Tagged: Microbiology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:22 am on January 20, 2022 Permalink | Reply
    Tags: "New Study Sheds Light on Origins of Life on Earth", , , , , Evolution of protein structures entails understanding how new folds arose from previously existing ones., Microbiology, , , The ability to shuffle electrons was paramount to life., The best elements for electron transfer are metals., The metal-binding cores of existing proteins are indeed similar even though the proteins themselves may not be., The researchers explored how primitive life may have originated on our planet from simple non-living materials., The researchers studied proteins that bind metals., They compared all existing protein structures that bind metals to establish any common features.   

    From Rutgers University (US): “New Study Sheds Light on Origins of Life on Earth” 

    Rutgers smaller
    Our Great Seal.

    From Rutgers University (US)

    January 14, 2022
    John Cramer

    1
    A Rutgers-led team has discovered the structures of proteins that may be responsible for the origins of life in the primordial soup of ancient Earth.Credit: Shutterstock.

    Addressing one of the most profoundly unanswered questions in biology, a Rutgers-led team has discovered the structures of proteins that may be responsible for the origins of life in the primordial soup of ancient Earth.

    The study appears in the journal Science Advances.

    The researchers explored how primitive life may have originated on our planet from simple non-living materials. They asked what properties define life as we know it and concluded that anything alive would have needed to collect and use energy, from sources such as the Sun or hydrothermal vents.

    In molecular terms, this would mean that the ability to shuffle electrons was paramount to life. Since the best elements for electron transfer are metals (think standard electrical wires) and most biological activities are carried out by proteins, the researchers decided to explore the combination of the two — that is, proteins that bind metals.

    They compared all existing protein structures that bind metals to establish any common features, based on the premise that these shared features were present in ancestral proteins and were diversified and passed down to create the range of proteins we see today.

    Evolution of protein structures entails understanding how new folds arose from previously existing ones, so the researchers designed a computational method that found the vast majority of currently existing metal-binding proteins are somewhat similar regardless of the type of metal they bind to, the organism they come from or the functionality assigned to the protein as a whole.

    “We saw that the metal-binding cores of existing proteins are indeed similar even though the proteins themselves may not be,” said the study’s lead author Yana Bromberg, a professor in the Department of Biochemistry and Microbiology at Rutgers University-New Brunswick. “We also saw that these metal-binding cores are often made up of repeated substructures, kind of like LEGO blocks. Curiously, these blocks were also found in other regions of the proteins, not just metal-binding cores, and in many other proteins that were not considered in our study. Our observation suggests that rearrangements of these little building blocks may have had a single or a small number of common ancestors and given rise to the whole range of proteins and their functions that are currently available — that is, to life as we know it.”

    “We have very little information about how life arose on this planet, and our work contributes a previously unavailable explanation,” said Bromberg, whose research focuses on deciphering the DNA blueprints of life’s molecular machinery. “This explanation could also potentially contribute to our search for life on other planets and planetary bodies. Our finding of the specific structural building blocks is also possibly relevant for synthetic biology efforts, where scientists aim to construct specifically active proteins anew.”

    The study, funded by The National Aeronautics and Space Agency(US), also included researchers from The University of Buenos Aires [Universidad de Buenos Aires] (AR).

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    rutgers-campus

    Rutgers, The State University of New Jersey (US), is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

    Rutgers University (US) is a public land-grant research university based in New Brunswick, New Jersey. Chartered in 1766, Rutgers was originally called Queen’s College, and today it is the eighth-oldest college in the United States, the second-oldest in New Jersey (after Princeton University (US)), and one of the nine U.S. colonial colleges that were chartered before the American War of Independence. In 1825, Queen’s College was renamed Rutgers College in honor of Colonel Henry Rutgers, whose substantial gift to the school had stabilized its finances during a period of uncertainty. For most of its existence, Rutgers was a private liberal arts college but it has evolved into a coeducational public research university after being designated The State University of New Jersey by the New Jersey Legislature via laws enacted in 1945 and 1956.

    Rutgers today has three distinct campuses, located in New Brunswick (including grounds in adjacent Piscataway), Newark, and Camden. The university has additional facilities elsewhere in the state, including oceanographic research facilities at the New Jersey shore. Rutgers is also a land-grant university, a sea-grant university, and the largest university in the state. Instruction is offered by 9,000 faculty members in 175 academic departments to over 45,000 undergraduate students and more than 20,000 graduate and professional students. The university is accredited by the Middle States Association of Colleges and Schools and is a member of the Big Ten Academic Alliance, the Association of American Universities (US) and the Universities Research Association (US). Over the years, Rutgers has been considered a Public Ivy.

    Research

    Rutgers is home to the Rutgers University Center for Cognitive Science, also known as RUCCS. This research center hosts researchers in psychology, linguistics, computer science, philosophy, electrical engineering, and anthropology.

    It was at Rutgers that Selman Waksman (1888–1973) discovered several antibiotics, including actinomycin, clavacin, streptothricin, grisein, neomycin, fradicin, candicidin, candidin, and others. Waksman, along with graduate student Albert Schatz (1920–2005), discovered streptomycin—a versatile antibiotic that was to be the first applied to cure tuberculosis. For this discovery, Waksman received the Nobel Prize for Medicine in 1952.

    Rutgers developed water-soluble sustained release polymers, tetraploids, robotic hands, artificial bovine insemination, and the ceramic tiles for the heat shield on the Space Shuttle. In health related field, Rutgers has the Environmental & Occupational Health Science Institute (EOHSI).

    Rutgers is also home to the RCSB Protein Data bank, “…an information portal to Biological Macromolecular Structures’ cohosted with the San Diego Supercomputer Center (US). This database is the authoritative research tool for bioinformaticists using protein primary, secondary and tertiary structures worldwide….”

    Rutgers is home to the Rutgers Cooperative Research & Extension office, which is run by the Agricultural and Experiment Station with the support of local government. The institution provides research & education to the local farming and agro industrial community in 19 of the 21 counties of the state and educational outreach programs offered through the New Jersey Agricultural Experiment Station Office of Continuing Professional Education.

    Rutgers University Cell and DNA Repository (RUCDR) is the largest university based repository in the world and has received awards worth more than $57.8 million from the National Institutes of Health (US). One will fund genetic studies of mental disorders and the other will support investigations into the causes of digestive, liver and kidney diseases, and diabetes. RUCDR activities will enable gene discovery leading to diagnoses, treatments and, eventually, cures for these diseases. RUCDR assists researchers throughout the world by providing the highest quality biomaterials, technical consultation, and logistical support.

    Rutgers–Camden is home to the nation’s PhD granting Department of Childhood Studies. This department, in conjunction with the Center for Children and Childhood Studies, also on the Camden campus, conducts interdisciplinary research which combines methodologies and research practices of sociology, psychology, literature, anthropology and other disciplines into the study of childhoods internationally.

    Rutgers is home to several National Science Foundation (US) IGERT fellowships that support interdisciplinary scientific research at the graduate-level. Highly selective fellowships are available in the following areas: Perceptual Science, Stem Cell Science and Engineering, Nanotechnology for Clean Energy, Renewable and Sustainable Fuels Solutions, and Nanopharmaceutical Engineering.

    Rutgers also maintains the Office of Research Alliances that focuses on working with companies to increase engagement with the university’s faculty members, staff and extensive resources on the four campuses.

    As a ’67 graduate of University College, second in my class, I am proud to be a member of

    Alpha Sigma Lamda, National Honor Society of non-tradional students.

     
  • richardmitnick 4:23 pm on January 10, 2022 Permalink | Reply
    Tags: "Bacteria biochemistry controlled with insoluble material", , , , Cornell University Engineering (US), Microbiology   

    From Cornell Chronicle (US) and Cornell University Engineering (US): “Bacteria biochemistry controlled with insoluble material” 

    From Cornell Chronicle (US)

    and

    2

    Cornell University Engineering (US)

    January 10, 2022
    Chris Dawson

    Trevor Franklin, a doctoral student in Cornell’s Robert Frederick Smith School of Chemical and Biomolecular Engineering, was preparing a study about anti-fouling surfaces when he noticed something strange.

    “I was practicing bacteria-culturing techniques on several material surfaces, including polyvinylpyridine,” Franklin said, “and I noticed that the Pseudomonas aeruginosa that grew on polyvinylpyridine was a different color than it was on any other surface.”

    1
    Pseudomonas aeruginosa growing on sheep blood agar at 37 °C after 24 h (A, C, E, F) and 48 h (B, D, G, H, I, J). P. aeruginosa strains are frequently haemolytic (B, D, G, J; reflected + transmitted light). This species gives rise to a variety of colony types. Most of the colonies are smooth, but varying grades of roughness may occur. Figure I shows an image of colonies with a “beaten-copper“ surface and slightly irregular edge. Capsulated strains of P. aeruginosa, usually isolated from patients with pneumonia, produce large, mucoid colonies (Fig. H). On routine blood agar, the typical P. aeruginosa colony is pigmented (gray/gray-white with a yellowish tint through green to red or brown). Pigment production is usually better visible and more profound on transparent media (e.g., Mueller-Hinton agar).
    Date 26 January 2020
    Source Own work
    Author HansN.

    This discovery led to a new study showing that certain materials can change the biochemical behavior of surface microbes living on them, and is the first to show an insoluble material exerting control over biochemical behaviors of bacteria.

    Bacterial biofilms – collectives of bacteria cells enclosed in a matrix of biomolecules – tend to grow on any wet surface. As such, humans spend a lot of time and energy trying to remove or kill these films from teeth, the hulls of ships, and medical implants, among many other surfaces. The study, published in the Dec. 13 print edition of the journal Biomacromolecules, opens the door to new research into the effects of insoluble materials on biofilm physiology.

    Franklin and Rong Yang, assistant professor of chemical and biomolecular engineering and co-author of the study, designed experiments that showed polyvinylpyridine increased the amount of surface iron accessible to the P. aeruginosa bacteria and, in this way, reduced the bacteria’s ability to cause disease. The compounds P. aeruginosa produces to scavenge iron are also responsible for its usual color. When the surface material polyvinylpyridine makes iron readily available, these compounds are not needed and therefore the usual color is absent.

    The biofilm composed of P. aeruginosa grown on polyvinylpyridine was twice as big as that which grew on an uncoated comparison plate, but 68% less virulent toward a specific type of human skin cell. As a biofilm of P. aeruginosa grows, it “scavenges” iron from its vicinity and in this process can cause toxicity to other species in the area. Since the coating of polyvinylpyridine provided a ready source of iron, the biofilm could grow with minimal iron scavenging and cause less harm.

    Sijin Li, assistant professor of chemical and biomolecular engineering, applied her expertise in cellular metabolism to shed light on the observed results. More than 4,000 intermediate and end products of metabolism (metabolites) exist in P. aeruginosa. Dynamic changes in the metabolites present reflect a bacterium’s behavior changes in response to environmental changes, including changes triggered by surface materials.

    It can be difficult to profile such a large number of metabolites quickly and accurately. Li employed a unique technique – untargeted metabolomics – to allow the researchers to get a snapshot of all the metabolites produced by P. aeruginosa and to identify the compounds and possible mechanisms underlying the behavioral changes caused by the surface material.

    “Microbes are the most populous, diverse and ubiquitous form of life on Earth, so it is essential that we understand how the synthetic materials we make can change microbial behavior,” Yang said. The ability to control the growth and behavior of biofilms simply by manipulating surface compositions would give engineers an important tool to complement existing genetically modified organisms, which come with concerns associated with their deployment outside of the lab.

    Yang’s future research will explore the potential to take advantage of material-biofilm interactions to harness biofilms for use in bioremediation, biotechnological production of consumer goods, and even self-powering and self-renewal of living materials.

    Other researchers involved in this study were Yinan Wu, postdoctoral associate in the Smith School, and Jiayan Lang, former postdoctoral associate in the Smith School and currently a scientist at METiS Therapeutics. The project was supported by the National Institutes of Health’s National Institute on Deafness and Other Communication Disorders, the Office of Naval Research and the National Science Foundation.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    The College of Engineering is a division of Cornell University that was founded in 1870 as the Sibley College of Mechanical Engineering and Mechanic Arts. It is one of four private undergraduate colleges at Cornell that are not statutory colleges.

    It currently grants bachelors, masters, and doctoral degrees in a variety of engineering and applied science fields, and is the third largest undergraduate college at Cornell by student enrollment. The college offers over 450 engineering courses, and has an annual research budget exceeding US$112 million.

    The College of Engineering was founded in 1870 as the Sibley College of Mechanical Engineering and Mechanic Arts. The program was housed in Sibley Hall on what has since become the Arts Quad, both of which are named for Hiram Sibley, the original benefactor whose contributions were used to establish the program. The college took its current name in 1919 when the Sibley College merged with the College of Civil Engineering. It was housed in Sibley, Lincoln, Franklin, Rand, and Morse Halls. In the 1950s the college moved to the southern end of Cornell’s campus.

    Cassier’s Magazine, December 1891, featured an article about the College.

    The college is known for a number of firsts. In 1889, the college took over electrical engineering from the Department of Physics, establishing the first department in the United States in this field. The college awarded the nation’s first doctorates in both electrical engineering and industrial engineering. The Department of Computer Science, established in 1965 jointly under the College of Engineering and the College of Arts and Sciences, is also one of the oldest in the country.

    For many years, the college offered a five-year undergraduate degree program. However, in the 1960s, the course was shortened to four years for a B.S. degree with an optional fifth year leading to a masters of engineering degree. From the 1950s to the 1970s, Cornell offered a Master of Nuclear Engineering program, with graduates gaining employment in the nuclear industry. However, after the 1979 accident at Three Mile Island, employment opportunities in that field dimmed and the program was dropped. Cornell continued to operate its on-campus nuclear reactor as a research facility following the close of the program. For most of Cornell’s history, Geology was taught in the College of Arts and Sciences. However, in the 1970s, the department was shifted to the engineering college and Snee Hall was built to house the program. After World War II, the Graduate School of Aerospace Engineering was founded as a separate academic unit, but later merged into the engineering college.

    Cornell Engineering is home to many teams that compete in student design competitions and other engineering competitions. Presently, there are teams that compete in the Baja SAE, Automotive X-Prize (see Cornell 100+ MPG Team), UNP Satellite Program, DARPA Grand Challenge, AUVSI Unmanned Aerial Systems and Underwater Vehicle Competition, Formula SAE, RoboCup, Solar Decathlon, Genetically Engineered Machines, and others.

    Cornell’s College of Engineering is currently ranked 12th nationally by U.S. News and World Report, making it ranked 1st among engineering schools/programs in the Ivy League. The engineering physics program at Cornell was ranked as being No. 1 by U.S. News and World Report in 2008. Cornell’s operations research and industrial engineering program ranked fourth in nation, along with the master’s program in financial engineering. Cornell’s computer science program ranks among the top five in the world, and it ranks fourth in the quality of graduate education.

    The college is a leader in nanotechnology. In a survey done by a nanotechnology magazine Cornell University was ranked as being the best at nanotechnology commercialization, 2nd best in terms of nanotechnology facilities, the 4th best at nanotechnology research and the 10th best at nanotechnology industrial outreach.

    Departments and schools

    With about 3,000 undergraduates and 1,300 graduate students, the college is the third-largest undergraduate college at Cornell by student enrollment. It is divided into twelve departments and schools:

    School of Applied and Engineering Physics
    Department of Biological and Environmental Engineering
    Meinig School of Biomedical Engineering
    Smith School of Chemical and Biomolecular Engineering
    School of Civil & Environmental Engineering
    Department of Computer Science
    Department of Earth & Atmospheric Sciences
    School of Electrical and Computer Engineering
    Department of Materials Science and Engineering
    Sibley School of Mechanical and Aerospace Engineering
    School of Operations Research and Information Engineering
    Department of Theoretical and Applied Mechanics
    Department of Systems Engineering

    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

    Cornell University (US) is a private, statutory, Ivy League and land-grant research university in Ithaca, New York. Founded in 1865 by Ezra Cornell and Andrew Dickson White, the university was intended to teach and make contributions in all fields of knowledge—from the classics to the sciences, and from the theoretical to the applied. These ideals, unconventional for the time, are captured in Cornell’s founding principle, a popular 1868 quotation from founder Ezra Cornell: “I would found an institution where any person can find instruction in any study.”

    The university is broadly organized into seven undergraduate colleges and seven graduate divisions at its main Ithaca campus, with each college and division defining its specific admission standards and academic programs in near autonomy. The university also administers two satellite medical campuses, one in New York City and one in Education City, Qatar, and Jacobs Technion-Cornell Institute(US) in New York City, a graduate program that incorporates technology, business, and creative thinking. The program moved from Google’s Chelsea Building in New York City to its permanent campus on Roosevelt Island in September 2017.

    Cornell is one of the few private land grant universities in the United States. Of its seven undergraduate colleges, three are state-supported statutory or contract colleges through the SUNY – The State University of New York (US) system, including its Agricultural and Human Ecology colleges as well as its Industrial Labor Relations school. Of Cornell’s graduate schools, only the veterinary college is state-supported. As a land grant college, Cornell operates a cooperative extension outreach program in every county of New York and receives annual funding from the State of New York for certain educational missions. The Cornell University Ithaca Campus comprises 745 acres, but is much larger when the Cornell Botanic Gardens (more than 4,300 acres) and the numerous university-owned lands in New York City are considered.

    Alumni and affiliates of Cornell have reached many notable and influential positions in politics, media, and science. As of January 2021, 61 Nobel laureates, four Turing Award winners and one Fields Medalist have been affiliated with Cornell. Cornell counts more than 250,000 living alumni, and its former and present faculty and alumni include 34 Marshall Scholars, 33 Rhodes Scholars, 29 Truman Scholars, 7 Gates Scholars, 55 Olympic Medalists, 10 current Fortune 500 CEOs, and 35 billionaire alumni. Since its founding, Cornell has been a co-educational, non-sectarian institution where admission has not been restricted by religion or race. The student body consists of more than 15,000 undergraduate and 9,000 graduate students from all 50 American states and 119 countries.

    History

    Cornell University was founded on April 27, 1865; the New York State (NYS) Senate authorized the university as the state’s land grant institution. Senator Ezra Cornell offered his farm in Ithaca, New York, as a site and $500,000 of his personal fortune as an initial endowment. Fellow senator and educator Andrew Dickson White agreed to be the first president. During the next three years, White oversaw the construction of the first two buildings and traveled to attract students and faculty. The university was inaugurated on October 7, 1868, and 412 men were enrolled the next day.

    Cornell developed as a technologically innovative institution, applying its research to its own campus and to outreach efforts. For example, in 1883 it was one of the first university campuses to use electricity from a water-powered dynamo to light the grounds. Since 1894, Cornell has included colleges that are state funded and fulfill statutory requirements; it has also administered research and extension activities that have been jointly funded by state and federal matching programs.

    Cornell has had active alumni since its earliest classes. It was one of the first universities to include alumni-elected representatives on its Board of Trustees. Cornell was also among the Ivies that had heightened student activism during the 1960s related to cultural issues; civil rights; and opposition to the Vietnam War, with protests and occupations resulting in the resignation of Cornell’s president and the restructuring of university governance. Today the university has more than 4,000 courses. Cornell is also known for the Residential Club Fire of 1967, a fire in the Residential Club building that killed eight students and one professor.

    Since 2000, Cornell has been expanding its international programs. In 2004, the university opened the Weill Cornell Medical College in Qatar. It has partnerships with institutions in India, Singapore, and the People’s Republic of China. Former president Jeffrey S. Lehman described the university, with its high international profile, a “transnational university”. On March 9, 2004, Cornell and Stanford University(US) laid the cornerstone for a new ‘Bridging the Rift Center’ to be built and jointly operated for education on the Israel–Jordan border.

    Research

    Cornell, a research university, is ranked fourth in the world in producing the largest number of graduates who go on to pursue PhDs in engineering or the natural sciences at American institutions, and fifth in the world in producing graduates who pursue PhDs at American institutions in any field. Research is a central element of the university’s mission; in 2009 Cornell spent $671 million on science and engineering research and development, the 16th highest in the United States. Cornell is classified among “R1: Doctoral Universities – Very high research activity”.

    For the 2016–17 fiscal year, the university spent $984.5 million on research. Federal sources constitute the largest source of research funding, with total federal investment of $438.2 million. The agencies contributing the largest share of that investment are the Department of Health and Human Services and the National Science Foundation(US), accounting for 49.6% and 24.4% of all federal investment, respectively. Cornell was on the top-ten list of U.S. universities receiving the most patents in 2003, and was one of the nation’s top five institutions in forming start-up companies. In 2004–05, Cornell received 200 invention disclosures; filed 203 U.S. patent applications; completed 77 commercial license agreements; and distributed royalties of more than $4.1 million to Cornell units and inventors.

    Since 1962, Cornell has been involved in unmanned missions to Mars. In the 21st century, Cornell had a hand in the Mars Exploration Rover Mission. Cornell’s Steve Squyres, Principal Investigator for the Athena Science Payload, led the selection of the landing zones and requested data collection features for the Spirit and Opportunity rovers. NASA-JPL/Caltech(US) engineers took those requests and designed the rovers to meet them. The rovers, both of which have operated long past their original life expectancies, are responsible for the discoveries that were awarded 2004 Breakthrough of the Year honors by Science. Control of the Mars rovers has shifted between National Aeronautics and Space Administration(US)’s JPL-Caltech (US) and Cornell’s Space Sciences Building.

    Further, Cornell researchers discovered the rings around the planet Uranus, and Cornell built and operated the telescope at Arecibo Observatory located in Arecibo, Puerto Rico(US) until 2011, when they transferred the operations to SRI International, the Universities Space Research Association (US) and the Metropolitan University of Puerto Rico [Universidad Metropolitana de Puerto Rico](US).

    The Automotive Crash Injury Research Project was begun in 1952. It pioneered the use of crash testing, originally using corpses rather than dummies. The project discovered that improved door locks; energy-absorbing steering wheels; padded dashboards; and seat belts could prevent an extraordinary percentage of injuries.

    In the early 1980s, Cornell deployed the first IBM 3090-400VF and coupled two IBM 3090-600E systems to investigate coarse-grained parallel computing. In 1984, the National Science Foundation began work on establishing five new supercomputer centers, including the Cornell Center for Advanced Computing, to provide high-speed computing resources for research within the United States. As an National Science Foundation (US) center, Cornell deployed the first IBM Scalable Parallel supercomputer.

    In the 1990s, Cornell developed scheduling software and deployed the first supercomputer built by Dell. Most recently, Cornell deployed Red Cloud, one of the first cloud computing services designed specifically for research. Today, the center is a partner on the National Science Foundation XSEDE-Extreme Science Engineering Discovery Environment supercomputing program, providing coordination for XSEDE architecture and design, systems reliability testing, and online training using the Cornell Virtual Workshop learning platform.

    Cornell scientists have researched the fundamental particles of nature for more than 70 years. Cornell physicists, such as Hans Bethe, contributed not only to the foundations of nuclear physics but also participated in the Manhattan Project. In the 1930s, Cornell built the second cyclotron in the United States. In the 1950s, Cornell physicists became the first to study synchrotron radiation.

    During the 1990s, the Cornell Electron Storage Ring, located beneath Alumni Field, was the world’s highest-luminosity electron-positron collider. After building the synchrotron at Cornell, Robert R. Wilson took a leave of absence to become the founding director of DOE’s Fermi National Accelerator Laboratory(US), which involved designing and building the largest accelerator in the United States.

    Cornell’s accelerator and high-energy physics groups are involved in the design of the proposed ILC-International Linear Collider(JP) and plan to participate in its construction and operation. The International Linear Collider(JP), to be completed in the late 2010s, will complement the CERN Large Hadron Collider(CH) and shed light on questions such as the identity of dark matter and the existence of extra dimensions.

    As part of its research work, Cornell has established several research collaborations with universities around the globe. For example, a partnership with the University of Sussex(UK) (including the Institute of Development Studies at Sussex) allows research and teaching collaboration between the two institutions.

     
  • richardmitnick 9:32 pm on January 6, 2022 Permalink | Reply
    Tags: "Microbes produce oxygen in the dark", , , , , Microbiology, The ocean living microbe "Nitrosopumilus maritimus", The South Danish University [Syddansk Universitet](DK)   

    From The University of Southern Denmark[Syddansk Universitet](DK): “Microbes produce oxygen in the dark” 

    From The University of Southern Denmark [Syddansk Universitet](DK)

    1/6/2022
    Birgitte Svennevig
    birs@sdu.dk

    There would be no oxygen on Earth were it not for sunlight; the key component in photosynthesis. Now researchers have made the surprising discovery that oxygen is also produced without sunlight, possibly deep below the ocean surface.

    1
    Beate Kraft, biologist, The University of Southern Denmark. Credit: Jacob Fredegaard Hansen, The University of Southern Denmark.

    There is more going on in the deep, dark ocean waters than you may think: Uncountable numbers of invisible microorganisms go about their daily lives in the water columns, and now researchers have discovered that some of them produce oxygen in an unexpected way.

    Oxygen is vital for life on Earth, and is mainly produced by plants, algae and cyanobacteria via photosynthesis. A few microbes are known to make oxygen without sunlight, but so far, they have only been discovered in very limited quantities and in very specific habitats.

    Enter the ocean living microbe Nitrosopumilus maritimus and its cousins, called ammonia oxidizing archaea.

    Ghost organisms hanging out in the dark

    These guys are really abundant in the oceans, where they play an important role in the nitrogen cycle. For this they need oxygen, so it has been a longstanding puzzle why they are also very abundant in waters where there is no oxygen, says biologist Beate Kraft, adding:

    We thought; Do they just hang out there with no function; Are they some kind of ghost cells?

    But there was something puzzling to this;

    These microbes are so common, that every 5th cell in a bucket of sea water is one of them, adds Don Canfield, co-author of the paper.

    The researchers became curious; could they have a function in the oxygen depleted water after all?

    They make their own oxygen

    2
    Beate Kraft and her research team studying water samples, The South Danish University. Credit: Jacob Fredegaard Hansen/The South Danish University.

    Beate Kraft decided to test them in the lab;

    We wanted to see what would happen if they ran out of oxygen – like they do when they move from the oxygen rich waters to oxygen depleted waters. Would they survive?

    We saw how they used up all the oxygen in the water, and then to our surprise, within minutes, oxygen levels started increasing again. That was very exciting, Don Canfield recalls.

    Enough for me and my friends

    Nitrosopumilus maritimus turned out to be able to make oxygen in a dark environment. Not much – not at all so much that it would influence oxygen levels on Earth, but enough to keep itself going.

    If they produce a little more oxygen than they need themselves, it will quickly be taken by other organisms in their neighborhood, so this oxygen would never leave the ocean, Beate Kraft explains.

    _______________________________________________
    The nitrogen cycle:

    Nitrogen gets washed out into the ocean where it ends up as ammonium – Nitrosopumilus maritimus and its cousins oxidize ammonium to nitrite – other microbes convert nitrite to gaseous nitrogen – cycle closed.

    But what effect do they have on the environment they live in, these extremely abundant oxygen-producing microbes?

    Researchers already knew that the ammonia oxidizing archaea are microorganisms, that keep the global nitrogen cycle going, but they were not aware of the full extent of their capabilities.

    In the newly discovered pathway, Nitrosopumilus maritimus couples the oxygen production to the production of gasous nitrogen. By doing so they remove bioavailable nitrogen from the environment.
    _______________________________________________

    If this lifestyle is widespread in the oceans, it certainly forces us to rethink our current understanding of the marine nitrogen cycle, adds Beate Kraft.

    My next step is to investigate the phenomenon we saw in our lab cultures in oxygen depleted waters in various ocean spots around the world, she adds.

    Her research team has already taken samples in Mariager Fjord in Denmark, and next stop is the waters off Mexico and Costa Rica.

    Science paper:
    Science

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Southern Denmark [Syddansk Universitet](DK) is a university in Denmark that has campuses located in Southern Denmark and on Zealand.

    The university offers a number of joint programmes in co-operation with the Europe University of Flensburg [Universität Flensburg](DE) and the Christian-Albrecht University of Kiel [Christian-Albrechts-Universität zu Kiel](DE). Contacts with regional industries and the international scientific community are strong.

    With its 29,674 enrolled students (as of 2016), the university is both the third-largest and, given its roots in Odense University, the third-oldest Danish university (fourth if one includes the Technical University of Denmark). Since the introduction of the ranking systems in 2012, the South Danish University has consistently been ranked as one of the top 50 young universities in the world by both the Times Higher Education World University Rankings of the Top 100 Universities Under 50 and the QS World University Rankings of the Top 50 Universities Under 50.

    The South Danish University was established in 1998 when Odense University, the Southern Denmark School of Business and Engineering and the South Jutland University Centre were merged. The University Library of Southern Denmark was also merged with the university in 1998. As the original Odense University was established in 1966, the South Danish University celebrated their 50-year anniversary on September 15, 2016.

    In 2006, the Odense University College of Engineering was merged into the university and renamed as the Faculty of Engineering. After being located in different parts of Odense for several years, a brand new Faculty of Engineering building physically connected to the main Odense Campus was established and opened in 2015. In 2007, the Business School Centre in Slagelse (Handelshøjskolecentret Slagelse) and the National Institute of Public Health (Statens Institut for Folkesundhed) were also merged into the South Danish University.

     
  • richardmitnick 10:20 pm on December 10, 2021 Permalink | Reply
    Tags: , , Describing the genetic; phylogenetic; and functional diversity of "Acidobacteria"., , , Microbiology, Sampling for soil microbes in the Malla Nature Reserve located at Kilpisjärvi in northwestern Lapland Finland., The ‘tri-polar’ region was chosen as high latitude and altitude soils are disproportionately impacted by climate change.   

    From Rutgers University (US) : “Distinguished Professor Max Häggblom Leads $1.5 Million NSF Study on Microbiomes of Polar and Alpine Soils” 

    Rutgers smaller
    Our Great Seal.

    From Rutgers University (US)

    December 9, 2021

    1
    Max Häggblom, Department of Biochemistry and Microbiology at Rutgers, sampling for soil microbes in the Malla Nature Reserve located at Kilpisjärvi in northwestern Lapland Finland, one of the project study sites.

    Distinguished Professor and chair of the Department of Biochemistry and Microbiology, Max Häggblom, is principal investigator of a collaborative, multinational project, Dimensions US-China-South Africa: Establishing genetic, phylogenetic and functional mechanisms that shape the diversity of polar and alpine soil microbiomes funded by The National Science Foundation (US). Rutgers co-principal investigators are Lee Kerkhof, professor in the Department of Marine and Coastal Sciences, and Malin Pinsky, professor of in the Department of Ecology, Evolution, and Natural Resources.

    The international research team—Rutgers University, The University of Delaware (US), The Chinese Academy of Sciences [中国科学院](CN) Institute of Tibetan Plateau Research, The University of Pretoria (SA)—will focus on the microbial ecology of soil ecosystems in the Arctic, Antarctic and Tibetan Plateau.

    By studying polar and alpine soils, researchers are seeking to identify the mechanisms that lead to diverse soil microbial communities, hallmarks of stable and sustainable soils.

    “The ‘tri-polar’ region was chosen as high latitude and altitude soils are disproportionately impacted by climate change and predicted to show increased microbial activity and enhanced turnover of soil organic matter in the future. Significant warming of these soils is expected to drive increased microbial activity and enhanced greenhouse gas release,” said Häggblom.

    2
    Collaborator Minna Männistö, Natural Resources Institute Finland, sampling for soil microbes under two meters of snow in winter.

    Microorganisms are the foundations of ecosystems and drive the biology and chemistry in soils, including the conversion of soil organic matter into the greenhouse gases carbon dioxide and methane, as well as nitrogen and phosphorous compounds that can be used by plants.

    “Understanding the ecology of these microorganisms is a compelling scientific challenge, particularly for soil microbiomes that govern nutrient cycling and decomposition,” he explained.

    The combinations and interactions of forces that govern the assembly, dynamics and activity of soil microbiomes are poorly understood—particularly for polar and alpine soils that are on the frontline of climate change.

    “Having a clear understanding of how soil ecosystems respond in these polar regions is critical for evaluating the controls of biogeochemical cycling and clarifying microbial feedbacks in a changing world,” he added.

    Researchers will link laboratory- and field-based approaches to describe the genetic, phylogenetic and functional diversity of Acidobacteria, one of the most ubiquitous but elusive bacterial phyla found in terrestrial ecosystems around the globe. The research will be coupled to educational activities by integrating samples and data into hands-on classroom training at the K-12, undergraduate and graduate levels.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    rutgers-campus

    Rutgers, The State University of New Jersey (US), is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

    Rutgers University (US) is a public land-grant research university based in New Brunswick, New Jersey. Chartered in 1766, Rutgers was originally called Queen’s College, and today it is the eighth-oldest college in the United States, the second-oldest in New Jersey (after Princeton University (US)), and one of the nine U.S. colonial colleges that were chartered before the American War of Independence. In 1825, Queen’s College was renamed Rutgers College in honor of Colonel Henry Rutgers, whose substantial gift to the school had stabilized its finances during a period of uncertainty. For most of its existence, Rutgers was a private liberal arts college but it has evolved into a coeducational public research university after being designated The State University of New Jersey by the New Jersey Legislature via laws enacted in 1945 and 1956.

    Rutgers today has three distinct campuses, located in New Brunswick (including grounds in adjacent Piscataway), Newark, and Camden. The university has additional facilities elsewhere in the state, including oceanographic research facilities at the New Jersey shore. Rutgers is also a land-grant university, a sea-grant university, and the largest university in the state. Instruction is offered by 9,000 faculty members in 175 academic departments to over 45,000 undergraduate students and more than 20,000 graduate and professional students. The university is accredited by the Middle States Association of Colleges and Schools and is a member of the Big Ten Academic Alliance, the Association of American Universities (US) and the Universities Research Association (US). Over the years, Rutgers has been considered a Public Ivy.

    Research

    Rutgers is home to the Rutgers University Center for Cognitive Science, also known as RUCCS. This research center hosts researchers in psychology, linguistics, computer science, philosophy, electrical engineering, and anthropology.

    It was at Rutgers that Selman Waksman (1888–1973) discovered several antibiotics, including actinomycin, clavacin, streptothricin, grisein, neomycin, fradicin, candicidin, candidin, and others. Waksman, along with graduate student Albert Schatz (1920–2005), discovered streptomycin—a versatile antibiotic that was to be the first applied to cure tuberculosis. For this discovery, Waksman received the Nobel Prize for Medicine in 1952.

    Rutgers developed water-soluble sustained release polymers, tetraploids, robotic hands, artificial bovine insemination, and the ceramic tiles for the heat shield on the Space Shuttle. In health related field, Rutgers has the Environmental & Occupational Health Science Institute (EOHSI).

    Rutgers is also home to the RCSB Protein Data bank, “…an information portal to Biological Macromolecular Structures’ cohosted with the San Diego Supercomputer Center (US). This database is the authoritative research tool for bioinformaticists using protein primary, secondary and tertiary structures worldwide….”

    Rutgers is home to the Rutgers Cooperative Research & Extension office, which is run by the Agricultural and Experiment Station with the support of local government. The institution provides research & education to the local farming and agro industrial community in 19 of the 21 counties of the state and educational outreach programs offered through the New Jersey Agricultural Experiment Station Office of Continuing Professional Education.

    Rutgers University Cell and DNA Repository (RUCDR) is the largest university based repository in the world and has received awards worth more than $57.8 million from the National Institutes of Health (US). One will fund genetic studies of mental disorders and the other will support investigations into the causes of digestive, liver and kidney diseases, and diabetes. RUCDR activities will enable gene discovery leading to diagnoses, treatments and, eventually, cures for these diseases. RUCDR assists researchers throughout the world by providing the highest quality biomaterials, technical consultation, and logistical support.

    Rutgers–Camden is home to the nation’s PhD granting Department of Childhood Studies. This department, in conjunction with the Center for Children and Childhood Studies, also on the Camden campus, conducts interdisciplinary research which combines methodologies and research practices of sociology, psychology, literature, anthropology and other disciplines into the study of childhoods internationally.

    Rutgers is home to several National Science Foundation (US) IGERT fellowships that support interdisciplinary scientific research at the graduate-level. Highly selective fellowships are available in the following areas: Perceptual Science, Stem Cell Science and Engineering, Nanotechnology for Clean Energy, Renewable and Sustainable Fuels Solutions, and Nanopharmaceutical Engineering.

    Rutgers also maintains the Office of Research Alliances that focuses on working with companies to increase engagement with the university’s faculty members, staff and extensive resources on the four campuses.

    As a ’67 graduate of University College, second in my class, I am proud to be a member of

    Alpha Sigma Lamda, National Honor Society of non-tradional students.

     
  • richardmitnick 2:21 pm on November 20, 2021 Permalink | Reply
    Tags: "Alien organisms – hitchhikers of the galaxy?", , , Biosecurity risks, Invasion Biology, Microbiology, right now, Right now it seems our biosecurity protocols are failing us., Space biosecurity concerns itself with both the transfer of organisms from Earth to space (forward contamination) and vice-versa (backward contamination).,   

    From The University of Adelaide (AU) : “Alien organisms – hitchhikers of the galaxy?” 

    u-adelaide-bloc

    From The University of Adelaide (AU)

    Nov 18 2021
    Kelly Brown

    2
    An illustration of the Crew Dragon. (SpaceX)

    Scientists warn, without good biosecurity measures ‘alien organisms’ on Earth may become a reality stranger than fiction.

    1
    People wearing protective suits as part of biosecurity measures.

    Published in international journal BioSciences, a team of scientists, including Dr Phill Cassey, Head of the Department of Ecology and Evolutionary Biology at the University of Adelaide, are calling for greater recognition of the biosecurity risks ahead of the space industry.

    “In addition to government-led space missions, the arrival of private companies such as SpaceX has meant there are now more players in space exploration than ever before,” said Associate Professor Cassey.

    “We need to take action now to mitigate those risks.”

    Space biosecurity concerns itself with both the transfer of organisms from Earth to space (forward contamination) and vice-versa (backward contamination). While the research points out that at present the risk of alien organisms surviving the journey is low, it’s not impossible.

    Dr Cassey said: “Risks that have low probability of occurrence, but have the potential for extreme consequences, are at the heart of biosecurity management. Because when things go wrong, they go really wrong.”

    The research provides clear evidence of how humans have spread organisms to the remotest regions of the earth and sea, and even into space.

    [When an Israeli spacecraft crashed into the Moon in 2019, for instance, it dumped dehydrated tardigrades onto the surface, which could possibly still be alive. Credit:”Science Alert”]

    To address the risks of invasive species from space travel, the authors suggest the emerging field of ‘invasion science’, which deals with the causes and consequences of introducing organisms into new environments, could offer valuable learnings. This includes the fact that insular systems such as islands, lakes, and remote habitats, are most vulnerable to invasion threats.

    Further insights that could be applied include protocols for early detection, hazard assessment, rapid response and containment procedures currently used in response to invasive species threats.

    Dr Cassey said: “It is far cheaper to prevent biological contamination by implementing protocols on Earth than it is on Mars, for example.”

    Both Dr Cassey and co-author Dr Andrew Woolnough from the University of Melbourne and the University of Adelaide suggest that with some of the best biosecurity in the world Australia is well-positioned to contribute expertise in this area.

    “We have a fantastic opportunity to contribute to international policy and to develop biosecurity mitigation measures that can be used by the expanding private space industry. This is an untapped economic development opportunity,” Dr Woolnough said.

    Despite the value to space biosecurity, the authors state that invasion biologists have yet to be involved in Committee on Space Research Planetary Protection planning. In the research they argue this should change because “greater collaboration between invasion biologists and astrobiologists would enhance existing international protocols for planetary biosecurity—both for Earth and for extraterrestrial bodies that could contain life”.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    u-adelaide-campus

    The University of Adelaide is a public research university located in Adelaide, South Australia. Established in 1874, it is the third-oldest university in Australia. The university’s main campus is located on North Terrace in the Adelaide city centre, adjacent to the Art Gallery of South Australia, the South Australian Museum and the State Library of South Australia.

    The university has four campuses, three in South Australia: North Terrace campus in the city, Roseworthy campus at Roseworthy and Waite campus at Urrbrae, and one in Melbourne, Victoria. The university also operates out of other areas such as Thebarton, the National Wine Centre in the Adelaide Park Lands, and in Singapore through the Ngee Ann-Adelaide Education Centre.

    The University of Adelaide is composed of five faculties, with each containing constituent schools. These include the Faculty of Engineering, Computer, and Mathematical Sciences (ECMS), the Faculty of Health and Medical Sciences, the Faculty of Arts, the Faculty of the Professions, and the Faculty of Sciences. It is a member of the Group of Eight and the Association of Commonwealth Universities. The university is also a member of the Sandstone universities, which mostly consist of colonial-era universities within Australia.

    The university is associated with five Nobel laureates, constituting one-third of Australia’s total Nobel Laureates, and 110 Rhodes scholars. The university has had a considerable impact on the public life of South Australia, having educated many of the state’s leading businesspeople, lawyers, medical professionals and politicians. The university has been associated with many notable achievements and discoveries, such as the discovery and development of penicillin, the development of space exploration, sunscreen, the military tank, Wi-Fi, polymer banknotes and X-ray crystallography, and the study of viticulture and oenology.

    Research

    The University of Adelaide is one of the most research-intensive universities in Australia, securing over $180 million in research funding annually. Its researchers are active in both basic and commercially oriented research across a broad range of fields including agriculture, psychology, health sciences, and engineering.

    Research strengths include engineering, mathematics, science, medical and health sciences, agricultural sciences, artificial intelligence, and the arts.

    The university is a member of Academic Consortium 21, an association of 20 research intensive universities, mainly in Oceania, though with members from the US and Europe. The university held the Presidency of AC 21 for the period 2011–2013 as host the biennial AC21 International Forum in June 2012.

    The Centre for Automotive Safety Research (CASR), based at the University of Adelaide, was founded in 1973 as the Road Accident Research Unit and focuses on road safety and injury control.

     
  • richardmitnick 11:32 am on November 1, 2021 Permalink | Reply
    Tags: "Darwin’s magnificent mystery and the microbiome", , , , Microbiology,   

    From Vanderbilt University (US) : “Darwin’s magnificent mystery and the microbiome” 

    Vanderbilt U Bloc

    From Vanderbilt University (US)

    1
    Asia Miller conducts microbiome research with Seth Bordenstein.

    Vanderbilt researchers are reimagining Charles Darwin’s work by communicating how the origin of species might depend largely on the microbiome—the totality of bacteria, viruses, fungi and other organisms—living in or on a host body.

    Darwin’s On the Origin of Species put forth a seminal and revolutionary thesis for the life sciences in 1859: Populations with a common ancestor evolve over time with enough change to become different species that no longer successfully interbreed. This process of descent with modification continues over time to produce lineages of new species. Darwin famously referred to the process of one species becoming two as “the mystery of mysteries.”

    More than 160 years later, the life sciences are experiencing a second revolution based on the newly appreciated knowledge that all plant and animal species are stable or temporary hosts to a microbiome living in or on the body.

    An essay and literature review [PLOS Biology] first authored by SyBBURE scholar and biological sciences undergraduate Asia Miller and co-authored by Seth Bordenstein, Centennial Chair in Biological Sciences, professor of biological sciences and director of the Vanderbilt Microbiome Initiative, imagines how some chapters in Darwin’s Origin of Species would look with our current understanding of the host-associated microbiome.

    PLOS Biology

    The article includes examples of how the microbiome of a hybrid—the offspring of two species—can be different and potentially harmful from that of its two parental species. “The microbiome field is relatively new but already full of research and ideas. Through this work, we are emphasizing the diverse roles of microorganisms in animal biology and that not every microbiome is a fit for every host,” said Miller, who is also president and founder of the Vanderbilt University Microbiome Society.

    WHY IT MATTERS

    This work highlights how the evidence for microbiomes as agents of host speciation has essentially reached a tipping point for microbiologists, evolutionary biologists, chemists, immunologists and developmental biologists. It sets the stage for a more integrative phase of study, funding and meetings focused on host-microbe interactions shaping the origin of species.

    “We compiled a rich summary of evidence that shows hybrids generated between different, closely related animal species—including mites, flies, wasps, fish, mice, deer and horses—have microbiomes that are different from their parentals. We showed that some of the hybrids suffer or even die because of these altered microbiomes, adding cumulative weight to the evidence that host-associated microbiomes should no longer be overlooked as components to understanding the origin of species,” Miller said.

    WHAT’S NEXT

    Miller and co-author and National Science Foundation (US) Postdoctoral Scholar Karissa Cross will be investigating the microbiome of Nasonia, a genus of parasitoid wasps. Some hybrid Nasonia do not survive because of how different their microbiomes are from their parents’.

    In the long term, the researchers would like to see this inflection point in the discipline contribute to increased research engagement on the microbiome and its effects on speciation, which Darwin viewed as grandeur, most beautiful and most wonderful, Miller said.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Commodore Cornelius Vanderbilt was in his 79th year when he decided to make the gift that founded Vanderbilt University (US) in the spring of 1873.
    The $1 million that he gave to endow and build the university was the commodore’s only major philanthropy. Methodist Bishop Holland N. McTyeire of Nashville, husband of Amelia Townsend who was a cousin of the commodore’s young second wife Frank Crawford, went to New York for medical treatment early in 1873 and spent time recovering in the Vanderbilt mansion. He won the commodore’s admiration and support for the project of building a university in the South that would “contribute to strengthening the ties which should exist between all sections of our common country.”

    McTyeire chose the site for the campus, supervised the construction of buildings and personally planted many of the trees that today make Vanderbilt a national arboretum. At the outset, the university consisted of one Main Building (now Kirkland Hall), an astronomical observatory and houses for professors. Landon C. Garland was Vanderbilt’s first chancellor, serving from 1875 to 1893. He advised McTyeire in selecting the faculty, arranged the curriculum and set the policies of the university.

    For the first 40 years of its existence, Vanderbilt was under the auspices of the Methodist Episcopal Church, South. The Vanderbilt Board of Trust severed its ties with the church in June 1914 as a result of a dispute with the bishops over who would appoint university trustees.

    From the outset, Vanderbilt met two definitions of a university: It offered work in the liberal arts and sciences beyond the baccalaureate degree and it embraced several professional schools in addition to its college. James H. Kirkland, the longest serving chancellor in university history (1893-1937), followed Chancellor Garland. He guided Vanderbilt to rebuild after a fire in 1905 that consumed the main building, which was renamed in Kirkland’s honor, and all its contents. He also navigated the university through the separation from the Methodist Church. Notable advances in graduate studies were made under the third chancellor, Oliver Cromwell Carmichael (1937-46). He also created the Joint University Library, brought about by a coalition of Vanderbilt, Peabody College and Scarritt College.

    Remarkable continuity has characterized the government of Vanderbilt. The original charter, issued in 1872, was amended in 1873 to make the legal name of the corporation “The Vanderbilt University.” The charter has not been altered since.

    The university is self-governing under a Board of Trust that, since the beginning, has elected its own members and officers. The university’s general government is vested in the Board of Trust. The immediate government of the university is committed to the chancellor, who is elected by the Board of Trust.

    The original Vanderbilt campus consisted of 75 acres. By 1960, the campus had spread to about 260 acres of land. When George Peabody College for Teachers merged with Vanderbilt in 1979, about 53 acres were added.

    Vanderbilt’s student enrollment tended to double itself each 25 years during the first century of the university’s history: 307 in the fall of 1875; 754 in 1900; 1,377 in 1925; 3,529 in 1950; 7,034 in 1975. In the fall of 1999 the enrollment was 10,127.

    In the planning of Vanderbilt, the assumption seemed to be that it would be an all-male institution. Yet the board never enacted rules prohibiting women. At least one woman attended Vanderbilt classes every year from 1875 on. Most came to classes by courtesy of professors or as special or irregular (non-degree) students. From 1892 to 1901 women at Vanderbilt gained full legal equality except in one respect — access to dorms. In 1894 the faculty and board allowed women to compete for academic prizes. By 1897, four or five women entered with each freshman class. By 1913 the student body contained 78 women, or just more than 20 percent of the academic enrollment.

    National recognition of the university’s status came in 1949 with election of Vanderbilt to membership in the select Association of American Universities (US). In the 1950s Vanderbilt began to outgrow its provincial roots and to measure its achievements by national standards under the leadership of Chancellor Harvie Branscomb. By its 90th anniversary in 1963, Vanderbilt for the first time ranked in the top 20 private universities in the United States.

    Vanderbilt continued to excel in research, and the number of university buildings more than doubled under the leadership of Chancellors Alexander Heard (1963-1982) and Joe B. Wyatt (1982-2000), only the fifth and sixth chancellors in Vanderbilt’s long and distinguished history. Heard added three schools (Blair, the Owen Graduate School of Management and Peabody College) to the seven already existing and constructed three dozen buildings. During Wyatt’s tenure, Vanderbilt acquired or built one-third of the campus buildings and made great strides in diversity, volunteerism and technology.

    The university grew and changed significantly under its seventh chancellor, Gordon Gee, who served from 2000 to 2007. Vanderbilt led the country in the rate of growth for academic research funding, which increased to more than $450 million and became one of the most selective undergraduate institutions in the country.

    On March 1, 2008, Nicholas S. Zeppos was named Vanderbilt’s eighth chancellor after serving as interim chancellor beginning Aug. 1, 2007. Prior to that, he spent 2002-2008 as Vanderbilt’s provost, overseeing undergraduate, graduate and professional education programs as well as development, alumni relations and research efforts in liberal arts and sciences, engineering, music, education, business, law and divinity. He first came to Vanderbilt in 1987 as an assistant professor in the law school. In his first five years, Zeppos led the university through the most challenging economic times since the Great Depression, while continuing to attract the best students and faculty from across the country and around the world. Vanderbilt got through the economic crisis notably less scathed than many of its peers and began and remained committed to its much-praised enhanced financial aid policy for all undergraduates during the same timespan. The Martha Rivers Ingram Commons for first-year students opened in 2008 and College Halls, the next phase in the residential education system at Vanderbilt, is on track to open in the fall of 2014. During Zeppos’ first five years, Vanderbilt has drawn robust support from federal funding agencies, and the Medical Center entered into agreements with regional hospitals and health care systems in middle and east Tennessee that will bring Vanderbilt care to patients across the state.

    Today, Vanderbilt University is a private research university of about 6,500 undergraduates and 5,300 graduate and professional students. The university comprises 10 schools, a public policy center and The Freedom Forum First Amendment Center. Vanderbilt offers undergraduate programs in the liberal arts and sciences, engineering, music, education and human development as well as a full range of graduate and professional degrees. The university is consistently ranked as one of the nation’s top 20 universities by publications such as U.S. News & World Report, with several programs and disciplines ranking in the top 10.

    Cutting-edge research and liberal arts, combined with strong ties to a distinguished medical center, creates an invigorating atmosphere where students tailor their education to meet their goals and researchers collaborate to solve complex questions affecting our health, culture and society.

    Vanderbilt, an independent, privately supported university, and the separate, non-profit Vanderbilt University Medical Center share a respected name and enjoy close collaboration through education and research. Together, the number of people employed by these two organizations exceeds that of the largest private employer in the Middle Tennessee region.

     
  • richardmitnick 10:34 am on October 9, 2021 Permalink | Reply
    Tags: "Oregon State microbiology research furthers understanding of ocean’s role in carbon cycling", A novel approach to track which microbes are consuming different types of organic carbon produced by common phytoplankton species, , Carbon cycling in the ocean, Microbes form the basis of the food web and biological carbon pump., Microbiology, Phytoplankton are microscopic organisms at the base of the ocean’s food chain and a key component of a critical biological carbon pump., Phytoplankton use the CO2 and sunlight for photosynthesis: they convert them into sugars and other compounds the cells can use for energy producing oxygen in the process., Scientists are studying the consumers–the heterotrophic microbes–of the organic material made by the primary producers-the microbial phytoplankton., The collective respiratory activity of the heterotrophic microbial consumers is the main way that fixed dissolved organic carbon from phytoplankton is returned to the atmosphere as CO2., , The scientists used stable isotope labeling to track carbon., The surface ocean stores nearly as much carbon as exists in the atmosphere., Tiny autotrophic plants–they make their own food–have a big effect on the levels of carbon dioxide in the atmosphere by sucking it up during photosynthesis.   

    From The Oregon State University (US): “Oregon State microbiology research furthers understanding of ocean’s role in carbon cycling” 

    From The Oregon State University (US)

    October 07, 2021

    Story By:
    Steve Lundeberg
    541-737-4039
    steve.lundeberg@oregonstate.edu

    Source:
    Ryan Mueller
    541-737-2950
    ryan.mueller@oregonstate.edu

    1

    Microbiology researchers at The Oregon State University (US) have shed new light on the mechanisms of carbon cycling in the ocean, using a novel approach to track which microbes are consuming different types of organic carbon produced by common phytoplankton species.

    The research is an important step toward forecasting how much carbon will leave the ocean for the atmosphere as greenhouse gas carbon dioxide and how much will end up entombed in marine sediments, said Ryan Mueller, associate professor in The Oregon State University’s Department of Microbiology and the leader of the study.

    Findings were published today in the PNAS.

    “Our research shows that different species of microbes in the ocean are very particular yet predictable in the food sources they prefer to eat,” said first author Brandon Kieft, a recent Oregon State Ph.D. graduate who is now a postdoctoral researcher at The University of British Columbia (CA). “As global climate change continues to alter oceanic environments at a rapid pace, the availability of food sources for microbes will also change, ultimately favoring certain types over others.”

    Phytoplankton are microscopic organisms at the base of the ocean’s food chain and a key component of a critical biological carbon pump. Most float in the upper part of the ocean, where sunlight can easily reach them.

    The tiny autotrophic plants–they make their own food–have a big effect on the levels of carbon dioxide in the atmosphere by sucking it up during photosynthesis. It’s a natural sink and one of the primary ways that CO2, the most abundant greenhouse gas, is scrubbed from the atmosphere; atmospheric carbon dioxide has increased 40% since the dawn of the industrial age, contributing heavily to a warming planet.

    “We’re studying the consumers–the heterotrophic microbes–of the organic material made by the primary producers-the microbial phytoplankton,” Mueller said. “Both groups are microbes, the former primarily consumes organic carbon as a food source, while the latter ‘fix’ their own organic carbon. Microbes form the basis of the food web and biological carbon pump, and our work is primarily focused on exploring what the consumers are doing in this system.”

    The surface ocean stores nearly as much carbon as exists in the atmosphere. As the ocean pulls in atmospheric carbon dioxide, phytoplankton use the CO2 and sunlight for photosynthesis: They convert them into sugars and other compounds the cells can use for energy producing oxygen in the process.

    This so-called fixed carbon makes up the diet of heterotrophic microbes and higher organisms of the marine food web such as fish and mammals, which ultimately convert the carbon back to atmospheric CO2 through respiration or contribute to the carbon stock at the bottom of the ocean when they die and sink.

    The collective respiratory activity of the heterotrophic microbial consumers is the main way that fixed dissolved organic carbon from phytoplankton is returned to the atmosphere as CO2.

    Mueller, Kieft and collaborators at the DOE’s Oak Ridge National Laboratory (US) and DOE’s Lawrence Livermore National Laboratory (US) and The University of Tennessee (US), The University of Washington (US) and The University of Oklahoma(US) used stable isotope labeling to track carbon as it made its way into the organic matter produced by the phytoplankton and, ultimately, the heterotrophic microbes that consume it.

    The scientists used those isotopes to tell which organisms were eating diatoms and which were consuming cyanobacteria, two species of phytoplankton that combine to produce a majority of the ocean’s fixed carbon. The researchers could also tell when the consumption was happening – for example, at times the phytoplankton cells were producing substances known as lysates during their death phase or exudates during their growth phase.

    “Our findings have important implications for understanding how marine microbes and photosynthetic algae function together to impact global carbon cycling and how this oceanic food web may respond to continued environmental change,” Kieft said. “This will help us predict how much carbon will go back into the atmosphere and how much will be buried in marine sediments for centuries.”

    The research was funded by the Gordon and Betty Moore Foundation Marine Microbiology Initiative and the U.S. Department of Energy.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Oregon State University(US) is a public land-grant research university in Corvallis, Oregon. The university currently offers more than 200 undergraduate-degree programs along with a variety of graduate and doctoral degrees. Student enrollment averages near 32,000, making it the state’s largest university. Since its founding over 230,000 students have graduated from OSU. It is classified among “R1: Doctoral Universities – Very high research activity” with an additional, optional designation as a “Community Engagement” university.

    The Oregon State University a land-grant university and it also participates in the sea-grant, space-grant and sun-grant research consortia; it is one of only four such universities in the country (The University of Hawaii at Manoa (US), Cornell University (US) and The Pennsylvania State University (US) are the only others with similar designations). OSU consistently ranks as the state’s top earner in research funding.

    Research

    Research has played a central role in the university’s overall operations for much of its history. Most of The Oregon State University’s research continues at the Corvallis campus, but an increasing number of endeavors are underway at various locations throughout the state and abroad. Research facilities beyond the campus include the John L. Fryer Aquatic Animal Health Laboratory in Corvallis, the Seafood Laboratory in Astoria and the Food Innovation Laboratory in Portland.

    The university’s College of Earth, Ocean and Atmospheric Sciences (CEOAS) operates several laboratories, including the Hatfield Marine Science Center and multiple oceanographic research vessels based in Newport. CEOAS is now co-leading the largest ocean science project in U.S. history, the Ocean Observatories Initiative (OOI). The OOI features a fleet of undersea gliders at six sites in the Pacific and Atlantic Oceans with multiple observation platforms. CEOAS is also leading the design and construction of the next class of ocean-faring research vessels for The National Science Foundation (US), which will be the largest grant or contract ever received by any Oregon university. The Oregon State University also manages nearly 11,250 acres (4,550 ha) of forest land, including the McDonald-Dunn Research Forest.

    The 2005 Carnegie Classification of Institutions of Higher Education recognized The Oregon State University as a “comprehensive doctoral with medical/veterinary” university. It is one of three such universities in the Pacific Northwest to be classified in this category. In 2006, Carnegie also recognized The Oregon State University as having “very high research activity,” making it the only university in Oregon to attain these combined classifications.

    The National Sea Grant College Program was founded in the 1960s. The Oregon State University is one of the original four Sea Grant Colleges selected in 1971.

    In 1967 the Radiation Center was constructed at the edge of campus, housing a 1.1 MW TRIGA Mark II Research Reactor. The reactor is equipped to utilize Highly Enriched Uranium (HEU) for fuel. U.S. News & World Report’s 2008 rankings placed The Oregon State University eighth in the nation in graduate nuclear engineering.

    The Oregon State University was one of the early members of the federal Space Grant program. Designated in 1991, the additional grant program made The Oregon State University one of only 13 schools in the United States to serve as a combined Land Grant, Sea Grant and Space Grant university. Most recently, The Oregon State University was designated as a federal Sun Grant institution. The designation, made in 2003, makes The Oregon State University one of only three such universities (the others being Cornell University (US) and The Pennsylvania State University (US)) and the first of two public institutions with all four designations (the other being Penn State).

    In 2001, The Oregon State University’s Wave Research Laboratory was designated by The National Science Foundation (US) as a site for tsunami research under the Network for Earthquake Engineering Simulation. The O. H. Hinsdale Wave Research Laboratory is on the edge of the campus and is one of the world’s largest and most sophisticated laboratories for education, research and testing in coastal, ocean and related areas.

    The National Institute of Environmental Health Sciences funds two research centers at The Oregon State University. The Environmental Health Sciences Center has been funded since 1969 and the Superfund Research Center has been funded since 2009.

    The Oregon State University administers the H.J. Andrews Experimental Forest, a United States Forest Service facility dedicated to forestry and ecology research. The Andrews Forest is a UNESCO International Biosphere Reserve.

    The Oregon State University’s Open Source Lab is a nonprofit founded in 2003 and funded in part by corporate sponsors that include Facebook, Google, and IBM. The organization’s goal is to advance open source technology, and it hires and trains The Oregon State University students in software development and operations for large-scale IT projects. The lab hosts a number of projects, including a contract with the Linux Foundation.

     
  • richardmitnick 11:02 am on September 8, 2021 Permalink | Reply
    Tags: "Researchers evaluate SURF extremophiles in effort to trap carbon dioxide deep underground", Acceleration of carbon mineralization with extremophiles found at SURF., “Thermophiles”: a type of extremophile that can survive temperatures from 54 to 70 degrees Celsius (130 – 158 degrees Fahrenheit)., Currently the two major inquiries—understanding the extremophiles and pinpointing carbon mineralization rates—are being done in parallel., Microbiology, , Scientists have identified certain microbes that at the surface produce enzymes that can greatly accelerate carbon mineralization.   

    From Sanford Underground Research Facility-SURF: “Researchers evaluate SURF extremophiles in effort to trap carbon dioxide deep underground” 

    SURF-Sanford Underground Research Facility, Lead, South Dakota, USA.

    From Sanford Underground Research Facility-SURF

    Homestake Mining, Lead, South Dakota, USA.


    Homestake Mining Company

    September 7, 2021
    Erin Lorraine Broberg

    South Dakota Mines researchers study microbial acceleration of carbon mineralization with extremophiles found at SURF.

    1
    Core samples, drilled from the drifts of SURF, contain colonies of microscopic life. Photo by Adam Gomez.

    When first learning about the Sanford Underground Research Facility (SURF), it can help to imagine it as a vast, inverted apartment complex. Experiments move into the large, underground caverns. And SURF provides the usual amenities: electricity, running water, elevator maintenance, radon mitigation, liquid nitrogen deliveries and, of course, shielding from cosmic rays.

    But amidst the facility’s 370 miles of tunnels, shafts and drifts, there is one group of tenants who pay no rent at all. At SURF, billions of microorganisms—known to biologists as “extremophiles” for their ability to carve out a living far from sunlight and with limited oxygen—live deep underground.

    This summer, a research group from South Dakota Mines (Mines) retrieved a core sample—a smooth cylinder of grey rock—from 4,100 feet below of the surface of SURF. Under a microscope, it wriggled with SURF’s hardiest inhabitants.

    From this sample, the research group hopes to find a microbe with a distinct set of characteristics that could help store excess greenhouse gases deep underground.

    Locking away carbon dioxide

    While extremophiles have slowly evolved to withstand their adverse habitat, scientists are on a mission to keep the Earth’s atmosphere as hospitable as possible. And so, a global effort is underway to store carbon dioxide (CO2) emissions in deep underground reservoirs. One promising method to keep it locked in place is called “carbon mineralization.”

    “Carbon dioxide gas is captured from the atmosphere, then pumped in liquid form deep into underground rock formations,” said Bret Lingwall, a geotechnical, bio-geotechnical and earthquake engineering researcher, who leads the Mines research group. Deep underground, a chemical reaction transforms the CO2 into a stable, solid carbonate mineral—effectively trapping it for millennia.

    But this process has a severe limitation: speed.

    The crippling pace of the method’s chemical reaction is measured—not in weeks or months—but in years. Currently, the largest carbon mineralization project on Earth can sequester 10,000 tons of CO2 each year—barely a drop in the bucket when climatologists measure carbon emissions by the gigaton (one billion tons).

    Meanwhile, Earth is in a bit of a rush.

    For carbon mineralization to have an effect, the process desperately needs some added speed.

    “What we are trying to do is to accelerate that timescale from a couple of years to a couple of weeks,” Lingwall said. “How we propose to do that is through microbial acceleration.”

    Scientists have identified certain microbes that at the surface produce enzymes that can greatly accelerate carbon mineralization. “However, these microbes can’t stand the temperatures, pressures and acidic pH of the deep subsurface,” Lingwall said.

    At depths of 4 to 8 kilometers deep, pressures are intense and temperatures climb to 60-90 degrees Celsius (140-194 degrees Fahrenheit). While these conditions are ideal for carbon storage, they aren’t hospitable to most microbes.

    But most microbes weren’t born on the 4100 Level of SURF.

    Enter: Extremophiles

    Rajesh Sani, a microbiologist with the Mines research group, has studied various SURF extremophiles for 15 years. In that time, he’s worked with “thermophiles” a type of extremophile that can survive temperatures from 54 to 70 degrees Celsius (130 – 158 degrees Fahrenheit).

    Sani will examine the gene expressions of microbes found in the core sample. “This process will give us an idea of how these microorganisms function, what are they eating, how they are breathing, how they are producing biomass, and how they are interacting with rock samples underground,” Sani said.

    It will also help researchers determine if SURF’s extremophiles can produce the sought-after enzyme that hastens carbon mineralization.

    2
    Magan Vaughn, a chemical and biological engineering masters student at South Dakota Mines, crushes a core sample from 4100 Level of Sanford Underground Research Facility, preparing the sample for DNA extraction. Photo by Tanvi Govil.

    “Our project will sample and survey extremophiles from SURF, looking at their enzymatic genes to determine if any of them have the right profile to both survive deep underground and accelerate carbon mineralization,” Lingwall said.

    Determining the rate

    While the team’s microbiologists are sifting through microbial samples, other researchers are trying to establish just how quickly carbon mineralization takes place without extremophiles.

    “Currently these types of experiments were replicated in the field, but not in laboratory environment. When you are conducting large scale investigations in the field, you are limited to the conditions (composition, pressure temperature, biological activity) that field site can offer,” said Gokce Ustunisik, a petrologist and high-temperature geochemist at Mines. “The beauty of experimental work is that you are the one—not Mother Nature—putting the controls on the system. You systematically change parameters, so that you can right away see the contribution of each parameter in a multi-component system.”

    When her biology and engineering colleagues first described the temperatures and pressures needed for this research, Ustunisik thought, “High temperatures and pressures? Those are low temperatures and pressures!”

    For Ustunisik, who studies the formation and evolution of the Moon, Mars and Earth, those parameters are quite low. In her experimental petrology lab, Ustunisik can easily replicate conditions comparable to the Earth’s lower crust and upper mantle, where temperatures begin at 1,400 degrees Celsius (2,552 degrees Fahrenheit).

    But for this research, both the microbes and the deep subsurface create strict limitations for each other. The extremophiles must be hardy enough to survive the upper limits of life, while the rock formations must be deep and vast enough to store gigatons of carbon, without killing the extremophiles.

    The key is finding an overlap.

    3
    Earlier this summer, RESPEC researcher Brian Bormes and Gokce Ustunisik took initial observations of the core sample on the 4100 Level of Sanford Underground Research Facility. Photo courtesy Gokce Ustunisik.

    Layers of expertise

    Currently the two major inquiries—understanding the extremophiles and pinpointing carbon mineralization rates—are being done in parallel. In 2022, the group will introduce the microbes to the carbon mineralization process to see if the rate ticks up.

    Many questions will guide the next phase of the research: Can SURF extremophiles accelerate the carbon mineralization process? If so, by how much? Can they adapt to different rock environments? Or are they limited to their native rock formations?

    The effort, funded by an Eager Award from the National Science Foundation, brings together experts in geology, engineering, chemistry, petrology and microbiology.

    “The novelty of this project is not necessarily the microbial acceleration of carbon mineralization. The real innovation is the bringing together of a team of different backgrounds to study this new, interesting, complex problem in a different way,” Lingwall said.

    The current NSF grant supports two years of initial research. If, by the end of that period, the experiment’s results are promising, a larger experiment will be undertaken.

    And, perhaps, these extremophiles might be worth their back rent after all.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    About us: The Sanford Underground Research Facility-SURF in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The The U Washington MAJORANA Neutrinoless Double-beta Decay Experiment Demonstrator experiment (US), also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    The LUX Xenon dark matter detector | Sanford Underground Research Facility mission was to scour the universe for WIMPs, vetoing all other signatures. It would continue to do just that for another three years before it was decommissioned in 2016.

    In the midst of the excitement over first results, the LUX collaboration was already casting its gaze forward. Planning for a next-generation dark matter experiment at Sanford Lab was already under way. Named LUX-ZEPLIN (LZ), the next-generation experiment would increase the sensitivity of LUX 100 times.

    SLAC National Accelerator Laboratory(US) physicist Tom Shutt, a previous co-spokesperson for LUX, said one goal of the experiment was to figure out how to build an even larger detector.

    “LZ will be a thousand times more sensitive than the LUX detector,” Shutt said. “It will just begin to see an irreducible background of neutrinos that may ultimately set the limit to our ability to measure dark matter.”

    We celebrate five years of LUX, and look into the steps being taken toward the much larger and far more sensitive experiment.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    FNAL DUNE LBNF (US) from FNAL to SURF, Lead, South Dakota, USA

    FNAL DUNE LBNF (US) Caverns at Sanford Lab.

    The MAJORANA DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment in the Sanford Underground Research Facility (SURF) in Lead, SD. The goal of the DEMONSTRATOR is to determine whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76Ge 0νββ Q-value at 2039 keV. MAJORANA plans to collaborate with Germanium Detector Array (or GERDA) experiment is searching for neutrinoless double beta decay (0νββ) in Ge-76 at the underground Laboratori Nazionali del Gran Sasso (LNGS) for a future tonne-scale 76Ge 0νββ search.

    CASPAR is a low-energy particle accelerator that allows researchers to study processes that take place inside collapsing stars.

    The scientists are using space in the Sanford Underground Research Facility (SURF) in Lead, South Dakota, to work on a project called the Compact Accelerator System for Performing Astrophysical Research (CASPAR). CASPAR uses a low-energy particle accelerator that will allow researchers to mimic nuclear fusion reactions in stars. If successful, their findings could help complete our picture of how the elements in our universe are built. “Nuclear astrophysics is about what goes on inside the star, not outside of it,” said Dan Robertson, a Notre Dame assistant research professor of astrophysics working on CASPAR. “It is not observational, but experimental. The idea is to reproduce the stellar environment, to reproduce the reactions within a star.”

     
  • richardmitnick 9:11 am on September 8, 2021 Permalink | Reply
    Tags: "Geobacter pili", "Hidden bacterial hairs power nature’s ‘electric grid’", , , , Microbiology,   

    From Yale University (US) : “Hidden bacterial hairs power nature’s ‘electric grid’” 

    From Yale University (US)

    September 1, 2021

    Media Contact
    Bess Connolly
    elizabeth.connolly@yale.edu

    By Bill Hathaway

    1
    Bacterial hairs power nature’s electric grid. Credit: Ella Maru Studio.

    A hair-like protein hidden inside bacteria serves as a sort of on-off switch for nature’s “electric grid,” a global web of bacteria-generated nanowires that permeates all oxygen-less soil and deep ocean beds, Yale researchers report in the journal Nature.

    “The ground beneath our feet, the entire globe, is electrically wired,” said Nikhil Malvankar, assistant professor of molecular biophysics and biochemistry at the Microbial Science Institute at Yale’s West Campus and senior author of the paper. “These previously hidden bacterial hairs are the molecular switch controlling the release of nanowires that make up nature’s electrical grid.”

    Almost all living things breathe oxygen to get rid of excess electrons when converting nutrients into energy. Without access to oxygen, however, soil bacteria living deep under oceans or buried underground over billions of years have developed a way to respire by “breathing minerals,” like snorkeling, through tiny protein filaments called nanowires.

    Just how these soil bacteria use nanowires to exhale electricity, however, has remained a mystery. Since 2005, scientists had thought that the nanowires are made up of a protein called “pili” (“hair” in Latin) that many bacteria show on their surface. However, in research published 2019 [Cell] and 2020 [Nature Chemical Biology], a team led by Malvankar showed that nanowires are made of entirely different proteins. “This was a surprise to everyone in the field, calling into question thousands of publications about pili,” Malvankar said.

    For the new study, graduate students Yangqi Gu and Vishok Srikanth used cryo-electron microscopy to reveal that this pili structure is made up of two proteins And instead of serving as nanowires themselves, pili remain hidden inside the bacteria and act like pistons, thrusting the nanowires into the environment. Previously nobody had suspected such a structure.


    Hidden bacterial hairs power nature’s ‘electric grid’.

    Understanding how bacteria create nanowires will allow scientists to tailor bacteria to perform a host of functions — from combatting pathogenic infections or biohazard waste to creating living electrical circuits, the authors say. It will also assist scientists seeking to use bacteria to generate electricity, create biofuels, and even develop self-repairing electronics.

    Other authors are Aldo Salazar-Morales, Ruchi Jain, Patrick O’Brien, Sophia Yi, Fadel A. Samatey, and Sibel Ebru Yalcin, all from Yale, as well as Rajesh Soni from Columbia University (US).

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Yale University (US) is a private Ivy League research university in New Haven, Connecticut. Founded in 1701 as the Collegiate School, it is the third-oldest institution of higher education in the United States and one of the nine Colonial Colleges chartered before the American Revolution. The Collegiate School was renamed Yale College in 1718 to honor the school’s largest private benefactor for the first century of its existence, Elihu Yale. Yale University is consistently ranked as one of the top universities and is considered one of the most prestigious in the nation.

    Chartered by Connecticut Colony, the Collegiate School was established in 1701 by clergy to educate Congregational ministers before moving to New Haven in 1716. Originally restricted to theology and sacred languages, the curriculum began to incorporate humanities and sciences by the time of the American Revolution. In the 19th century, the college expanded into graduate and professional instruction, awarding the first PhD in the United States in 1861 and organizing as a university in 1887. Yale’s faculty and student populations grew after 1890 with rapid expansion of the physical campus and scientific research.

    Yale is organized into fourteen constituent schools: the original undergraduate college, the Yale Graduate School of Arts and Sciences and twelve professional schools. While the university is governed by the Yale Corporation, each school’s faculty oversees its curriculum and degree programs. In addition to a central campus in downtown New Haven, the university owns athletic facilities in western New Haven, a campus in West Haven, Connecticut, and forests and nature preserves throughout New England. As of June 2020, the university’s endowment was valued at $31.1 billion, the second largest of any educational institution. The Yale University Library, serving all constituent schools, holds more than 15 million volumes and is the third-largest academic library in the United States. Students compete in intercollegiate sports as the Yale Bulldogs in the NCAA Division I – Ivy League.

    As of October 2020, 65 Nobel laureates, five Fields Medalists, four Abel Prize laureates, and three Turing award winners have been affiliated with Yale University. In addition, Yale has graduated many notable alumni, including five U.S. Presidents, 19 U.S. Supreme Court Justices, 31 living billionaires, and many heads of state. Hundreds of members of Congress and many U.S. diplomats, 78 MacArthur Fellows, 252 Rhodes Scholars, 123 Marshall Scholars, and nine Mitchell Scholars have been affiliated with the university.

    Research

    Yale is a member of the Association of American Universities (AAU) (US) and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation (US), Yale spent $990 million on research and development in 2018, ranking it 15th in the nation.

    Yale’s faculty include 61 members of the National Academy of Sciences (US), 7 members of the National Academy of Engineering (US) and 49 members of the American Academy of Arts and Sciences (US). The college is, after normalization for institution size, the tenth-largest baccalaureate source of doctoral degree recipients in the United States, and the largest such source within the Ivy League.

    Yale’s English and Comparative Literature departments were part of the New Criticism movement. Of the New Critics, Robert Penn Warren, W.K. Wimsatt, and Cleanth Brooks were all Yale faculty. Later, the Yale Comparative literature department became a center of American deconstruction. Jacques Derrida, the father of deconstruction, taught at the Department of Comparative Literature from the late seventies to mid-1980s. Several other Yale faculty members were also associated with deconstruction, forming the so-called “Yale School”. These included Paul de Man who taught in the Departments of Comparative Literature and French, J. Hillis Miller, Geoffrey Hartman (both taught in the Departments of English and Comparative Literature), and Harold Bloom (English), whose theoretical position was always somewhat specific, and who ultimately took a very different path from the rest of this group. Yale’s history department has also originated important intellectual trends. Historians C. Vann Woodward and David Brion Davis are credited with beginning in the 1960s and 1970s an important stream of southern historians; likewise, David Montgomery, a labor historian, advised many of the current generation of labor historians in the country. Yale’s Music School and Department fostered the growth of Music Theory in the latter half of the 20th century. The Journal of Music Theory was founded there in 1957; Allen Forte and David Lewin were influential teachers and scholars.

    In addition to eminent faculty members, Yale research relies heavily on the presence of roughly 1200 Postdocs from various national and international origin working in the multiple laboratories in the sciences, social sciences, humanities, and professional schools of the university. The university progressively recognized this working force with the recent creation of the Office for Postdoctoral Affairs and the Yale Postdoctoral Association.

    Notable alumni

    Over its history, Yale has produced many distinguished alumni in a variety of fields, ranging from the public to private sector. According to 2020 data, around 71% of undergraduates join the workforce, while the next largest majority of 16.6% go on to attend graduate or professional schools. Yale graduates have been recipients of 252 Rhodes Scholarships, 123 Marshall Scholarships, 67 Truman Scholarships, 21 Churchill Scholarships, and 9 Mitchell Scholarships. The university is also the second largest producer of Fulbright Scholars, with a total of 1,199 in its history and has produced 89 MacArthur Fellows. The U.S. Department of State Bureau of Educational and Cultural Affairs ranked Yale fifth among research institutions producing the most 2020–2021 Fulbright Scholars. Additionally, 31 living billionaires are Yale alumni.

    At Yale, one of the most popular undergraduate majors among Juniors and Seniors is political science, with many students going on to serve careers in government and politics. Former presidents who attended Yale for undergrad include William Howard Taft, George H. W. Bush, and George W. Bush while former presidents Gerald Ford and Bill Clinton attended Yale Law School. Former vice-president and influential antebellum era politician John C. Calhoun also graduated from Yale. Former world leaders include Italian prime minister Mario Monti, Turkish prime minister Tansu Çiller, Mexican president Ernesto Zedillo, German president Karl Carstens, Philippine president José Paciano Laurel, Latvian president Valdis Zatlers, Taiwanese premier Jiang Yi-huah, and Malawian president Peter Mutharika, among others. Prominent royals who graduated are Crown Princess Victoria of Sweden, and Olympia Bonaparte, Princess Napoléon.

    Yale alumni have had considerable presence in U.S. government in all three branches. On the U.S. Supreme Court, 19 justices have been Yale alumni, including current Associate Justices Sonia Sotomayor, Samuel Alito, Clarence Thomas, and Brett Kavanaugh. Numerous Yale alumni have been U.S. Senators, including current Senators Michael Bennet, Richard Blumenthal, Cory Booker, Sherrod Brown, Chris Coons, Amy Klobuchar, Ben Sasse, and Sheldon Whitehouse. Current and former cabinet members include Secretaries of State John Kerry, Hillary Clinton, Cyrus Vance, and Dean Acheson; U.S. Secretaries of the Treasury Oliver Wolcott, Robert Rubin, Nicholas F. Brady, Steven Mnuchin, and Janet Yellen; U.S. Attorneys General Nicholas Katzenbach, John Ashcroft, and Edward H. Levi; and many others. Peace Corps founder and American diplomat Sargent Shriver and public official and urban planner Robert Moses are Yale alumni.

    Yale has produced numerous award-winning authors and influential writers, like Nobel Prize in Literature laureate Sinclair Lewis and Pulitzer Prize winners Stephen Vincent Benét, Thornton Wilder, Doug Wright, and David McCullough. Academy Award winning actors, actresses, and directors include Jodie Foster, Paul Newman, Meryl Streep, Elia Kazan, George Roy Hill, Lupita Nyong’o, Oliver Stone, and Frances McDormand. Alumni from Yale have also made notable contributions to both music and the arts. Leading American composer from the 20th century Charles Ives, Broadway composer Cole Porter, Grammy award winner David Lang, and award-winning jazz pianist and composer Vijay Iyer all hail from Yale. Hugo Boss Prize winner Matthew Barney, famed American sculptor Richard Serra, President Barack Obama presidential portrait painter Kehinde Wiley, MacArthur Fellow and contemporary artist Sarah Sze, Pulitzer Prize winning cartoonist Garry Trudeau, and National Medal of Arts photorealist painter Chuck Close all graduated from Yale. Additional alumni include architect and Presidential Medal of Freedom winner Maya Lin, Pritzker Prize winner Norman Foster, and Gateway Arch designer Eero Saarinen. Journalists and pundits include Dick Cavett, Chris Cuomo, Anderson Cooper, William F. Buckley, Jr., and Fareed Zakaria.

    In business, Yale has had numerous alumni and former students go on to become founders of influential business, like William Boeing (Boeing, United Airlines), Briton Hadden and Henry Luce (Time Magazine), Stephen A. Schwarzman (Blackstone Group), Frederick W. Smith (FedEx), Juan Trippe (Pan Am), Harold Stanley (Morgan Stanley), Bing Gordon (Electronic Arts), and Ben Silbermann (Pinterest). Other business people from Yale include former chairman and CEO of Sears Holdings Edward Lampert, former Time Warner president Jeffrey Bewkes, former PepsiCo chairperson and CEO Indra Nooyi, sports agent Donald Dell, and investor/philanthropist Sir John Templeton,

    Yale alumni distinguished in academia include literary critic and historian Henry Louis Gates, economists Irving Fischer, Mahbub ul Haq, and Nobel Prize laureate Paul Krugman; Nobel Prize in Physics laureates Ernest Lawrence and Murray Gell-Mann; Fields Medalist John G. Thompson; Human Genome Project leader and National Institutes of Health (US) director Francis S. Collins; brain surgery pioneer Harvey Cushing; pioneering computer scientist Grace Hopper; influential mathematician and chemist Josiah Willard Gibbs; National Women’s Hall of Fame inductee and biochemist Florence B. Seibert; Turing Award recipient Ron Rivest; inventors Samuel F.B. Morse and Eli Whitney; Nobel Prize in Chemistry laureate John B. Goodenough; lexicographer Noah Webster; and theologians Jonathan Edwards and Reinhold Niebuhr.

    In the sporting arena, Yale alumni include baseball players Ron Darling and Craig Breslow and baseball executives Theo Epstein and George Weiss; football players Calvin Hill, Gary Fenick, Amos Alonzo Stagg, and “the Father of American Football” Walter Camp; ice hockey players Chris Higgins and Olympian Helen Resor; Olympic figure skaters Sarah Hughes and Nathan Chen; nine-time U.S. Squash men’s champion Julian Illingworth; Olympic swimmer Don Schollander; Olympic rowers Josh West and Rusty Wailes; Olympic sailor Stuart McNay; Olympic runner Frank Shorter; and others.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: