that keeps us from extending our dominion beyond Earth. Our species, as lovely and promising as it is, would would have a destiny that is short and dismal.

    The appeal of the Great Filter idea is that it takes a fairly limited observation – we don’t see any evidence of aliens in the night sky – and draws an astounding (if dystopian) conclusion about humanity’s destiny.

    Could the Great Filter Theory be Full of Holes?

    One could argue whether the various hurdles that have been suggested are really all that daunting. For example, the claim that the evolutionary step from insensate creatures to thinking beings could be incredibly unlikely.

    A premise of the Rare Earth hypothesis, put forward in a book by Peter Ward and Don Brownlee, published nearly two decades ago, is that the physical conditions of our planet are both finely tuned for our existence and seldom encountered elsewhere. Yes, smart creatures arose on Earth, but that’s because our planet is really special. However, the recent detection of thousands of planets around other stars suggests that terrestrial worlds are hardly in short supply. If there is a Great Filter, it’s not likely to be lack of suitable habitats.

    Other suggested barriers to intelligence are less easily dismissed because they depend as much on sociology as on astronomy. Many people seem almost proud to bray that humanity is going to Hades in a handbasket. If nuclear war doesn’t do us in, climate change will. But given that we have at least a chance of being smart about these threats and avoiding total self-destruction, it seems pretty clear that some reasonable fraction of alien societies will also be able to keep themselves alive and kicking for the long term.

    Indeed, it’s my opinion that the Great Filter idea falters not on the merits or otherwise of the proposed filters, but on the initial premise: Namely that, because we don’t see any evidence for other intelligence, we require some general mechanism to keep the cosmos short on sentience. Sure, it’s amusing to enumerate some of the difficulties in going from murky chemical soup to space-faring beings, but it seems far more likely that the problem here is a too-hasty conclusion about the prevalence of cosmic confreres.

    The efforts to find radio and light signals from other worlds, known as SETI (the Search for Extraterrestrial Intelligence), has so far failed to uncover any hailing signals from aliens. But these experiments are both underfunded and still in their early days. Even if the universe is chock-a-block with transmitting societies, SETI could easily miss them, simply because of inadequate instrument sensitivity or the fact that only a small number of star systems have yet to be searched.

    A common, and regrettable, error is committed when people note that the SETI scientists have been toiling for more than 50 years without a discovery, as if that suggests that intelligence is rare. It doesn’t. Throughout most of that period, observations were restricted by the lack of telescope time or by receivers that could only examine small slices of the radio dial.

    In addition, it’s worth remarking that humanity is in the process of developing artificial intelligence, a technological trajectory that other sophisticated societies could very well follow. Unlike biological intelligence, AI can self-improve at tremendous speed. Also, there aren’t obvious limitations to the spread of machines throughout the cosmos. The implication of this observation is that the majority of the intelligence in the universe is likely to be synthetic. And machine intelligence might be small, localized, and cryptic.

    The absence of evidence would hardly qualify as evidence of absence. The Great Filter theory, in other words, could be no more than an appealing solution looking for a problem.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Futurism covers the breakthrough technologies and scientific discoveries that will shape humanity’s future. Our mission is to empower our readers and drive the development of these transformative technologies towards maximizing human potential.

    Advertisements
     
    • stewarthoughblog 11:25 pm on February 1, 2018 Permalink | Reply

      Tyson’s wild speculation that the presence of water justifies any conviction that life could be thriving wherever it may be found is intellectually insulting: water is one of, perhaps the, most common molecule in the universe making his statements more a faith-based proselytizing for naturalism and more funding for his personal career prolongation.

      SETI has proven itself a waste of money and resources. The “Great Filter” is a pop-science construct like analogies to winning the PowerBall lottery. The article fails, perhaps intentionally, to address the intractable naturalistic issues relative to the origin of life, which would have been a more plausible approach to consideration of the likelihood of any higher intelligence alien life form. The overly optimistic proposition of “pond scum” has as much viability at the myth of chemical evolution and Darwin’s “warm little ponds” or Oparin-Haldane prebiotic soup.

      This is not serious consideration of the title subject, rather pop-culture superficiality.

      Like

      • richardmitnick 6:52 am on February 2, 2018 Permalink | Reply

        Everything you say about water may be true. The question is, do you think or believe that we are alone in the universe?

        Like

        • stewarthoughblog 10:39 pm on February 2, 2018 Permalink

          Thank you for your reply. Your question is profound, to say the least. I propose the following hypothesis, based on science and Christian philosophy. Please consider the following, not trying to be verbose:

          1. The complexity and nature of life makes any naturalistic origin to life impossible. The simplest organism known requires the precise nucleic coding of over 1.5 million letters, add all of the cellular functionality required, there are no naturalistic mechanisms or processes that come close to biochemical assembly, let alone the imbued “spark” of life.
          2.Consequently, there is no naturalistic sourcing of life, but the transcendent, extra-dimensional, trans-dimensional creator of the universe and life can do whatever he pleases, so the issue becomes:
          a. He created life on Earth and the angels and spirits in an alternate “multiverse.” The angels fell through free will rebellion, while humanity has done the same. The difference is angels to not receive redemption, while we do through Christ.
          b. Why God would reproduce either humans or angels with free will and intelligent consciousness is his business but does not seem to uniquely fit any plan and arguably conflict with what the Bible states regarding redemption, God’s exclusive stated purposes for humanity, and eternal life with him. It posits the additional need for redemption in the event of falling from God’s perfection.
          c. This raises the issue of whether God would create lower life forms for whatever purpose. Again, his purpose, but does not seem consistent with a greater plan as all the lower life forms were created on Earth to bio-form the planet to eventually support higher life forms, aka, humans, who are highly dependent on very fine-tuned planetary conditions.

          Bottom line, we are not alone in the universe because of God’s creation of angels, even if extra-dimensional, but the likelihood of carbon-based intelligent free will creatures is not impossible, but will never arise naturally and are purely God’s discretion.

          Thanks.

          Like

  • richardmitnick 12:49 pm on January 25, 2018 Permalink | Reply
    Tags: , , , , SETI Institute, ,   

    From SETI Institute via SPACE.com: “‘Search for Extraterrestrial Intelligence’ Needs a New Name, SETI Pioneer Says” 

    SETI Logo new
    SETI Institute

    2

    SPACE.com

    January 25, 2018
    Calla Cofield

    2
    Jill Tarter at the Arecibo radio telescope in Puerto Rico, which was used to search for communications signals from alien civilizations.
    Credit: Acey Harper/The LIFE Images Collection/Getty

    NAIC/Arecibo Observatory, Puerto Rico, USA, at 497 m (1,631 ft)

    Astrophysicist Jill Tarter is one of the world’s best-known leaders in the search for extraterrestrial intelligence, or SETI. For 35 years, she served as the director of the Center for SETI Research (part of the SETI institute) and was also the project scientist for NASA’s SETI program, before its cancellation in 1993.

    Despite her longtime association with that four-letter acronym, Tarter says it’s time for “SETI” to be rebranded.

    At a recent meeting of the National Academy of Sciences’ Committee on Astrobiology Science Strategy for the Search for Life in the Universe, held here at the University of California, Irvine, Tarter explained that the phrase “search for extraterrestrial intelligence” generates an incorrect perception of what scientists in this field are actually doing. A more appropriate title for the field, she said, would be “the search for technosignatures,” or signs of technology created by intelligent alien civilizations.

    “We need to be very careful about our language,” Tarter said during a presentation at the committee meeting on Jan. 18. “SETI is not the search for extraterrestrial intelligence. We can’t define intelligence, and we sure as hell don’t know how to detect it remotely. [SETI] … is searching for evidence of someone else’s technology. We use technology as a proxy for intelligence.

    “[The acronym] ‘SETI’ has been problematic in history, and we should just drop [it] and just continue to talk about a search for technosignatures,” she said.

    Signs of life

    What constitutes a “technosignature”? Tarter reviewed some of the possibilities that she and other SETI scientists have proposed.

    “We have a pragmatic definition for technology, which is the ability to deliberately modify an environment in ways that can be sensed over interstellar or interplanetary distances, including the unintended consequences of that modification,” Tarter said. “Life does this, but it doesn’t do it deliberately.”

    One technosignature that scientists have been actively seeking for decades is communication signals. These could include signals used by members of an alien civilization to communicate with each other or attempts to communicate with other civilizations. The SETI Institute continues to search for alien communications in radio waves, using the Allen Telescope Array.

    SETI/Allen Telescope Array situated at the Hat Creek Radio Observatory, 290 miles (470 km) northeast of San Francisco, California, USA, Altitude 986 m (3,235 ft)

    (Tarter was the inspiration for the main character in Carl Sagan’s novel Contact, which was adapted into a movie; in that story, aliens make contact with Earth via radio waves.) But recent SETI efforts have expanded to look for other mediums of alien communication, and SETI scientists have theorized that an interstellar civilization might use laser light to communicate.

    Laser SETI, the future of SETI Institute research

    Science-fiction writer Arthur C. Clarke wrote that “any sufficiently advanced technology is indistinguishable from magic,” which would mean that alien technology could be as mysterious and unexplainable to humans as technologies that appear in science-fiction TV shows and movies. That opens up a dauntingly large range of possibilities for what technosignatures might look like. What if an alien civilization were communicating via a mechanism that Earth-based scientists haven’t discovered yet? Would humans immediately recognize these “magical” technosignatures, or would we not see them as unnatural?

    Tarter said she prefers to focus on a slight alteration of Clarke’s prediction written by the futurist Karl Schroeder: “Any sufficiently advanced technology is indistinguishable from nature.”

    “[The system] will be so efficient that there will be no wastage, and [it] will appear to be natural,” Tarter said. If this prediction is correct, it might also be impossible for humans to identify technosignatures from very advanced civilizations. But Tarter uses it as a jumping-off point to brainstorm how scientists might identify technologies that have not yet reached that level of sophistication.

    In the field of exoplanet science, new techniques and new instruments are increasing scientists’ ability to study exoplanets and gather information about their atmospheres and surface conditions. The central focus in that field is to find habitable planets, or planets with “unintelligent” life-forms (like plants). Tarter said those tools could also provide the opportunity to look for signs of technology that artificially alters a planet’s climate or conditions.

    “As we begin to look for exoplanets and image them, you might get an unexpected glint, [because] maybe mirrors re cooling their planet, reflecting light away from the planet,” Tarter said.

    But a technosignature wouldn’t necessarily have to be the detection of the technology itself. The artificial alteration of a planet’s climate could be revealed simply because the planet in question is too close or too far away from its parent star to have the observed climate. A star system with multiple planets that all have similarly moderate, habitable climates, despite their particular proximity to the parent star, could indicate large-scale bioengineering by an intelligent civilization, Tartar said.

    “[An alien civilization] also might want to decrease latitudinal variation in temperature; maybe they want more of their planet to be nice and cozy,” Tarter said. “It’s going to take a lot of energy to do that, but I don’t know the physics that says you can’t.”

    Into the future

    The search for technosignatures is daunting, but Tarter says now is “a really opportunistic time” for it. The field is benefiting from new instruments and a wider array of instruments. SETI scientists are often searching through large volumes of data, seeking the proverbial needle in the haystack. Artificial intelligence and artificial “neural networks” can help aid this effort by combing through this vast data to search for signals that the scientists program machines to find and also allowing “the data to tell us what kind of signals are there,” Tarter said, which increases the odds of finding an unanticipated technosignature.

    Tarter listed multiple SETI projects and initiatives that are underway around the world. The most high-profile is Breakthrough Listen, a private initiative that has funded a group of researchers at the University of California, Berkeley to utilize various telescopes to search for signs of alien communication or other possible technosignatures.

    Breakthrough Listen Project

    1

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA



    GBO radio telescope, Green Bank, West Virginia, USA


    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia

    The Berkeley group has led an effort to crack the mystery of Boyajian’s star, which has exhibited a very strange pattern of dimming and brightening. A few years ago, some researchers proposed that perhaps the strange light patterns were created by an alien megastructure orbiting the star — a fantastic example of a technosignature. Though that possibility has largely been ruled out, the Breakthrough Listen researchers are still working to understand this phenomenon.

    The challenge of searching for alien technosignatures may be daunting, but Tarter remains unwavering in her optimism for the search for life beyond Earth.

    “In 2004, Craig Venter and Daniel Cohen made a really bold statement: They said the 20th century had been the century of physics, but the 21st century would be the century of biology,” Tarter said. “I think they were right, but I don’t think they were bold enough. Because I think the 21st century is going to be the century of biology on Earth and beyond.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

     
  • richardmitnick 1:58 pm on January 16, 2018 Permalink | Reply
    Tags: , , , , , , , , , QUB-Queens University Belfast, SETI Institute, ,   

    From QUB via The Conversation: “How we created a mini ‘gamma ray burst’ in the lab for the first time” 

    QUB bloc

    Queens University Belfast (QUB)

    The Conversation

    January 15, 2018
    GIANLUCA SARRI

    Gamma ray bursts, intense explosions of light, are the brightest events ever observed in the universe – lasting no longer than seconds or minutes. Some are so luminous that they can be observed with the naked eye, such as the burst “GRB 080319B” discovered by NASA’s Swift GRB Explorer mission on March 19, 2008.

    NASA Neil Gehrels Swift Observatory

    But despite the fact that they are so intense, scientists don’t really know what causes gamma ray bursts. There are even people who believe some of them might be messages sent from advanced alien civilisations. Now we have for the first time managed to recreate a mini version of a gamma ray burst in the laboratory – opening up a whole new way to investigate their properties. Our research is published in Physical Review Letters.

    One idea for the origin of gamma ray bursts [Science] is that they are somehow emitted during the emission of jets of particles released by massive astrophysical objects, such as black holes. This makes gamma ray bursts extremely interesting to astrophysicists – their detailed study can unveil some key properties of the black holes they originate from.

    The beams released by the black holes would be mostly composed of electrons and their “antimatter” companions, the positrons – all particle have antimatter counterparts that are exactly identical to themselves, only with opposite charge. These beams must have strong, self-generated magnetic fields. The rotation of these particles around the fields give off powerful bursts of gamma ray radiation. Or, at least, this is what our theories predict [MNRAS]. But we don’t actually know how the fields would be generated.

    Unfortunately, there are a couple of problems in studying these bursts. Not only do they last for short periods of time but, most problematically, they are originated in distant galaxies, sometimes even billion light years from Earth (imagine a one followed by 25 zeroes – this is basically what one billion light years is in metres).

    That means you rely on looking at something unbelievably far away that happens at random, and lasts only for few seconds. It is a bit like understanding what a candle is made of, by only having glimpses of candles being lit up from time to time thousands of kilometres from you.

    World’s most powerful laser

    It has been recently proposed that the best way to work out how gamma ray bursts are produced would be by mimicking them in small-scale reproductions in the laboratory – reproducing a little source of these electron-positron beams and look at how they evolve when left on their own. Our group and our collaborators from the US, France, UK, and Sweden, recently succeeded in creating the first small-scale replica of this phenomenon by using one of the most intense lasers on Earth, the Gemini laser, hosted by the Rutherford Appleton Laboratory in the UK.

    1
    The Gemini laser, hosted by the Rutherford Appleton Laboratory in the UK.

    How intense is the most intense laser on Earth? Take all the solar power that hits the whole Earth and squeeze it into a few microns (basically the thickness of a human hair) and you have got the intensity of a typical laser shot in Gemini. Shooting this laser onto a complex target, we were able to release ultra-fast and dense copies of these astrophysical jets and make ultra-fast movies of how they behave. The scaling down of these experiments is dramatic: take a real jet that extends even for thousands of light years and compress it down to a few millimetres.

    In our experiment, we were able to observe, for the first time, some of the key phenomena that play a major role in the generation of gamma ray bursts, such as the self-generation of magnetic fields that lasted for a long time. These were able to confirm some major theoretical predictions of the strength and distribution of these fields. In short, our experiment independently confirms that the models currently used to understand gamma ray bursts are on the right track.

    The experiment is not only important for studying gamma ray bursts. Matter made only of electrons and positrons is an extremely peculiar state of matter. Normal matter on Earth is predominantly made of atoms: a heavy positive nucleus surrounded by clouds of light and negative electrons.

    2
    Artist impression of gamma ray burst. NASA [no additional credit for which facility or which artist].

    Due to the incredible difference in weight between these two components (the lightest nucleus weighs 1836 times the electron) almost all the phenomena we experience in our everyday life comes from the dynamics of electrons, which are much quicker in responding to any external input (light, other particles, magnetic fields, you name it) than nuclei. But in an electron-positron beam, both particles have exactly the same mass, meaning that this disparity in reaction times is completely obliterated. This brings to a quantity of fascinating consequences. For example, sound would not exist in an electron-positron world.

    So far so good, but why should we care so much about events that are so distant? There are multiple reasons indeed. First, understanding how gamma ray bursts are formed will allow us to understand a lot more about black holes and thus open a big window on how our universe was born and how it will evolve.

    But there is a more subtle reason. SETI – Search for Extra-Terrestrial Intelligence – looks for messages from alien civilisations by trying to capture electromagnetic signals from space that cannot be explained naturally (it focuses mainly on radio waves, but gamma ray bursts are associated with such radiation too).

    Breakthrough Listen Project

    1

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA



    GBO radio telescope, Green Bank, West Virginia, USA


    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia

    U Manchester Jodrell Bank Lovell Telescope


    SETI@home, BOINC project at UC Berkeley Space Science Lab

    Laser SETI, the future of SETI Institute research

    Of course, if you put your detector to look for emissions from space, you do get an awful lot of different signals. If you really want to isolate intelligent transmissions, you first need to make sure all the natural emissions are perfectly known so that they can excluded. Our study helps towards understanding black hole and pulsar emissions, so that, whenever we detect anything similar, we know that it is not coming from an alien civilisation.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    QUB campus

    An international institution

    Queen’s is in the top one per cent of global universities.

    With more than 23,000 students and 3,700 staff, it is a dynamic and diverse institution, a magnet for inward investment, a major employer and investor, a patron of the arts and a global player in areas ranging from cancer studies to sustainability, and from pharmaceuticals to creative writing.
    World-leading research

    Queen’s is a member of the Russell Group of 24 leading UK research-intensive universities, alongside Oxford, Cambridge and Imperial College London.

    In the UK top ten for research intensity

    The Research Excellence Framework (REF) 2014 results placed Queen’s joint 8th in the UK for research intensity, with over 75 per cent of Queen’s researchers undertaking world-class or internationally leading research.

    The University also has 14 subject areas ranked within the UK’s top 20 and 76 per cent of its research classified in the top two categories of world leading and internationally excellent.

    This validates Queen’s as a University with world-class researchers carrying out world-class or internationally leading research.

    Globally recognised education

    The University has won the Queen’s Anniversary Prize for Higher and Further Education on five occasions – for Northern Ireland’s Comprehensive Cancer Services programme and for world-class achievement in green chemistry, environmental research, palaeoecology and law.

     
  • richardmitnick 2:15 pm on January 13, 2018 Permalink | Reply
    Tags: , , , , SETI Institute, Unistellar eVscope   

    From SETI Institute: “Unistellar to receive CES 2018 Innovation Award for smart, powerful, crowd-funded consumer telescope” 

    SETI Logo new
    SETI Institute

    January 11 2018

    Laurent Marfisi
    CEO
    Email: laurent.marfisi@unistellaroptics.com
    Phone: +33 6 77 98 01 20

    Franck Marchis, Ph.D.
    Chief Scientific Officer
    Email : franck.marchis@unistellaroptics.com
    Senior Astronomer at the SETI Institute
    Email : fmarchis@seti.org
    Phone: +1 510 599 0604

    1
    Unistellar eVscope

    About Unistellar:

    Unistellar is reinventing popular astronomy through the development of the Enhanced Vision Telescope™: a smart combination of optics, electronics, and proprietary image-processing technology that aims to make astronomy interactive. Unistellar is completely dedicated to its popular ambition, but its technology has already garnered attention for other applications from established institutions for like the ONERA (the French aerospace agency) and companies focused on Imaging. http://unistellaroptics.com/

    After a busy and productive 2017, Unistellar is back at CES in Las Vegas to receive the 2018 Innovation Award for its eVscope, a compact, connected, and incredibly powerful consumer telescope that raised an astonishing $2.2 million in a November 2017 Kickstarter campaign.

    Unistellar, a startup that’s committed to restoring the joy of night-sky viewing to people all over the globe, is off to a strong start thanks to the massive success of this campaign, which gave supporters an opportunity to order an eVscope. Supporters eagerly took advantage of the chance to reserve their own revolutionary, electronics-based telescope that offers unprecedented views of distant objects in the night sky. The eVscope also allows users to make significant contributions to science by joining observation campaigns led by prominent astronomers.

    “After three years of prototype development, building, and testing, we’re proud to bring our compact, intelligent, powerful telescope to market,” said Arnaud Malvache, President and CTO of Unistellar. “We were also pleased to demonstrate our prototype at several star parties in Europe and the United States, and these efforts paid off beyond our wildest expectations.”

    When the Kickstarter campaign ended on November 23, Unistellar had not only raised $2.2 million, the most money ever raised by a space exploration project on Kickstarter, but also taken pledges for 1,646 eVscopes and gathered support from 2,144 people all over the world.

    “We’re delighted by the eVscope’s ability to attract newbies and skilled amateur astronomers,” said Franck Marchis, Chief Scientific Officer at Unistellar and Senior Astronomer at the SETI Institute. “Their interest is crucial to the success of the key citizen-science component of our project, which aims to create a network of several thousand telescopes able to monitor the sky 24/7 from almost anywhere on the globe.”

    This citizen-science network will be managed by the SETI Institute, and give telescope owners the opportunity to contribute to cutting-edge science by receiving alerts when special events like super-novae, asteroid flybys, or comet outbursts are occurring and can be observed on their devices.

    In addition to the prestigious Innovation Award, CES also gives Unistellar the opportunity to show attendees the design of the revolutionary eVscope™, which can be carried around and stored easily. “We created this compact, autonomous, easy-to-use telescope for all of us, including urban astronomers who have long been denied easy access to the wonders of the night sky,” said Laurent Marfisi, Unistellar CEO. “The eVscope will revive the sense of awe and wonder that the sky has engendered in humans since our species first appeared on Earth.”

    The intense interest the eVscope generated among novice and professional astronomers was a driving force behind CES’ decision to confer the 2018 Innovation Award on the device. “Tech for a Better World,” the category in which Unistellar won, highlights products that share a common goal or the ability to affect the world in a positive way and create a positive societal and/or global impact.

    Finally for those who missed the Kickstarter campaign, Unistellar announced the opening of pre-sales of its eVscope in spring 2018 with a shipping in spring 2019.

    Unistellar Web Site

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

     
  • richardmitnick 2:01 pm on January 13, 2018 Permalink | Reply
    Tags: , , , , Possibility of water ice on Earth's Moon, Possible Lava Tube Skylights Discovered Near the North Pole of the Moon, SETI Institute   

    From SETI Institute: “Possible Lava Tube Skylights Discovered Near the North Pole of the Moon” 

    SETI Logo new
    SETI Institute

    January 11 2018

    Dr Pascal Lee
    SETI Institute & Mars Institute
    NASA Ames Research Center in Silicon Valley
    MS 245-3
    Moffett Field, CA 94035-1000
    USA
    E-mail: pascal.lee@marsinstitute.net
    Tel: 408-687-7103

    Rebecca McDonald
    Director of Communications
    SETI Institute
    189 Bernardo Ave, Suite 200
    Mountain View, CA 94043
    E-mail: rmacdonald@seti.org
    Tel: 650-960-4526

    1
    Figure 1: Series of images showing the location of some of the newly discovered lava tube skylight candidates at Philolaus Crater near the North Pole of the Moon (NASA/LunarReconnaissanceOrbiter/SETI Institute/Mars Institute/PascalLee).

    2
    Figure 2: One of the highest resolution NASA Lunar Reconnaissance Orbiter images showing some of the newly discovered lava tube skylight candidates at Philolaus Crater near the North Pole of the Moon (NASA/Lunar Reconnaissance Orbiter/SETI Institute/Mars Institute/Pascal Lee).

    The SETI Institute and the Mars Institute announced today the discovery of small pits in a large crater near the North Pole of the Moon, which may be entrances to an underground network of lava tubes. The pits were identified through analysis of imaging data from NASA’s Lunar Reconnaissance Orbiter (LRO).

    NASA/Lunar Reconnaissance Orbiter

    If water ice is present, these potential lava tube entrances or “skylights” might allow future explorers easier access to subsurface ice, and therefore water, than if they had to excavate the gritty ice-rich “regolith” (surface rubble) at the actual lunar poles.

    The new pits were identified on the northeastern floor of Philolaus Crater, a large, 43 mile (70 km)-diameter impact crater located at 72.1oN, 32.4oW, about 340 miles (550 km) from the North Pole of the Moon, on the lunar near side. The pits appear as small rimless depressions, typically 50 to 100 feet across (15 to 30 meters), with completely shadowed interiors. The pits are located along sections of winding channels, known on the Moon as “sinuous rilles,” that crisscross the floor of Philolaus Crater. Lunar sinuous rilles are generally thought to be collapsed, or partially collapsed, lava tubes, underground tunnels that were once streams of flowing lava.

    “The highest resolution images available for Philolaus Crater do not allow the pits to be identified as lava tube skylights with 100 percent certainty, but we are looking at good candidates considering simultaneously their size, shape, lighting conditions and geologic setting” says Pascal Lee, planetary scientist at the SETI Institute and the Mars Institute who made the new finding at NASA’s Ames Research Center in Silicon Valley.

    The discovery of the candidate lava tube skylights in Philolaus Crater is being presented by Lee this week at NASA’s Lunar Science for Landed Missions Workshop convened by the Solar System Exploration Research Virtual Institute (SSERVI) at Ames. The meeting aims to examine the range of scientific investigations that could be conducted at a variety of future landing sites on the Moon”.

    Prior to this discovery, over 200 pits had been found on the Moon by other researchers, with many identified as likely skylights leading to underground lava tubes associated with similar sinuous rilles. However, today’s announcement represents the first published report of possible lava tube skylights in the Moon’s polar regions.

    In recent years, the lunar poles have grown in strategic importance for both science and exploration, as water ice is known to be buried in the lunar regolith in permanently shadowed areas at both poles. But with no known large cavity allowing easy access to the lunar polar underground, and often no nearby access to solar power, extracting water ice scattered in lunar polar regolith presents a substantial challenge.

    The new discovery opens an exciting prospect: potentially much easier access to – and extraction of – lunar polar ice. Three factors could help: 1) skylights and lava tubes could provide more direct access to the very cold polar underground, alleviating the need to excavate vast amounts of lunar regolith; 2) if ice is present inside the lava tubes – which is not yet known – it could be in the form of massive ice formations as often occur in cold lava tubes on Earth – instead of mixed-in within lunar grit, and 3) solar power would be available nearby, just outside each skylight.

    Philolaus Crater is additionally appealing due to its relatively young age, which would allow studies of the Moon’s more recent evolution. It is one of few large craters formed during the Copernican Era, that is, within the last 1.1 billion years or so of lunar history. Also, being on the near side, Philolaus affords direct communications with the Earth.

    “We would also have a beautiful view of Earth. The Apollo landing sites were all near the Moon’s equator, such that the Earth was almost directly overhead for the astronauts. But from the Philolaus skylights, Earth would loom just over the crater’s mountainous rim, near the horizon to the southeast” adds Lee.

    “Our next step should be further exploration, to verify whether these pits are truly lava tube skylights, and if they are, whether the lava tubes actually contain ice. This is an exciting possibility that a new generation of caving astronauts or robotic spelunkers could help address” says Lee. “Exploring lava tubes on the Moon will also prepare us for the exploration of lava tubes on Mars. There, we will face the prospect of expanding our search for life into the deeper underground of Mars where we might find environments that are warmer, wetter, and more sheltered than at the surface.”

    “This discovery is exciting and timely as we prepare to return to the Moon with humans” says Bill Diamond, president and CEO of the SETI Institute. “It also reminds us that our exploration of planetary worlds is not limited to their surface, and must extend into their mysterious interiors”

    About Mars Institute

    The Mars Institute is a non-profit research organization dedicated to the advancement of Mars science, exploration, and the public understanding of Mars. Research at the Mars Institute focuses on Mars and other planetary destinations that may serve as stepping stones to Mars, in particular Mars’ moons, our Moon, and near-Earth objects. The Mars Institute investigates the technologies and strategies that will enable and optimize the future human exploration of Mars. The Mars Institute operates the Haughton-Mars Project Research Station on Devon Island, High Arctic, currently the largest privately operated polar research station in the world and the leading field research facility dedicated to planetary science and exploration.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

     
  • richardmitnick 6:14 pm on December 30, 2017 Permalink | Reply
    Tags: , , , , , , , SETI Institute, , What Happens If China Makes First Contact?   

    From The Atlantic: “What Happens If China Makes First Contact?” 

    Atlantic Magazine

    The Atlantic Magazine

    1
    Jon Juarez

    December 2017
    Ross Andersen

    As America has turned away from searching for extraterrestrial intelligence, China has built the world’s largest radio dish for precisely that purpose.

    [I disagree that “America has turned away from searching for extraterrestrial intelligence”.]

    Last January, the Chinese Academy of Sciences invited Liu Cixin, China’s preeminent science-fiction writer, to visit its new state-of-the-art radio dish in the country’s southwest.

    FAST radio telescope, now operating, located in the Dawodang depression in Pingtang county Guizhou Province, South China, https://astronomynow.com

    Almost twice as wide as the dish at America’s Arecibo Observatory, in the Puerto Rican jungle, the new Chinese dish is the largest in the world, if not the universe.

    NAIC/Arecibo Observatory, Puerto Rico, USA, at 497 m (1,631 ft)

    Though it is sensitive enough to detect spy satellites even when they’re not broadcasting, its main uses will be scientific, including an unusual one: The dish is Earth’s first flagship observatory custom-built to listen for a message from an extraterrestrial intelligence. If such a sign comes down from the heavens during the next decade, China may well hear it first.

    In some ways, it’s no surprise that Liu was invited to see the dish. He has an outsize voice on cosmic affairs in China, and the government’s aerospace agency sometimes asks him to consult on science missions. Liu is the patriarch of the country’s science-fiction scene. Other Chinese writers I met attached the honorific Da, meaning “Big,” to his surname. In years past, the academy’s engineers sent Liu illustrated updates on the dish’s construction, along with notes saying how he’d inspired their work.

    But in other ways Liu is a strange choice to visit the dish. He has written a great deal about the risks of first contact. He has warned that the “appearance of this Other” might be imminent, and that it might result in our extinction. “Perhaps in ten thousand years, the starry sky that humankind gazes upon will remain empty and silent,” he writes in the postscript to one of his books. “But perhaps tomorrow we’ll wake up and find an alien spaceship the size of the Moon parked in orbit.”

    In recent years, Liu has joined the ranks of the global literati. In 2015, his novel The Three-Body Problem became the first work in translation to win the Hugo Award, science fiction’s most prestigious prize. Barack Obama told The New York Times that the book—the first in a trilogy—gave him cosmic perspective during the frenzy of his presidency. Liu told me that Obama’s staff asked him for an advance copy of the third volume.

    At the end of the second volume, one of the main characters lays out the trilogy’s animating philosophy. No civilization should ever announce its presence to the cosmos, he says. Any other civilization that learns of its existence will perceive it as a threat to expand—as all civilizations do, eliminating their competitors until they encounter one with superior technology and are themselves eliminated. This grim cosmic outlook is called “dark-forest theory,” because it conceives of every civilization in the universe as a hunter hiding in a moonless woodland, listening for the first rustlings of a rival.

    Liu’s trilogy begins in the late 1960s, during Mao’s Cultural Revolution, when a young Chinese woman sends a message to a nearby star system. The civilization that receives it embarks on a centuries-long mission to invade Earth, but she doesn’t care; the Red Guard’s grisly excesses have convinced her that humans no longer deserve to survive. En route to our planet, the extraterrestrial civilization disrupts our particle accelerators to prevent us from making advancements in the physics of warfare, such as the one that brought the atomic bomb into being less than a century after the invention of the repeating rifle.

    Science fiction is sometimes described as a literature of the future, but historical allegory is one of its dominant modes. Isaac Asimov based his Foundation series on classical Rome, and Frank Herbert’s Dune borrows plot points from the past of the Bedouin Arabs. Liu is reluctant to make connections between his books and the real world, but he did tell me that his work is influenced by the history of Earth’s civilizations, “especially the encounters between more technologically advanced civilizations and the original settlers of a place.” One such encounter occurred during the 19th century, when the “Middle Kingdom” of China, around which all of Asia had once revolved, looked out to sea and saw the ships of Europe’s seafaring empires, whose ensuing invasion triggered a loss in status for China comparable to the fall of Rome.

    This past summer, I traveled to China to visit its new observatory, but first I met up with Liu in Beijing. By way of small talk, I asked him about the film adaptation of The Three-Body Problem. “People here want it to be China’s Star Wars,” he said, looking pained. The pricey shoot ended in mid-2015, but the film is still in postproduction. At one point, the entire special-effects team was replaced. “When it comes to making science-fiction movies, our system is not mature,” Liu said.

    I had come to interview Liu in his capacity as China’s foremost philosopher of first contact, but I also wanted to know what to expect when I visited the new dish. After a translator relayed my question, Liu stopped smoking and smiled.

    “It looks like something out of science fiction,” he said.

    A week later, I rode a bullet train out of Shanghai, leaving behind its purple Blade Runner glow, its hip cafés and craft-beer bars. Rocketing along an elevated track, I watched high-rises blur by, each a tiny honeycomb piece of the rail-linked urban megastructure that has recently erupted out of China’s landscape. China poured more concrete from 2011 to 2013 than America did during the entire 20th century. The country has already built rail lines in Africa, and it hopes to fire bullet trains into Europe and North America, the latter by way of a tunnel under the Bering Sea.

    The skyscrapers and cranes dwindled as the train moved farther inland. Out in the emerald rice fields, among the low-hanging mists, it was easy to imagine ancient China—the China whose written language was adopted across much of Asia; the China that introduced metal coins, paper money, and gunpowder into human life; the China that built the river-taming system that still irrigates the country’s terraced hills. Those hills grew steeper as we went west, stair-stepping higher and higher, until I had to lean up against the window to see their peaks. Every so often, a Hans Zimmer bass note would sound, and the glass pane would fill up with the smooth, spaceship-white side of another train, whooshing by in the opposite direction at almost 200 miles an hour.

    2
    Liu Cixin, China’s preeminent science-fiction writer, has written a great deal about the risks of first contact. (Han Wancheng / Shanxi Illustration)

    It was mid-afternoon when we glided into a sparkling, cavernous terminal in Guiyang, the capital of Guizhou, one of China’s poorest, most remote provinces. A government-imposed social transformation appeared to be under way. Signs implored people not to spit indoors. Loudspeakers nagged passengers to “keep an atmosphere of good manners.” When an older man cut in the cab line, a security guard dressed him down in front of a crowd of hundreds.

    The next morning, I went down to my hotel lobby to meet the driver I’d hired to take me to the observatory. Two hours into what was supposed to be a four-hour drive, he pulled over in the rain and waded 30 yards into a field where an older woman was harvesting rice, to ask for directions to a radio observatory more than 100 miles away. After much frustrated gesturing by both parties, she pointed the way with her scythe.

    We set off again, making our way through a string of small villages, beep-beeping motorbike riders and pedestrians out of our way. Some of the buildings along the road were centuries old, with upturned eaves; others were freshly built, their residents having been relocated by the state to clear ground for the new observatory. A group of the displaced villagers had complained about their new housing, attracting bad press—a rarity for a government project in China. Western reporters took notice. China Telescope to Displace 9,000 Villagers in Hunt for Extraterrestrials, read a headline in The New York Times.

    The search for extraterrestrial intelligence (SETI) is often derided as a kind of religious mysticism, even within the scientific community. Nearly a quarter century ago, the United States Congress defunded America’s SETI program with a budget amendment proposed by Senator Richard Bryan of Nevada, who said he hoped it would “be the end of Martian-hunting season at the taxpayer’s expense.” That’s one reason it is China, and not the United States, that has built the first world-class radio observatory with seti as a core scientific goal.

    SETI does share some traits with religion. It is motivated by deep human desires for connection and transcendence. It concerns itself with questions about human origins, about the raw creative power of nature, and about our future in this universe—and it does all this at a time when traditional religions have become unpersuasive to many. Why these aspects of seti should count against it is unclear. Nor is it clear why Congress should find seti unworthy of funding, given that the government has previously been happy to spend hundreds of millions of taxpayer dollars on ambitious searches for phenomena whose existence was still in question. The expensive, decades-long missions that found black holes and gravitational waves both commenced when their targets were mere speculative possibilities. That intelligent life can evolve on a planet is not a speculative possibility, as Darwin demonstrated. Indeed, seti might be the most intriguing scientific project suggested by Darwinism.

    Even without federal funding in the United States, SETI is now in the midst of a global renaissance. Today’s telescopes have brought the distant stars nearer, and in their orbits we can see planets. The next generation of observatories is now clicking on, and with them we will zoom into these planets’ atmospheres. seti researchers have been preparing for this moment. In their exile, they have become philosophers of the future. They have tried to imagine what technologies an advanced civilization might use, and what imprints those technologies would make on the observable universe. They have figured out how to spot the chemical traces of artificial pollutants from afar. They know how to scan dense star fields for giant structures designed to shield planets from a supernova’s shock waves.

    In 2015, the Russian billionaire Yuri Milner poured $100 million of his own cash into a new seti program led by scientists at UC Berkeley.

    Breakthrough Listen Project

    1

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA



    GBO radio telescope, Green Bank, West Virginia, USA


    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia

    The team performs more seti observations in a single day than took place during entire years just a decade ago. In 2016, Milner sank another $100 million into an interstellar-probe mission.

    Breakthrough Starshot Initiative

    Breakthrough Starshot

    ESO 3.6m telescope & HARPS at LaSilla, 600 km north of Santiago de Chile at an altitude of 2400 metres.

    SPACEOBS, the San Pedro de Atacama Celestial Explorations Observatory is located at 2450m above sea level, north of the Atacama Desert, in Chile, near to the village of San Pedro de Atacama and close to the border with Bolivia and Argentina

    SNO Sierra Nevada Observatory is a high elevation observatory 2900m above the sea level located in the Sierra Nevada mountain range in Granada Spain and operated maintained and supplied by IAC

    Teide Observatory in Tenerife Spain, home of two 40 cm LCO telescopes

    Observatori Astronòmic del Montsec (OAdM), located in the town of Sant Esteve de la Sarga (Pallars Jussà), 1,570 meters on the sea level

    Bayfordbury Observatory,approximately 6 miles from the main campus of the University of Hertfordshire

    A beam from a giant laser array, to be built in the Chilean high desert, will wallop dozens of wafer-thin probes more than four light-years to the Alpha Centauri system, to get a closer look at its planets. Milner told me the probes’ cameras might be able to make out individual continents. The Alpha Centauri team modeled the radiation that such a beam would send out into space, and noticed striking similarities to the mysterious “fast radio bursts” that Earth’s astronomers keep detecting, which suggests the possibility that they are caused by similar giant beams, powering similar probes elsewhere in the cosmos.

    Andrew Siemion, the leader of Milner’s SETI team, is actively looking into this possibility. He visited the Chinese dish while it was still under construction, to lay the groundwork for joint observations and to help welcome the Chinese team into a growing network of radio observatories that will cooperate on SETI research, including new facilities in Australia, New Zealand, and South Africa. When I joined Siemion for overnight SETI observations at a radio observatory in West Virginia last fall [Green Bank Observatory, a member of the Breakthrough Listen team, pictured above], he gushed about the Chinese dish. He said it was the world’s most sensitive telescope in the part of the radio spectrum that is “classically considered to be the most probable place for an extraterrestrial transmitter.”

    Before I left for China, Siemion warned me that the roads around the observatory were difficult to navigate, but he said I’d know I was close when my phone reception went wobbly. Radio transmissions are forbidden near the dish, lest scientists there mistake stray electromagnetic radiation for a signal from the deep. Supercomputers are still sifting through billions of false positives collected during previous seti observations, most caused by human technological interference.

    My driver was on the verge of turning back when my phone reception finally began to wane. The sky had darkened in the five hours since we’d left sunny Guiyang. High winds were whipping between the Avatar-style mountains, making the long bamboo stalks sway like giant green feathers. A downpour of fat droplets began splattering the windshield just as I lost service for good.

    The week before, Liu and I had visited a stargazing site of a much older vintage. In 1442, after the Ming dynasty moved China’s capital to Beijing, the emperor broke ground on a new observatory near the Forbidden City. More than 40 feet high, the elegant, castlelike structure came to house China’s most precious astronomical instruments.

    No civilization on Earth has a longer continuous tradition of astronomy than China, whose earliest emperors drew their political legitimacy from the sky, in the form of a “mandate of heaven.” More than 3,500 years ago, China’s court astronomers pressed pictograms of cosmic events into tortoiseshells and ox bones. One of these “oracle bones” bears the earliest known record of a solar eclipse. It was likely interpreted as an omen of catastrophe, perhaps an ensuing invasion.

    Liu and I sat at a black-marble table in the old observatory’s stone courtyard. Centuries-old pines towered overhead, blocking the hazy sunlight that poured down through Beijing’s yellow, polluted sky. Through a round, red portal at the courtyard’s edge, a staircase led up to a turretlike observation platform, where a line of ancient astronomical devices stood, including a giant celestial globe supported by slithering bronze dragons. The starry globe was stolen in 1900, after an eight-country alliance stormed Beijing to put down the Boxer Rebellion. Troops from Germany and France flooded into the courtyard where Liu and I were sitting, and made off with 10 of the observatory’s prized instruments.

    The instruments were eventually returned, but the sting of the incident lingered. Chinese schoolchildren are still taught to think of this general period as the “century of humiliation,” the nadir of China’s long fall from its Ming-dynasty peak. Back when the ancient observatory was built, China could rightly regard itself as the lone survivor of the great Bronze Age civilizations, a class that included the Babylonians, the Mycenaeans, and even the ancient Egyptians. Western poets came to regard the latter’s ruins as Ozymandian proof that nothing lasted. But China had lasted. Its emperors presided over the planet’s largest complex social organization. They commanded tribute payments from China’s neighbors, whose rulers sent envoys to Beijing to perform a baroque face-to-the-ground bowing ceremony for the emperors’ pleasure.

    In the first volume of his landmark series, Science and Civilisation in China, published in 1954, the British Sinologist Joseph Needham asked why the scientific revolution hadn’t happened in China, given its sophisticated intellectual meritocracy, based on exams that measured citizens’ mastery of classical texts. This inquiry has since become known as the “Needham Question,” though Voltaire too had wondered why Chinese mathematics stalled out at geometry, and why it was the Jesuits who brought the gospel of Copernicus into China, and not the other way around. He blamed the Confucian emphasis on tradition. Other historians blamed China’s remarkably stable politics. A large landmass ruled by long dynasties may have encouraged less technical dynamism than did Europe, where more than 10 polities were crammed into a small area, triggering constant conflict. As we know from the Manhattan Project, the stakes of war have a way of sharpening the scientific mind.

    Still others have accused premodern China of insufficient curiosity about life beyond its borders. (Notably, there seems to have been very little speculation in China about extraterrestrial life before the modern era.) This lack of curiosity is said to explain why China pressed pause on naval innovation during the late Middle Ages, right at the dawn of Europe’s age of exploration, when the Western imperial powers were looking fondly back through the medieval fog to seafaring Athens.

    Whatever the reason, China paid a dear price for slipping behind the West in science and technology. In 1793, King George III stocked a ship with the British empire’s most dazzling inventions and sent it to China, only to be rebuffed by its emperor, who said he had “no use” for England’s trinkets. Nearly half a century later, Britain returned to China, seeking buyers for India’s opium harvest. China’s emperor again declined, and instead cracked down on the local sale of the drug, culminating in the seizure and flamboyant seaside destruction of 2 million pounds of British-owned opium. Her Majesty’s Navy responded with the full force of its futuristic technology, running ironclad steamships straight up the Yangtze, sinking Chinese junk boats, until the emperor had no choice but to sign the first of the “unequal treaties” that ceded Hong Kong, along with five other ports, to British jurisdiction. After the French made a colony of Vietnam, they joined in this “slicing of the Chinese melon,” as it came to be called, along with the Germans, who occupied a significant portion of Shandong province.

    Meanwhile Japan, a “little brother” as far as China was concerned, responded to Western aggression by quickly modernizing its navy, such that in 1894, it was able to sink most of China’s fleet in a single battle, taking Taiwan as the spoils. And this was just a prelude to Japan’s brutal mid-20th-century invasion of China, part of a larger campaign of civilizational expansion that aimed to spread Japanese power to the entire Pacific, a campaign that was largely successful, until it encountered the United States and its city-leveling nukes.

    China’s humiliations multiplied with America’s rise. After sending 200,000 laborers to the Western Front in support of the Allied war effort during World War I, Chinese diplomats arrived at Versailles expecting something of a restoration, or at least relief from the unequal treaties. Instead, China was seated at the kids’ table with Greece and Siam, while the Western powers carved up the globe.

    Only recently has China regained its geopolitical might, after opening to the world during Deng Xiaoping’s 1980s reign. Deng evinced a near-religious reverence for science and technology, a sentiment that is undimmed in Chinese culture today. The country is on pace to outspend the United States on R&D this decade, but the quality of its research varies a great deal. According to one study, even at China’s most prestigious academic institutions, a third of scientific papers are faked or plagiarized. Knowing how poorly the country’s journals are regarded, Chinese universities are reportedly offering bonuses of up to six figures to researchers who publish in Western journals.

    It remains an open question whether Chinese science will ever catch up with that of the West without a bedrock political commitment to the free exchange of ideas. China’s persecution of dissident scientists began under Mao, whose ideologues branded Einstein’s theories “counterrevolutionary.” But it did not end with him. Even in the absence of overt persecution, the country’s “great firewall” handicaps Chinese scientists, who have difficulty accessing data published abroad.

    China has learned the hard way that spectacular scientific achievements confer prestige upon nations. The “Celestial Kingdom” looked on from the sidelines as Russia flung the first satellite and human being into space, and then again when American astronauts spiked the Stars and Stripes into the lunar crust.

    China has largely focused on the applied sciences. It built the world’s fastest supercomputer, spent heavily on medical research, and planted a “great green wall” of forests in its northwest as a last-ditch effort to halt the Gobi Desert’s spread. Now China is bringing its immense resources to bear on the fundamental sciences. The country plans to build an atom smasher that will conjure thousands of “god particles” out of the ether, in the same time it took CERN’s Large Hadron Collider to strain out a handful.

    LHC

    CERN/LHC Map

    CERN LHC Tunnel

    CERN LHC particles

    It is also eyeing Mars. In the technopoetic idiom of the 21st century, nothing would symbolize China’s rise like a high-definition shot of a Chinese astronaut setting foot on the red planet. Nothing except, perhaps, first contact.

    At a security station 10 miles from the dish, I handed my cellphone to a guard. He locked it away in a secure compartment and escorted me to a pair of metal detectors so I could demonstrate that I wasn’t carrying any other electronics. A different guard drove me on a narrow access road to a switchback-laden stairway that climbed 800 steps up a mountainside, through buzzing clouds of blue dragonflies, to a platform overlooking the observatory.

    Until a few months before his death this past September, the radio astronomer Nan Rendong was the observatory’s scientific leader, and its soul. It was Nan who had made sure the new dish was customized to search for extraterrestrial intelligence. He’d been with the project since its inception, in the early 1990s, when he used satellite imagery to pick out hundreds of candidate sites among the deep depressions in China’s Karst mountain region.

    Apart from microwaves, such as those that make up the faint afterglow of the Big Bang, radio waves are the weakest form of electromagnetic radiation. The collective energy of all the radio waves caught by Earth’s observatories in a year is less than the kinetic energy released when a single snowflake comes softly to rest on bare soil. Collecting these ethereal signals requires technological silence. That’s why China plans to one day put a radio observatory on the dark side of the moon, a place more technologically silent than anywhere on Earth. It’s why, over the course of the past century, radio observatories have sprouted, like cool white mushrooms, in the blank spots between this planet’s glittering cities. And it’s why Nan went looking for a dish site in the remote Karst mountains. Tall, jagged, and covered in subtropical vegetation, these limestone mountains rise up abruptly from the planet’s crust, forming barriers that can protect an observatory’s sensitive ear from wind and radio noise.

    After making a shortlist of candidate locations, Nan set out to inspect them on foot. Hiking into the center of the Dawodang depression, he found himself at the bottom of a roughly symmetrical bowl, guarded by a nearly perfect ring of green mountains, all formed by the blind processes of upheaval and erosion. More than 20 years and $180 million later, Nan positioned the dish for its inaugural observation—its “first light,” in the parlance of astronomy. He pointed it at the fading radio glow of a supernova, or “guest star,” as Chinese astronomers had called it when they recorded the unusual brightness of its initial explosion almost 1,000 years earlier.

    After the dish is calibrated, it will start scanning large sections of the sky. Andrew Siemion’s SETI team is working with the Chinese to develop an instrument to piggyback on these wide sweeps, which by themselves will constitute a radical expansion of the human search for the cosmic other.

    Siemion told me he’s especially excited to survey dense star fields at the center of the galaxy. “It’s a very interesting place for an advanced civilization to situate itself,” he said. The sheer number of stars and the presence of a supermassive black hole make for ideal conditions “if you want to slingshot a bunch of probes around the galaxy.” Siemion’s receiver will train its sensitive algorithms on billions of wavelengths, across billions of stars, looking for a beacon.

    Liu Cixin told me he doubts the dish will find one. In a dark-forest cosmos like the one he imagines, no civilization would ever send a beacon unless it were a “death monument,” a powerful broadcast announcing the sender’s impending extinction. If a civilization were about to be invaded by another, or incinerated by a gamma-ray burst, or killed off by some other natural cause, it might use the last of its energy reserves to beam out a dying cry to the most life-friendly planets in its vicinity.

    Even if Liu is right, and the Chinese dish has no hope of detecting a beacon, it is still sensitive enough to hear a civilization’s fainter radio whispers, the ones that aren’t meant to be overheard, like the aircraft-radar waves that constantly waft off Earth’s surface. If civilizations are indeed silent hunters, we might be wise to hone in on this “leakage” radiation. Many of the night sky’s stars might be surrounded by faint halos of leakage, each a fading artifact of a civilization’s first blush with radio technology, before it recognized the risk and turned off its detectable transmitters. Previous observatories could search only a handful of stars for this radiation. China’s dish has the sensitivity to search tens of thousands.

    In Beijing, I told Liu that I was holding out hope for a beacon. I told him I thought dark-forest theory was based on too narrow a reading of history. It may infer too much about the general behavior of civilizations from specific encounters between China and the West. Liu replied, convincingly, that China’s experience with the West is representative of larger patterns. Across history, it is easy to find examples of expansive civilizations that used advanced technologies to bully others. “In China’s imperial history, too,” he said, referring to the country’s long-standing domination of its neighbors.

    But even if these patterns extend back across all of recorded history, and even if they extend back to the murky epochs of prehistory, to when the Neanderthals vanished sometime after first contact with modern humans, that still might not tell us much about galactic civilizations. For a civilization that has learned to survive across cosmic timescales, humanity’s entire existence would be but a single moment in a long, bright dawn. And no civilization could last tens of millions of years without learning to live in peace internally. Human beings have already created weapons that put our entire species at risk; an advanced civilization’s weapons would likely far outstrip ours.

    I told Liu that our civilization’s relative youth would suggest we’re an outlier on the spectrum of civilizational behavior, not a Platonic case to generalize from. The Milky Way has been habitable for billions of years. Anyone we make contact with will almost certainly be older, and perhaps wiser.

    Moreover, the night sky contains no evidence that older civilizations treat expansion as a first principle. seti researchers have looked for civilizations that shoot outward in all directions from a single origin point, becoming an ever-growing sphere of technology, until they colonize entire galaxies. If they were consuming lots of energy, as expected, these civilizations would give off a telltale infrared glow, and yet we don’t see any in our all-sky scans. Maybe the self-replicating machinery required to spread rapidly across 100 billion stars would be doomed by runaway coding errors. Or maybe civilizations spread unevenly throughout a galaxy, just as humans have spread unevenly across the Earth. But even a civilization that captured a tenth of a galaxy’s stars would be easy to find, and we haven’t found a single one, despite having searched the nearest 100,000 galaxies.

    Some seti researchers have wondered about stealthier modes of expansion. They have looked into the feasibility of “Genesis probes,” spacecraft that can seed a planet with microbes, or accelerate evolution on its surface, by sparking a Cambrian explosion, like the one that juiced biological creativity on Earth. Some have even searched for evidence that such spacecraft might have visited this planet, by looking for encoded messages in our DNA—which is, after all, the most robust informational storage medium known to science. They too have come up empty. The idea that civilizations expand ever outward might be woefully anthropocentric.

    Liu did not concede this point. To him, the absence of these signals is just further evidence that hunters are good at hiding. He told me that we are limited in how we think about other civilizations. “Especially those that may last millions or billions of years,” he said. “When we wonder why they don’t use certain technologies to spread across a galaxy, we might be like spiders wondering why humans don’t use webs to catch insects.” And anyway, an older civilization that has achieved internal peace may still behave like a hunter, Liu said, in part because it would grasp the difficulty of “understanding one another across cosmic distances.” And it would know that the stakes of a misunderstanding could be existential.

    First contact would be trickier still if we encountered a postbiological artificial intelligence that had taken control of its planet. Its worldview might be doubly alien. It might not feel empathy, which is not an essential feature of intelligence but instead an emotion installed by a particular evolutionary history and culture. The logic behind its actions could be beyond the powers of the human imagination. It might have transformed its entire planet into a supercomputer, and, according to a trio of Oxford researchers, it might find the current cosmos too warm for truly long-term, energy-efficient computing. It might cloak itself from observation, and power down into a dreamless sleep lasting hundreds of millions of years, until such time when the universe has expanded and cooled to a temperature that allows for many more epochs of computing.

    As I came up the last flight of steps to the observation platform, the Earth itself seemed to hum like a supercomputer, thanks to the loud, whirring chirps of the mountains’ insects, all amplified by the dish’s acoustics. The first thing I noticed at the top was not the observatory, but the Karst mountains. They were all individuals, lumpen and oddly shaped. It was as though the Mayans had built giant pyramids across hundreds of square miles, and they’d all grown distinctive deformities as they were taken over by vegetation. They stretched in every direction, all the way to the horizon, the nearer ones dark green, and the distant ones looking like blue ridges.

    Amid this landscape of chaotic shapes was the spectacular structure of the dish. Five football fields wide, and deep enough to hold two bowls of rice for every human being on the planet, it was a genuine instance of the technological sublime. Its vastness reminded me of Utah’s Bingham copper mine, but without the air of hasty, industrial violence. Cool and concave, the dish looked at one with the Earth. It was as though God had pressed a perfect round fingertip into the planet’s outer crust and left behind a smooth, silver print.

    I sat up there for an hour in the rain, as dark clouds drifted across the sky, throwing warbly light on the observatory. Its thousands of aluminum-triangle panels took on a mosaic effect: Some tiles turned bright silver, others pale bronze. It was strange to think that if a signal from a distant intelligence were to reach us anytime soon, it would probably pour down into this metallic dimple in the planet. The radio waves would ping off the dish and into the receiver. They’d be pored over and verified. International protocols require the disclosure of first contact, but they are nonbinding. Maybe China would go public with the signal but withhold its star of origin, lest a fringe group send Earth’s first response. Maybe China would make the signal a state secret. Even then, one of its international partners could go rogue. Or maybe one of China’s own scientists would convert the signal into light pulses and send it out beyond the great firewall, to fly freely around the messy snarl of fiber-optic cables that spans our planet.

    In Beijing, I had asked Liu to set aside dark-forest theory for a moment. I asked him to imagine the Chinese Academy of Sciences calling to tell him it had found a signal.

    How would he reply to a message from a cosmic civilization? He said that he would avoid giving a too-detailed account of human history. “It’s very dark,” he said. “It might make us appear more threatening.” In Blindsight, Peter Watts’s novel of first contact, mere reference to the individual self is enough to get us profiled as an existential threat. I reminded Liu that distant civilizations might be able to detect atomic-bomb flashes in the atmospheres of distant planets, provided they engage in long-term monitoring of life-friendly habitats, as any advanced civilization surely would. The decision about whether to reveal our history might not be ours to make.

    Liu told me that first contact would lead to a human conflict, if not a world war. This is a popular trope in science fiction. In last year’s Oscar-nominated film Arrival, the sudden appearance of an extraterrestrial intelligence inspires the formation of apocalyptic cults and nearly triggers a war between world powers anxious to gain an edge in the race to understand the alien’s messages. There is also real-world evidence for Liu’s pessimism: When Orson Welles’s “War of the Worlds” radio broadcast simulating an alien invasion was replayed in Ecuador in 1949, a riot broke out, resulting in the deaths of six people. “We have fallen into conflicts over things that are much easier to solve,” Liu told me.

    Even if no geopolitical strife ensued, humans would certainly experience a radical cultural transformation, as every belief system on Earth grappled with the bare fact of first contact. Buddhists would get off easy: Their faith already assumes an infinite universe of untold antiquity, its every corner alive with the vibrating energies of living beings. The Hindu cosmos is similarly grand and teeming. The Koran references Allah’s “creation of the heavens and the earth, and the living creatures that He has scattered through them.” Jews believe that God’s power has no limits, certainly none that would restrain his creative powers to this planet’s cosmically small surface.

    Christianity might have it tougher. There is a debate in contemporary Christian theology as to whether Christ’s salvation extends to every soul that exists in the wider universe, or whether the sin-tainted inhabitants of distant planets require their own divine interventions. The Vatican is especially keen to massage extraterrestrial life into its doctrine, perhaps sensing that another scientific revolution may be imminent. The shameful persecution of Galileo is still fresh in its long institutional memory.

    Secular humanists won’t be spared a sobering intellectual reckoning with first contact. Copernicus removed Earth from the center of the universe, and Darwin yanked humans down into the muck with the rest of the animal kingdom. But even within this framework, human beings have continued to regard ourselves as nature’s pinnacle. We have continued treating “lower” creatures with great cruelty. We have marveled that existence itself was authored in such a way as to generate, from the simplest materials and axioms, beings like us. We have flattered ourselves that we are, in the words of Carl Sagan, “the universe’s way of knowing itself.” These are secular ways of saying we are made in the image of God.

    We may be humbled to one day find ourselves joined, across the distance of stars, to a more ancient web of minds, fellow travelers in the long journey of time. We may receive from them an education in the real history of civilizations, young, old, and extinct. We may be introduced to galactic-scale artworks, borne of million-year traditions. We may be asked to participate in scientific observations that can be carried out only by multiple civilizations, separated by hundreds of light-years. Observations of this scope may disclose aspects of nature that we cannot now fathom. We may come to know a new metaphysics. If we’re lucky, we will come to know a new ethics. We’ll emerge from our existential shock feeling newly alive to our shared humanity. The first light to reach us in this dark forest may illuminate our home world too.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
    • Greg Long 8:18 pm on December 30, 2017 Permalink | Reply

      Wow!

      Like

    • richardmitnick 8:35 pm on December 30, 2017 Permalink | Reply

      Hey, Greg, thanks for the comment and for obviously reading enough of the article. No one knows who will ever make any kind of contact. The writer is wrong about the U.S. quitting. There is new technology at the SETI Institute, Laser SETI. Big bucks are going into that. I was a small contributor but with a lot of company. SETI@home is still running, That is the U.S. Optical SETI is running. That is the U.S.. Green Bank and the Automated Planet Finder in Breakthrough Listen are the U.S.

      FAST is a monumental achievement and will soon be aided with technology from Australia.

      So, who knows if there is anything out there and who will find it?

      Thanks again.

      O.K., back to my movie, “he Circle” on Amazon Prime.

      You are a good friend to sciencesprings and to me.

      Like

    • stewarthoughblog 1:09 am on January 1, 2018 Permalink | Reply

      Happy New Year, Richard,

      The images of all the technological devices are amazing, thanks. I do not want to be a downer, but SETI and all the extraterrestrial investigations, while arguably a proper function of science to explore the universe, are a waste of time in validating a naturalistic universe, yet, perhaps surprisingly, could be justified from a Christian perspective.

      The naturalistic.anti-theistic hypotheses that alien life is likely are totally faith-based and attempts to trivialize the complexity of life and propose its ubiquity. The present origin of life naturalistic speculation is a chaotic mess with no explanation for any of the intractable unsolved problems.

      Regarding the supposed Christian “tougher” issue, I suggest it is not. Christians know God is infinite and has the right to do all he pleases. One possible suggestion for such a large universe is that he has chosen to use it to seed additional living entities. We know of multiuniversal spirit beings, demons and angels, and that God is transcendent and not within our universe, unlike virtually all pagan religious beliefs. So, God created free willed spirit beings, and us, free willed physical beings, all with intelligence, consciousness. But, angels do not receive salvation from their evil freewill, we do, which is the essence of the Gospel and Christ. This raises questions:
      1.Why would God want additional freewilled physical beings?
      2.If not free willed, why would such biobots be needed in the universe?
      3. If 1., how would they be redeemed in the event of choosing to break God’s universal moral laws, which all have done.
      4. All the Bible relates God’s intimate relation with his children of Earth and heaven is dedicated to eternal, singular fellowship, how do they fit into eternity in heaven?
      5. Conclusion, the Bible is not lying about human’s singular relation to Jesus and God, there are no extraterrestrials, all the time and volume of space shows God’s power and glory and was needed for us and is not a waste.

      Open for discussion. HWY

      Like

    • richardmitnick 11:53 am on January 1, 2018 Permalink | Reply

      Happy 2018, Stewart.

      I do not accept “SETI and all the extraterrestrial investigations, while arguably a proper function of science to explore the universe, are a waste of time in validating a naturalistic universe…”

      More importantly for me, I do not include any religious or political influences in what I do or what I think is possible.

      You obviously believe in G-d, and so do I. This means all things are possible.

      Like

  • richardmitnick 1:37 pm on December 29, 2017 Permalink | Reply
    Tags: , , , , Breakthrough Star Shot, , , For astronomers the biggest problem with E.T. is not the occasional claim of a mysterious light in the sky but the fact that we are not constantly overwhelmed with them, How dare we think that the physics we have today is all that there is, , Scientists are also trained to look at nature with ruthless rigor and skepticism, Scientists are not the killjoys in all this., SETI Institute, U.F.O.'s   

    From NYT: “U.F.O.s: Is This All There Is?” 

    New York Times

    The New York Times

    DEC. 29, 2017
    Dennis Overbye

    1
    A U.F.O. in New Mexico in 1957. For astronomers, the biggest problem with alien visitation is not the occasional claim of mysterious light in the sky, but the fact that we’re not constantly overwhelmed with them. Credit Bettmann, via Getty Images

    Hey, Mr. Spaceman,

    Won’t you please take me along?

    I won’t do anything wrong.

    Hey, Mr. Spaceman,

    Won’t you please take me along for a ride?

    So sang the Byrds in 1966, after strange radio bursts from distant galaxies called quasars had excited people about the possibility of extraterrestrial intelligence.

    I recalled those words recently when reading the account of a pair of Navy pilots who were outmaneuvered and outrun by a U.F.O. off the coast of San Diego back in 2004. Cmdr. David Fravor said later that he had no idea what he had seen.

    “But,” he added, “I want to fly one.”

    His story was part of a bundle of material released recently about a supersecret $22 million Pentagon project called the Advanced Aerospace Threat Identification Program, aimed at investigating U.F.O.s. The project was officially killed in 2012, but now it’s being resurrected as a nonprofit organization.

    Disgruntled that the government wasn’t taking the possibility of alien visitors seriously, a group of former defense officials, aerospace engineers and other space fans have set up their own group, To the Stars Academy of Arts & Science. One of its founders is Tom DeLonge, a former punk musician, record producer and entrepreneur, who is also the head of the group’s entertainment division.

    For a minimum of $200, you can join and help finance their research into how U.F.O.s do whatever it is they do, as well as telepathy and “a point-to-point transportation craft that will erase the current travel limits of distance and time” by using a drive that “alters the space-time metric” — that is, a warp drive going faster than the speed of light, Einstein’s old cosmic speed limit.

    “We believe there are transformative discoveries within our reach that will revolutionize the human experience, but they can only be accomplished through the unrestricted support of breakthrough research, discovery and innovation,” says the group’s website.

    3
    A U.F.O. spotted by Navy pilots near San Diego in 2004. Credit Department of Defense

    I’m not holding my breath waiting for progress on telepathy or warp drive, but I agree with at least one thing that one official with the group said. That was Steve Justice, a former engineer at Lockheed Martin’s famous Skunk Works, where advanced aircraft like the SR-71 high-altitude super-fast spy plane were designed.

    “How dare we think that the physics we have today is all that there is,” he said in an interview published recently in HuffPost.

    I could hardly agree more, having spent my professional life in the company of physicists and astronomers trying to poke out of the cocoon of present knowledge into the unknown, to overturn Einstein and what passes for contemporary science. Lately, they haven’t gotten anywhere.

    The last time physicists had to deal with faster-than-light travel was six years ago, when a group of Italy-based physicists announced that they had seen the subatomic particles known as neutrinos going faster than light. It turned out they had wired up their equipment wrong.

    So far Einstein is still the champ. But surely there is so much more to learn. A lot of surprises lie ahead, but many of the most popular ideas on how to transcend Einstein and his peers are on the verge of being ruled out. Transforming science is harder than it looks.

    While there is a lot we don’t know, there is also a lot we do know. We know how to turn on our computers and let gadgets in our pocket navigate the world. We know that when physical objects zig and zag through a medium like air, as U.F.O.s are said to do, they produce turbulence and shock waves. NASA engineers predicted to the minute when the Cassini spacecraft would dwindle to a wisp of smoke in Saturn’s atmosphere last fall.

    In moments like this, I take comfort in what the great Russian physicist and cosmologist Yakov Zeldovich, one of the fathers of the Soviet hydrogen bomb, once told me. “What science has already taken, it will not give back,” he said.

    Scientists are not the killjoys in all this.

    In the astronomical world, the border between science fact and science fiction can be very permeable, perhaps because many scientists grew up reading science fiction. And astronomers forever have their noses pressed up against the window of the unknown. They want to believe more than anybody, and I count myself among them.

    4
    Since the asteroid named Oumuamua was first noticed flying through our solar system in October, researchers have been monitoring for alien signals, so far to no avail. Credit M. Kornmesser/Agence France-Presse — Getty Images

    But they are also trained to look at nature with ruthless rigor and skepticism. For astronomers, the biggest problem with E.T. is not the occasional claim of a mysterious light in the sky, but the fact that we are not constantly overwhelmed with them.

    Half a century ago, the legendary physicist Enrico Fermi concluded from a simple back-of-the-envelope calculation that even without warp drive, a single civilization could visit and colonize all the planets in the galaxy in a fraction of the 10-billion-year age of the Milky Way.

    “Where are they?” he asked.

    Proponents of SETI, the search for extraterrestrial intelligence, have been debating ever since. One answer I like is the “zoo hypothesis,” according to which we have been placed off-limits, a cosmic wildlife refuge.

    Another answer came from Jill Tarter, formerly the director of research at the SETI Institute in Mountain View, Calif. “We haven’t looked hard enough,” she said when I asked her recently.

    If there was an iPhone sitting under a rock on the Moon or Mars, for example, we would not have found it yet. Our own latest ideas for interstellar exploration involve launching probes the size of postage stamps to Alpha Centauri.

    In the next generation, they might be the size of mosquitoes. By contrast, the dreams of some U.F.O. enthusiasts are stuck in 1950s technology.

    Still, we keep trying.

    Last fall when a strange object — an interstellar asteroid now named Oumuamua — was found cruising through the solar system, astronomers’ thoughts raced to the Arthur C. Clarke novel Rendezvous With Rama, in which the object was an alien spaceship. Two groups have been monitoring Oumuamua for alien radio signals, so far to no avail.

    Meanwhile, some astronomers have speculated that the erratic dimming of a star known as “Boyajian’s star” or “Tabby’s star,” after the astronomer Tabetha Boyajian, could be caused by some gigantic construction project orbiting the star. So far that has not worked out, but none of the other explanations — dust or a fleet of comets — have, either.

    A pair of Harvard astronomers suggested last spring that mysterious sporadic flashes of energy known as fast radio bursts coming from far far away are alien transmitters powering interstellar spacecraft carrying light sails. “Science isn’t a matter of belief, it’s a matter of evidence,” the astronomer Avi Loeb said in a news release from Harvard. “Deciding what’s likely ahead of time limits the possibilities. It’s worth putting ideas out there and letting the data be the judge.”

    U.F.O. investigations are nothing new. The most famous was the Air Force’s Project Blue Book, which ran from 1952 to 1970 and examined more than 12,000 sightings.

    Most U.F.O. sightings turn out to be swamp gas and other atmospheric anomalies, Venus, weird reflections or just plain hoaxes. But there is a stubborn residue, a few percent that resist easy explication, including now Commander Fravor’s story. But that’s a far cry from proving they are alien or interstellar.

    I don’t know what to think about these stories, often told by sober, respected and professional observers — police officers, pilots, military officials — in indelible detail. I always wish I could have been there to see it for myself.

    Then I wonder how much good it would do to see it anyway.

    Recently I ran into my friend Mark Mitton, a professional magician, in a restaurant. He came over to the table and started doing tricks. At one point he fanned the card deck, asked my daughter to pick one, and then asked her to shuffle the deck, which she did expertly.

    Mr. Mitton grabbed the deck and sprayed the cards in the air. There was my daughter’s card stuck to a mirror about five feet away. How did it get there? Not by any new physics. Seeing didn’t really help.

    As modern psychology and neuroscience have established, the senses are an unreliable portal to reality, whatever that is.

    Something might be happening, but we don’t know what it is. E.T., if you’re reading this, I’m still waiting to take my ride.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 11:57 am on December 10, 2017 Permalink | Reply
    Tags: , , , , , , , , SETI Institute, Where in the Worlds has SETI Institute Been? - Nov 27 – Dec 3 2017   

    From SETI Institute: “Where in the Worlds has SETI Institute Been? – Nov 27 – Dec 3, 2017” 

    SETI Logo new
    SETI Institute

    2

    New Technologies for SETI Searches
    The traditional method of searching for extraterrestrial signals in space is through radio astronomy, the method that’s used at the SETI Institute’s Allen Telescope Array (ATA), among other sites.

    SETI/Allen Telescope Array situated at the Hat Creek Radio Observatory, 290 miles (470 km) northeast of San Francisco, California, USA, Altitude 986 m (3,235 ft)

    3
    Shelley Wright who developed NIROSETI, at the 1 meter Nickel Telescope at the UC Santa CruzLick Observatory

    Laser SETI, the future of SETI Institute research

    New methods are being explored now, optical SETI is an example, and the SETI Institute is developing its Laser SETI program to search the sky for laser flashes generated by extraterrestrial intelligence. SETI Institute scientist Margaret Turnbull comments to SyfyWire:

    “I’m anxious to see the SETI search become more methodical in conducting and publishing well-designed search programs,” she says.

    If we detect something, Turnbull says it will answer questions about how aliens communicate with each other. She says we should look at animals on Earth — “especially in collective ‘hive’ minds” and that we should look out for senses that some animals have that humans lack, as well as the nature of memory.

    “To me, all of this hints at how limited we are in the way we look at the universe, and pondering this deeply could help us think about ways to broaden our search for intelligence elsewhere,” she says. (SyFyWire)

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

     
  • richardmitnick 8:37 pm on November 20, 2017 Permalink | Reply
    Tags: , , , , , New Keys to Help Extraterrestrials Unlock Our Messages, SETI Institute   

    From SA: “New Keys to Help Extraterrestrials Unlock Our Messages” 

    Scientific American

    Scientific American

    November 20, 2017
    Douglas Vakoch

    A 19th-century proposal for contacting aliens is being rebooted in the latest transmission to nearby star.

    1
    Artist’s impression of GJ273 star system. Credit: Danielle Futselaar, METI

    When the esteemed German mathematician Carl Friedrich Gauss contemplated communication with extraterrestrials at the beginning of the 19th century, targeting the moon seemed obvious. Our planet’s natural satellite provided the nearest plausible home for life beyond Earth.

    The form and content of the message we could send was equally clear to Gauss. He is credited with the idea of communicating with inhabitants of the moon by clearing large swaths of the Siberian forest of its trees and in their place planting massive wheat fields in the shape of carefully arranged geometrical shapes, which would be visible from the moon. Specifically, he wanted to show Lunarians that Earthlings are familiar with the Pythagorean theorem by creating massive landscapes demonstrating that the sum of the squares of the legs of a right triangle equals the square of the hypotenuse: a2 + b2 = c2.

    Nearly two centuries after Gauss’s proposal, our team has turned to him for inspiration, using math as a universal language for interstellar communication by radio.

    We of course now know that our moon is inhospitable to life. But in the last two decades we have learned of the existence of planets around other stars. Some of these exoplanets orbit within their star’s “Goldilocks zone,” where it is not too hot, and not too cold, but just right to allow for the existence of liquid water—a prerequisite for life as we know it. Recently we sent a series of radio messages that included a numerical description of the Pythagorean theorem to one such exoplanet, in the hope of eliciting a response from any geometry-savvy inhabitants.

    CALLING E.T.

    The exoplanet is a super-Earth named GJ 273b, which orbits Luyten’s Star, a red dwarf only 12.4 light years from our solar system. It has the distinction of being the nearest known exoplanet that is potentially habitable while also being in view of the two-megawatt transmitter of the European Incoherent Scatter Scientific Association (EISCAT) in Tromsø, Norway, north of the Arctic Circle. On three successive days in mid-October 2017, a project dubbed “Sónar Calling GJ 273b” celebrated the 25th anniversary of Barcelona’s Sónar music festival with radio transmissions from EISCAT, which included a sampling of music by the festival’s artists.

    To increase the intelligibility of the signals, we at METI—a research organization dedicated to Messaging Extraterrestrial Intelligence—crafted a mathematical and scientific tutorial within the transmissions.

    METI (Messaging Extraterrestrial Intelligence) International has announced plans to start sending signals into space

    METI’s tutorial differs from earlier interstellar messages in several ways. Past messages—like the radio message transmitted from a radio telescope in Arecibo, Puerto Rico, and the Golden Record onboard NASA’s Voyager spacecraft—have attempted to be encyclopedic in scope.

    NAIC/Arecibo Observatory, Puerto Rico, USA, at 497 m (1,631 ft)

    NASA/Voyager 1

    Voyager 1- The Interstellar Mission gold plated disc

    The downside of trying to say everything in an interstellar message is that we are communicating so much information that it may come across as an incoherent jumble. METI’s message takes the opposite approach, explaining a few essentials of math and science with greater depth and clarity.

    SIMPLE STEPS TO LINK FORM AND CONTENT

    In past interstellar messages, the link between the form and content of the message has been arbitrary, making decoding by any intelligent recipients all the more challenging. In METI’s tutorial, we focus on concepts we can directly demonstrate through the radio signal itself. We explain time through pulses that have a clearly defined duration—one that can be described numerically, as well as directly shown by pulses of corresponding duration. We expand into the realm of electromagnetic phenomena by discussing the fact that radio waves have specific frequencies, doing so by pointing to the two frequencies we used for the transmission itself.

    Throughout, we build step-by-step from simple to more complex concepts. After counting, we introduce arithmetic. Combinations of numbers that illustrate the Pythagorean theorem let us move into trigonometry. Once we can describe the relationships between the sides of a triangle—though simple division—we can describe sine waves, and thus radio waves themselves.

    In a second round of transmissions set for April 2018, we will expand our tutorial to demonstrate fundamental elements of musical melodies—by turning the transmitter into a musical instrument capable of sending signals at several different frequencies, not just two frequencies as in our first set of messages. By expanding the range of frequencies at which we can transmit, we will mimic the relationships between musical notes, which are separated from each other by specific, mathematically precise intervals. Through some basic math and physics, we will introduce aliens to human melodies.

    We have gone to great pains to send messages that will come out intact after a journey of more than 70 trillion miles. On each of the three days that we transmitted in October, we sent our METI tutorial three times. This provides alien codebreakers on GJ 273b with a simple rule to deal with the inevitable errors that will creep into the message as it traverses the vast distances between the stars. The recipient only needs to recognize that the message is sent three times; line up the three versions, one on top of the other; and finally, look for any discrepancies. Whenever there is a difference between the three parts, the extraterrestrial cryptographer has a simple rule to figure out what we intended: go with whatever appears two out of three times.

    KEYS TO UNDERSTANDING

    Our new METI tutorial provides novel features designed to increase comprehensibility, but it is not the final word. Instead, to craft increasingly sophisticated messages in the coming years, we should learn lessons from the history of the Search for Extraterrestrial Intelligence, or SETI. In 1960 astronomer Frank Drake conducted Project Ozma, the first SETI experiment. The 1960s and 1970s saw a handful to additional searches, each relatively limited in the number of stars observed, as well as the range of frequencies. No signs of intelligence beyond Earth were detected. With the completion of each project, however, astronomers and engineers became increasingly sophisticated in developing signal processing algorithms, ruling out false alarms, and articulating a case for each of their chosen target stars.

    The power of today’s SETI searches is easily a trillion times as great as that of Ozma, thanks to more sensitive antennas that can search at billions of frequencies rather than only one.

    SETI/Allen Telescope Array situated at the Hat Creek Radio Observatory, 290 miles (470 km) northeast of San Francisco, California, USA

    But has our sophistication in creating interstellar messages increased over the same time by even a factor of 10? I doubt it.

    Using as an analogy the history of SETI, in which much was learned by conducting a series of modest follow-up searches, the best way to develop increasingly sophisticated messages is to keep targeting additional stars, each getting its own distinctive message. Rather than simply replicating the messages that have been sent in the past, we should continually explore alternatives for both form and content.

    An interstellar message is like a treasure chest, offered by one civilization to another with the hope it will have value. Much of this value comes after the recipient can unlock the message’s secrets. But what may seem an obvious clue to us about how to do so may be obscure to an extraterrestrial. In our future messages, we would do well to include multiple keys, each providing a unique way to open the message. These efforts may one day let intelligent extraterrestrials begin to see the universe from a truly human perspective.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Scientific American, the oldest continuously published magazine in the U.S., has been bringing its readers unique insights about developments in science and technology for more than 160 years.

     
  • richardmitnick 8:56 pm on October 27, 2017 Permalink | Reply
    Tags: , , , , , SETI Institute, Where in the Worlds has SETI Institute Been? - October 16 - 22   

    From SETI Institute: “Where in the Worlds has SETI Institute Been? – October 16 – 22, 2017” 

    SETI Logo new
    SETI Institute

    October 27, 2017

    1
    Cassini and Saturn’s Rings

    At last week’s American Astronomical Society Division for Planetary Science meeting in Provo, UT, new findings about data provided by the Cassini spacecraft were announced. SETI Institute scientist Matt Tiscareno, who has been working on Cassini since 2004 and led the discovery of the propellers in the rings around Saturn, was among the scientists announcing new insights from Cassini. Propellers are small moonlets that create wakes in Saturn’s rings and have been compared to baby planets that can form in disks around young stars.

    Cassini’s Ring-Grazing orbits, weekly dives through the ring planes just off the outer edge of the main rings of Saturn that took place from December 2016 until March 2017, captured images that showed “swarms of smaller propellers” that were unexpected by the team. In his presentation, Matt noted:

    “These are important because this is a window into planetary formation processes. What happens when big solar systems are forming is that you start to get the seed of a planet, but it’s embedded in a disk. So the disk is affecting the embedded mass, but the embedded mass is also affecting the disk, and we want to know more about what happens in both directions, and propellers give us a window into that.”

    Matt also revealed that images taken the day before Cassini’s plunge into Saturn’s atmosphere captured images of six propellers whose orbit had been tracked over the last several years: Blériot, Earhart, Santos-Dumont, Sikorsky, Post and Quimby.

    It will likely take years for scientists to analyze the data generated by Cassini.

    NASA.gov: Fresh Findings from Cassini
    YouTube: Astrobiology Magazine – Fresh Findings from Cassini
    Spaceflight Now: Cassini Results Still Keeping Scientists Busy
    Seeker: Cassini’s Final Days Produced a Burst of Fresh Science
    International Business Times: NASA Releases New Cassini Findings About Saturn and its Rings
    Clarksville Online: NASA Reveals New Findings from Cassini Spacecraft’s Observations of Saturn

    3
    Martian Sands

    The SETI Institute’s Lori Fenton, an Aeolian geomorphologist, joined the WeMartians podcast to talk about the beautiful wind-formed dunes, ripples and mysterious TARs of Meridiani Planum.

    The plains of Meridiani Planum, where the Opportunity Rover is currently exploring, is home to many surface features, but none are as stunning and the wind-formed dunes and ripples. How do these features form, and what significance do they have on the overall climate and history of Mars?

    WeMartians: The Four Winds of Mars

    5
    Neutron Stars and Gravitational Waves

    SETI Institute Senior Astronomer and host of the radio program and podcast Big Picture Science Seth Shostak wrote an article for NBC News Mach about the neutron star/gravitational wave discovery by LIGO.

    LIGO is the Laser Interferometer Gravitational Wave Observatory operated by Caltech and MIT. Gravitational waves are ripples in space, similar to ripples caused when a stone is tossed in water, only gravitational waves are corrugations in space/time.

    LIGO and its sister Virgo in Italy have detected two neutron stars colliding at a distance of approximately 130 million light-years.

    NBC News Mach: LIGO Scientists Spy Neutron Star Smash-Up that Blew Bling into Space

    6
    Deep Mine Research and Education at Boulby Mine

    SETI Institute scientist Rosalba Bonaccorsi is part of the expedition the team when NASA Spaceward Bound and the U.K. Centre for Astrobiology conduct a planetary analog expedition in the Boulby Mine. Boulby is the site of the astrobiology analog research with the Mine Analog Research Program (MINAR).

    The team includes scientists, teachers, engineers, biologists, geologists and astronauts who will work on a variety of science and technology projects to address specific scientific questions and test a variety of potential technologies and planetary exploration protocols.

    Spaceward Bound is an educational program and will use the lab and mine environment to carry out science and technology in support of the subsurface exploration.

    See the full artcl for more SETI Institute news

    See the full article here .
    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: