Tagged: Microbiology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:35 am on December 5, 2022 Permalink | Reply
    Tags: "How to Edit the Genes of Nature’s Master Manipulators", A CRISPR-Cas system consists of short snippets of RNA that are complementary to sequences in phage genes., , Bacteriophages are some of the most abundant and diverse biological entities on Earth., , CRISPR-Cas is a type of immune defense mechanism that many bacteria and archaea use against phages., CRISPR-Cas13, CRISPR-the Nobel Prize-winning gene editing technology-is poised to have a profound impact on the fields of microbiology and medicine yet again., , , , , , Jill Banfield, , Microbiology, , Scientists are using CRISPR to engineer the viruses that evolved to engineer bacteria., , The phage-fighting potency of CRISPR-Cas13 was unexpected given how few microbes use it.   

    From The DOE’s Lawrence Berkeley National Laboratory: “How to Edit the Genes of Nature’s Master Manipulators” 

    From The DOE’s Lawrence Berkeley National Laboratory

    Aliyah Kovner

    Scientists are using CRISPR to engineer the viruses that evolved to engineer bacteria.

    (Credit: Davian Ho)

    CRISPR, the Nobel Prize-winning gene editing technology, is poised to have a profound impact on the fields of microbiology and medicine yet again.

    A team led by CRISPR pioneer Jennifer Doudna and her longtime collaborator Jill Banfield has developed a clever tool to edit the genomes of bacteria-infecting viruses called bacteriophages using a rare form of CRISPR. The ability to easily engineer custom-designed phages – which has long eluded the research community – could help researchers control microbiomes without antibiotics or harsh chemicals, and treat dangerous drug-resistant infections. A paper describing the work was recently published in Nature Microbiology [below].

    Fig. 1: Maximum-likelihood phylogeny of Cas13 proteins and their distribution across the bacterial tree of life.
    The four known subtypes, Cas13a–d, each form their clade (inner track) with a skewed distribution across bacterial taxa (outer track). A Vibrio cholerae Cas9 (UIO88932.1) was used as the outgroup. Cas13 subtypes and microbial taxa that encode Cas13 are denoted in the colour bar.

    Fig. 2: Comparison of Cas13a and Cas13d in E. coli phage challenge assays with lytic phage T4.
    a, Experimental architecture of Cas13 phage defence. Cas13 is expressed under aTc control alongside a crRNA. During phage infection, Cas13 unleashes toxic cis- and trans-cleavage if Cas13 detects its crRNA target. b, crRNA architecture employed in this study. c, Overview of T4 genes and transcript locations targeted by Cas13 in T4 phage challenge experiments. Approximate gene architecture is shown in forward orientation. crRNA locations are highlighted in orange. d, T4 phage infection in bacteria expressing phage-targeting crRNA and either LbuCas13a or RfxCas13d. EOP values represent the average of three biological replicates for a single crRNA. EOP data are presented as mean ± s.d. e, T4 phage plaque assays comparing the efficacy of Cas13a and toxicity of Cas13d. A representative plaque assay from three biological replicates is shown. An RFP-targeting crRNA is shown as a negative control.

    “Bacteriophages are some of the most abundant and diverse biological entities on Earth. Unlike prior approaches, this editing strategy works against the tremendous genetic diversity of bacteriophages,” said first author Benjamin Adler, a postdoctoral fellow in Doudna’s lab. “There are so many exciting directions here – discovery is literally at our fingertips!”

    An atomic structural model of a T4 phage, the type edited in this research. (Credit: Dr. Victor Padilla-Sanchez/Wikimedia Commons)

    Bacteriophages, also simply called phages, insert their genetic material into bacterial cells using a syringe-like apparatus, then hijack the protein-building machinery of their hosts in order to reproduce themselves – usually killing the bacteria in the process. (They’re harmless to other organisms, including us humans, even though electron microscopy images have revealed that they look like sinister alien spaceships.)

    CRISPR-Cas is a type of immune defense mechanism that many bacteria and archaea use against phages. A CRISPR-Cas system consists of short snippets of RNA that are complementary to sequences in phage genes, allowing the microbe to recognize when invasive genetic material has been inserted, and scissor-like enzymes that neutralize the phage genes by cutting them into harmless pieces, after being guided into place by the RNA.

    Over millennia, the perpetual evolutionary battle between phage offense and bacterial defense forced phages to specialize. There are a lot of microbes, so there are also a lot of phages, each with unique adaptations. This astounding diversity has made phage editing difficult, including making them resistant to many forms of CRISPR, which is why the most commonly used system – CRISPR-Cas9 – doesn’t work for this application.

    “Phages have many ways to evade defenses, ranging from anti-CRISPRs to just being good at repairing their own DNA,” said Adler. “So, in a sense, the adaptations encoded in phage genomes that make them so good at manipulating microbes are the exact same reason why it has been so difficult to develop a general-purpose tool for editing their genomes.”

    Project leaders Doudna and Banfield have developed numerous CRISPR-based tools together since they first collaborated on an early investigation of CRISPR in 2008. That work – performed at Lawrence Berkeley National Laboratory – was cited by the Nobel Prize committee when Doudna and her other collaborator, Emmanuelle Charpentier, received the prize in 2020. Doudna and Banfield’s team of Berkeley Lab and University of California-Berkeley researchers were studying the properties of a rare form of CRISPR called CRISPR-Cas13 (derived from a bacterium commonly found in the human mouth) when they discovered that this version of the defense system works against a huge range of phages.

    The phage-fighting potency of CRISPR-Cas13 was unexpected given how few microbes use it, explained Adler. The scientists were doubly surprised because the phages it defeated in testing all infect using double-stranded DNA, but the CRISPR-Cas13 system only targets and chops single-stranded viral RNA. Like other types of viruses, some phages have DNA-based genomes and some have RNA-based genomes. However, all known viruses use RNA to express their genes. The CRISPR-Cas13 system effectively neutralized nine different DNA phages that all infect strains of E. coli, yet have almost no similarity across their genomes.

    According to co-author and phage expert Vivek Mutalik, a staff scientist in Berkeley Lab’s Biosciences Area, these findings indicate that the CRISPR system can defend against diverse DNA-based phages by targeting their RNA after it has been converted from DNA by the bacteria’s own enzymes prior to protein translation.

    Next, the team demonstrated that the system can be used to edit phage genomes rather than just chop them up defensively.

    First, they made segments of DNA composed of the phage sequence they wanted to create flanked by native phage sequences, and put them into the phage’s target bacteria. When the phages infected the DNA-laden microbes, a small percentage of the phages reproducing inside the microbes took up the altered DNA and incorporated it into their genomes in place of the original sequence. This step is a longstanding DNA editing technique called homologous recombination. The decades-old problem in phage research is that although this step, the actual phage genome editing, works just fine, isolating and replicating the phages with the edited sequence from the larger pool of normal phages is very tricky.

    This is where the CRISPR-Cas13 comes in. In step two, the scientists engineered another strain of host microbe to contain a CRISPR-Cas13 system that senses and defends against the normal phage genome sequence. When the phages made in step one were exposed to the second-round hosts, the phages with the original sequence were defeated by the CRISPR defense system, but the small number of edited phages were able to evade it. They survived and replicated themselves.

    Experiments with three unrelated E. coli phages showed a staggering success rate: more than 99% of the phages produced in the two-step processes contained the edits, which ranged from enormous multi-gene deletions all the way down to precise replacements of a single amino acid.

    “In my opinion, this work on phage engineering is one of the top milestones in phage biology,” said Mutalik. “As phages impact microbial ecology, evolution, population dynamics, and virulence, seamless engineering of bacteria and their phages has profound implications for foundational science, but also has the potential to make a real difference in all aspects of the bioeconomy. In addition to human health, this phage engineering capability will impact everything from biomanufacturing and agriculture to food production.”

    Buoyed by their initial results, the scientists are currently working to expand the CRISPR system to use it on more types of phages, starting with ones that impact microbial soil communities. They are also using it as a tool to explore the genetic mysteries within phage genomes. Who knows what other amazing tools and technologies can be inspired by the spoils of microscopic war between bacteria and virus?

    This research was funded by the Department of Energy Microbial Community Analysis & Functional Evaluation in Soils (m-CAFES) Scientific Focus Area. Jill Banfield is a professor of Earth and Planetary Science and Environmental Science, Policy, & Management at The University of California-Berkeley as well as a faculty scientist in Berkeley Lab’s Biosciences Area and an affiliate in the Earth and Environmental Sciences Area. Jennifer Doudna is a professor in the Molecular and Cell Biology and Chemistry departments at The University of California-Berkeley and a faculty scientist in Berkeley Lab’s Biosciences Area.

    Science paper:
    Nature Microbiology
    See the science paper for instructive material with more images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    LBNL campus

    Bringing Science Solutions to the World

    In the world of science, The Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the The National Academy of Sciences, one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the The National Academy of Engineering, and three of our scientists have been elected into The Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by The DOE through its Office of Science. It is managed by the University of California and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above The University of California-Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California-Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.



    The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California-Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

    LBNL 88 inch cyclotron.

    LBNL 88 inch cyclotron.

    Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded The DOE’s Los Alamos Laboratory, and Robert Wilson founded The DOE’s Fermi National Accelerator Laboratory.


    Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.


    After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now The Department of Energy . The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now The DOE’s Lawrence Livermore National Laboratory) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

    Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

    The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

    The lab remains owned by the Department of Energy , with management from the University of California. Companies such as Intel were funding the lab’s research into computing chips.

    Science mission

    From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

    The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

    Berkeley Lab operates five major National User Facilities for the DOE Office of Science:

    The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.

    The DOE’s Lawrence Berkeley National Laboratory Advanced Light Source.
    The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

    Berkeley Lab Laser Accelerator (BELLA) Center

    The DOE Joint Genome Institute supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, DOE’s Lawrence Livermore National Laboratory, DOE’s Oak Ridge National Laboratory (ORNL), DOE’s Pacific Northwest National Laboratory (PNNL), and the HudsonAlpha Institute for Biotechnology . The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

    LBNL Molecular Foundry

    The LBNL Molecular Foundry is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

    The DOE’s NERSC National Energy Research Scientific Computing Center is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

    DOE’s NERSC National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory.

    Cray Cori II supercomputer at National Energy Research Scientific Computing Center at DOE’s Lawrence Berkeley National Laboratory, named after Gerty Cori, the first American woman to win a Nobel Prize in science.

    NERSC Hopper Cray XE6 supercomputer.

    NERSC Cray XC30 Edison supercomputer.

    NERSC GPFS for Life Sciences.

    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    NERSC PDSF computer cluster in 2003.

    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    Cray Shasta Perlmutter SC18 AMD Epyc Nvidia pre-exascale supercomputer.

    NERSC is a DOE Office of Science User Facility.

    The DOE’s Energy Science Network is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

    Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory, the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science , and DOE’s Lawrence Livermore National Laboratory (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

    Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory leads JCESR and Berkeley Lab is a major partner.

  • richardmitnick 9:49 am on November 28, 2022 Permalink | Reply
    Tags: "OmanDP": Oman Drilling Project, "Serpentine rocks provide evidence of fossil life on Earth", , , , , Microbiology, Serpentinized ultramafic rocks, , The team had an "aha" moment when they eventually found clusters of potentially biological-looking structures entombed by calcium carbonate minerals.   

    From The Arizona State University: “Serpentine rocks provide evidence of fossil life on Earth” 

    From The Arizona State University


    In the Hajar Mountains of Oman is a large slab of oceanic crust consisting of serpentinized ultramafic rocks, the largest exposure of such rocks on Earth’s surface. These distinctive rocks hold fossil evidence of microbes that were once living in the underground environment where these rocks form.

    A team of scientists from Arizona State University, led by Jon Lima-Zaloumis, ASU PhD graduate and current postdoctoral research scholar at the School of Earth and Space Exploration, participated in the Oman Drilling Project (OmanDP) and were able to investigate drill core samples of the Samail Ophiolite. By studying these samples in detail using instruments available at ASU and abroad, the team was able to uncover fossil evidence of microbes that were once living and subsequently entombed in the underground serpentinizing environment.

    A white, mineralized vein in serpentine drill core preserves fossil evidence of microbes once inhabiting the subsurface. Credit: ASU.

    For Lima-Zaloumis, this work is noteworthy because there have been relatively few publications exploring whether microbes can be preserved in environments where serpentine rocks form. 

    “Researchers are interested in these systems from an astrobiology perspective because microbes can thrive from the water-rock reactions associated with serpentinization,” said Lima-Zaloumis. “Although we know these systems can host active microbial ecosystems, it’s been unclear whether these systems can also lead to fossilization.” 

    This is significant because it highlights a unique geological environment where ancient evidence of life may be detected on Earth and potentially beyond. The results of their findings have been recently published in Nature Communications Earth & Environment [below], with lead author Lima-Zaloumis and co-author Maitrayee Bose, assistant professor in ASU’s School of Earth and Space Exploration. 

    “Our work may be helpful for current and future planetary exploration missions with astrobiology-oriented objectives, and highlights the importance of serpentine rocks as targets for future exploration,” said Lima-Zaloumis. “For example, serpentine has been detected from orbit within and around Jezero Crater, the site of the current Perseverance rover on Mars. If such rocks are encountered by the rover, our work emphasizes that they might be prime targets to search for evidence of past life.” 

    Lima-Zaloumis and his team spent several months searching for signs of life within these samples, which entailed long hours at the microscope and scanning electron microscope. They suspected that if any evidence of life would be found, it would occur within mineral-filled fractures that were common in the upper portions of the drill core (visible in the above images). 

    The team had an “aha” moment when they eventually found clusters of potentially biological-looking structures entombed by calcium carbonate minerals. Significant time was devoted to interrogate the morphology and chemistry of these structures to convince themselves that they were looking at probable microbial remains. 

    Serpentinizing environments have gained a lot of attention as places where microbes can thrive from water-rock reactions, and scientists think these processes may be ubiquitous beyond Earth. Hydrogen released during serpentinization can be a source of chemical energy in the subsurface of Mars and in the icy ocean worlds like Europa and Enceladus in the outer solar system.

    For Lima-Zaloumis and the team, they hope that their research will bring more attention to serpentinizing environments as places where fossil evidence of microbes can be found. 

    “Redox gradients in serpentinzing systems are capable of generating amino acids and other organic materials associated with life, which makes this work highly relevant for missions to Mars and ocean worlds,” said Bose.

    Lima-Zaloumis shared he is hopeful that future studies will uncover more examples of fossilized organisms in serpentinites around the world, which will help researchers develop a fuller understanding of how ubiquitous (or not) these preservation processes are, and how best to apply these lessons to similar rocks beyond Earth. 

    Other contributing authors on this study are Anna Neubeck, Uppsala University, Department of Palaeobiology Geocentrum, Villavägen; Magnus Ivarsson, Swedish Museum of Natural History, Department of Palaeobiology; Rebecca Greenberger, Caltech Division of Geological and Planetary Sciences; Alexis S. Templeton, University of Colorado, Department of Geological Sciences; Andrew D. Czaja, University of Cincinnati, Department of Geology; Peter B. Kelemen, Columbia University, Lamont-Doherty Earth Observatory; and Tomas Edvinsson, Uppsala University, Department of Materials Science and Engineering.

    Science paper:
    Nature Communications Earth & Environment
    See the science paper for instructive material with images.

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.

    The Arizona State University Tempe Campus

    The Arizona State University is a public research university in the Phoenix metropolitan area. Founded in 1885 by the 13th Arizona Territorial Legislature, ASU is one of the largest public universities by enrollment in the U.S.

    One of three universities governed by the Arizona Board of Regents, The Arizona State University is a member of the Universities Research Association and classified among “R1: Doctoral Universities – Very High Research Activity.” The Arizona State University has nearly 150,000 students attending classes, with more than 38,000 students attending online, and 90,000 undergraduates and more nearly 20,000 postgraduates across its five campuses and four regional learning centers throughout Arizona. The Arizona State University offers 350 degree options from its 17 colleges and more than 170 cross-discipline centers and institutes for undergraduates students, as well as more than 400 graduate degree and certificate programs. The Arizona State Sun Devils compete in 26 varsity-level sports in the NCAA Division I Pac-12 Conference and is home to over 1,100 registered student organizations.

    The Arizona State University ‘s charter, approved by the board of regents in 2014, is based on the New American University model created by The Arizona State University President Michael M. Crow upon his appointment as the institution’s 16th president in 2002. It defines The Arizona State University as “a comprehensive public research university, measured not by whom it excludes, but rather by whom it includes and how they succeed; advancing research and discovery of public value; and assuming fundamental responsibility for the economic, social, cultural and overall health of the communities it serves.” The model is widely credited with boosting The Arizona State University ‘s acceptance rate and increasing class size.

    The university’s faculty of more than 4,700 scholars has included 5 Nobel laureates, 6 Pulitzer Prize winners, 4 MacArthur Fellows, and 19 National Academy of Sciences members. Additionally, among the faculty are 180 Fulbright Program American Scholars, 72 National Endowment for the Humanities fellows, 38 American Council of Learned Societies fellows, 36 members of the Guggenheim Fellowship, 21 members of the American Academy of Arts and Sciences, 3 members of National Academy of Inventors, 9 National Academy of Engineering members and 3 National Academy of Medicine members. The National Academies has bestowed “highly prestigious” recognition on 227 Arizona State University faculty members.

    The Arizona State University was established as the Territorial Normal School at Tempe on March 12, 1885, when the 13th Arizona Territorial Legislature passed an act to create a normal school to train teachers for the Arizona Territory. The campus consisted of a single, four-room schoolhouse on a 20-acre plot largely donated by Tempe residents George and Martha Wilson. Classes began with 33 students on February 8, 1886. The curriculum evolved over the years and the name was changed several times; the institution was also known as Tempe Normal School of Arizona (1889–1903), Tempe Normal School (1903–1925), Tempe State Teachers College (1925–1929), Arizona State Teachers College (1929–1945), Arizona State College (1945–1958) and, by a 2–1 margin of the state’s voters, The Arizona State University in 1958.

    In 1923, the school stopped offering high school courses and added a high school diploma to the admissions requirements. In 1925, the school became the Tempe State Teachers College and offered four-year Bachelor of Education degrees as well as two-year teaching certificates. In 1929, the 9th Arizona State Legislature authorized Bachelor of Arts in Education degrees as well, and the school was renamed The Arizona State Teachers College. Under the 30-year tenure of president Arthur John Matthews (1900–1930), the school was given all-college student status. The first dormitories built in the state were constructed under his supervision in 1902. Of the 18 buildings constructed while Matthews was president, six are still in use. Matthews envisioned an “evergreen campus,” with many shrubs brought to the campus, and implemented the planting of 110 Mexican Fan Palms on what is now known as Palm Walk, a century-old landmark of the Tempe campus.

    During the Great Depression, Ralph Waldo Swetman was hired to succeed President Matthews, coming to The Arizona State Teachers College in 1930 from The Humboldt State Teachers College where he had served as president. He served a three-year term, during which he focused on improving teacher-training programs. During his tenure, enrollment at the college doubled, topping the 1,000 mark for the first time. Matthews also conceived of a self-supported summer session at the school at The Arizona State Teachers College, a first for the school.


    In 1933, Grady Gammage, then president of The Arizona State Teachers College at Flagstaff, became president of The Arizona State Teachers College at Tempe, beginning a tenure that would last for nearly 28 years, second only to Swetman’s 30 years at the college’s helm. Like President Arthur John Matthews before him, Gammage oversaw the construction of several buildings on the Tempe campus. He also guided the development of the university’s graduate programs; the first Master of Arts in Education was awarded in 1938, the first Doctor of Education degree in 1954 and 10 non-teaching master’s degrees were approved by the Arizona Board of Regents in 1956. During his presidency, the school’s name was changed to Arizona State College in 1945, and finally to The Arizona State University in 1958. At the time, two other names were considered: Tempe University and State University at Tempe. Among Gammage’s greatest achievements in Tempe was the Frank Lloyd Wright-designed construction of what is Grady Gammage Memorial Auditorium/ASU Gammage. One of the university’s hallmark buildings, Arizona State University Gammage was completed in 1964, five years after the president’s (and Wright’s) death.

    Gammage was succeeded by Harold D. Richardson, who had served the school earlier in a variety of roles beginning in 1939, including director of graduate studies, college registrar, dean of instruction, dean of the College of Education and academic vice president. Although filling the role of acting president of the university for just nine months (Dec. 1959 to Sept. 1960), Richardson laid the groundwork for the future recruitment and appointment of well-credentialed research science faculty.

    By the 1960s, under G. Homer Durham, the university’s 11th president, The Arizona State University began to expand its curriculum by establishing several new colleges and, in 1961, the Arizona Board of Regents authorized doctoral degree programs in six fields, including Doctor of Philosophy. By the end of his nine-year tenure, The Arizona State University had more than doubled enrollment, reporting 23,000 in 1969.

    The next three presidents—Harry K. Newburn (1969–71), John W. Schwada (1971–81) and J. Russell Nelson (1981–89), including and Interim President Richard Peck (1989), led the university to increased academic stature, the establishment of The Arizona State University West campus in 1984 and its subsequent construction in 1986, a focus on computer-assisted learning and research, and rising enrollment.


    Under the leadership of Lattie F. Coor, president from 1990 to 2002, The Arizona State University grew through the creation of the Polytechnic campus and extended education sites. Increased commitment to diversity, quality in undergraduate education, research, and economic development occurred over his 12-year tenure. Part of Coor’s legacy to the university was a successful fundraising campaign: through private donations, more than $500 million was invested in areas that would significantly impact the future of The Arizona State University. Among the campaign’s achievements were the naming and endowing of Barrett, The Honors College, and the Herberger Institute for Design and the Arts; the creation of many new endowed faculty positions; and hundreds of new scholarships and fellowships.

    In 2002, Michael M. Crow became the university’s 16th president. At his inauguration, he outlined his vision for transforming The Arizona State University into a “New American University”—one that would be open and inclusive, and set a goal for the university to meet Association of American Universities criteria and to become a member. Crow initiated the idea of transforming The Arizona State University into “One university in many places”—a single institution comprising several campuses, sharing students, faculty, staff and accreditation. Subsequent reorganizations combined academic departments, consolidated colleges and schools, and reduced staff and administration as the university expanded its West and Polytechnic campuses. The Arizona State University’s Downtown Phoenix campus was also expanded, with several colleges and schools relocating there. The university established learning centers throughout the state, including The Arizona State University Colleges at Lake Havasu City and programs in Thatcher, Yuma, and Tucson. Students at these centers can choose from several Arizona State University degree and certificate programs.

    During Crow’s tenure, and aided by hundreds of millions of dollars in donations, The Arizona State University began a years-long research facility capital building effort that led to the establishment of the Biodesign Institute at The Arizona State University, the Julie Ann Wrigley Global Institute of Sustainability, and several large interdisciplinary research buildings. Along with the research facilities, the university faculty was expanded, including the addition of five Nobel Laureates. Since 2002, the university’s research expenditures have tripled and more than 1.5 million square feet of space has been added to the university’s research facilities.

    The economic downturn that began in 2008 took a particularly hard toll on Arizona, resulting in large cuts to The Arizona State University ‘s budget. In response to these cuts, The Arizona State University capped enrollment, closed some four dozen academic programs, combined academic departments, consolidated colleges and schools, and reduced university faculty, staff and administrators; however, with an economic recovery underway in 2011, the university continued its campaign to expand the West and Polytechnic Campuses, and establish a low-cost, teaching-focused extension campus in Lake Havasu City.

    As of 2011, an article in Slate reported that, “the bottom line looks good,” noting that:

    “Since Crow’s arrival, The Arizona State University’s research funding has almost tripled to nearly $350 million. Degree production has increased by 45 percent. And thanks to an ambitious aid program, enrollment of students from Arizona families below poverty is up 647 percent.”

    In 2015, the Thunderbird School of Global Management became the fifth Arizona State University campus, as the Thunderbird School of Global Management at The Arizona State University. Partnerships for education and research with Mayo Clinic established collaborative degree programs in health care and law, and shared administrator positions, laboratories and classes at the Mayo Clinic Arizona campus.

    The Beus Center for Law and Society, the new home of The Arizona State University’s Sandra Day O’Connor College of Law, opened in fall 2016 on the Downtown Phoenix campus, relocating faculty and students from the Tempe campus to the state capital.

  • richardmitnick 1:13 pm on November 22, 2022 Permalink | Reply
    Tags: "Scientists warn over one hundred thousand tonnes of microbes could escape from melting glaciers", , , , , , , , Microbiology   

    From Aberystwyth University [Prifysgol Aberystwyth](WLS) : “Scientists warn over one hundred thousand tonnes of microbes could escape from melting glaciers” 

    From Aberystwyth University [Prifysgol Aberystwyth](WLS)

    Colin Nosworthy,
    Communications and Public Affairs,
    Aberystwyth University

    Some of the research team on the western edge of the Greenland Ice Sheet.

    More than a hundred thousand tonnes of microbes, including potentially harmful and beneficial ones, could be released as the world’s glaciers melt, scientists from Aberystwyth University have warned.

    After examining surface meltwaters from eight glaciers across Europe and North America, and two sites in western Greenland, the academics estimate that even with only moderate warming, these microbes will be released to downstream ecosystems.

    Assuming a climate scenario where there is a moderate rise in carbon emissions, the study predicts that more than a hundred thousand tonnes of microbes will be released into the wider environment. That would be equivalent to an average of 0.65 million tonnes per year of cellular carbon, which includes microbes, being delivered into rivers, lakes, fjords and oceans across the northern hemisphere over the next 80 years.

    Estimates suggest that Earth’s glaciers have been losing around a trillion tonnes of ice per year since the early 1990s, mainly driven by further melting of their surfaces.

    Scientists believe the impact of further glacial melting, including the discharge of microbes into downstream environments, may be significant.

    Dr Tristram Irvine-Fynn from Aberystwyth University commented:

    “Melting glacier ice surfaces host active microbial communities that contribute to melting and biogeochemical cycling, and nourish downstream ecosystems; but these communities remain poorly understood. 

    “Over the coming decades, the forecast ‘peak water’ from Earth’s mountain glaciers means we need to improve our understanding of the state and fate of ecosystems on the surface of glaciers. With a better grasp of that picture, we could better predict the effects of climate change on glacial surfaces and catchment biogeochemistry.”

    Dr Arwyn Edwards from Aberystwyth University added:

    “These important findings build on much of our previous research here in Aberystwyth. The number of microbes released depends closely on how quickly the glaciers melt, and therefore how much we continue to warm the planet. But the mass of microbes released is vast even with moderate warming. While these microbes fertilize downstream environments, some of them might be harmful as well.”

    The Aberystwyth academics’ findings were published in the journal Nature Communications Earth & Environment [below] this month.

    The study was led by former Aberystwyth PhD student and associate lecturer, Dr Ian Stevens, who is currently a postdoctoral researcher at Aarhus University.

    Dr Stevens is working on the Deep Purple project and examining the physical and microbial processes which accelerate melting of the Greenland Ice Sheet.

    Science paper:
    Nature Communications Earth & Environment
    See the science paper for instructive material with images.

    See the full article here.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Aberystwyth University [Prifysgol Aberystwyth] (WLS) is a public research university in Aberystwyth, Wales. Aberystwyth was a founding member institution of the former federal University of Wales. The university has over 8,000 students studying across 3 academic faculties and 17 departments.

    Founded in 1872 as University College Wales, Aberystwyth, it became a founder member of the University of Wales in 1894, and changed its name to the University College of Wales, Aberystwyth. In the mid-1990s, the university again changed its name to become the University of Wales, Aberystwyth. On 1 September 2007, the University of Wales ceased to be a federal university and Aberystwyth University became independent again.

    In 2019, it became the first university to be named “University of the year for teaching quality” by The Times/Sunday Times Good University Guide for two consecutive years. It is the first university in the world to be awarded Plastic Free University status (for single-use plastic items).

    Aberystwyth University is placed in the UK’s top 50 universities in the main national rankings. It is ranked 48th for 132 UK university rankings in The Times/Sunday Times Good University Guide for 2019 and the first university to be given the prestigious award “University of the year for teaching quality” for two consecutive years (2018 and 2019).

    The Times Higher Education World University Rankings placed it in the 301—350 group for 800 university rankings, compared with 351—400 the previous year, and the QS World University Rankings placed it at the 432th position for 2019, compared with 481—490 of the previous year. In 2015, UK employers from “predominantly business, IT and engineering sectors” listed Aberystwyth equal 49th in their 62-place employability rankings for UK graduates, according to a Times Higher Education report.

    Aberystwyth University was rated in the top ten of UK higher education institutions for overall student satisfaction in the 2016 National Student Survey (NSS).

    Aberystwyth University was shortlisted in four categories in the Times Higher Education Leadership and Management Awards (THELMAs) (2015).

    Aberystwyth University has been awarded the Silver Award under the Corporate Health Standard (CHS), the quality mark for workplace health promotion run by Welsh Government.

    The University has been awarded an Athena SWAN Charter Award, recognizing commitment to advancing women’s careers in science, technology, engineering, maths and medicine (STEMM) in higher education and research.

    In 2007 the University came under criticism for its record on sustainability, ranking 97th out of 106 UK higher education institutions in that year’s Green League table. In 2012 the university was listed in the table’s “Failed, no award” section, ranking equal 132nd out of 145. In 2013 it ranked equal 135th out of 143, and was listed again as “Failed, no award”.

    Following the University’s initiatives to address sustainability, it received an EcoCampus Silver Phase award in October 2014.

    In October 2015, the University’s Penglais Campus became the first University campus in Wales to achieve the Green Flag Award. The Green Flag Award is a UK-wide partnership, delivered in Wales by Keep Wales Tidy with support from Natural Resources Wales, and is the mark of a high quality park or green space.

    In 2013, the University and College Union alleged bullying behaviour by Aberystwyth University managers, and said staff were fearful for their jobs. University president Sir Emyr Jones Parry said in a BBC radio interview, “I don’t believe the views set out are representative and I don’t recognise the picture.” He also said, “Due process is rigorously applied in Aberystwyth.” Economist John Cable resigned his emeritus professorship, describing the university’s management as “disproportionate, aggressive and confrontational”. The singer Peter Karrie resigned his honorary fellowship in protest, he said, at the apparent determination to “ruin one of the finest arts centres in the country”, and because he was “unable to support any regime that can treat their staff in such a cruel and appalling manner.”

  • richardmitnick 8:55 am on November 22, 2022 Permalink | Reply
    Tags: "In search of the principles of life", , , Breaking stereotypes about academics - like that they all come from elite schools and affluent families., Ecosystems, , Microbiology, MIT Associate Professor Otto Cordero, Studying fundamental questions of life using Computational Biology, The Department of Civil and Environmental Engineering, , Understanding microbial ecosystems through the broad factors that dictate their composition and behavior., Why are things the way they are?, Why do species divide labor in nature?   

    From The Department of Civil and Environmental Engineering At The Massachusetts Institute of Technology: “In search of the principles of life” MIT Associate Professor Otto Cordero 


    From The Department of Civil and Environmental Engineering


    The Massachusetts Institute of Technology

    Zach Winn

    MIT Associate Professor Otto Cordero studies microbial ecosystems to research the fundamental factors and constraints that shape living communities. Photo: Jodi Hilton.

    “Trying to make sense of the diversity of microorganisms, or any organism, in an environment is really complex, so the natural instinct is to start with little things — to see what one organism does,” Cordero says. Photo: Jodi Hilton.

    MIT Associate Professor Otto Cordero has always gravitated toward the most basic questions of life. How do ecosystems assemble? Why do species divide labor in nature? He believes these are some of the most central questions for understanding life.

    “The challenge is discovering something that applies across organisms and across environments — now we’re talking about a fundamental constraint of life,” says Cordero, who recently earned tenure in the MIT Department of Civil and Environmental Engineering. “I really care about that type of thing. That’s where it ends for me. Why are things the way they are? Why do they look the way they do and function the way they do? It’s because there are constraints. It’s evolution. It’s how the world works. Discovering those principals is the ultimate prize.”

    Cordero’s search has led him into areas of research he never could have imagined. Along the way, he’s made progress toward understanding microbial ecosystems through the broad factors that dictate their composition and behavior.

    “I talk to a lot of physicists, and they all tell the same story,” Cordero says, smiling. “Many years ago, there were people looking at the molecules of a gas, trying to predict where each one will be, and then somebody at some point figured out there were master variables: pressure, volume, and temperature, and they all relate to each other very nicely. Now they have the gas law, and everything makes sense once you understand those variables. It’s unclear if master variables like that exist in biology, and even more so in microbial ecology, but it’s certainly worth looking for them.”

    Embracing chance

    Cordero was raised by his mother in Guayaquil, Ecuador, where he says scientific activity was sparse.

    “I never met a scientist in my life,” Cordero says. “At my university in Ecuador, there was one teacher who had a PhD, and everybody called him doctor.”

    Although no one in Cordero’s family had gone to college, his mother prioritized his education, and Cordero gained an appreciation for reading and learning from his grandfather. Those influences led him to a technical college for his undergraduate degree.

    Cordero’s childhood was humble — there were days he had to borrow 25 cents just to catch a bus to campus. But a pivotal moment came when he received a scholarship to attend Utrecht University for graduate school in the Netherlands.

    “Everything is serendipitous,” Cordero says. “I tell my students when I look back, I could never have predicted where I’d be in three to five years.”

    Up to that point, Cordero hadn’t met many people outside of Ecuador, but he jokes that he met someone from every country in Europe within a week. He’d go on to make friends from around the world.

    While majoring in artificial intelligence as a master’s student, Cordero became interested in algorithms that described the organization of organisms like insects. One day he was searching through papers on the subject when a Dutch name caught his eye. It turned out to be a professor in the building next to him. He hurried over and met the professor, Paulien Hogeweg, who was studying fundamental questions of life using computational biology. Cordero fell in love with the subject, and Hogeweg would become his PhD advisor.

    Serendipity struck again when Cordero began his postdoctoral work at MIT, where he worked under longtime MIT professor Martin Polz, who is now a professor at the University of Vienna.

    “I ended up opening this area of research for myself that I never imagined before,” Cordero says. “I started to study microbial interactions — essentially how different strains or species of bacteria interact in the environment.”

    Through that work, Cordero uncovered mechanisms microbes use to work together or kill off competing species, which have major implications for microbial ecosystems and perhaps also large biogeochemical processes like the carbon cycle.

    “From there, I was an expert in microbial interactions and evolution,” Cordero says. “I was working on exciting projects, and when that happens at MIT the environment lifts you up. Everybody wants to talk to you about the next idea. It’s stimulating. I enjoy that very much. The dynamics and exposure here are unrivaled. I feel like I go to a talk and I know what the next big-impact paper is going to be.”

    Cordero joined the faculty at MIT in 2015, and he’s continued studying microbes to explore how biological systems function and evolve.

    In keeping with that mission, in 2017 Cordero helped assemble an interdisciplinary group of researchers from around the world to look for universal principles of biology that could help explain and predict the behavior of microbial systems. The resulting collaboration, called Principles of Microbial Ecosystems (PRIME), has made progress identifying environmental factors and constraints that help shape all ecosystems.

    For instance, PRIME researchers have profiled the metabolic processes of hundreds of species of microbes to place them into broader metabolic classes that can be used to accurately model and predict the behavior of ecosystems.

    “Trying to make sense of the diversity of microorganisms, or any organism, in an environment is really complex, so the natural instinct is to start with little things — to see what one organism does,” Cordero says. “I wanted to look for things that could be generalized. Is there some sort of principal that helps explain or predict why communities assemble this way, or what we should expect in this environment or that environment? We see these broad patterns, and it begs the question of what the right variables are to study. Things become much simpler and more predictable when you identify those right variables.”

    Focusing on the bigger picture

    Cordero says he wants to break stereotypes about academics, like that they all come from elite schools and affluent families.

    He also wants to show students that researchers can have fun while working hard. Before the pandemic, Cordero played in a band with students from his department that featured two PhD students on guitar, a postdoctoral drummer, an MBA on the trumpet, and a master’s student singing.

    “That was the highlight of the week for me,” Cordero says. “Hopefully we bring it back!”

    Cordero’s personal life has also gotten a bit busier since the start of the pandemic — he now has a 2-year-old and 5-month-old.

    Overall, whether in his personal life or work, Cordero tries to focus on the big picture.

    “When you sequence [the genome] of something, you get this long list of taxa with Latin names, but that’s not really the most important information,” Cordero says. “The vision is that one day — hopefully not too far into the future — we can transform that information into more functional variables. [This goes back to] the pressure-volume-temperature analogy. Maybe these ecosystems can be understood with simple models, and maybe we can predict what they will do in the future. That would be a huge game-changer.”

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Our Mission

    In The MIT Department of Civil and Environmental Engineering, we are driven by a simple truth: we only have one Earth to call home. Our intellectual focus is on the human-built environment and the complex infrastructure systems that it entails, as well as the man-made effect on the natural world. We seek to foster an inclusive community that pushes the boundaries of what is possible to shape the future of civil and environmental engineering. Our goal is to educate and train the next generation of researchers and engineers, driven by a passion to positively impact our society, economy, and our planet.

    Our faculty and students work in tandem to develop and apply pioneering approaches that range from basic scientific principles to complex engineering design, with a focus on translating fundamental advances to real-world impact. We offer undergraduate and graduate degree programs in the broad areas of infrastructure and environment, in order to advance the frontiers of knowledge for a sustainable civilization.

    Our Vision

    Bold solutions for sustainability across scales.

    MIT CEE is creating a new era of sustainable and resilient infrastructure and systems from the nanoscale to the global scale.

    We are pioneering a bold transformation of civil and environmental engineering as a field, fostering collaboration across disciplines to drive meaningful change. Our research and educational programs challenge the status quo, advance the frontier of knowledge and expand the limit of what is possible.

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

    Massachusettes Institute of Technology-Haystack Observatory Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However, six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

  • richardmitnick 7:59 am on October 29, 2022 Permalink | Reply
    Tags: "University of Chicago researchers take inspiration from soil to create new material with promise for medical and biofuel technology", , , , , , , Microbes can be put to work producing molecules such as biofuels., Microbes often get a bad rap but there are many times when we actually want microbes to grow., Microbiology, The lab found that the droplets of liquid metal boosted the growth of bacteria.,   

    From The University of Chicago: “University of Chicago researchers take inspiration from soil to create new material with promise for medical and biofuel technology” 

    U Chicago bloc

    From The University of Chicago

    Louise Lerner

    A new University of Chicago experiment mimics the structure of soil to create materials that can interact with their environment, with promise for electronics, medicine, and biofuel technology. Above: a 3D X-ray reconstruction of the soil-like material, with red representing liquid metal and white representing the rest of the components. The entire piece is just 13 microns, about the size of a red blood cell.

    A handful of soil is not only a miracle to a farmer, but also an engineer: “It can respond to a range of stimuli,” said chemist Bozhi Tian.

    Bozhi Tian. Credit: The University of Chicago.

    “If you shine light or heat on it, if you step on it, if you add water, if you add chemicals—the soil changes in response and in turn, this affects the microbes or plants living in the soil. There are so many things we can learn from this.”

    Tian and his laboratory at the University of Chicago are taking inspiration from nature to engineer new systems with a range of potential applications. Their latest experiment mimics the structure of soil to create materials that can interact with their environment, with promise for electronics, medicine, and biofuel technology. It has multiple potential applications; preliminary tests have shown the material can boost the growth of microbes and may be able to help treat gut disorders.

    In a study described in Nature Chemistry [below], the team designed a springy substance composed of tiny particles of clay, starch, and droplets of liquid metal. The clay and starch create structure with lots of nooks and crannies, but it’s flexible enough that the material can also adapt and respond to the conditions around it.

    The experiment in schematic. From Nature Chemistry.

    Much like real soil, these nooks and crannies create the perfect spots for microbes to flourish. “We found the porosity is very important; we call it the partitioning effect,” said Tian. “I think of it like a meeting—if you break a large meeting or class into smaller sections there will be more interaction.”

    Yiliang Lin (left) and Xiang Gao (right) in the Tian lab at the University of Chicago. They are co-first authors on the research along with Jiping Yue and Yin Fang. Courtesy Tian lab.

    Microbes often get a bad rap, but there are many times when we actually want microbes to grow. For example, doctors think that digestive diseases like colitis partially stem from a lack of diverse microbes in the gut, so a goal of medicine is to boost them. In fact, preliminary tests showed the new “soil” material reduced symptoms of colitis in mice.

    Microbes can also be put to work producing molecules such as biofuels, which are used as a renewable alternative to fuels like gasoline. Tian’s lab found that their material encouraged the growth of the biofilms used in biofuel production. It may extend to other uses, too; “This is potentially a more environmentally friendly method to make various chemicals used in industrial production,” said Jiping Yue, a scientist in Tian’s lab and a co-first author on the study.

    In the course of their experiments, the lab also found that the droplets of liquid metal boosted the growth of bacteria. “We’re not yet sure about the mechanism, but if you leave out the liquid metal, the biofilms and the gut microbiome diversity both drop,” said Tian. They theorized it could have to do with providing a source of metal ions, which are abundant in the body and used in enzymes.

    Interestingly, the lab also found that they could make rewriteable circuits by burning patterns into the substance with a laser or drawing them with a pen. The heat or pressure causes the droplets of liquid metal in the substance to melt and join together, forming lines of conductivity. This circuit can then be undone chemically. “That means it is a rewriteable memory; you could think of using this approach for constructing a neuromorphic computing chip from soil-like materials,” said Yiliang Lin, the lead author of the study, formerly a postdoctoral scholar at UChicago and now an assistant professor at the National University of Singapore.

    Moreover, Tian is excited about the nature-inspired approach.

    “Soil is just the beginning; if you think about this as a bigger picture, there are many other places to get inspiration,” he said. “Can we use this knowledge to design new material or chemical systems? There are numerous ways we can learn from nature.”

    The research made use of the University of Chicago Materials Research Science and Engineering Center (MRSEC), the Electron Microscopy Service of the University of Illinois-Chicago, BioCryo facility of Northwestern University, and the Advanced Photon Source and Center for Nanoscale Materials at The DOE’s Argonne National Laboratory.

    Science paper:
    Nature Chemistry

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with University of Chicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    University of Chicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: DOE’s Argonne National Laboratory, DOE’s Fermi National Accelerator Laboratory , and the Marine Biological Laboratory in Woods Hole, Massachusetts.
    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts. The University of Chicago is a private research university in Chicago, Illinois. Founded in 1890, its main campus is located in Chicago’s Hyde Park neighborhood. It enrolled 16,445 students in Fall 2019, including 6,286 undergraduates and 10,159 graduate students. The University of Chicago is ranked among the top universities in the world by major education publications, and it is among the most selective in the United States.

    The university is composed of one undergraduate college and five graduate research divisions, which contain all of the university’s graduate programs and interdisciplinary committees. Chicago has eight professional schools: the Law School, the Booth School of Business, the Pritzker School of Medicine, the School of Social Service Administration, the Harris School of Public Policy, the Divinity School, the Graham School of Continuing Liberal and Professional Studies, and the Pritzker School of Molecular Engineering. The university has additional campuses and centers in London, Paris, Beijing, Delhi, and Hong Kong, as well as in downtown Chicago.

    University of Chicago scholars have played a major role in the development of many academic disciplines, including economics, law, literary criticism, mathematics, religion, sociology, and the behavioralism school of political science, establishing the Chicago schools in various fields. Chicago’s Metallurgical Laboratory produced the world’s first man-made, self-sustaining nuclear reaction in Chicago Pile-1 beneath the viewing stands of the university’s Stagg Field. Advances in chemistry led to the “radiocarbon revolution” in the carbon-14 dating of ancient life and objects. The university research efforts include administration of DOE’s Fermi National Accelerator Laboratory and DOE’s Argonne National Laboratory, as well as the U Chicago Marine Biological Laboratory in Woods Hole, Massachusetts (MBL). The university is also home to the University of Chicago Press, the largest university press in the United States. The Barack Obama Presidential Center is expected to be housed at the university and will include both the Obama presidential library and offices of the Obama Foundation.

    The University of Chicago’s students, faculty, and staff have included 100 Nobel laureates as of 2020, giving it the fourth-most affiliated Nobel laureates of any university in the world. The university’s faculty members and alumni also include 10 Fields Medalists, 4 Turing Award winners, 52 MacArthur Fellows, 26 Marshall Scholars, 27 Pulitzer Prize winners, 20 National Humanities Medalists, 29 living billionaire graduates, and have won eight Olympic medals.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.


    According to the National Science Foundation, University of Chicago spent $423.9 million on research and development in 2018, ranking it 60th in the nation. It is classified among “R1: Doctoral Universities – Very high research activity” and is a founding member of the Association of American Universities and was a member of the Committee on Institutional Cooperation from 1946 through June 29, 2016, when the group’s name was changed to the Big Ten Academic Alliance. The University of Chicago is not a member of the rebranded consortium, but will continue to be a collaborator.

    The university operates more than 140 research centers and institutes on campus. Among these are the Oriental Institute—a museum and research center for Near Eastern studies owned and operated by the university—and a number of National Resource Centers, including the Center for Middle Eastern Studies. Chicago also operates or is affiliated with several research institutions apart from the university proper. The university manages DOE’s Argonne National Laboratory, part of the United States Department of Energy’s national laboratory system, and co-manages DOE’s Fermi National Accelerator Laboratory, a nearby particle physics laboratory, as well as a stake in the Apache Point Observatory in Sunspot, New Mexico.

    SDSS Telescope at Apache Point Observatory, near Sunspot NM, USA, Altitude 2,788 meters (9,147 ft).

    Apache Point Observatory, near Sunspot, New Mexico Altitude 2,788 meters (9,147 ft).

    Faculty and students at the adjacent Toyota Technological Institute at Chicago collaborate with the university. In 2013, the university formed an affiliation with the formerly independent Marine Biological Laboratory in Woods Hole, Mass. Although formally unrelated, the National Opinion Research Center is located on Chicago’s campus.

  • richardmitnick 8:21 pm on October 5, 2022 Permalink | Reply
    Tags: "New 'living' wood could be an environmental superhero", A new building material that sounds like something out of a comic book., , “Living wood" - a first-of-its-kind concept using the natural activity of microbes implanted in wood., , , Michigan State University and Purdue University researchers team up to create a new type of strong sustainable self-healing timber infused with microbes., Microbiology, , The new material be stronger than steel and have the power to heal itself while pulling greenhouse gases out of the atmosphere.   

    From Michigan State University And Purdue University: “New ‘living’ wood could be an environmental superhero” 

    Michigan State Bloc

    From Michigan State University


    Purdue University

    Matt Davenport

    Michigan State University and Purdue University researchers team up to create a new type of strong sustainable self-healing timber infused with microbes.

    Michigan State University and Purdue University are teaming up to create a new building material that sounds like something out of a comic book. It’ll be stronger than steel and have the power to heal itself while pulling greenhouse gases out of the atmosphere.

    As fantastic — or amazing or uncanny — as that might sound, this new material won’t rely on alien technology or supernatural forces. It will, instead, leverage the very natural forces of microbes and timber.

    The U.S. Department of Energy’s Advanced Research Projects Agency-Energy, or ARPA-E, has awarded the research team nearly $1 million to develop “living wood” – a first-of-its-kind concept using the natural activity of microbes implanted in wood. The grant is one of 18 awarded to institutions around the country as part of the competitive Harnessing Emissions into Structures Taking Inputs from the Atmosphere, or HESTIA, program.

    “We know that, naturally, wood decomposes from microbial activity,” said Jinxing Li, an assistant professor in the College of Engineering and the Institute for Quantitative Health Science and Engineering, or IQ. Li is MSU’s lead investigator on the project.

    “But on the other end, there are microbes that can make strong biomaterials,” he said. “So we started asking if we can engineer certain microbes into the wood that will make it stronger instead of degrading it.”

    “We are harnessing the microbial properties that are already there in nature,” said Tian Li, an assistant professor of mechanical engineering at Purdue University and the project’s principal investigator.

    Improving pore performance

    Wood is a naturally porous material, and its pores often store things that don’t benefit timber as a building material. For instance, the pores can store air, which promotes flammability, or moisture, which can accelerate degradation.

    Vittorio Mottini, a biomedical engineering doctoral student in Jinxing Li’s lab at Michigan State University, holds a stack of samples the team is using in their new “living wood” project. The team laser etched an image of Sparty, MSU’s mascot, in the top plank. Credit: Jinxing Li.

    The team’s goal is to introduce microbes into the wood’s porous network, let them gobble up carbon dioxide from the environment and convert that into tough biomaterials that will plug the pores.

    “By filling up this empty volume in wood, you’re going to have improved mechanical strength and flame resistance,” Tian Li said.

    In addition to filling pores, the microbe-made materials could also help repair damage sustained by the wood over its lifetime.

    “And the process itself consumes carbon dioxide, so we’ll be making stronger wood while reducing greenhouse gas emissions,” Jinxing Li said.

    This project and others in the HESTIA program are helping the U.S. reach its zero emissions goal by 2050. Addressing climate change is also a key initiative of the Michigan State University 2030 strategic plan.

    This new Michigan State University and Purdue University collaboration took root a couple of years ago, when Jinxing Li and Tian Li were both on the job market and crossing paths during interviews. They would bounce ideas off each other, and that practice continued after they secured their faculty positions. Building on earlier, unfunded ideas and connecting with new colleagues at their new universities, the researchers developed this successful ARPA-E proposal.

    “Teamwork at its best”

    The living wood will have three components: the wood itself and microbes in the form of bacteria and fungi. At Michigan State University, Jinxing Li connected with Gregory Bonito, an associate professor in the College of Agriculture and Natural Resources; Bige Deniz Unluturk, an assistant professor in the College of Engineering; and Gemma Reguera, a professor in the College of Natural Science.

    “Gemma and Greg are the top brains in microbiology. Gemma focuses on screening and designing the best bacteria for carbon capture and wood enhancement, while Greg focuses on using the fungal network to guide the biological modification of the wood. Bige is an expert in using computer models to guide our design,” Jinxing Li said. “Then at Purdue University, we have experts in wood, building and life-cycle assessment.”

    For his part, Jinxing Li will be developing “bio inks” containing microbes that will be infused into timber.

    “My goal is to engineer a liquid or ink that has the best chemical and physical properties to penetrate the wood’s pores as deeply as we can,” he said. “We can also tune the nutrients in the ink and use synthetic biology to improve the output of the microbes.”

    “The project is a perfect blend of biology and engineering disciplines to make something totally new and transformative,” said Reguera, who recently joined the College of Natural Science’s leadership team as an associate dean. “I am delighted to work with great colleagues at Michigan State University and Purdue University. We were all so excited to join forces — this is teamwork at its best.”

    Both Reguera and Li acknowledged the idea of a “living” wood outperforming other established building materials may sound wild or farfetched. But it’s important to remember the team is trying to coordinate and optimize things nature already does in a way that better serves humanity’s needs.

    Microbes already capture carbon dioxide and synthesize sturdy materials. There are even reports of them doing this naturally in some trees.

    “The microbial activities generate biomaterials that harden the wood and protect the tree from mechanical stress,” Reguera said.

    “They also turn the wood into a very elegant dark color because of the minerals inside. The wood is actually used in furniture and art, particularly in Japan and China,” Jinxing Li said. “We were excited to discover such a phenomenon does exist in nature, thus boosting our confidence of success.”

    Other members of the Purdue University team are Fu Zhao, an associate professor in the School of Mechanical Engineering, and Eva Haviarova, a professor in the Department of Forestry and Natural Resources.

    “Coming together as a team has been a joy,” said Reguera. “We are truly excited about the proposition and the possibilities to advance knowledge in such an innovative way.”

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Purdue University is a public land-grant research university in West Lafayette, Indiana, and the flagship campus of the Purdue University system. The university was founded in 1869 after Lafayette businessman John Purdue donated land and money to establish a college of science, technology, and agriculture in his name. The first classes were held on September 16, 1874, with six instructors and 39 students.

    The main campus in West Lafayette offers more than 200 majors for undergraduates, over 69 masters and doctoral programs, and professional degrees in pharmacy and veterinary medicine. In addition, Purdue has 18 intercollegiate sports teams and more than 900 student organizations. Purdue is a member of the Big Ten Conference and enrolls the second largest student body of any university in Indiana, as well as the fourth largest foreign student population of any university in the United States.

    Purdue University is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. Purdue has 25 American astronauts as alumni and as of April 2019, the university has been associated with 13 Nobel Prizes.

    In 1865, the Indiana General Assembly voted to take advantage of the Morrill Land-Grant Colleges Act of 1862 and began plans to establish an institution with a focus on agriculture and engineering. Communities throughout the state offered facilities and funding in bids for the location of the new college. Popular proposals included the addition of an agriculture department at Indiana State University, at what is now Butler University. By 1869, Tippecanoe County’s offer included $150,000 (equivalent to $2.9 million in 2019) from Lafayette business leader and philanthropist John Purdue; $50,000 from the county; and 100 acres (0.4 km^2) of land from local residents.

    On May 6, 1869, the General Assembly established the institution in Tippecanoe County as Purdue University, in the name of the principal benefactor. Classes began at Purdue on September 16, 1874, with six instructors and 39 students. Professor John S. Hougham was Purdue’s first faculty member and served as acting president between the administrations of presidents Shortridge and White. A campus of five buildings was completed by the end of 1874. In 1875, Sarah A. Oren, the State Librarian of Indiana, was appointed Professor of Botany.

    Purdue issued its first degree, a Bachelor of Science in chemistry, in 1875, and admitted its first female students that autumn.

    Emerson E. White, the university’s president, from 1876 to 1883, followed a strict interpretation of the Morrill Act. Rather than emulate the classical universities, White believed Purdue should be an “industrial college” and devote its resources toward providing a broad, liberal education with an emphasis on science, technology, and agriculture. He intended not only to prepare students for industrial work, but also to prepare them to be good citizens and family members.

    Part of White’s plan to distinguish Purdue from classical universities included a controversial attempt to ban fraternities, which was ultimately overturned by the Indiana Supreme Court, leading to White’s resignation. The next president, James H. Smart, is remembered for his call in 1894 to rebuild the original Heavilon Hall “one brick higher” after it had been destroyed by a fire.

    By the end of the nineteenth century, the university was organized into schools of agriculture, engineering (mechanical, civil, and electrical), and pharmacy; former U.S. President Benjamin Harrison served on the board of trustees. Purdue’s engineering laboratories included testing facilities for a locomotive, and for a Corliss steam engine—one of the most efficient engines of the time. The School of Agriculture shared its research with farmers throughout the state, with its cooperative extension services, and would undergo a period of growth over the following two decades. Programs in education and home economics were soon established, as well as a short-lived school of medicine. By 1925, Purdue had the largest undergraduate engineering enrollment in the country, a status it would keep for half a century.

    President Edward C. Elliott oversaw a campus building program between the world wars. Inventor, alumnus, and trustee David E. Ross coordinated several fundraisers, donated lands to the university, and was instrumental in establishing the Purdue Research Foundation. Ross’s gifts and fundraisers supported such projects as Ross–Ade Stadium, the Memorial Union, a civil engineering surveying camp, and Purdue University Airport. Purdue Airport was the country’s first university-owned airport and the site of the country’s first college-credit flight training courses.

    Amelia Earhart joined the Purdue faculty in 1935 as a consultant for these flight courses and as a counselor on women’s careers. In 1937, the Purdue Research Foundation provided the funds for the Lockheed Electra 10-E Earhart flew on her attempted round-the-world flight.

    Every school and department at the university was involved in some type of military research or training during World War II. During a project on radar receivers, Purdue physicists discovered properties of germanium that led to the making of the first transistor. The Army and the Navy conducted training programs at Purdue and more than 17,500 students, staff, and alumni served in the armed forces. Purdue set up about a hundred centers throughout Indiana to train skilled workers for defense industries. As veterans returned to the university under the G.I. Bill, first-year classes were taught at some of these sites to alleviate the demand for campus space. Four of these sites are now degree-granting regional campuses of the Purdue University system. On-campus housing became racially desegregated in 1947, following pressure from Purdue President Frederick L. Hovde and Indiana Governor Ralph F. Gates.

    After the war, Hovde worked to expand the academic opportunities at the university. A decade-long construction program emphasized science and research. In the late 1950s and early 1960s the university established programs in veterinary medicine, industrial management, and nursing, as well as the first computer science department in the United States. Undergraduate humanities courses were strengthened, although Hovde only reluctantly approved of graduate-level study in these areas. Purdue awarded its first Bachelor of Arts degrees in 1960. The programs in liberal arts and education, formerly administered by the School of Science, were soon split into an independent school.

    The official seal of Purdue was officially inaugurated during the university’s centennial in 1969.


    Consisting of elements from emblems that had been used unofficially for 73 years, the current seal depicts a griffin, symbolizing strength, and a three-part shield, representing education, research, and service.

    In recent years, Purdue’s leaders have continued to support high-tech research and international programs. In 1987, U.S. President Ronald Reagan visited the West Lafayette campus to give a speech about the influence of technological progress on job creation.

    In the 1990s, the university added more opportunities to study abroad and expanded its course offerings in world languages and cultures. The first buildings of the Discovery Park interdisciplinary research center were dedicated in 2004.

    Purdue launched a Global Policy Research Institute in 2010 to explore the potential impact of technical knowledge on public policy decisions.

    On April 27, 2017, Purdue University announced plans to acquire for-profit college Kaplan University and convert it to a public university in the state of Indiana, subject to multiple levels of approval. That school now operates as Purdue University Global, and aims to serve adult learners.


    Purdue’s campus is situated in the small city of West Lafayette, near the western bank of the Wabash River, across which sits the larger city of Lafayette. State Street, which is concurrent with State Road 26, divides the northern and southern portions of campus. Academic buildings are mostly concentrated on the eastern and southern parts of campus, with residence halls and intramural fields to the west, and athletic facilities to the north. The Greater Lafayette Public Transportation Corporation (CityBus) operates eight campus loop bus routes on which students, faculty, and staff can ride free of charge with Purdue Identification.

    Organization and administration

    The university president, appointed by the board of trustees, is the chief administrative officer of the university. The office of the president oversees admission and registration, student conduct and counseling, the administration and scheduling of classes and space, the administration of student athletics and organized extracurricular activities, the libraries, the appointment of the faculty and conditions of their employment, the appointment of all non-faculty employees and the conditions of employment, the general organization of the university, and the planning and administration of the university budget.

    The Board of Trustees directly appoints other major officers of the university including a provost who serves as the chief academic officer for the university, several vice presidents with oversight over specific university operations, and the regional campus chancellors.

    Academic divisions

    Purdue is organized into thirteen major academic divisions.

    College of Agriculture

    The university’s College of Agriculture supports the university’s agricultural, food, life, and natural resource science programs. The college also supports the university’s charge as a land-grant university to support agriculture throughout the state; its agricultural extension program plays a key role in this.

    College of Education

    The College of Education offers undergraduate degrees in elementary education, social studies education, and special education, and graduate degrees in these and many other specialty areas of education. It has two departments: (a) Curriculum and Instruction and (b) Educational Studies.

    College of Engineering

    The Purdue University College of Engineering was established in 1874 with programs in Civil and Mechanical Engineering. The college now offers B.S., M.S., and Ph.D. degrees in more than a dozen disciplines. Purdue’s engineering program has also educated 24 of America’s astronauts, including Neil Armstrong and Eugene Cernan who were the first and last astronauts to have walked on the Moon, respectively. Many of Purdue’s engineering disciplines are recognized as top-ten programs in the U.S. The college as a whole is currently ranked 7th in the U.S. of all doctorate-granting engineering schools by U.S. News & World Report.

    Exploratory Studies

    The university’s Exploratory Studies program supports undergraduate students who enter the university without having a declared major. It was founded as a pilot program in 1995 and made a permanent program in 1999.

    College of Health and Human Sciences

    The College of Health and Human Sciences was established in 2010 and is the newest college. It offers B.S., M.S. and Ph.D. degrees in all 10 of its academic units.

    College of Liberal Arts

    Purdue’s College of Liberal Arts contains the arts, social sciences and humanities programs at the university. Liberal arts courses have been taught at Purdue since its founding in 1874. The School of Science, Education, and Humanities was formed in 1953. In 1963, the School of Humanities, Social Sciences, and Education was established, although Bachelor of Arts degrees had begun to be conferred as early as 1959. In 1989, the School of Liberal Arts was created to encompass Purdue’s arts, humanities, and social sciences programs, while education programs were split off into the newly formed School of Education. The School of Liberal Arts was renamed the College of Liberal Arts in 2005.

    Krannert School of Management

    The Krannert School of Management offers management courses and programs at the undergraduate, master’s, and doctoral levels.

    College of Pharmacy

    The university’s College of Pharmacy was established in 1884 and is the 3rd oldest state-funded school of pharmacy in the United States. The school offers two undergraduate programs leading to the B.S. in Pharmaceutical Sciences (BSPS) and the Doctor of Pharmacy (Pharm.D.) professional degree. Graduate programs leading to M.S. and Ph.D. degrees are offered in three departments (Industrial and Physical Pharmacy, Medicinal Chemistry and Molecular Pharmacology, and Pharmacy Practice). Additionally, the school offers several non-degree certificate programs and post-graduate continuing education activities.

    Purdue Polytechnic Institute

    The Purdue Polytechnic Institute offers bachelor’s, master’s and Ph.D. degrees in a wide range of technology-related disciplines. With over 30,000 living alumni, it is one of the largest technology schools in the United States.

    College of Science

    The university’s College of Science houses the university’s science departments: Biological Sciences; Chemistry; Computer Science; Earth, Atmospheric, & Planetary Sciences; Mathematics; Physics & Astronomy; and Statistics. The science courses offered by the college account for about one-fourth of Purdue’s one million student credit hours.

    College of Veterinary Medicine

    The College of Veterinary Medicine is accredited by the AVMA to offer the Doctor of Veterinary Medicine degree, associate’s and bachelor’s degrees in veterinary technology, master’s and Ph.D. degrees, and residency programs leading to specialty board certification. Within the state of Indiana, the Purdue University College of Veterinary Medicine is the only veterinary school, while the Indiana University School of Medicine is one of only two medical schools (the other being Marian University College of Osteopathic Medicine). The two schools frequently collaborate on medical research projects.

    Honors College

    Purdue’s Honors College supports an honors program for undergraduate students at the university.

    The Graduate School

    The university’s Graduate School supports graduate students at the university.


    The university expended $622.814 million in support of research system-wide in 2017, using funds received from the state and federal governments, industry, foundations, and individual donors. The faculty and more than 400 research laboratories put Purdue University among the leading research institutions. Purdue University is considered by the Carnegie Classification of Institutions of Higher Education to have “very high research activity”. Purdue also was rated the nation’s fourth best place to work in academia, according to rankings released in November 2007 by The Scientist magazine. Purdue’s researchers provide insight, knowledge, assistance, and solutions in many crucial areas. These include, but are not limited to Agriculture; Business and Economy; Education; Engineering; Environment; Healthcare; Individuals, Society, Culture; Manufacturing; Science; Technology; Veterinary Medicine. The Global Trade Analysis Project (GTAP), a global research consortium focused on global economic governance challenges (trade, climate, resource use) is also coordinated by the University. Purdue University generated a record $438 million in sponsored research funding during the 2009–10 fiscal year with participation from National Science Foundation, National Aeronautics and Space Administration, and the Department of Agriculture, Department of Defense, Department of Energy, and Department of Health and Human Services. Purdue University was ranked fourth in Engineering research expenditures amongst all the colleges in the United States in 2017, with a research expenditure budget of 244.8 million. Purdue University established the Discovery Park to bring innovation through multidisciplinary action. In all of the eleven centers of Discovery Park, ranging from entrepreneurship to energy and advanced manufacturing, research projects reflect a large economic impact and address global challenges. Purdue University’s nanotechnology research program, built around the new Birck Nanotechnology Center in Discovery Park, ranks among the best in the nation.

    The Purdue Research Park which opened in 1961 was developed by Purdue Research Foundation which is a private, nonprofit foundation created to assist Purdue. The park is focused on companies operating in the arenas of life sciences, homeland security, engineering, advanced manufacturing and information technology. It provides an interactive environment for experienced Purdue researchers and for private business and high-tech industry. It currently employs more than 3,000 people in 155 companies, including 90 technology-based firms. The Purdue Research Park was ranked first by the Association of University Research Parks in 2004.

    Purdue’s library system consists of fifteen locations throughout the campus, including an archives and special collections research center, an undergraduate library, and several subject-specific libraries. More than three million volumes, including one million electronic books, are held at these locations. The Library houses the Amelia Earhart Collection, a collection of notes and letters belonging to Earhart and her husband George Putnam along with records related to her disappearance and subsequent search efforts. An administrative unit of Purdue University Libraries, Purdue University Press has its roots in the 1960 founding of Purdue University Studies by President Frederick Hovde on a $12,000 grant from the Purdue Research Foundation. This was the result of a committee appointed by President Hovde after the Department of English lamented the lack of publishing venues in the humanities. Since the 1990s, the range of books published by the Press has grown to reflect the work from other colleges at Purdue University especially in the areas of agriculture, health, and engineering. Purdue University Press publishes print and ebook monograph series in a range of subject areas from literary and cultural studies to the study of the human-animal bond. In 1993 Purdue University Press was admitted to membership of the Association of American University Presses. Purdue University Press publishes around 25 books a year and 20 learned journals in print, in print & online, and online-only formats in collaboration with Purdue University Libraries.


    Purdue’s Sustainability Council, composed of University administrators and professors, meets monthly to discuss environmental issues and sustainability initiatives at Purdue. The University’s first LEED Certified building was an addition to the Mechanical Engineering Building, which was completed in Fall 2011. The school is also in the process of developing an arboretum on campus. In addition, a system has been set up to display live data detailing current energy production at the campus utility plant. The school holds an annual “Green Week” each fall, an effort to engage the Purdue community with issues relating to environmental sustainability.


    In its 2021 edition, U.S. News & World Report ranked Purdue University the 5th most innovative national university, tied for the 17th best public university in the United States, tied for 53rd overall, and 114th best globally. U.S. News & World Report also rated Purdue tied for 36th in “Best Undergraduate Teaching, 83rd in “Best Value Schools”, tied for 284th in “Top Performers on Social Mobility”, and the undergraduate engineering program tied for 9th at schools whose highest degree is a doctorate.

    Michigan State Campus

    Michigan State University is a public research university located in East Lansing, Michigan, United States. Michigan State University was founded in 1855 and became the nation’s first land-grant institution under the Morrill Act of 1862, serving as a model for future land-grant universities.

    The university was founded as the Agricultural College of the State of Michigan, one of the country’s first institutions of higher education to teach scientific agriculture. After the introduction of the Morrill Act, the college became coeducational and expanded its curriculum beyond agriculture. Today, Michigan State University is one of the largest universities in the United States (in terms of enrollment) and has approximately 634,300 living alumni worldwide.

    U.S. News & World Report ranks its graduate programs the best in the U.S. in elementary teacher’s education, secondary teacher’s education, industrial and organizational psychology, rehabilitation counseling, African history (tied), supply chain logistics and nuclear physics in 2019. Michigan State University pioneered the studies of packaging, hospitality business, supply chain management, and communication sciences. Michigan State University is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. The university’s campus houses the National Superconducting Cyclotron Laboratory, the W. J. Beal Botanical Garden, the Abrams Planetarium, the Wharton Center for Performing Arts, the Eli and Edythe Broad Art Museum, the Facility for Rare Isotope Beams, and the country’s largest residence hall system.


    The university has a long history of academic research and innovation. In 1877, botany professor William J. Beal performed the first documented genetic crosses to produce hybrid corn, which led to increased yields. Michigan State University dairy professor G. Malcolm Trout improved the process for the homogenization of milk in the 1930s, making it more commercially viable. In the 1960s, Michigan State University scientists developed cisplatin, a leading cancer fighting drug, and followed that work with the derivative, carboplatin. Albert Fert, an Adjunct professor at Michigan State University, was awarded the 2007 Nobel Prize in Physics together with Peter Grünberg.

    Today Michigan State University continues its research with facilities such as the Department of Energy -sponsored Plant Research Laboratory and a particle accelerator called the National Superconducting Cyclotron Laboratory [below]. The Department of Energy Office of Science named Michigan State University as the site for the Facility for Rare Isotope Beams (FRIB). The $730 million facility will attract top researchers from around the world to conduct experiments in basic nuclear science, astrophysics, and applications of isotopes to other fields.

    Michigan State University FRIB [Facility for Rare Isotope Beams] .

    In 2004, scientists at the Cyclotron produced and observed a new isotope of the element germanium, called Ge-60 In that same year, Michigan State University, in consortium with the University of North Carolina at Chapel Hill and the government of Brazil, broke ground on the 4.1-meter Southern Astrophysical Research Telescope (SOAR) in the Andes Mountains of Chile.

    The consortium telescope will allow the Physics & Astronomy department to study galaxy formation and origins. Since 1999, Michigan State University has been part of a consortium called the Michigan Life Sciences Corridor, which aims to develop biotechnology research in the State of Michigan. Finally, the College of Communication Arts and Sciences’ Quello Center researches issues of information and communication management.

    The Michigan State University Spartans compete in the NCAA Division I Big Ten Conference. Michigan State Spartans football won the Rose Bowl Game in 1954, 1956, 1988 and 2014, and the university claims a total of six national football championships. Spartans men’s basketball won the NCAA National Championship in 1979 and 2000 and has attained the Final Four eight times since the 1998–1999 season. Spartans ice hockey won NCAA national titles in 1966, 1986 and 2007. The women’s cross country team was named Big Ten champions in 2019. In the fall of 2019, MSU student-athletes posted all-time highs for graduation success rates and federal graduation rates, according to NCAA statistics.

  • richardmitnick 8:21 am on September 28, 2022 Permalink | Reply
    Tags: "The Secret Microscope That Sparked a Scientific Revolution", A lens 10 times more powerful than anything built before it- a design which wouldn’t be bested for another 150 years., , “Letter 18”: Van Leeuwenhoek (lay-u-when-hoke) had looked everywhere and found what he called animalcules (Latin for “little animals”) in everything., , Despite the prodigious genius of Galileo and Hooke neither produced lenses with anything close to the magnifying power of Van Leeuwenhoek’s., Germ theory, How a Dutch fabric seller became the first person ever to see a microorganism., How did he do it? How did a shopkeeper build a microscopic lens that surpassed the world’s greatest by an order of magnitude?, , Microbiology, Microorganisms are the second most abundant life-forms on Earth., Neutron tomography, Only one lens survives today that produces the 270X magnification Van Leeuwenhoek used to make his greatest discovery., Two of the types that Van Leeuwenhoek identified-protozoa and bacteria-responsible for more than half the deaths of every human who has ever lived., Van Leeuwenhoek became the first person to ever see a microorganism., Van Leeuwenhoek crafted more than 500 microscopes but only 11 of his instruments survive today., Van Leeuwenhoek had no idea about the pivotal role his little animals played., Van Leeuwenhoek zealously guarded how he made his revolutionary lens.,   

    From “WIRED“: “The Secret Microscope That Sparked a Scientific Revolution” 

    From “WIRED“

    Cody Cassidy

    Illustration: Ariel Davis.

    How a Dutch fabric seller made the most powerful magnifying lens of his time—and of the next 150 years—and became the first person ever to see a microorganism.

    “On September 7, 1674, Antonie Van Leeuwenhoek, a fabric seller living just south of The Hague, Netherlands, burst forth from scientific obscurity with a letter to London’s Royal Society detailing an astonishing discovery. While he was examining algae from a nearby lake through his homemade microscope, a creature “with green and very glittering little scales,” which he estimated to be a thousand times smaller than a mite, had darted across his vision.

    Two years later, on October 9, 1676, he followed up with another report so extraordinary that microbiologists today refer to it simply as “Letter 18”: Van Leeuwenhoek (lay-u-when-hoke) had looked everywhere and found what he called animalcules (Latin for “little animals”) in everything.

    He found them in the bellies of other animals, his food, his own mouth, and other people’s mouths. When he noticed a set of remarkably rancid teeth, he asked the owner for a sample of his plaque, put it beneath his lens, and witnessed “an inconceivably great number of little animalcules” moving “so nimbly among one another, that the whole stuff seemed alive.” After a particularly uncomfortable evening, which he blamed on a fatty meal of hot smoked beef, he examined his own stool beneath his lens and saw animalcules that were “somewhat longer than broad, and their belly, which was flat-like, furnished with sundry little paws”—a clear description of what we now know as the parasite giardia.

    With his observations of these fast, fat, and sundry-pawed creatures, Van Leeuwenhoek became the first person to ever see a microorganism—a discovery of almost incalculable significance to human health and our understanding of life on this planet.

    Microorganisms are the second most abundant life-forms on Earth. Two of the types that Van Leeuwenhoek identified—protozoa and bacteria—are by some estimates responsible for more than half the deaths of every human who has ever lived, and yet until he observed them their existence had hardly been seriously postulated, much less proven. Of course, he had no idea about the pivotal role his little animals played, but his revelation provided the foundation for germ theory—the greatest leap forward in the history of medicine. Even more surprising, this monumental discovery was not made by one of the 17th century’s great scientific minds such as Galileo or Isaac Newton. Instead, a secretive, obsessive, self-taught Dutchman of little renown did it by handcrafting a lens 10 times more powerful than anything built before it. His design wouldn’t be bested for another 150 years.

    Yet even as scientists steadily unlocked the secrets of Van Leeuwenhoek’s microworld over the past 350 years, one great mystery eluded them: How the hell did he do it? How did a shopkeeper working during his off hours build a microscopic lens that surpassed the world’s greatest by an order of magnitude?

    While Leeuwenhoek shared nearly everything he saw through his microscope in exactingly detailed letters, he zealously guarded how he made his revolutionary lens. When asked, he declined or obfuscated. Even as his discoveries made him so famous that the King of England requested to see his animalcules and Peter the Great stopped in Delft to see his lenses, the Dutchman never revealed his secrets.

    Van Leeuwenhoek crafted more than 500 microscopes but only 11 of his instruments survive today—and only one that produces the 270X magnification he used to make his greatest discovery. Because that lens remains sandwiched between brass plates, determining its mode of manufacture would require disassembling the microscope—an affront tantamount to scraping paint off the Mona Lisa to determine the sequence of Leonardo’s brush strokes.

    Most of Van Leeuwenhoek’s contemporaries believed he had invented a new glassblowing technique. Clifford Dobell, who wrote the brilliant 1960 biography Antony Van Leeuwenhoek and His Little Animals, postulated that he created his best lenses by simply grinding and polishing them better than anyone else. But in three centuries of speculation, no one could say for sure.

    Tiemen Cocquyt’s interest in Van Leeuwenhoek’s secrets began in the late 2000s, soon after first seeing one of his microscopes, which was then locked away in the basement of the University Museum Utrecht. “How could this toy open up the microworld?” Cocquyt remembers thinking.

    Cocquyt is a curator in the National Museum Boerhaave in Leiden, Netherlands, which houses an array of early optical instruments, including several of the microscopes. He has spent much of his career investigating the origins of Europe’s 17th-century optical revolution, when visual instruments suddenly leaped from simple magnifiers to the great telescopes of Galileo and Christiaan Huygens. (That revolution was inadvertently sparked, Cocquyt says, by Italian advances in making ultra-clear glass.)

    Over Zoom, Cocquyt shows me a replica of a Van Leeuwenhoek microscope, and it does look like a toy—a doll’s hand mirror, to be exact. It’s barely 3 inches tall, with a thin handle leading to a square brass plate. The lens sits beneath a pinhole in the plate’s center, and on the back side a pin for holding samples is connected to a set of screws for focal adjustment.

    When Cocquyt first examined the exposed glass of the lens, he believed its smooth surface indicated it could only have been created by heat. Thus, like many of Van Leeuwenhoek’s contemporaries, he suspected the Dutchman had invented a new glassblowing technique. But without looking inside, he could only speculate.

    The definitive answer, he hoped, might be found with the help of a nuclear reactor.

    At its simplest, a magnifying lens is nothing more than a curved piece of transparent material—usually glass. As light passes through that angled glass, it decelerates, and its path is redirected, or refracted. Depending on its design, a lens can manipulate light in any number of ways, but magnifying lenses like Van Leeuwenhoek’s are spherical—technically called bi-convex—and refract light into a single focal point. “In essence, it serves as a light funnel,” says Steve Ruzin, curator of the Golub Collection of antique microscopes at The University of California-Berkeley. Place your eye at the narrow end of the funnel, and an enormous amount of light arriving from the lens’s focal point crams through your pupil.

    This has two effects. First, the more light your eye receives from an object, the more detail it can perceive. Second, by funneling all the light hitting the lens through the width of your pupil, the image consumes your entire field of view. An object that once projected onto your retina as an undetectable speck now appears in Imax.

    Of course, not all spherical lenses magnify equally. A big lens with a gentle curve refracts the light traveling through it only slightly, and thus barely enlarges the image. A small lens with a sharp curve refracts the light more, enlarging the image a great deal. Moderately powered spherical lenses of the 17th century were about the size of a pea. Van Leeuwenhoek’s greatest lenses were smaller than a sixth that size. At that diameter, construction becomes exceptionally difficult. Even the smallest manufacturing defect—a bubble, scuff, or scratch—could project an enormously disfiguring visual aberration. Larger, less powerful lenses are far more forgiving. They are simple enough to create that they’ve been found among remnants of the oldest civilizations. The earliest-known handcrafted lens is a piece of ground rock crystal capable of 3X magnification that archeologists discovered in a nearly 3,000-year-old Assyrian palace. But because glass occurs naturally, its magnifying power has probably been independently discovered and harnessed many times throughout history.

    Nevertheless, lenses never exceeded much beyond the power of typical modern reading glasses until the early 1590s, when a Dutch lens maker named Hans Janssen built a microscope capable of 9X magnification. Janssen’s contraption inspired many copycats, one of which intrigued Galileo, who modified one of his own telescopes to produce a microscope that one witness claimed could show “flies which appear large as a lamb.”

    In 1665—only a few years before Van Leeuwenhoek peered through his first lens—microscopes emerged into the public consciousness when the polymath Robert Hooke published his surprise bestseller Micrographia. The book included Hooke’s observations, interpretations, illustrations, and even simple instructions on how anyone could make their own lenses: Hold a thin hair of glass over a flame until a bead forms, ‘which will hang at the end of the thread,’ writes Hooke. Snap off the bead, and the result is a spherical magnifier.

    But despite the prodigious genius of Galileo and Hooke neither produced lenses with anything close to the magnifying power of Van Leeuwenhoek’s. “Leeuwenhoek took an opportunity that lay somehow undeveloped in the 1660s and pushed it into the best result that was possible,” Cocquyt says.

    He did so by first eschewing Hooke’s and Galileo’s preference for using multiple lenses arranged in sequence. This design is common in modern microscopes—it’s a bit like projecting an image into another projector—but achieving that magnifying effect without producing huge distortions requires extreme precision. Until that challenge was solved in the early 19th century, single-lens microscopes like Van Leeuwenhoek’s could achieve far superior results.

    Hooke was aware of this shortcoming in his design, yet he still preferred multiple lenses, thanks in part to their ease of use. High-powered lenses have such an extremely short focal point that with just one, the viewer has to place their eye incredibly close to the lens, making blinking difficult. Hooke wrote that he found single-lens microscopes “offensive to my eye.” Ruzin told me that looking through one of Van Leeuwenhoek’s surviving devices is “terribly uncomfortable.”

    Van Leeuwenhoek’s design may have been torture to use, but it was also brilliant—and that brilliance extended beyond his super-powered lenses. Because his device was handheld, he could backlight his sample by holding it up against sunlight or a flame, while his contemporaries’ desk-bound microscopes could only be lit from above. Top-down lighting works well for opaque objects, such as a bee’s stinger, but not for pond water and other translucent samples, where it’s far easier to see microorganisms. To observe these liquids, Van Leeuwenhoek filled a small glass capsule, glued it to the microscope’s pin, and held the instrument up to light.

    “It almost seems as if Van Leeuwenhoek knew that a new microworld was to unfold,” Cocquyt told me. One of his scientific rivals, Johannes Hudde, later said, “isn’t it surprising that we never had the creativity to use these ball lenses to observe little things against the daylight, and that an uneducated and ignorant man such as Van Leeuwenhoek had to be the one to teach this to us.”

    Van Leeuwenhoek was the fifth son of a basket maker, born in the Delft—a small port city in South Holland known for its picturesque waterways, pottery, and beer. At 16 he departed for an apprenticeship as a dry goods seller in Amsterdam, but six years later he returned home, married the daughter of a well-regarded local brewer, and purchased his own fabric shop.

    He spent his twenties growing a successful business but suffered immense personal tragedy. Of the five children he and his wife Barbara had in their 12 years of marriage, four died in infancy; Barbara would soon follow. Few biographical details have survived from his first decade back in Delft, but he held a number of odd jobs in addition to running his draper shop, including working as chief custodian of the local courthouse. A stint as town surveyor offers one clue to Van Leeuwenhoek’s budding scientific potential: proof he had learned geometry.

    His obsession with magnifying lenses began sometime in his mid-thirties. How he came upon it isn’t known. His writings never touch on its origins. Perhaps, as many have speculated, he started using lenses to inspect the quality of his cloth. Or maybe he got caught up in the public mania for microscopes following the publication of Hooke’s Micrographia. Van Leeuwenhoek never mentions the book in any of his letters, but the timing aligns, and he clearly read it: Some of his experiments replicate Hooke’s too closely to be a coincidence. But regardless of how Van Leeuwenhoek got into microscopy, by 1668 he had begun pursuing it with an unusual tenacity. While traveling in England that year, he saw the white cliffs of Dover and felt compelled to examine their chalky slopes beneath his lens: “I observed that chalk consisteth of very small transparent particles; and these transparent particles lying one upon another, is, methinks now, the reason why chalk is white.”

    By 1673, though still operating in complete obscurity, he was already making the world’s most powerful lenses. His obscurity might very well have continued, and the momentous discovery of microorganisms might well have served only to satisfy this curious individual’s psychological compulsion, were it not for a Delft physician named Renier de Graaf.

    De Graaf had come to some renown through his experiments using dyes to determine organ function, and in 1673 he introduced Van Leeuwenhoek to the Royal Society with a note calling him a “most ingenious person … who has devised microscopes which far surpass those which we have hitherto seen.” Following that preamble, Van Leeuwenhoek described the body parts of a louse in his precise-yet-meandering writing style that is, as one biographer notes, “distinguished with a certain business formality, but an almost total lack of coherence.” Over the next year, he sent five more letters to the Royal Society conveying interesting but not particularly controversial observations about the globules in milk and the structure of his fingernails. Then, on September 7, 1674, he sent the letter reporting his shocking discovery: Within an otherwise unremarkable drop of pond water he had seen “glittering” creatures a thousand times smaller than any animal he had previously observed.

    The Society’s secretary, Henry Oldenburg, replied to Van Leeuwenhoek with understandable restraint: “This phenomenon, and some of the following ones seeming to be very extraordinary, the author hath been desired to acquaint us with his method of observing, that others may confirm such observations as these.” Van Leeuwenhoek quickly responded, providing eyewitness accounts of a few local dignitaries who had looked through his lenses—but refused to disclose the secrets of his techniques. “My method for seeing the very smallest animalcules and minute eels, I do not impart to others; nor how to see very many animalcules at one time. That I keep for myself alone,” he wrote. Even when Hooke himself, who learned to speak Dutch just so he could communicate with Van Leeuwenhoek without translation, specifically asked how he made his observations, the stubborn scientist refused for reasons that were, as Hooke later wrote, “best known to himself.”

    Three years later, after a few failed attempts by others, Hooke finally managed to re-create Van Leeuwenhoek’s experiment well enough to prove his observations at a gathering of the Royal Society. The confirmation made the Dutch draper famous, but despite repeated inquiry he took his secrets to the grave.

    In 2018, Cocquyt and his team of researchers set out to reveal them without taking Van Leeuwenhoek’s 350-year-old microscope apart. That’s where the nuclear reactor comes in.

    Neutron tomography is a scanning technique that is as remarkable as it is completely insane. It involves blasting neutrons generated by atomic collisions through a large-caliber barrel—which sticks out of a reactor’s nuclear chamber like the devil’s cannon—and into whatever object needs scanning. Neutrons, beyond irradiating everything they hit, pass right through metals but slam into most low-mass elements, including those in glass. Sensors behind the object detect the neutrons, producing an image that reveals their inner structure. Recent scans have led to the discovery of a dinosaur inside another dinosaur’s belly and the remnants of ice in martian meteorites.

    A nuclear reactor in Van Leeuwenhoek’s hometown of Delft had recently installed a neutron tomography instrument, and Cocquyt used it to examine the Dutchman’s lenses in their birthplace. He first placed a replica microscope in front of the neutron scanner—a test to ensure he didn’t render a priceless piece of scientific history radioactive for 1,000 years. When he next scanned the inventor’s less-powerful microscopes, the images clearly showed the glass to have hard edges and a slight lentil shape. “Exactly what you would expect for a ground lens,” Cocquyt says.

    But on his most powerful lens, neutron tomography revealed that Van Leeuwenhoek used another technique entirely. It was almost perfectly spherical and completely smooth, without the sharp rim inevitably created by a traditional grinding cup. Even more tellingly, the lens retained the faint remnants of a snapped stem, concealed by the brass plates since the day Van Leeuwenhoek had placed it there.

    The stem is a smoking gun. It’s the unavoidable result of forming a lens by melting a thread of glass until a bead forms on its end and then snapping it off. In other words, to make his greatest lens, Van Leeuwenhoek copied Hooke’s simple recipe from the book that likely inspired him. Cocquyt believes this may explain why he was so circumspect when Hooke asked about his methods; he wanted to avoid giving credit to Hooke himself.

    Published in Science Advances [below] last year, Cocquyt’s discovery that Van Leeuwenhoek used a well-known technique reveals a deeper truth about the state of microscopy in the 17th century. It suggests that for all the crafting genius required to make his tiny, super-powered lens, Van Leeuwenhoek’s greatest insight may have been that there was something new to see by making one.

    Fig. 1 The two original Van Leeuwenhoek microscopes that were studied with neutron tomography.
    The lens sits mounted between the brass plates, at the position of the specimen pin. (A) A medium-powered (×118) instrument (Rijksmuseum Boerhaave, Leiden, inventory number V7017). Note that there is a redundant drill hole in the upper left corner of the instrument, not to be confused with its lens aperture, which is directly behind the pin. This microscope is numbered #1 by Van Zuylen. Photo credit: Tom Haartsen Fotografie, Ouderkerk aan de Amstel. (B) The instrument with the highest magnification among the preserved ones (×266) (Utrecht University Museum, inventory number UM-1). This microscope is numbered #3 by Van Zuylen. Photo credit: Utrecht University Museum.

    Fig. 4 Orthogonal cross sections of computed tomography of the Van Leeuwenhoek microscopes from Leiden and Utrecht.
    (A) The cross sections of the lentil-shaped lens of the medium-powered microscope (V7017). (B) The circular cross section of the high-powered microscope (UM-1). The XZ projection shows that this ball-shaped lens has a tiny glass stem connected to it.

    [More instructive images are available in the science paper.]

    This seems intuitive and incredibly obvious to a modern reader. What kind of scientist wouldn’t want to see in greater detail? But before Van Leeuwenhoek, most microscopists used their lenses to reveal greater detail about the visible world—things they could already see to some degree with the naked eye. Their drawings of bee stingers and ant legs do not lose their resemblance to the creatures readers were familiar with. Had they used Van Leeuwenhoek’s high-powered lenses, their depictions would not have been recognizable to anyone.

    Leeuwenhoek had no inkling that minuscule, alien-like creatures awaited him, but his obsession with the microworld drove him to leave the visible world behind and discover a vast new microbial one living under—and inside—our noses.”

    Science paper:
    Science Advances

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

  • richardmitnick 7:59 pm on September 20, 2022 Permalink | Reply
    Tags: "Retooling microbes to upcycle CO2", , , Bioproduction holds exciting potential for upcycling materials such as agricultural waste and captured atmospheric CO2 into precursors to plastics and more., , Microbiology, , , The University of Washington - Chemical Engineering, We need new ways to make important products in order to fully give up fossil fuels.   

    From The University of Washington – Chemical Engineering And The Georgia Institute of Technology: “Retooling microbes to upcycle CO2” 

    From The University of Washington – Chemical Engineering


    The University of Washington College of Engineering


    The Georgia Institute of Technology


    Lindsey Doermann

    Artwork ©Jennifer Sunami.

    The U.S. Department of Energy has awarded a 5-year, $15 million grant to an interdisciplinary, UW-led team of synthetic biologists to engineer microbial genomes that transform CO2 into high-value chemicals. The project, led by chemical engineering professor James Carothers, brings together expertise in CRISPR gene-expression programs, single-cell RNA sequencing, data-driven design, and carbon-conserving pathway engineering. Its aim is to advance fundamental research into large-scale, bio-based chemical production that is not only greener, but also produces better alternatives to petrochemical-based products.

    “This funding supports a high-risk, high-reward program to engineer different microbes to convert CO2 into chemicals,” says Carothers, who is also co-director of UW’s Center for Synthetic Biology and a MolES faculty member. “It will allow a bunch of people who’ve been working on different pieces of the challenge to pull in the same direction for a significant period of time.”

    About 15 percent of every barrel of oil goes into making plastics and other ubiquitous products. That means we need new ways to make important products in order to fully give up fossil fuels. Bioproduction holds exciting potential for upcycling materials such as agricultural waste and captured atmospheric CO2 into precursors to plastics and more. The new paradigm could achieve an impressive trifecta of displacing petroleum, sequestering carbon, and making higher-performing products.

    Over the past several years, the labs of Carothers and UW chemistry professor Jesse Zalatan have been pioneering CRISPR techniques to control gene expression in cells. So far, they can successfully introduce CRISPR gene expression programs that control 6-7 genes in a cell and direct it to perform different processes. For their current undertaking, however, they figure they’ll need to control at least 25 genes to effectively hack the carbon metabolism of microbes.

    With pathway design experts such as Pamela Peralta-Yahya of Georgia Tech, they will explore how to engineer microbes to use all of its CO2 feedstock, as well as convert that carbon into high-value material. Carbon-metabolizing microbes in the wild can waste up to one-third of the carbon they intake as CO2, and the researchers believe they can improve that efficiency in their DNA redesign.

    Rewiring cells so extensively is not only far more difficult, but the results can be unpredictable. That’s where new technology for sequencing RNA in a single cell comes in. Co-PIs Georg Seelig of UW’s electrical and computer engineering department and Anna Kuchina of the Institute for Systems Biology will apply this sequencing technique to decode if their re-programmed cells are behaving as intended. “This is an enabling technology that we didn’t really have before,” says Carothers, and it will allow his team to increase the number of programs they both build and test.

    Additional machine learning, analysis and modeling expertise from researchers at two national labs and Herbert Sauro’s group in UW’s Department of Bioengineering will allow the team to design, build, test, and learn from a large number of iterations. That scale-up in the number of DNA programs to be investigated is crucial to developing fundamental principles, new tools, and design parameters for CRISPR-regulated genomes in all sorts of microbes.

    With this concerted effort on basic research, the next generation of bioproduction — carbon-conserving and versatile — doesn’t have to be relegated to the distant future. “Even things that seemed like science fiction 10 or 15 years ago are realistic today,” Carothers says.

    This project is funded through the Biological and Environmental Research program in the U.S. Department of Energy, as part of a $99.7 million investment in microbial biosystems design for the production of biofuels, bioproducts, and biomaterials. The grant includes PIs from the UW departments of chemical engineering, chemistry, bioengineering, and electrical and computer engineering; Pacific Northwest National Laboratory; Lawrence Berkeley National Laboratory; Institute for Systems Biology; and Georgia Institute of Technology.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Georgia Institute of Technology, is a public research university and institute of technology located in the Midtown neighborhood of Atlanta, Georgia. It is a part of the University System of Georgia and has satellite campuses in Savannah, Georgia; Metz, France; Athlone, Ireland; Shenzhen, China; and Singapore.

    The school was founded in 1885 as the Georgia School of Technology as part of Reconstruction plans to build an industrial economy in the post-Civil War Southern United States. Initially, it offered only a degree in mechanical engineering. By 1901, its curriculum had expanded to include electrical, civil, and chemical engineering. In 1948, the school changed its name to reflect its evolution from a trade school to a larger and more capable technical institute and research university.

    Today, The Georgia Institute of Technology is organized into six colleges and contains 31 departments/units, with emphasis on science and technology. It is well recognized for its degree programs in engineering, computing, industrial administration, the sciences and design. Georgia Tech is ranked 8th among all public national universities in the United States, 35th among all colleges and universities in the United States by U.S. News & World Report rankings, and 34th among global universities in the world by Times Higher Education rankings. Georgia Tech has been ranked as the “smartest” public college in America (based on average standardized test scores).

    Student athletics, both organized and intramural, are a part of student and alumni life. The school’s intercollegiate competitive sports teams, the four-time football national champion Yellow Jackets, and the nationally recognized fight song “Ramblin’ Wreck from Georgia Tech”, have helped keep Georgia Tech in the national spotlight. Georgia Tech fields eight men’s and seven women’s teams that compete in the NCAA Division I athletics and the Football Bowl Subdivision. Georgia Tech is a member of the Coastal Division in the Atlantic Coast Conference.

    About the Department

    Educating top-quality engineers is the department’s highest priority. Our students work with internationally-recognized faculty and participate in specialist Ph.D. training in molecular engineering, nanotechnology and clean energy. ChemE faculty and students play key roles in interdisciplinary centers on campus including the Molecular Engineering and Sciences Institute, the Clean Energy Institute, the eScience Institute and the Center for the Science of Synthesis Across Scales. Through continuous curriculum improvements, world-class research and startup creation, we are charting the future of chemical engineering.


    The University of Washington Chemical Engineering community values diversity and inclusiveness, collegiality and respect. Quality and excellence are prized, together with multidisciplinary thinking and entrepreneurial spirit. The department strives for continuous improvement for creativity and innovation in both undergraduate and graduate research and education.


    To educate the next generation of visionaries, prepare students for leadership in diverse careers, create knowledge, and provide multidisciplinary solutions to broad societal problems.

    About The University of Washington College of Engineering

    Mission, Facts, and Stats
    Our mission is to develop outstanding engineers and ideas that change the world.

    275 faculty (25.2% women)

    128 NSF Young Investigator/Early Career Awards since 1984
    32 Sloan Foundation Research Awards
    2 MacArthur Foundation Fellows (2007 and 2011)

    A national leader in educating engineers, each year the College turns out new discoveries, inventions and top-flight graduates, all contributing to the strength of our economy and the vitality of our community.

    Engineering innovation

    Engineers drive the innovation economy and are vital to solving society’s most challenging problems. The College of Engineering is a key part of a world-class research university in a thriving hub of aerospace, biotechnology, global health and information technology innovation. Over 50% of The University of Washington startups in FY18 came from the College of Engineering.

    Commitment to diversity and access

    The College of Engineering is committed to developing and supporting a diverse student body and faculty that reflect and elevate the populations we serve. We are a national leader in women in engineering; 25.5% of our faculty are women compared to 17.4% nationally. We offer a robust set of diversity programs for students and faculty.
    Research and commercialization

    The University of Washington is an engine of economic growth, today ranked third in the nation for the number of startups launched each year, with 65 companies having been started in the last five years alone by UW students and faculty, or with technology developed here. The College of Engineering is a key contributor to these innovations, and engineering faculty, students or technology are behind half of all UW startups. In FY19, UW received $1.58 billion in total research awards from federal and nonfederal sources.


    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.

    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

    The University of Washington is a public research university in Seattle, Washington, United States. Founded in 1861, University of Washington is one of the oldest universities on the West Coast; it was established in downtown Seattle approximately a decade after the city’s founding to aid its economic development. Today, the university’s 703-acre main Seattle campus is in the University District above the Montlake Cut, within the urban Puget Sound region of the Pacific Northwest. The university has additional campuses in Tacoma and Bothell. Overall, University of Washington encompasses over 500 buildings and over 20 million gross square footage of space, including one of the largest library systems in the world with more than 26 university libraries, as well as the UW Tower, lecture halls, art centers, museums, laboratories, stadiums, and conference centers. The university offers bachelor’s, master’s, and doctoral degrees through 140 departments in various colleges and schools, sees a total student enrollment of roughly 46,000 annually, and functions on a quarter system.

    University of Washington is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, UW spent $1.41 billion on research and development in 2018, ranking it 5th in the nation. As the flagship institution of the six public universities in Washington state, it is known for its medical, engineering and scientific research as well as its highly competitive computer science and engineering programs. Additionally, University of Washington continues to benefit from its deep historic ties and major collaborations with numerous technology giants in the region, such as Amazon, Boeing, Nintendo, and particularly Microsoft. Paul G. Allen, Bill Gates and others spent significant time at Washington computer labs for a startup venture before founding Microsoft and other ventures. The University of Washington’s 22 varsity sports teams are also highly competitive, competing as the Huskies in the Pac-12 Conference of the NCAA Division I, representing the United States at the Olympic Games, and other major competitions.

    The university has been affiliated with many notable alumni and faculty, including 21 Nobel Prize laureates and numerous Pulitzer Prize winners, Fulbright Scholars, Rhodes Scholars and Marshall Scholars.

    In 1854, territorial governor Isaac Stevens recommended the establishment of a university in the Washington Territory. Prominent Seattle-area residents, including Methodist preacher Daniel Bagley, saw this as a chance to add to the city’s potential and prestige. Bagley learned of a law that allowed United States territories to sell land to raise money in support of public schools. At the time, Arthur A. Denny, one of the founders of Seattle and a member of the territorial legislature, aimed to increase the city’s importance by moving the territory’s capital from Olympia to Seattle. However, Bagley eventually convinced Denny that the establishment of a university would assist more in the development of Seattle’s economy. Two universities were initially chartered, but later the decision was repealed in favor of a single university in Lewis County provided that locally donated land was available. When no site emerged, Denny successfully petitioned the legislature to reconsider Seattle as a location in 1858.

    In 1861, scouting began for an appropriate 10 acres (4 ha) site in Seattle to serve as a new university campus. Arthur and Mary Denny donated eight acres, while fellow pioneers Edward Lander, and Charlie and Mary Terry, donated two acres on Denny’s Knoll in downtown Seattle. More specifically, this tract was bounded by 4th Avenue to the west, 6th Avenue to the east, Union Street to the north, and Seneca Streets to the south.

    John Pike, for whom Pike Street is named, was the university’s architect and builder. It was opened on November 4, 1861, as the Territorial University of Washington. The legislature passed articles incorporating the University, and establishing its Board of Regents in 1862. The school initially struggled, closing three times: in 1863 for low enrollment, and again in 1867 and 1876 due to funds shortage. University of Washington awarded its first graduate Clara Antoinette McCarty Wilt in 1876, with a bachelor’s degree in science.

    19th century relocation

    By the time Washington state entered the Union in 1889, both Seattle and the University had grown substantially. University of Washington’s total undergraduate enrollment increased from 30 to nearly 300 students, and the campus’s relative isolation in downtown Seattle faced encroaching development. A special legislative committee, headed by University of Washington graduate Edmond Meany, was created to find a new campus to better serve the growing student population and faculty. The committee eventually selected a site on the northeast of downtown Seattle called Union Bay, which was the land of the Duwamish, and the legislature appropriated funds for its purchase and construction. In 1895, the University relocated to the new campus by moving into the newly built Denny Hall. The University Regents tried and failed to sell the old campus, eventually settling with leasing the area. This would later become one of the University’s most valuable pieces of real estate in modern-day Seattle, generating millions in annual revenue with what is now called the Metropolitan Tract. The original Territorial University building was torn down in 1908, and its former site now houses the Fairmont Olympic Hotel.

    The sole-surviving remnants of Washington’s first building are four 24-foot (7.3 m), white, hand-fluted cedar, Ionic columns. They were salvaged by Edmond S. Meany, one of the University’s first graduates and former head of its history department. Meany and his colleague, Dean Herbert T. Condon, dubbed the columns as “Loyalty,” “Industry,” “Faith”, and “Efficiency”, or “LIFE.” The columns now stand in the Sylvan Grove Theater.

    20th century expansion

    Organizers of the 1909 Alaska-Yukon-Pacific Exposition eyed the still largely undeveloped campus as a prime setting for their world’s fair. They came to an agreement with Washington’s Board of Regents that allowed them to use the campus grounds for the exposition, surrounding today’s Drumheller Fountain facing towards Mount Rainier. In exchange, organizers agreed Washington would take over the campus and its development after the fair’s conclusion. This arrangement led to a detailed site plan and several new buildings, prepared in part by John Charles Olmsted. The plan was later incorporated into the overall University of Washington campus master plan, permanently affecting the campus layout.

    Both World Wars brought the military to campus, with certain facilities temporarily lent to the federal government. In spite of this, subsequent post-war periods were times of dramatic growth for the University. The period between the wars saw a significant expansion of the upper campus. Construction of the Liberal Arts Quadrangle, known to students as “The Quad,” began in 1916 and continued to 1939. The University’s architectural centerpiece, Suzzallo Library, was built in 1926 and expanded in 1935.

    After World War II, further growth came with the G.I. Bill. Among the most important developments of this period was the opening of the School of Medicine in 1946, which is now consistently ranked as the top medical school in the United States. It would eventually lead to the University of Washington Medical Center, ranked by U.S. News and World Report as one of the top ten hospitals in the nation.

    In 1942, all persons of Japanese ancestry in the Seattle area were forced into inland internment camps as part of Executive Order 9066 following the attack on Pearl Harbor. During this difficult time, university president Lee Paul Sieg took an active and sympathetic leadership role in advocating for and facilitating the transfer of Japanese American students to universities and colleges away from the Pacific Coast to help them avoid the mass incarceration. Nevertheless, many Japanese American students and “soon-to-be” graduates were unable to transfer successfully in the short time window or receive diplomas before being incarcerated. It was only many years later that they would be recognized for their accomplishments during the University of Washington’s Long Journey Home ceremonial event that was held in May 2008.

    From 1958 to 1973, the University of Washington saw a tremendous growth in student enrollment, its faculties and operating budget, and also its prestige under the leadership of Charles Odegaard. University of Washington student enrollment had more than doubled to 34,000 as the baby boom generation came of age. However, this era was also marked by high levels of student activism, as was the case at many American universities. Much of the unrest focused around civil rights and opposition to the Vietnam War. In response to anti-Vietnam War protests by the late 1960s, the University Safety and Security Division became the University of Washington Police Department.

    Odegaard instituted a vision of building a “community of scholars”, convincing the Washington State legislatures to increase investment in the University. Washington senators, such as Henry M. Jackson and Warren G. Magnuson, also used their political clout to gather research funds for the University of Washington. The results included an increase in the operating budget from $37 million in 1958 to over $400 million in 1973, solidifying University of Washington as a top recipient of federal research funds in the United States. The establishment of technology giants such as Microsoft, Boeing and Amazon in the local area also proved to be highly influential in the University of Washington’s fortunes, not only improving graduate prospects but also helping to attract millions of dollars in university and research funding through its distinguished faculty and extensive alumni network.

    21st century

    In 1990, the University of Washington opened its additional campuses in Bothell and Tacoma. Although originally intended for students who have already completed two years of higher education, both schools have since become four-year universities with the authority to grant degrees. The first freshman classes at these campuses started in fall 2006. Today both Bothell and Tacoma also offer a selection of master’s degree programs.

    In 2012, the University began exploring plans and governmental approval to expand the main Seattle campus, including significant increases in student housing, teaching facilities for the growing student body and faculty, as well as expanded public transit options. The University of Washington light rail station was completed in March 2015, connecting Seattle’s Capitol Hill neighborhood to the University of Washington Husky Stadium within five minutes of rail travel time. It offers a previously unavailable option of transportation into and out of the campus, designed specifically to reduce dependence on private vehicles, bicycles and local King County buses.

    University of Washington has been listed as a “Public Ivy” in Greene’s Guides since 2001, and is an elected member of the American Association of Universities. Among the faculty by 2012, there have been 151 members of American Association for the Advancement of Science, 68 members of the National Academy of Sciences, 67 members of the American Academy of Arts and Sciences, 53 members of the National Academy of Medicine, 29 winners of the Presidential Early Career Award for Scientists and Engineers, 21 members of the National Academy of Engineering, 15 Howard Hughes Medical Institute Investigators, 15 MacArthur Fellows, 9 winners of the Gairdner Foundation International Award, 5 winners of the National Medal of Science, 7 Nobel Prize laureates, 5 winners of Albert Lasker Award for Clinical Medical Research, 4 members of the American Philosophical Society, 2 winners of the National Book Award, 2 winners of the National Medal of Arts, 2 Pulitzer Prize winners, 1 winner of the Fields Medal, and 1 member of the National Academy of Public Administration. Among UW students by 2012, there were 136 Fulbright Scholars, 35 Rhodes Scholars, 7 Marshall Scholars and 4 Gates Cambridge Scholars. UW is recognized as a top producer of Fulbright Scholars, ranking 2nd in the US in 2017.

    The Academic Ranking of World Universities (ARWU) has consistently ranked University of Washington as one of the top 20 universities worldwide every year since its first release. In 2019, University of Washington ranked 14th worldwide out of 500 by the ARWU, 26th worldwide out of 981 in the Times Higher Education World University Rankings, and 28th worldwide out of 101 in the Times World Reputation Rankings. Meanwhile, QS World University Rankings ranked it 68th worldwide, out of over 900.

    U.S. News & World Report ranked University of Washington 8th out of nearly 1,500 universities worldwide for 2021, with University of Washington’s undergraduate program tied for 58th among 389 national universities in the U.S. and tied for 19th among 209 public universities.

    In 2019, it ranked 10th among the universities around the world by SCImago Institutions Rankings. In 2017, the Leiden Ranking, which focuses on science and the impact of scientific publications among the world’s 500 major universities, ranked University of Washington 12th globally and 5th in the U.S.

    In 2019, Kiplinger Magazine’s review of “top college values” named University of Washington 5th for in-state students and 10th for out-of-state students among U.S. public colleges, and 84th overall out of 500 schools. In the Washington Monthly National University Rankings University of Washington was ranked 15th domestically in 2018, based on its contribution to the public good as measured by social mobility, research, and promoting public service.

  • richardmitnick 1:18 pm on August 23, 2022 Permalink | Reply
    Tags: "Unearthing the secrets of plant health and carbon storage with rhizosphere-on-a-chip", For ORNL’s bioenergy research the impact is “a better understanding of how plants microbes and their chemical states relate to each other., Microbiology, ORNL scientists using the platform have found high concentrations of amino acids very close to plant roots — a phenomenon that had previously gone unseen., Rhizospheres emit atmospheric carbon into the soil., The big science tools we have here at the national lab and the serendipitous interactions with scientists pushes us along developing new research platforms., , The rhizosphere is one of the most complex systems in the world in which plant roots take up water and nutrients., Using mass spectrometry scientsts are able to eavesdrop on the conversation between these living systems of plants fungi and microbes.   

    From The DOE’s Oak Ridge National Laboratory: “Unearthing the secrets of plant health and carbon storage with rhizosphere-on-a-chip” 

    From The DOE’s Oak Ridge National Laboratory


    Kimberly A Askey

    The rhizosphere-on-a-chip platform. Credit: ORNL.

    Scientists at the Department of Energy’s Oak Ridge National Laboratory have created a miniaturized environment to study the ecosystem around poplar tree roots for insights into plant health and soil carbon sequestration.

    The “rhizosphere-on-a-chip” platform builds on the lab’s history of constructing lab-on-a-chip devices, in which tiny channels and chambers are etched on a microscope slide so that fluids can be introduced and studied for biochemical separations research and testing.

    In this case scientists are mimicking soil on the chip, sprouting poplar trees in the fluid and studying the environment around their roots, known as the rhizosphere. Scientists observe how microbes are interacting with chemicals within the artificial soil to influence plant health and gain a better understanding of the processes governing carbon storage.

    The rhizosphere is one of the most complex systems in the world in which plant roots take up water and nutrients, create a unique physical and biogeochemical environment for microbes, and emit atmospheric carbon into the soil. There may be hundreds of different bacteria that are growing near plant roots or are influenced by the rhizosphere. ORNL researchers are particularly interested in how microbes like bacteria and fungi interact with plant roots to help plants grow faster and survive threats like drought, wildfire, disease and pests.

    “It’s very difficult to see inside soil to observe those processes as the particles are very dark,” said Jack Cahill of ORNL’s Biosciences Division.

    “Rhizosphere-on-a-chip” allows the researchers to create model systems and then use techniques like mass spectrometry to identify chemicals and their distribution around plant roots. That knowledge informs an analysis of chemical interactions in the ecosystem, such as chemical signals by plants in order to attract or repel microbes. Using the chip system also conserves samples by removing only a tiny amount of the liquid from the platform and allowing plants to continue growing.

    Setting the table for science

    “Using mass spectrometry scientsts are able to eavesdrop on the conversation between these living systems of plants fungi and microbes to figure out how and why they do the crazy things they do,” said Scott Retterer, who heads the Nanomaterials Synthesis Section at ORNL and co-developed the platform using the nanofabrication facilities within the Center for Nanophase Materials Sciences, a DOE Office of Science user facility at ORNL.

    “I describe it as a fancy fishbowl,” Retterer said. “Except our fishbowl is the size of a microscope slide, and the tools we use to shape that environment are the same kinds of tools Intel uses to make microchips. Then we throw a dinner party in the fishbowl for bacteria, plants and fungi. We set the table with food and watch how that influences the party.”

    ORNL scientists using the platform have found, for instance, high concentrations of amino acids very close to plant roots — a phenomenon that had previously gone unseen. While those compounds were once thought to move and dilute across the soil structure, that is not the case, Cahill said.

    “The fluid dynamics in these chip systems are confined, so it lets us see concentrations of molecules that you wouldn’t necessarily anticipate without being able to directly measure it using the chip platform,” he added.

    Gaining insights for better plants

    For ORNL’s bioenergy research the impact is “a better understanding of how plants microbes and their chemical states relate to each other. If we can predict and control this, we can use that knowledge to develop plants that are environmentally resistant, that grow faster, are cheaper to produce and (are) therefore more suited for economical production of sustainable biofuels,” Cahill said.

    The spatial imaging techniques developed by ORNL researchers could also be used for pharmacological research to determine whether drug compounds are effectively reaching and being absorbed by the human body as part of their “tumor-on-a-chip” experiments, which could replace similar testing in mice.

    “The big science tools we have here at the national lab and the serendipitous interactions with scientists of all walks is really what pushes us along in developing these new research platforms,” Retterer said. “It’s like a big scientific potluck where you bring your favorite dish and share it. They all get mixed together on the plate and then suddenly, we’ve got this great rhizosphere-on-a-chip.”

    Retterer also emphasized the role of research teams, who “bring these big ideas to life. It’s our technicians, post-docs and students who make interdisciplinary research possible.”

    Colleagues working on the project at ORNL include Jennifer Morrell-Falvey, Muneeba Khalid, Courtney Walton, Sara Jawdy and Amber Webb. Jayde Aufrecht co-developed the platform as a graduate student at ORNL and now works at The DOE’s Pacific Northwest National Laboratory, where she continues to collaborate on the research. The project was supported by the DOE Office of Science’s Biological and Environmental Research program.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Established in 1942, The DOE’s Oak Ridge National Laboratory is the largest science and energy national laboratory in the Department of Energy system (by size) and third largest by annual budget. It is located in the Roane County section of Oak Ridge, Tennessee. Its scientific programs focus on materials, neutron science, energy, high-performance computing, systems biology and national security, sometimes in partnership with the state of Tennessee, universities and other industries.

    ORNL has several of the world’s top supercomputers, including Summit, ranked by the TOP500 as Earth’s second-most powerful.

    ORNL OLCF IBM Q AC922 SUMMIT supercomputer, was No.1 on the TOP500..

    The lab is a leading neutron and nuclear power research facility that includes the Spallation Neutron Source and High Flux Isotope Reactor.

    ORNL Spallation Neutron Source annotated.

    It hosts the Center for Nanophase Materials Sciences, the BioEnergy Science Center, and the Consortium for Advanced Simulation of Light Water Nuclear Reactors.

    ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.

    Areas of research

    ORNL conducts research and development activities that span a wide range of scientific disciplines. Many research areas have a significant overlap with each other; researchers often work in two or more of the fields listed here. The laboratory’s major research areas are described briefly below.

    Chemical sciences – ORNL conducts both fundamental and applied research in a number of areas, including catalysis, surface science and interfacial chemistry; molecular transformations and fuel chemistry; heavy element chemistry and radioactive materials characterization; aqueous solution chemistry and geochemistry; mass spectrometry and laser spectroscopy; separations chemistry; materials chemistry including synthesis and characterization of polymers and other soft materials; chemical biosciences; and neutron science.
    Electron microscopy – ORNL’s electron microscopy program investigates key issues in condensed matter, materials, chemical and nanosciences.
    Nuclear medicine – The laboratory’s nuclear medicine research is focused on the development of improved reactor production and processing methods to provide medical radioisotopes, the development of new radionuclide generator systems, the design and evaluation of new radiopharmaceuticals for applications in nuclear medicine and oncology.
    Physics – Physics research at ORNL is focused primarily on studies of the fundamental properties of matter at the atomic, nuclear, and subnuclear levels and the development of experimental devices in support of these studies.
    Population – ORNL provides federal, state and international organizations with a gridded population database, called Landscan, for estimating ambient population. LandScan is a raster image, or grid, of population counts, which provides human population estimates every 30 x 30 arc seconds, which translates roughly to population estimates for 1 kilometer square windows or grid cells at the equator, with cell width decreasing at higher latitudes. Though many population datasets exist, LandScan is the best spatial population dataset, which also covers the globe. Updated annually (although data releases are generally one year behind the current year) offers continuous, updated values of population, based on the most recent information. Landscan data are accessible through GIS applications and a USAID public domain application called Population Explorer.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: