Tagged: Geology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:12 am on July 2, 2022 Permalink | Reply
    Tags: "Study:: Seismic waves from earthquakes reveal changes in the Earth’s outer core", , , , Geology,   

    From The Virginia Polytechnic Institute and State University: “Study:: Seismic waves from earthquakes reveal changes in the Earth’s outer core” 

    From The Virginia Polytechnic Institute and State University

    23 Jun 2022
    Suzanne Irby

    Our understanding of convection in the Earth’s outer core and its role in driving the planet’s magnetic field is based on theory. Scientists have never directly observed convective flows or how they may be changing. Geoscientist Ying Zhou puts proof forward for the first time.

    1
    The blue path illustrates a core-penetrating seismic wave moving through a region in the outer core, where the seismic speed has increased because a low-density flow has moved into the region. Image courtesy of Ying Zhou.

    In May 1997, a large earthquake shook the Kermadec Islands region in the South Pacific Ocean. A little over 20 years later, in September 2018, a second big earthquake hit the same location, its waves of seismic energy emanating from the same region.

    Though the earthquakes occurred two decades apart, because they occurred in the same region, they’d be expected to send seismic waves through the Earth’s layers at the same speed, said Ying Zhou, a geoscientist with the Department of Geosciences in the Virginia Tech College of Science.

    But in data recorded at four of more than 150 Global Seismographic Network stations that log seismic vibrations in real time, Zhou found an anomaly among the twin events: During the 2018 earthquake, a set of seismic waves known as SKS waves traveled about one second faster than their counterparts had in 1997.

    According to Zhou, whose findings were recently published in Nature Communications Earth & Environment, that one-second discrepancy in SKS wave travel time gives us an important and unprecedented glimpse of what’s happening deeper in the Earth’s interior, in its outer core.

    2
    Blue lines are seismic rays in the outer core, where core-penetrating seismic waves moved through that region faster in 2018 than in 1997. Image courtesy of Ying Zhou.

    What’s inside counts

    The outer core is sandwiched between the mantle, the thick layer of rock underneath the Earth’s crust, and the inner core, the planet’s deepest interior layer. It’s composed mainly of liquid iron that undergoes convection, or fluid flow, as the Earth cools. This resulting swirling of liquid metal produces electrical currents responsible for generating the Earth’s magnetic field, which protects the planet and all life on it from harmful radiation and solar winds.

    Without its magnetic field, the Earth could not sustain life, and without the moving flows of liquid metal in the outer core, the magnetic field wouldn’t work. But scientific understanding of this dynamic is based on simulations, said Zhou, an associate professor. “We only know that in theory, if you have convection in the outer core, you’ll be able to generate the magnetic field,” she said.

    Scientists also have only been able to speculate about the source of gradual changes in strength and direction of the magnetic field that have been observed, which likely involves changing flows in the outer core.

    “If you look at the north geomagnetic pole, it’s currently moving at a speed of about 50 kilometers [31 miles] per year,” Zhou said. “It’s moving away from Canada and toward Siberia. The magnetic field is not the same every day. It’s changing. Since it’s changing, we also speculate that convection in the outer core is changing with time, but there’s no direct evidence. We’ve never seen it.”

    Zhou set out to find that evidence. The changes happening in the outer core aren’t dramatic, she said, but they’re worth confirming and fundamentally understanding. In seismic waves and their changes in speed on a decade time scale, Zhou saw a means for “direct sampling” of the outer core. That’s because the SKS waves she studied pass right through it.

    “SKS” represents three phases of the wave: First it goes through the mantle as an S wave, or shear wave; then into the outer core as a compressional wave; then back out through the mantle as an S wave. How fast these waves travel depend in part on the density of the outer core that’s in their path. If the density is lower in a region of the outer core as the wave penetrates it, the wave will travel faster, just as the anomalous SKS waves did in 2018.

    “Something has changed along the path of that wave, so it can go faster now,” Zhou said.

    To Zhou, the difference in wave speed points to low-density regions forming in the outer core in the 20 years since the 1997 earthquake. That higher SKS wave speed during the 2018 earthquake can be attributed to the release of light elements such as hydrogen, carbon, and oxygen in the outer core during convection that takes place as the Earth cools, she said.

    “The material that was there 20 years ago is no longer there,” Zhou said. “This is new material, and it’s lighter. These light elements will move upward and change the density in the region where they’re located.”

    To Zhou, it’s evidence that movement really is happening in the core, and it’s changing over time, as scientists have theorized. “We’re able to see it now,” she said. “If we’re able to see it from seismic waves, in the future, we could set up seismic stations and monitor that flow.”

    What’s next

    That’s Zhou’s next effort. Using a method of wave measurement known as interferometry, her team plans to analyze continuous seismic recordings from two seismic stations, one of which will serve as a “virtual” earthquake source, she said.

    “We can use earthquakes, but the limitation of relying on earthquake data is that we can’t really control the locations of the earthquakes,” Zhou said. “But we can control the locations of seismic stations. We can put the stations anywhere we want them to be, with the wave path from one station to the other station going through the outer core. If we monitor that over time, then we can see how core-penetrating seismic waves between those two stations change. With that, we will be better able to see the movement of fluid in the outer core with time.”

    Related story

    Virginia Tech scientist: Yellowstone super-volcano eruptions were produced by gigantic ancient oceanic plate

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Virginia Polytechnic Institute and State University is a public, land-grant, research university with its main campus in Blacksburg, Virginia. It also has educational facilities in six regions statewide and a study-abroad site in Riva San Vitale, Switzerland. Through its Corps of Cadets ROTC program, Virginia Tech is also designated as one of six senior military colleges in the United States.

    Virginia Tech offers 280 undergraduate and graduate degree programs to some 34,400 students and manages a research portfolio of $522 million, placing it 46th among universities in the U.S. for research expenditures and the only Virginia school listed among the top 50. Virginia Tech is the state’s second-largest public university by enrollment. The deadliest mass shooting on an American college campus occurred on campus in 2007, during which a student fatally shot 32 other students and faculty members and wounded 23 other people.

     
  • richardmitnick 12:31 pm on July 1, 2022 Permalink | Reply
    Tags: "Unlocking the Magmatic Secrets of Antarctica’s Mount Erebus", , , CO2-rich volcanic systems are less well understood than the more common H2O-rich arc volcanoes., Data taken by measuring natural electromagnetic waves traveling through Earth revealed the volcano’s magmatic system brings lava much closer to the surface than subduction arc volcanoes., , , , Geology, One of Antarctica’s only active volcanoes is home to one of the few long-lasting lava lakes on Earth., Past studies into Erebus relied on seismic data to probe its inner workings., Research has revealed the plumbing underneath Mount Erebus that keeps the lake full., The snow-covered Mount Erebus is the southernmost active volcano on Earth and shares Antarctica’s Ross Island with three other volcanoes-all dormant., Unlike arc volcanoes such as the Cascades in western North America Erebus has very little water in its magma. Instead it’s rich in carbon dioxide (CO2)., Unprecedented images of Mount Erebus’s inner workings show the unique trappings of a CO2-rich rift volcano.,   

    From “Eos” : “Unlocking the Magmatic Secrets of Antarctica’s Mount Erebus” 

    Eos news bloc

    From “Eos”

    AT

    AGU

    22 June 2022
    Jenessa Duncombe

    Unprecedented images of Mount Erebus’s inner workings show the unique trappings of a CO2-rich rift volcano.

    1
    Mount Erebus, Antarctica, is the most southerly active volcano on Earth. Credit: Josh Landis/National Science Foundation, Public Domain.

    One of Antarctica’s only active volcanoes is home to one of the few long-lasting lava lakes on Earth. The lake occasionally blasts out lava bombs from the summit crater of Mount Erebus, 3,794 meters high.

    Now, research has revealed the plumbing underneath Mount Erebus that keeps the lake full.

    Data taken by measuring natural electromagnetic waves traveling through Earth revealed the volcano’s magmatic system brings lava much closer to the surface than subduction arc volcanoes.

    Unlike arc volcanoes such as the Cascades in western North America Erebus has very little water in its magma. Instead it’s rich in carbon dioxide (CO2). This dryness allows magma to travel much closer to the surface than water (H2O)-rich volcanoes that stall out at about 5 kilometers below the surface.

    CO2-rich volcanic systems are less well understood than the more common H2O-rich arc volcanoes.

    “If we can also get an idea of where the magmatic system is, you can better understand the monitoring data when these systems enter periods of unrest,” said lead scientist and geophysicist Graham Hill at the Institute of Geophysics at the Czech Academy of Sciences.

    “This is the first great image of one,” said geophysicist Phil Wannamaker at the University of Utah, who participated in the work.

    2
    Erebus has long been familiar to polar explorers—this photo was taken by Robert Falcon Scott on his ill-fated expedition to the South Pole. Credit: Robert Falcon Scott/Wikimedia, Public Domain.

    Fire and Ice

    The snow-covered Mount Erebus is the southernmost active volcano on Earth and shares Antarctica’s Ross Island with three other volcanoes-all dormant. Mount Erebus overlooks McMurdo Station, and nearby sits the hut built by legendary polar explorer Ernest Shackleton and his men before they summited Erebus in 1908. Although its name ultimately harkens to Greek mythology’s personification of darkness, Captain James Ross named the volcano after one of his ships, the HMS Erebus, in 1841.

    Past studies into Erebus relied on seismic data to probe its inner workings. Scientists use seismic waves traveling through Earth to ascertain the material below. But Erebus has very few crustal-scale earthquakes, hamstringing the method to shallow depths.

    So Hill, Wannamaker, and their colleagues took a different approach: magnetotelluric data.

    During summers between 2014 and 2017, the team visited Erebus via helicopter. They visited 129 sites on Erebus and Ross Island, taking exhaustive measurements. “Hats off to Graham for the energy and drive to cover the entire island,” said Wannamaker.

    At each site, they’d recorded the natural electromagnetic waves that travel through Earth from the Sun and distant lightning bolts. “A lightning bolt is an impulsive antenna, if you will, and electromagnetic waves ripple out from that into your survey area,” said Wannamaker. Solar weather also produces waves that propagate through Earth.

    Captured by custom “voltmeters” on the surface and fed into a modeling algorithm, the waves can create a 3D picture of the electrical resistivity of material below, “kind of like a CT scan of the human body,” said Wannamaker.

    4
    Mount Erebus is fed by a column of hotter rock extending vertically from at least 100 kilometers deep (yellow) and melted magma that extends up through the crust (red). Yellow and red represent unusually low resistivity below Erebus (10 and 5 ohm meters, respectively). DGFZ = Discovery Graben fault zone; EFZ = Erebus fault zone. Credit: Hillet al., 2022.

    The picture below Erebus is “very glorious.” Areas with lower electrical resistivity indicate the material is hot and, to some extent, melted. The image shows a hot region that extends to at least 100 kilometers below Erebus. There is also a channel of melt going upward through the crust that feeds the volcano, the new research shows.

    5
    A languid plume rises from Mount Erebus’s lava lake in 1983. Credit: Bill Rose/Michigan Technological University, CC BY-NC-ND 4.0

    Using this method gave the researchers a much higher resolution: It gave them a continuous view from a few hundred meters to about 100 kilometers deep. “That’s an advantage over other geophysical methods, such as most seismology,” said Wannamaker. The resolution got fuzzier the deeper they looked, however.

    In the image, a lower-resistivity area, likely magma, shoots toward the surface. This magma feeds the lava lake.

    Clues from the Deep

    “This material has been lurking down there,” said Wannamaker. This image “gives us some picture of the longer-term volatile recycling of the mantle and the crust, in particular to CO2.”

    More commonly studied volcanoes like the Cascades are rich in water. Water is very volatile (it easily bubbles out of the magma like fizz in a soda), and as the pressure drops as it gets nearer to the surface, it can suddenly saturate the magma and cause an explosive event, like the 1980 eruption of Mount Saint Helens.

    Erebus is different. The magma’s birthplace in the upper mantle has little water, and the small amount of water it possesses disappears as the magma rises to the surface. The result is dry magma “reaching all the way to the very near surface, which is what we haven’t seen elsewhere.” The team published the results in Nature Communications last month.

    Another notable feature in the new Erebus image is the magma skewing eastward as it nears the surface. For more than 200 million years, Antarctica was splitting in two at the West Antarctic Rift. The separation stopped 11 million years ago, but local movements on Terror Rift, which underlies Mount Erebus and other volcanoes, continued.

    The magma reaches a choke point at the intersection of faults. There, magma and gas pressure build up in the lower middle crust. Occasionally, the magma and gas break through, carrying magma to the lake.

    “Accessible” Mount Erebus

    “This is a landmark study,” said Rick Aster, a professor at Colorado State University who was not involved in the new work. The latest findings address “one of the most remarkable features of Erebus volcano—that it has been able to sustain a convecting phonologic lava lake in its inner crater for at least many decades.”

    Although the new data are the most detailed yet, the researchers can’t see deeper into the mantle unless they take measurements over a larger footprint. A bigger footprint would require taking more measurements on sea ice and the ice shelf, like they did for about a dozen sites in the present study.

    Surprisingly, Erebus is “one of the more accessible systems in the world, if not the most accessible,” said Hill. Although it’s far away, “you have none of the other restrictions of forest cover and accessibility. You can pretty much go anywhere on Erebus to make your measurement.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    “Eos” is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

     
  • richardmitnick 4:47 pm on June 30, 2022 Permalink | Reply
    Tags: "A landslide and a tsunami and then a flood:: the massive hazard cascade that shook the world", A signal comparable to a magnitude-5.0 earthquake emanated from deep within the southern Coast Mountains of British Columbia., , , British Columbia’s mountainous terrain is no stranger to landslides or floods and tsunamis., , , Geology, New research reveals the intensity of British Columbia’s 2020 hazard cascade as members of the Homalco First Nation continue to pick up the pieces., , Recovery could take decades., , The fifth largest landslide on record in British Columbia., The sheer scale of the cascade can be hard to comprehend even when viewing the valley from a helicopter.,   

    From temblor : “A landslide and a tsunami and then a flood:: the massive hazard cascade that shook the world” 

    1

    From temblor

    June 30, 2022
    Lauren A. Koenig, Ph.D.

    New research reveals the intensity of British Columbia’s 2020 hazard cascade as members of the Homalco First Nation continue to pick up the pieces.

    In late November, 2020 a geological mystery appeared on seismographs around the world. A signal comparable to a magnitude-5.0 earthquake emanated from deep within the southern Coast Mountains of British Columbia (B.C.), Canada.

    The cause of this ground-shaking event remained unknown for two weeks, until forestry workers passing through traditional territory of the Homalco First Nation happened upon its aftermath in the Elliot Creek watershed. The glacier-carved valley, narrowly framed by mile-high rocky walls, was decimated by a massive hazard cascade — a chain reaction of geological events — involving a landslide, tsunami, outburst flood and sediment plume. What was once a verdant environment for the region’s famed salmon is now an ashen alley that fans out into a sea of debris.

    The sheer scale of the cascade can be hard to comprehend even when viewing the valley from a helicopter, said Marten Geertsema, a research geomorphologist with the B.C. Ministry of Forests and the lead author of a new study that describes the events [Geophysical Research Letters].


    British Columbia 2020 hazard cascade aftermath.

    “It’s staggering when you just stand there,” said Geertsema. “It’s kind of hard to wrap your head around how powerful that all was.”

    Homalco First Nation and researchers from the B.C.-based Hakai Institute are assessing the long-term ecological impacts on the region, especially for fisheries. Ongoing unstable conditions in the valley suggest that recovery could take decades. Moreover, Elliot Creek has erratically changed course numerous times in the past year, which can make restoration plans irrelevant essentially overnight.

    “If we get a massive rain event like last year, the whole river could change again and it’s not money well spent,” said Erik Blaney, an environmental technical of the Tla’amin Nation who was contracted by the Homalco Nation to lead assessment and recovery efforts. “You’re playing with mother nature.”

    A cascade of unfortunate events

    The hazard cascade began with the fifth largest landslide on record in British Columbia, involving, according to study co-author Göran Ekström, the equivalent of the combined mass of Canada’s 25 million cars. Ekström is a seismologist at Columbia University. Nearly half of the debris crashed onto the toe of West Grenville glacier, near the base of the valley. The rest ran up the opposite wall of the valley before gravity carried it down once again. Traveling at more than 100 miles per hour (170 kilometers per hour), the landslide plunged into an alpine lake left behind by the glacier during its retreat over the last century.

    Like the splash after a jump off a high-dive, the landslide’s impact was fast and violent: the rockfall catapulted enough water out of the lake to reduce its area by nearly 20%, creating islands in its newly shallow depths. In just over a minute, a tsunami wave towering more than 330 feet (100 meters) high sped across the lake before cresting the opposite shore, creating what is known as a glacial lake outburst flood.

    2
    The view down valley showing the eroded creek bed and lack of vegetation. Credit: Briar Stewart/CBC.

    The water was then forcefully channeled down the confines of the valley like a marble in a Rube Goldberg machine. Though it generally takes millennia for water to steadily erode deep ravines, the flood gouged out a groove 160 feet (50 meters) deep in the stream bed within minutes.

    As the creek bank gave way and trees were mowed down, the flood became a thick soup of debris that left an enormous fan of sand, mud and wood extending from the mouth of the valley. It contaminated local fresh and marine waterways, creating a sediment plume — suspended organic materials — that destroyed water quality.

    “You need certain elements in place to create these massive domino effects,” said Geerstema. “This goes to show us the damaging footprint of these events when you have water in the right place.”

    Looking with LiDAR

    The landslide’s remote location meant that fortunately no one was around when the hazard cascade took place. To map out what happened, Geertsema, who regularly scours satellite imagery for evidence of landslides in high-mountain areas, worked with members of Canada’s First Nations, the Hakai Institute and other institutions around the world to simulate the events using numerical modeling and LiDAR — a survey method that pulses lasers from an airplane to create 3D representations of the surface.

    Geertsema, who compared post-landslide images with those taken only one year prior, said the team was very lucky to have such detailed imagery. “We wouldn’t have been able to produce these models without that input data,” he said.

    3
    The view of the lake looking towards West Grenville glacier and the sheer vertical slide face. Credit: Brian Menounos.

    Fewer glaciers, more hazards

    British Columbia’s mountainous terrain is no stranger to landslides or floods and tsunamis. Climate change, however, has exacerbated the impacts and frequency of these hazards — especially as warming temperatures cause ground-stabilizing permafrost and glaciers to melt away.

    As glaciers retreat, weak bedrock loses the support that prevents its collapse, said Tom Millard, a research geomorphologist with the B.C. Ministry of Forests and co-author of the study. The meltwater lakes left in their wake, such as at Elliot Creek, also tend to get larger, which ratchets up the hazard of a potential tsunami or outburst flood.

    Living with the consequences

    The chain reaction of geological events created a cascade of ecological effects that will linger for decades. The flood destroyed most of the salmon population, as well as the spawning habitat that they return to each year. The fish are unable to survive current turbidity levels, which remain more than 25 times higher than normal (especially after a rainstorm), said Blaney.

    More than food, salmon are an important part of the Homalco First Nation’s culture and livelihood. Grizzly bears’ annual feasting on salmon draws in tourism that helps the community thrive. But this past year, low salmon numbers meant the bears went hungry.

    As recovery effort coordinator, Blaney has ideas for sustainable ways to help the ecosystem return to some semblance of normal. One solution is to prune crab apple trees as another source of food for the bears.

    “It’s something that our people did before,” said Blaney.

    Blaney is also considering installing a platform that would provide a safer way for researchers to monitor the salmon population, diverting the creek through a more stable area with remaining trees, and planting native vegetation to control for erosion.

    Finding funding for these projects, however, is only one obstacle that is part of an even greater challenge: living with the increasingly stark effects of climate change. Severe wildfires in summer 2021 burned across B.C., and the Coast Mountains are experiencing some of the highest rates of glacier loss on earth, meaning hazard cascades like the one at Elliot Creek could become more frequent.

    “I don’t think the average person living in a city can really understand or see the changes that we’re seeing and the devastation that they’re having on salmon and other important pieces of our survival and our culture,” said Blaney. “We’re seeing change, and it’s happening fast and it’s beyond any scope we could have imagined.”

    Further Reading

    For the full multimedia feature by the Hakai Institute — which includes video, interactive maps, and more — click here.

    Geertsema, M., Menounos, B., Bullard, G., Carrivick, J. L., Clague, J. J., Dai, C., … & Sharp, M. A. (2022). The 28 November 2020 landslide, tsunami, and outburst flood–a hazard cascade associated with rapid deglaciation at Elliot Creek, British Columbia, Canada. Geophysical research letters, 49(6), e2021GL096716.

    Menounos, B., Hugonnet, R., Shean, D., Gardner, A., Howat, I., Berthier, E., … & Dehecq, A. (2019). Heterogeneous changes in western North American glaciers linked to decadal variability in zonal wind strength. Geophysical Research Letters, 46(1), 200-209.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    _____________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:

    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

     
  • richardmitnick 8:33 am on June 30, 2022 Permalink | Reply
    Tags: "Four questions for Liz Hadly", , , , Geology, , ,   

    From Stanford University: “Four questions for Liz Hadly” 

    Stanford University Name

    From Stanford University

    June 29, 2022
    Tom Johnson

    1
    Elizabeth Hadly (Image credit: L.A. Cicero)

    Earlier this month, heavy rains fell on melting snowpack in and around Yellowstone National Park, resulting in widespread flooding, mudslides, and damage to infrastructure. The storm, described by the U.S. Geological Survey as a 1 in 500-year event, forced the evacuation of visitors and closed parts of the park indefinitely. We checked in with Stanford Biologist and longtime Yellowstone resident Liz Hadly to better understand the event and its connection to global climate change.

    “We used to say that our best guess for tomorrow’s weather is what happened yesterday. We can’t say that anymore,” said Hadly, reflecting on the flooding event and how it fits into the context of global climate change. “The magnitude and rate of change right now are way beyond anything we humans have seen. We’re pushing the envelope of human knowledge.”

    How has the flooding changed Yellowstone?

    On the geologic time scale, Yellowstone will prevail. Yes, there will be more erosion, and because of global climate change, there will continue to be more fires and floods. But the park itself will prevail.

    Let’s talk about change from the human perspective. Forty years ago, when I first lived and worked in Yellowstone, we had two million visitors per year. There are now four million visitors per year. We’re going to need to rethink not just this park, but how to support a massive influx of tourism in all of our parks. How do we decide which of these four million people make it into Yellowstone when suddenly half the roads are closed for as much as a year? How do we feed them when the small towns that serve tourists are cut off from stores in larger cities nearby? How do we process sewage when infrastructure is badly damaged? I think managing visitation numbers in the face of increasing environmental disturbance has got to be in the cards.

    Was the recent flooding in Yellowstone connected to global climate change?

    Yes, it was. As the planet warms, our atmosphere tries to equalize gradients of temperature and distribute that extra heat around the globe. As it does so, we have air masses that transition rapidly between extremes – hot and cold, higher and lower moisture. These intense concentrations and adjustments can cause violent swings in weather. Because warmer air can hold more moisture, it also can release a lot more water in the form of precipitation.

    In the case of the Yellowstone flooding, warmer temperatures and earlier snowmelt are causing peak runoff on the Yellowstone River to occur earlier in the year. On top of that, the park had an unusually late heavy snowfall. The weather then quickly warmed and accelerated snowmelt. When we saw an atmospheric river bring massive amounts of rain to the area, snowmelt intensified. The combined result was the massive flooding we witnessed.

    Some scientists say that the flooding in Yellowstone represents a 500-year or even a 1000-year event. Are we seeing more of these events?

    I’m a big fan of using the paleo record to contextualize the kinds of changes we’re seeing ­– not just the magnitude of changes, but also the rate of those changes. The amount of warming we’re likely to see on the planet by the year 2100 is equivalent to the warming of 14 to 15 million years ago. One or two degrees of warming might not seem like a lot, but when you average that around the globe, and you think about the last time average temperatures were that high ­­– that gives you a perspective that’s beyond the evolutionary age of most mammalian species. A new “normal” isn’t the right word because it suggests some sort of a dynamic equilibrium. We are headed toward an unknown future that will be characterized by unexpected, dramatic change over centuries, not one of stability. Humans just aren’t used to dealing with that.

    What is the significance of the Yellowstone flooding?

    For anybody who’s traveled to the park – and a lot of people in the U.S. have been there – all they have to do is look at the Mammoth to Gardiner Road. It’s one of the main entrances into the park, and Mammoth is where the park’s headquarters are. People seeing those images are going to realize that the road connecting the park’s headquarters to the neighboring community that houses and feeds park managers is gone. They’ll also wonder, how will I get into and out of the park?

    It’s also important for future visitors. Yellowstone is booked out years in advance. To suddenly cut visitation in half due to infrastructure damage – people will be impacted. Ironically, this year marks the 150-year anniversary of Yellowstone, the world’s first national park. We all own this place – it is the ‘backyard’ of all Americans. That kind of symbolism may bring more awareness to the seriousness of global climate change, and how even the most protected places on Earth are not safe from our impact on the planet.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus

    Leland and Jane Stanford founded Stanford University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members.

    Stanford University, officially Leland Stanford Junior University, is a private research university located in Stanford, California. Stanford was founded in 1885 by Leland and Jane Stanford in memory of their only child, Leland Stanford Jr., who had died of typhoid fever at age 15 the previous year. Stanford is consistently ranked as among the most prestigious and top universities in the world by major education publications. It is also one of the top fundraising institutions in the country, becoming the first school to raise more than a billion dollars in a year.

    Leland Stanford was a U.S. senator and former governor of California who made his fortune as a railroad tycoon. The school admitted its first students on October 1, 1891, as a coeducational and non-denominational institution. Stanford University struggled financially after the death of Leland Stanford in 1893 and again after much of the campus was damaged by the 1906 San Francisco earthquake. Following World War II, provost Frederick Terman supported faculty and graduates’ entrepreneurialism to build self-sufficient local industry in what would later be known as Silicon Valley.

    The university is organized around seven schools: three schools consisting of 40 academic departments at the undergraduate level as well as four professional schools that focus on graduate programs in law, medicine, education, and business. All schools are on the same campus. Students compete in 36 varsity sports, and the university is one of two private institutions in the Division I FBS Pac-12 Conference. It has gained 126 NCAA team championships, and Stanford has won the NACDA Directors’ Cup for 24 consecutive years, beginning in 1994–1995. In addition, Stanford students and alumni have won 270 Olympic medals including 139 gold medals.

    As of October 2020, 84 Nobel laureates, 28 Turing Award laureates, and eight Fields Medalists have been affiliated with Stanford as students, alumni, faculty, or staff. In addition, Stanford is particularly noted for its entrepreneurship and is one of the most successful universities in attracting funding for start-ups. Stanford alumni have founded numerous companies, which combined produce more than $2.7 trillion in annual revenue, roughly equivalent to the 7th largest economy in the world (as of 2020). Stanford is the alma mater of one president of the United States (Herbert Hoover), 74 living billionaires, and 17 astronauts. It is also one of the leading producers of Fulbright Scholars, Marshall Scholars, Rhodes Scholars, and members of the United States Congress.

    Stanford University was founded in 1885 by Leland and Jane Stanford, dedicated to Leland Stanford Jr, their only child. The institution opened in 1891 on Stanford’s previous Palo Alto farm.

    Jane and Leland Stanford modeled their university after the great eastern universities, most specifically Cornell University. Stanford opened being called the “Cornell of the West” in 1891 due to faculty being former Cornell affiliates (either professors, alumni, or both) including its first president, David Starr Jordan, and second president, John Casper Branner. Both Cornell and Stanford were among the first to have higher education be accessible, nonsectarian, and open to women as well as to men. Cornell is credited as one of the first American universities to adopt this radical departure from traditional education, and Stanford became an early adopter as well.

    Despite being impacted by earthquakes in both 1906 and 1989, the campus was rebuilt each time. In 1919, The Hoover Institution on War, Revolution and Peace was started by Herbert Hoover to preserve artifacts related to World War I. The Stanford Medical Center, completed in 1959, is a teaching hospital with over 800 beds. The DOE’s SLAC National Accelerator Laboratory (originally named the Stanford Linear Accelerator Center), established in 1962, performs research in particle physics.

    Land

    Most of Stanford is on an 8,180-acre (12.8 sq mi; 33.1 km^2) campus, one of the largest in the United States. It is located on the San Francisco Peninsula, in the northwest part of the Santa Clara Valley (Silicon Valley) approximately 37 miles (60 km) southeast of San Francisco and approximately 20 miles (30 km) northwest of San Jose. In 2008, 60% of this land remained undeveloped.

    Stanford’s main campus includes a census-designated place within unincorporated Santa Clara County, although some of the university land (such as the Stanford Shopping Center and the Stanford Research Park) is within the city limits of Palo Alto. The campus also includes much land in unincorporated San Mateo County (including the SLAC National Accelerator Laboratory and the Jasper Ridge Biological Preserve), as well as in the city limits of Menlo Park (Stanford Hills neighborhood), Woodside, and Portola Valley.

    Non-central campus

    Stanford currently operates in various locations outside of its central campus.

    On the founding grant:

    Jasper Ridge Biological Preserve is a 1,200-acre (490 ha) natural reserve south of the central campus owned by the university and used by wildlife biologists for research.
    SLAC National Accelerator Laboratory is a facility west of the central campus operated by the university for the Department of Energy. It contains the longest linear particle accelerator in the world, 2 miles (3.2 km) on 426 acres (172 ha) of land.
    Golf course and a seasonal lake: The university also has its own golf course and a seasonal lake (Lake Lagunita, actually an irrigation reservoir), both home to the vulnerable California tiger salamander. As of 2012 Lake Lagunita was often dry and the university had no plans to artificially fill it.

    Off the founding grant:

    Hopkins Marine Station, in Pacific Grove, California, is a marine biology research center owned by the university since 1892.
    Study abroad locations: unlike typical study abroad programs, Stanford itself operates in several locations around the world; thus, each location has Stanford faculty-in-residence and staff in addition to students, creating a “mini-Stanford”.

    Redwood City campus for many of the university’s administrative offices located in Redwood City, California, a few miles north of the main campus. In 2005, the university purchased a small, 35-acre (14 ha) campus in Midpoint Technology Park intended for staff offices; development was delayed by The Great Recession. In 2015 the university announced a development plan and the Redwood City campus opened in March 2019.

    The Bass Center in Washington, DC provides a base, including housing, for the Stanford in Washington program for undergraduates. It includes a small art gallery open to the public.

    China: Stanford Center at Peking University, housed in the Lee Jung Sen Building, is a small center for researchers and students in collaboration with Beijing University [北京大学](CN) (Kavli Institute for Astronomy and Astrophysics at Peking University(CN) (KIAA-PKU).

    Administration and organization

    Stanford is a private, non-profit university that is administered as a corporate trust governed by a privately appointed board of trustees with a maximum membership of 38. Trustees serve five-year terms (not more than two consecutive terms) and meet five times annually.[83] A new trustee is chosen by the current trustees by ballot. The Stanford trustees also oversee the Stanford Research Park, the Stanford Shopping Center, the Cantor Center for Visual Arts, Stanford University Medical Center, and many associated medical facilities (including the Lucile Packard Children’s Hospital).

    The board appoints a president to serve as the chief executive officer of the university, to prescribe the duties of professors and course of study, to manage financial and business affairs, and to appoint nine vice presidents. The provost is the chief academic and budget officer, to whom the deans of each of the seven schools report. Persis Drell became the 13th provost in February 2017.

    As of 2018, the university was organized into seven academic schools. The schools of Humanities and Sciences (27 departments), Engineering (nine departments), and Earth, Energy & Environmental Sciences (four departments) have both graduate and undergraduate programs while the Schools of Law, Medicine, Education and Business have graduate programs only. The powers and authority of the faculty are vested in the Academic Council, which is made up of tenure and non-tenure line faculty, research faculty, senior fellows in some policy centers and institutes, the president of the university, and some other academic administrators, but most matters are handled by the Faculty Senate, made up of 55 elected representatives of the faculty.

    The Associated Students of Stanford University (ASSU) is the student government for Stanford and all registered students are members. Its elected leadership consists of the Undergraduate Senate elected by the undergraduate students, the Graduate Student Council elected by the graduate students, and the President and Vice President elected as a ticket by the entire student body.

    Stanford is the beneficiary of a special clause in the California Constitution, which explicitly exempts Stanford property from taxation so long as the property is used for educational purposes.

    Endowment and donations

    The university’s endowment, managed by the Stanford Management Company, was valued at $27.7 billion as of August 31, 2019. Payouts from the Stanford endowment covered approximately 21.8% of university expenses in the 2019 fiscal year. In the 2018 NACUBO-TIAA survey of colleges and universities in the United States and Canada, only Harvard University, the University of Texas System, and Yale University had larger endowments than Stanford.

    In 2006, President John L. Hennessy launched a five-year campaign called the Stanford Challenge, which reached its $4.3 billion fundraising goal in 2009, two years ahead of time, but continued fundraising for the duration of the campaign. It concluded on December 31, 2011, having raised a total of $6.23 billion and breaking the previous campaign fundraising record of $3.88 billion held by Yale. Specifically, the campaign raised $253.7 million for undergraduate financial aid, as well as $2.33 billion for its initiative in “Seeking Solutions” to global problems, $1.61 billion for “Educating Leaders” by improving K-12 education, and $2.11 billion for “Foundation of Excellence” aimed at providing academic support for Stanford students and faculty. Funds supported 366 new fellowships for graduate students, 139 new endowed chairs for faculty, and 38 new or renovated buildings. The new funding also enabled the construction of a facility for stem cell research; a new campus for the business school; an expansion of the law school; a new Engineering Quad; a new art and art history building; an on-campus concert hall; a new art museum; and a planned expansion of the medical school, among other things. In 2012, the university raised $1.035 billion, becoming the first school to raise more than a billion dollars in a year.

    Research centers and institutes

    DOE’s SLAC National Accelerator Laboratory
    Stanford Research Institute, a center of innovation to support economic development in the region.
    Hoover Institution, a conservative American public policy institution and research institution that promotes personal and economic liberty, free enterprise, and limited government.
    Hasso Plattner Institute of Design, a multidisciplinary design school in cooperation with the Hasso Plattner Institute of University of Potsdam [Universität Potsdam](DE) that integrates product design, engineering, and business management education).
    Martin Luther King Jr. Research and Education Institute, which grew out of and still contains the Martin Luther King Jr. Papers Project.
    John S. Knight Fellowship for Professional Journalists
    Center for Ocean Solutions
    Together with UC Berkeley and UC San Francisco, Stanford is part of the Biohub, a new medical science research center founded in 2016 by a $600 million commitment from Facebook CEO and founder Mark Zuckerberg and pediatrician Priscilla Chan.

    Discoveries and innovation

    Natural sciences

    Biological synthesis of deoxyribonucleic acid (DNA) – Arthur Kornberg synthesized DNA material and won the Nobel Prize in Physiology or Medicine 1959 for his work at Stanford.
    First Transgenic organism – Stanley Cohen and Herbert Boyer were the first scientists to transplant genes from one living organism to another, a fundamental discovery for genetic engineering. Thousands of products have been developed on the basis of their work, including human growth hormone and hepatitis B vaccine.
    Laser – Arthur Leonard Schawlow shared the 1981 Nobel Prize in Physics with Nicolaas Bloembergen and Kai Siegbahn for his work on lasers.
    Nuclear magnetic resonance – Felix Bloch developed new methods for nuclear magnetic precision measurements, which are the underlying principles of the MRI.

    Computer and applied sciences

    ARPANETStanford Research Institute, formerly part of Stanford but on a separate campus, was the site of one of the four original ARPANET nodes.

    Internet—Stanford was the site where the original design of the Internet was undertaken. Vint Cerf led a research group to elaborate the design of the Transmission Control Protocol (TCP/IP) that he originally co-created with Robert E. Kahn (Bob Kahn) in 1973 and which formed the basis for the architecture of the Internet.

    Frequency modulation synthesis – John Chowning of the Music department invented the FM music synthesis algorithm in 1967, and Stanford later licensed it to Yamaha Corporation.

    Google – Google began in January 1996 as a research project by Larry Page and Sergey Brin when they were both PhD students at Stanford. They were working on the Stanford Digital Library Project (SDLP). The SDLP’s goal was “to develop the enabling technologies for a single, integrated and universal digital library” and it was funded through the National Science Foundation, among other federal agencies.

    Klystron tube – invented by the brothers Russell and Sigurd Varian at Stanford. Their prototype was completed and demonstrated successfully on August 30, 1937. Upon publication in 1939, news of the klystron immediately influenced the work of U.S. and UK researchers working on radar equipment.

    RISCARPA funded VLSI project of microprocessor design. Stanford and University of California- Berkeley are most associated with the popularization of this concept. The Stanford MIPS would go on to be commercialized as the successful MIPS architecture, while Berkeley RISC gave its name to the entire concept, commercialized as the SPARC. Another success from this era were IBM’s efforts that eventually led to the IBM POWER instruction set architecture, PowerPC, and Power ISA. As these projects matured, a wide variety of similar designs flourished in the late 1980s and especially the early 1990s, representing a major force in the Unix workstation market as well as embedded processors in laser printers, routers and similar products.
    SUN workstation – Andy Bechtolsheim designed the SUN workstation for the Stanford University Network communications project as a personal CAD workstation, which led to Sun Microsystems.

    Businesses and entrepreneurship

    Stanford is one of the most successful universities in creating companies and licensing its inventions to existing companies; it is often held up as a model for technology transfer. Stanford’s Office of Technology Licensing is responsible for commercializing university research, intellectual property, and university-developed projects.

    The university is described as having a strong venture culture in which students are encouraged, and often funded, to launch their own companies.

    Companies founded by Stanford alumni generate more than $2.7 trillion in annual revenue, equivalent to the 10th-largest economy in the world.

    Some companies closely associated with Stanford and their connections include:

    Hewlett-Packard, 1939, co-founders William R. Hewlett (B.S, PhD) and David Packard (M.S).
    Silicon Graphics, 1981, co-founders James H. Clark (Associate Professor) and several of his grad students.
    Sun Microsystems, 1982, co-founders Vinod Khosla (M.B.A), Andy Bechtolsheim (PhD) and Scott McNealy (M.B.A).
    Cisco, 1984, founders Leonard Bosack (M.S) and Sandy Lerner (M.S) who were in charge of Stanford Computer Science and Graduate School of Business computer operations groups respectively when the hardware was developed.[163]
    Yahoo!, 1994, co-founders Jerry Yang (B.S, M.S) and David Filo (M.S).
    Google, 1998, co-founders Larry Page (M.S) and Sergey Brin (M.S).
    LinkedIn, 2002, co-founders Reid Hoffman (B.S), Konstantin Guericke (B.S, M.S), Eric Lee (B.S), and Alan Liu (B.S).
    Instagram, 2010, co-founders Kevin Systrom (B.S) and Mike Krieger (B.S).
    Snapchat, 2011, co-founders Evan Spiegel and Bobby Murphy (B.S).
    Coursera, 2012, co-founders Andrew Ng (Associate Professor) and Daphne Koller (Professor, PhD).

    Student body

    Stanford enrolled 6,996 undergraduate and 10,253 graduate students as of the 2019–2020 school year. Women comprised 50.4% of undergraduates and 41.5% of graduate students. In the same academic year, the freshman retention rate was 99%.

    Stanford awarded 1,819 undergraduate degrees, 2,393 master’s degrees, 770 doctoral degrees, and 3270 professional degrees in the 2018–2019 school year. The four-year graduation rate for the class of 2017 cohort was 72.9%, and the six-year rate was 94.4%. The relatively low four-year graduation rate is a function of the university’s coterminal degree (or “coterm”) program, which allows students to earn a master’s degree as a 1-to-2-year extension of their undergraduate program.

    As of 2010, fifteen percent of undergraduates were first-generation students.

    Athletics

    As of 2016 Stanford had 16 male varsity sports and 20 female varsity sports, 19 club sports and about 27 intramural sports. In 1930, following a unanimous vote by the Executive Committee for the Associated Students, the athletic department adopted the mascot “Indian.” The Indian symbol and name were dropped by President Richard Lyman in 1972, after objections from Native American students and a vote by the student senate. The sports teams are now officially referred to as the “Stanford Cardinal,” referring to the deep red color, not the cardinal bird. Stanford is a member of the Pac-12 Conference in most sports, the Mountain Pacific Sports Federation in several other sports, and the America East Conference in field hockey with the participation in the inter-collegiate NCAA’s Division I FBS.

    Its traditional sports rival is the University of California, Berkeley, the neighbor to the north in the East Bay. The winner of the annual “Big Game” between the Cal and Cardinal football teams gains custody of the Stanford Axe.

    Stanford has had at least one NCAA team champion every year since the 1976–77 school year and has earned 126 NCAA national team titles since its establishment, the most among universities, and Stanford has won 522 individual national championships, the most by any university. Stanford has won the award for the top-ranked Division 1 athletic program—the NACDA Directors’ Cup, formerly known as the Sears Cup—annually for the past twenty-four straight years. Stanford athletes have won medals in every Olympic Games since 1912, winning 270 Olympic medals total, 139 of them gold. In the 2008 Summer Olympics, and 2016 Summer Olympics, Stanford won more Olympic medals than any other university in the United States. Stanford athletes won 16 medals at the 2012 Summer Olympics (12 gold, two silver and two bronze), and 27 medals at the 2016 Summer Olympics.

    Traditions

    The unofficial motto of Stanford, selected by President Jordan, is Die Luft der Freiheit weht. Translated from the German language, this quotation from Ulrich von Hutten means, “The wind of freedom blows.” The motto was controversial during World War I, when anything in German was suspect; at that time the university disavowed that this motto was official.
    Hail, Stanford, Hail! is the Stanford Hymn sometimes sung at ceremonies or adapted by the various University singing groups. It was written in 1892 by mechanical engineering professor Albert W. Smith and his wife, Mary Roberts Smith (in 1896 she earned the first Stanford doctorate in Economics and later became associate professor of Sociology), but was not officially adopted until after a performance on campus in March 1902 by the Mormon Tabernacle Choir.
    “Uncommon Man/Uncommon Woman”: Stanford does not award honorary degrees, but in 1953 the degree of “Uncommon Man/Uncommon Woman” was created to recognize individuals who give rare and extraordinary service to the University. Technically, this degree is awarded by the Stanford Associates, a voluntary group that is part of the university’s alumni association. As Stanford’s highest honor, it is not conferred at prescribed intervals, but only when appropriate to recognize extraordinary service. Recipients include Herbert Hoover, Bill Hewlett, Dave Packard, Lucile Packard, and John Gardner.
    Big Game events: The events in the week leading up to the Big Game vs. UC Berkeley, including Gaieties (a musical written, composed, produced, and performed by the students of Ram’s Head Theatrical Society).
    “Viennese Ball”: a formal ball with waltzes that was initially started in the 1970s by students returning from the now-closed Stanford in Vienna overseas program. It is now open to all students.
    “Full Moon on the Quad”: An annual event at Main Quad, where students gather to kiss one another starting at midnight. Typically organized by the Junior class cabinet, the festivities include live entertainment, such as music and dance performances.
    “Band Run”: An annual festivity at the beginning of the school year, where the band picks up freshmen from dorms across campus while stopping to perform at each location, culminating in a finale performance at Main Quad.
    “Mausoleum Party”: An annual Halloween Party at the Stanford Mausoleum, the final resting place of Leland Stanford Jr. and his parents. A 20-year tradition, the “Mausoleum Party” was on hiatus from 2002 to 2005 due to a lack of funding, but was revived in 2006. In 2008, it was hosted in Old Union rather than at the actual Mausoleum, because rain prohibited generators from being rented. In 2009, after fundraising efforts by the Junior Class Presidents and the ASSU Executive, the event was able to return to the Mausoleum despite facing budget cuts earlier in the year.
    Former campus traditions include the “Big Game bonfire” on Lake Lagunita (a seasonal lake usually dry in the fall), which was formally ended in 1997 because of the presence of endangered salamanders in the lake bed.

    Award laureates and scholars

    Stanford’s current community of scholars includes:

    19 Nobel Prize laureates (as of October 2020, 85 affiliates in total)
    171 members of the National Academy of Sciences
    109 members of National Academy of Engineering
    76 members of National Academy of Medicine
    288 members of the American Academy of Arts and Sciences
    19 recipients of the National Medal of Science
    1 recipient of the National Medal of Technology
    4 recipients of the National Humanities Medal
    49 members of American Philosophical Society
    56 fellows of the American Physics Society (since 1995)
    4 Pulitzer Prize winners
    31 MacArthur Fellows
    4 Wolf Foundation Prize winners
    2 ACL Lifetime Achievement Award winners
    14 AAAI fellows
    2 Presidential Medal of Freedom winners

    Stanford University Seal

     
  • richardmitnick 10:16 am on June 28, 2022 Permalink | Reply
    Tags: "Baby woolly mammoth – beautifully preserved – found in Yukon", , , , , Geology,   

    From “EarthSky” : “Baby woolly mammoth – beautifully preserved – found in Yukon” 

    1

    From “EarthSky”

    June 28, 2022
    Deborah Byrd

    1
    Miners in Yukon, Canada, stumbled upon an intact and beautifully preserved baby woolly mammoth on June 21, 2022. Geologists suggest the animal was frozen in permafrost during the ice age, over 30,000 years ago.

    Baby woolly mammoth: ‘Beautiful’

    The Canadian territory Yukon – and Tr’ondëk Hwëch’in, a First Nation band – said late last week (June 24, 2022) that miners in the region have discovered a whole, 30,000-year-old mummified baby woolly mammoth. It’s only the second one ever found in the world. And it’s the first and most complete discovery of its kind in North America.

    Miners with the Treadstone Mining company found the near-complete mummified baby woolly mammoth. They found her in the Klondike gold fields within Tr’ondëk Hwëch’in Traditional Territory. A joint statement from Yukon and Tr’ondëk Hwëch’in said:

    “Miners working on Eureka Creek uncovered the frozen woolly mammoth while excavating through the permafrost. This is a significant discovery for Tr’ondëk Hwëch’in and the Government of Yukon. Tr’ondëk Hwëch’in Elders named the mammoth calf Nun cho ga, meaning ‘big baby animal’ in the Hän language.

    The Yukon has a world-renowned fossil record of ice age animals. But mummified remains with skin and hair are rarely unearthed. Nun cho ga is the most complete mummified mammoth found in North America.”

    “It took my breath away”

    Yukon paleontologist Grant Zazula has been studying the ice age in the Yukon since 1999. He said:

    “As an ice age paleontologist, it has been one of my lifelong dreams to come face to face with a real woolly mammoth. And that dream came true today. Nun cho ga is beautiful and one of the most incredible mummified ice age animals ever discovered in the world. So I am excited to get to know her more.”

    Tr’ondëk Hwëch’in Elder Peggy Kormendy said:

    “It’s amazing. It took my breath away when they removed the tarp. We must all treat it with respect. When that happens, it is going to be powerful, and we will heal.”

    Brian McCaughan of Treadstone Mining said:

    “There will be one thing that stands out in a person’s entire life. And I can guarantee you this is my one thing.”

    2
    “She’s beautiful,” said Yukon government paleontologist Dr. Grant Zazula. The 1st whole baby woolly mammoth found in North America and 2nd in the world has been named Nun cho ga (“Big baby animal” in the Hän language). You can see her well-preserved trunk, ears and tail. Image via Government of Yukon.

    “Most important discovery in paleontology in North America”

    Michel Proulx of CBC News in Canada reported that miners made the discovery on June 21, which is National Indigenous People’s Day:

    A little after noon … a young miner working in Yukon’s Eureka Creek, south of Dawson City, was digging up muck using a front end loader when he struck something. He stopped and called his boss, who went to see him right away.

    When he arrived, Treadstone Mining’s Brian McCaughan put a stop to the operation on the spot. Within half an hour, Zazula received a picture of the discovery. According to Zazula, the miner had made the “most important discovery in paleontology in North America.”

    “She would have been lost in the storm”

    Proulx continued:

    National Indigenous People’s Day is a statutory holiday in the Yukon so when Zazula received the email, he tried to contact anyone he could find in Dawson City who could help.

    Two geologists, one with the Yukon Geological Survey and another with the University of Calgary, were able to drive to the creek and recover the baby woolly mammoth and do a complete geological description and sampling of the site.

    “And the amazing thing is, within an hour of them being there to do the work, the sky opened up, it turned black, lightning started striking and rain started pouring in,” said Zazula.

    “So if she wasn’t recovered at that time, she would have been lost in the storm.”

    3
    On June 21, 2022, miners discovered the intact baby woolly mammoth at Treadstone Mine in the Yukon’s Eureka Creek. The mine is located south of Dawson City, a town in the Canadian territory of Yukon. Image via Government of Yukon.

    Quick facts:

    – A quick examination of the woolly mammoth suggests she is female and roughly the same size as the 42,000-year-old infant mummy woolly mammoth Lyuba, found in Siberia in 2007.

    – Geologists from the Yukon Geological Survey and University of Calgary recovered the frozen mammoth on site. They suggest that Nun cho ga died and was frozen in permafrost during the ice age, over 30,000 years ago.

    – These amazing ice age remains provide an extremely detailed glimpse into a time when Nun cho ga roamed the Yukon alongside wild horses, cave lions and giant steppe bison.

    – The discovery of Nun cho ga marks the first near complete and best-preserved mummified woolly mammoth found in North America. A partial mammoth calf, named Effie, was found in 1948 at a gold mine in interior Alaska.

    – The successful recovery of Nun cho ga was possible because of the partnership between miners, Tr’ondëk Hwëch’in and the Government of Yukon’s Department of Environment, Yukon Geological Survey, and Yukon Palaeontology Program.

    Baby woolly mammoth: What’s next?

    In the months to come, Tr’ondëk Hwëch’in and the Government of Yukon say they will work together to respectfully preserve and learn more about Nun cho ga and share these stories and information with the community of Dawson City, residents of the Yukon and the global scientific community.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    Deborah Byrd created the EarthSky radio series in 1991 and founded EarthSky.org in 1994. Today, she serves as Editor-in-Chief of this website. She has won a galaxy of awards from the broadcasting and science communities, including having an asteroid named 3505 Byrd in her honor. A science communicator and educator since 1976, Byrd believes in science as a force for good in the world and a vital tool for the 21st century. “Being an EarthSky editor is like hosting a big global party for cool nature-lovers,” she says.

     
  • richardmitnick 7:37 am on June 28, 2022 Permalink | Reply
    Tags: "Australopithecus africanus", "Fossils in the ‘Cradle of Humankind’ may be more than a million years older than previously thought", "Little Foot", A dating method developed by a Purdue University geologist just pushed the age of some of these fossils found at the site of Sterkfontein Caves back more than a million years., , All of the Australopithecus-bearing cave sediments date from about 3.4 to 3.7 million years old rather than 2-2.5 million years old as scientists previously theorized., , , , For decades scientists have studied fossils of early human ancestors and their long-lost relatives., Geology, Granger and the research group at the Purdue Rare Isotope Measurement Laboratory (PRIME Lab) study so-called cosmogenic nuclides and what they can reveal about the history of fossils., , , , Sterkfontein has more Australopithecus fossils than anywhere else in the world., Sterkfontein is a deep and complex cave system that preserves a long history of hominin occupation of the area., The age of the fossils matters because it influences scientists’ understanding of the living landscape of the time., The “Cradle of Humankind” is a UNESCO World Heritage Site in South Africa that comprises a variety of fossil-bearing cave deposits including at Sterkfontein Caves., The new dating method would make them older than Dinkinesh-also called Lucy: the world’s most famous Australopithecus fossil.   

    From Purdue University: “Fossils in the ‘Cradle of Humankind’ may be more than a million years older than previously thought” 

    From Purdue University

    June 27, 2022
    Media contact:
    Brittany Steff
    bsteff@purdue.edu

    Source:
    Darryl Granger
    dgranger@purdue.edu

    1
    Darryl Granger of Purdue University developed the technology that updated the age of an Australopithecus found in Sterkfontein Cave. New data pushes its age back more than a million years, to 3.67 million years old. Credit: Lena Kovalenko/Purdue University photo.

    The earth doesn’t give up its secrets easily – not even in the Cradle of Humankind in South Africa, where a wealth of fossils relating to human evolution have been found.

    For decades scientists have studied these fossils of early human ancestors and their long-lost relatives. Now, a dating method developed by a Purdue University geologist just pushed the age of some of these fossils found at the site of Sterkfontein Caves back more than a million years. This would make them older than Dinkinesh-also called Lucy-the world’s most famous Australopithecus fossil.

    The “Cradle of Humankind” is a UNESCO World Heritage Site in South Africa that comprises a variety of fossil-bearing cave deposits including at Sterkfontein Caves. Sterkfontein was made famous by the discovery of the first adult Australopithecus, an ancient hominin, in 1936. Hominins includes humans and our ancestral relatives, but not the other great apes. Since then, hundreds of Australopithecus fossils have been found there, including the well-known Mrs. Ples, and the nearly complete skeleton known as Little Foot [Nature].

    1
    Palaeoanthropologists recovering Little Foot from a rock inside a cave. Credit: Patrick Landmann/Science Photo Library.

    2
    Little Foot’s fossil bones. Credit: Patrick Landmann/Science Photo Library.

    Paleoanthropologists and other scientists have studied Sterkfontein and other cave sites in the Cradle of Humankind for decades to shed light on human and environmental evolution over the past 4 million years.

    Darryl Granger, a professor of earth, atmospheric, and planetary sciences in Purdue University’s College of Science, is one of those scientists, working as part of an international team. Granger specializes in dating geologic deposits, including those in caves. As a doctoral student, he devised a method for dating buried cave sediments that is now used by researchers all over the world. His previous work at Sterkfontein dated the Little Foot skeleton to about 3.7 million years old, but scientists are still debating the age of other fossils at the site.


    New instrument dates ‘Little Foot’ skeleton.

    In a study published in the PNAS, Granger and a team of scientists including researchers from the University of the Witwatersrand in Johannesburg, South Africa and the University Toulouse Jean Jaurès in France, have discovered that not only Little Foot, but all of the Australopithecus-bearing cave sediments date from about 3.4 to 3.7 million years old rather than 2-2.5 million years old as scientists previously theorized.

    3
    Map and cross section of Sterkfontein showing sample locations. (A) Map shows the extent of surface deposits and excavations superposed on the cave system. Sample locations reported here are shown as green circles; selected hominin fossils are shown with red stars and U-Pb-dated samples with yellow circles. Universal Transverse Mercator (UTM) coordinates are shown. (B) Cross section of the surface deposits along east-west red line in A. Cosmogenic sample locations are in green circles, and flowstone sample BH4-9 from ref. 5 in BH 4 is shown as a yellow circle. Measured bedding shows that the flowstone is located stratigraphically between the cosmogenic samples, although like other flowstones in Member 4, it is likely intrusive and younger than the breccia. Cross-section topography based on light detection and ranging (LiDAR) collected at the surface and underground.

    4
    Stratigraphic sections and associated photos showing previously dated flowstone. Two sections are located at red bars shown in the base map found in the figure legend. (A) North-south section shows that the previously dated flowstone OE-14 (5) is not in stratigraphic contact with Member 4 but instead is separated by fins of dolomite and decayed dolomite that were removed by blasting. Its age therefore does not constrain that of Member 4. (B) Detailed section of the OE-14 flowstone (5) shows that it lies on decayed dolomite and reworked decayed dolomite breccia derived internally within the cave. The flowstone is overlain by and interfingers with orange sandy microbreccia with no clear stratigraphic relation to Member 4 or Member 5. The north-south cross section intersects at ca. 3.5 m on the west-northwest–east-southeast section, at the plaque.

    That age places these fossils toward the beginning of the Australopithecus era, rather than near the end. Dinkinesh, who hails from Ethiopia, is 3.2 million years old, and her species, Australopithecus africanus, hails back to about 3.9 million years old.

    Sterkfontein is a deep and complex cave system that preserves a long history of hominin occupation of the area. Understanding the dates of the fossils here can be tricky, as rocks and bones tumbled to the bottom of a deep hole in the ground, and there are few ways to date cave sediments.

    In East Africa, where many hominin fossils have been found, the Great Rift Valley volcanoes lay down layers of ash that can be dated. Researchers use those layers to estimate how old a fossil is. In South Africa – especially in a cave – the scientists don’t have that luxury. They typically use other animal fossils found around the bones to estimate their age or calcite flowstone deposited in the cave. But bones can shift in the cave, and young flowstone can be deposited in old sediment, making those methods potentially incorrect. A more accurate method is to date the actual rocks in which the fossils were found. The concrete-like matrix that embeds the fossil, called breccia, is the material Granger and his team analyze.

    “Sterkfontein has more Australopithecus fossils than anywhere else in the world,” Granger said. “But it’s hard to get a good date on them. People have looked at the animal fossils found near them and compared the ages of cave features like flowstones and gotten a range of different dates. What our data does is resolve these controversies. It shows that these fossils are old – much older than we originally thought.”

    Granger and the team used accelerator mass spectrometry to measure radioactive nuclides in the rocks, as well as geologic mapping and an intimate understanding of how cave sediments accumulate to determine the age of the Australopithecus-bearing sediments at Sterkfontein,

    Granger and the research group at the Purdue Rare Isotope Measurement Laboratory (PRIME Lab) study so-called cosmogenic nuclides and what they can reveal about the history of fossils, geological features and rock. Cosmogenic nuclides are extremely rare isotopes produced by cosmic rays —high-energy particles that constantly bombard the earth. These incoming cosmic rays have enough energy to cause nuclear reactions inside rocks at the ground surface, creating new, radioactive isotopes within the mineral crystals. An example is aluminum-26: aluminum that is missing a neutron and slowly decays to turn into magnesium over a period of millions of years. Since aluminum-26 is formed when a rock is exposed at the surface, but not after it has been deeply buried in a cave, PRIME lab researchers can date cave sediments (and the fossils within them) by measuring levels of aluminum-26 in tandem with another cosmogenic nuclide, beryllium-10.

    In addition to the new dates at Sterkfontein based on cosmogenic nuclides, the research team made careful maps of the cave deposits and showed how animal fossils of different ages would have been mixed together during excavations in the 1930s and 1940s, leading to decades of confusion with the previous ages. “What I hope is that this convinces people that this dating method gives reliable results,” Granger said. “Using this method, we can more accurately place ancient humans and their relatives in the correct time periods, in Africa, and elsewhere across the world.”

    The age of the fossils matters because it influences scientists’ understanding of the living landscape of the time. How and where humans evolved, how they fit into the ecosystem, and who their closest relatives are and were, are pressing and complex questions. Putting the fossils at Sterkfontein into their proper context is one step towards solving the entire puzzle.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Purdue University is a public land-grant research university in West Lafayette, Indiana, and the flagship campus of the Purdue University system. The university was founded in 1869 after Lafayette businessman John Purdue donated land and money to establish a college of science, technology, and agriculture in his name. The first classes were held on September 16, 1874, with six instructors and 39 students.

    The main campus in West Lafayette offers more than 200 majors for undergraduates, over 69 masters and doctoral programs, and professional degrees in pharmacy and veterinary medicine. In addition, Purdue has 18 intercollegiate sports teams and more than 900 student organizations. Purdue is a member of the Big Ten Conference and enrolls the second largest student body of any university in Indiana, as well as the fourth largest foreign student population of any university in the United States.

    Purdue University is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. Purdue has 25 American astronauts as alumni and as of April 2019, the university has been associated with 13 Nobel Prizes.

    In 1865, the Indiana General Assembly voted to take advantage of the Morrill Land-Grant Colleges Act of 1862 and began plans to establish an institution with a focus on agriculture and engineering. Communities throughout the state offered facilities and funding in bids for the location of the new college. Popular proposals included the addition of an agriculture department at Indiana State University, at what is now Butler University. By 1869, Tippecanoe County’s offer included $150,000 (equivalent to $2.9 million in 2019) from Lafayette business leader and philanthropist John Purdue; $50,000 from the county; and 100 acres (0.4 km^2) of land from local residents.

    On May 6, 1869, the General Assembly established the institution in Tippecanoe County as Purdue University, in the name of the principal benefactor. Classes began at Purdue on September 16, 1874, with six instructors and 39 students. Professor John S. Hougham was Purdue’s first faculty member and served as acting president between the administrations of presidents Shortridge and White. A campus of five buildings was completed by the end of 1874. In 1875, Sarah A. Oren, the State Librarian of Indiana, was appointed Professor of Botany.

    Purdue issued its first degree, a Bachelor of Science in chemistry, in 1875, and admitted its first female students that autumn.

    Emerson E. White, the university’s president, from 1876 to 1883, followed a strict interpretation of the Morrill Act. Rather than emulate the classical universities, White believed Purdue should be an “industrial college” and devote its resources toward providing a broad, liberal education with an emphasis on science, technology, and agriculture. He intended not only to prepare students for industrial work, but also to prepare them to be good citizens and family members.

    Part of White’s plan to distinguish Purdue from classical universities included a controversial attempt to ban fraternities, which was ultimately overturned by the Indiana Supreme Court, leading to White’s resignation. The next president, James H. Smart, is remembered for his call in 1894 to rebuild the original Heavilon Hall “one brick higher” after it had been destroyed by a fire.

    By the end of the nineteenth century, the university was organized into schools of agriculture, engineering (mechanical, civil, and electrical), and pharmacy; former U.S. President Benjamin Harrison served on the board of trustees. Purdue’s engineering laboratories included testing facilities for a locomotive, and for a Corliss steam engine—one of the most efficient engines of the time. The School of Agriculture shared its research with farmers throughout the state, with its cooperative extension services, and would undergo a period of growth over the following two decades. Programs in education and home economics were soon established, as well as a short-lived school of medicine. By 1925, Purdue had the largest undergraduate engineering enrollment in the country, a status it would keep for half a century.

    President Edward C. Elliott oversaw a campus building program between the world wars. Inventor, alumnus, and trustee David E. Ross coordinated several fundraisers, donated lands to the university, and was instrumental in establishing the Purdue Research Foundation. Ross’s gifts and fundraisers supported such projects as Ross–Ade Stadium, the Memorial Union, a civil engineering surveying camp, and Purdue University Airport. Purdue Airport was the country’s first university-owned airport and the site of the country’s first college-credit flight training courses.

    Amelia Earhart joined the Purdue faculty in 1935 as a consultant for these flight courses and as a counselor on women’s careers. In 1937, the Purdue Research Foundation provided the funds for the Lockheed Electra 10-E Earhart flew on her attempted round-the-world flight.

    Every school and department at the university was involved in some type of military research or training during World War II. During a project on radar receivers, Purdue physicists discovered properties of germanium that led to the making of the first transistor. The Army and the Navy conducted training programs at Purdue and more than 17,500 students, staff, and alumni served in the armed forces. Purdue set up about a hundred centers throughout Indiana to train skilled workers for defense industries. As veterans returned to the university under the G.I. Bill, first-year classes were taught at some of these sites to alleviate the demand for campus space. Four of these sites are now degree-granting regional campuses of the Purdue University system. On-campus housing became racially desegregated in 1947, following pressure from Purdue President Frederick L. Hovde and Indiana Governor Ralph F. Gates.

    After the war, Hovde worked to expand the academic opportunities at the university. A decade-long construction program emphasized science and research. In the late 1950s and early 1960s the university established programs in veterinary medicine, industrial management, and nursing, as well as the first computer science department in the United States. Undergraduate humanities courses were strengthened, although Hovde only reluctantly approved of graduate-level study in these areas. Purdue awarded its first Bachelor of Arts degrees in 1960. The programs in liberal arts and education, formerly administered by the School of Science, were soon split into an independent school.

    The official seal of Purdue was officially inaugurated during the university’s centennial in 1969.

    1

    Consisting of elements from emblems that had been used unofficially for 73 years, the current seal depicts a griffin, symbolizing strength, and a three-part shield, representing education, research, and service.

    In recent years, Purdue’s leaders have continued to support high-tech research and international programs. In 1987, U.S. President Ronald Reagan visited the West Lafayette campus to give a speech about the influence of technological progress on job creation.

    In the 1990s, the university added more opportunities to study abroad and expanded its course offerings in world languages and cultures. The first buildings of the Discovery Park interdisciplinary research center were dedicated in 2004.

    Purdue launched a Global Policy Research Institute in 2010 to explore the potential impact of technical knowledge on public policy decisions.

    On April 27, 2017, Purdue University announced plans to acquire for-profit college Kaplan University and convert it to a public university in the state of Indiana, subject to multiple levels of approval. That school now operates as Purdue University Global, and aims to serve adult learners.

    Campuses

    Purdue’s campus is situated in the small city of West Lafayette, near the western bank of the Wabash River, across which sits the larger city of Lafayette. State Street, which is concurrent with State Road 26, divides the northern and southern portions of campus. Academic buildings are mostly concentrated on the eastern and southern parts of campus, with residence halls and intramural fields to the west, and athletic facilities to the north. The Greater Lafayette Public Transportation Corporation (CityBus) operates eight campus loop bus routes on which students, faculty, and staff can ride free of charge with Purdue Identification.

    Organization and administration

    The university president, appointed by the board of trustees, is the chief administrative officer of the university. The office of the president oversees admission and registration, student conduct and counseling, the administration and scheduling of classes and space, the administration of student athletics and organized extracurricular activities, the libraries, the appointment of the faculty and conditions of their employment, the appointment of all non-faculty employees and the conditions of employment, the general organization of the university, and the planning and administration of the university budget.

    The Board of Trustees directly appoints other major officers of the university including a provost who serves as the chief academic officer for the university, several vice presidents with oversight over specific university operations, and the regional campus chancellors.

    Academic divisions

    Purdue is organized into thirteen major academic divisions.

    College of Agriculture

    The university’s College of Agriculture supports the university’s agricultural, food, life, and natural resource science programs. The college also supports the university’s charge as a land-grant university to support agriculture throughout the state; its agricultural extension program plays a key role in this.

    College of Education

    The College of Education offers undergraduate degrees in elementary education, social studies education, and special education, and graduate degrees in these and many other specialty areas of education. It has two departments: (a) Curriculum and Instruction and (b) Educational Studies.

    College of Engineering

    The Purdue University College of Engineering was established in 1874 with programs in Civil and Mechanical Engineering. The college now offers B.S., M.S., and Ph.D. degrees in more than a dozen disciplines. Purdue’s engineering program has also educated 24 of America’s astronauts, including Neil Armstrong and Eugene Cernan who were the first and last astronauts to have walked on the Moon, respectively. Many of Purdue’s engineering disciplines are recognized as top-ten programs in the U.S. The college as a whole is currently ranked 7th in the U.S. of all doctorate-granting engineering schools by U.S. News & World Report.

    Exploratory Studies

    The university’s Exploratory Studies program supports undergraduate students who enter the university without having a declared major. It was founded as a pilot program in 1995 and made a permanent program in 1999.

    College of Health and Human Sciences

    The College of Health and Human Sciences was established in 2010 and is the newest college. It offers B.S., M.S. and Ph.D. degrees in all 10 of its academic units.

    College of Liberal Arts

    Purdue’s College of Liberal Arts contains the arts, social sciences and humanities programs at the university. Liberal arts courses have been taught at Purdue since its founding in 1874. The School of Science, Education, and Humanities was formed in 1953. In 1963, the School of Humanities, Social Sciences, and Education was established, although Bachelor of Arts degrees had begun to be conferred as early as 1959. In 1989, the School of Liberal Arts was created to encompass Purdue’s arts, humanities, and social sciences programs, while education programs were split off into the newly formed School of Education. The School of Liberal Arts was renamed the College of Liberal Arts in 2005.

    Krannert School of Management

    The Krannert School of Management offers management courses and programs at the undergraduate, master’s, and doctoral levels.

    College of Pharmacy

    The university’s College of Pharmacy was established in 1884 and is the 3rd oldest state-funded school of pharmacy in the United States. The school offers two undergraduate programs leading to the B.S. in Pharmaceutical Sciences (BSPS) and the Doctor of Pharmacy (Pharm.D.) professional degree. Graduate programs leading to M.S. and Ph.D. degrees are offered in three departments (Industrial and Physical Pharmacy, Medicinal Chemistry and Molecular Pharmacology, and Pharmacy Practice). Additionally, the school offers several non-degree certificate programs and post-graduate continuing education activities.

    Purdue Polytechnic Institute

    The Purdue Polytechnic Institute offers bachelor’s, master’s and Ph.D. degrees in a wide range of technology-related disciplines. With over 30,000 living alumni, it is one of the largest technology schools in the United States.

    College of Science

    The university’s College of Science houses the university’s science departments: Biological Sciences; Chemistry; Computer Science; Earth, Atmospheric, & Planetary Sciences; Mathematics; Physics & Astronomy; and Statistics. The science courses offered by the college account for about one-fourth of Purdue’s one million student credit hours.

    College of Veterinary Medicine

    The College of Veterinary Medicine is accredited by the AVMA to offer the Doctor of Veterinary Medicine degree, associate’s and bachelor’s degrees in veterinary technology, master’s and Ph.D. degrees, and residency programs leading to specialty board certification. Within the state of Indiana, the Purdue University College of Veterinary Medicine is the only veterinary school, while the Indiana University School of Medicine is one of only two medical schools (the other being Marian University College of Osteopathic Medicine). The two schools frequently collaborate on medical research projects.

    Honors College

    Purdue’s Honors College supports an honors program for undergraduate students at the university.

    The Graduate School

    The university’s Graduate School supports graduate students at the university.

    Research

    The university expended $622.814 million in support of research system-wide in 2017, using funds received from the state and federal governments, industry, foundations, and individual donors. The faculty and more than 400 research laboratories put Purdue University among the leading research institutions. Purdue University is considered by the Carnegie Classification of Institutions of Higher Education to have “very high research activity”. Purdue also was rated the nation’s fourth best place to work in academia, according to rankings released in November 2007 by The Scientist magazine. Purdue’s researchers provide insight, knowledge, assistance, and solutions in many crucial areas. These include, but are not limited to Agriculture; Business and Economy; Education; Engineering; Environment; Healthcare; Individuals, Society, Culture; Manufacturing; Science; Technology; Veterinary Medicine. The Global Trade Analysis Project (GTAP), a global research consortium focused on global economic governance challenges (trade, climate, resource use) is also coordinated by the University. Purdue University generated a record $438 million in sponsored research funding during the 2009–10 fiscal year with participation from National Science Foundation, National Aeronautics and Space Administration, and the Department of Agriculture, Department of Defense, Department of Energy, and Department of Health and Human Services. Purdue University was ranked fourth in Engineering research expenditures amongst all the colleges in the United States in 2017, with a research expenditure budget of 244.8 million. Purdue University established the Discovery Park to bring innovation through multidisciplinary action. In all of the eleven centers of Discovery Park, ranging from entrepreneurship to energy and advanced manufacturing, research projects reflect a large economic impact and address global challenges. Purdue University’s nanotechnology research program, built around the new Birck Nanotechnology Center in Discovery Park, ranks among the best in the nation.

    The Purdue Research Park which opened in 1961 was developed by Purdue Research Foundation which is a private, nonprofit foundation created to assist Purdue. The park is focused on companies operating in the arenas of life sciences, homeland security, engineering, advanced manufacturing and information technology. It provides an interactive environment for experienced Purdue researchers and for private business and high-tech industry. It currently employs more than 3,000 people in 155 companies, including 90 technology-based firms. The Purdue Research Park was ranked first by the Association of University Research Parks in 2004.

    Purdue’s library system consists of fifteen locations throughout the campus, including an archives and special collections research center, an undergraduate library, and several subject-specific libraries. More than three million volumes, including one million electronic books, are held at these locations. The Library houses the Amelia Earhart Collection, a collection of notes and letters belonging to Earhart and her husband George Putnam along with records related to her disappearance and subsequent search efforts. An administrative unit of Purdue University Libraries, Purdue University Press has its roots in the 1960 founding of Purdue University Studies by President Frederick Hovde on a $12,000 grant from the Purdue Research Foundation. This was the result of a committee appointed by President Hovde after the Department of English lamented the lack of publishing venues in the humanities. Since the 1990s, the range of books published by the Press has grown to reflect the work from other colleges at Purdue University especially in the areas of agriculture, health, and engineering. Purdue University Press publishes print and ebook monograph series in a range of subject areas from literary and cultural studies to the study of the human-animal bond. In 1993 Purdue University Press was admitted to membership of the Association of American University Presses. Purdue University Press publishes around 25 books a year and 20 learned journals in print, in print & online, and online-only formats in collaboration with Purdue University Libraries.

    Sustainability

    Purdue’s Sustainability Council, composed of University administrators and professors, meets monthly to discuss environmental issues and sustainability initiatives at Purdue. The University’s first LEED Certified building was an addition to the Mechanical Engineering Building, which was completed in Fall 2011. The school is also in the process of developing an arboretum on campus. In addition, a system has been set up to display live data detailing current energy production at the campus utility plant. The school holds an annual “Green Week” each fall, an effort to engage the Purdue community with issues relating to environmental sustainability.

    Rankings

    In its 2021 edition, U.S. News & World Report ranked Purdue University the 5th most innovative national university, tied for the 17th best public university in the United States, tied for 53rd overall, and 114th best globally. U.S. News & World Report also rated Purdue tied for 36th in “Best Undergraduate Teaching, 83rd in “Best Value Schools”, tied for 284th in “Top Performers on Social Mobility”, and the undergraduate engineering program tied for 9th at schools whose highest degree is a doctorate.

     
  • richardmitnick 8:22 pm on June 27, 2022 Permalink | Reply
    Tags: "Looking for the Origin of Slow Earthquakes in the Guerrero Gap", , , , , Geology, Seismometry, The first-ever active-source seismic imaging study within the Guerrero gap and its neighboring segments.   

    From Columbia University – State of the Planet: “Looking for the Origin of Slow Earthquakes in the Guerrero Gap” 

    From Columbia University – State of the Planet

    at

    Columbia U bloc
    Columbia University

    June 7, 2022 [Just found this.]
    Anne Bécel

    We are underway on our 48-day long expedition offshore of the west coast of Mexico near Acapulco, where the young Cocos oceanic plate dives beneath the North American plate. Most of this subduction zone, often referred to as ‘the Mexican segment of the Middle America Trench,’ has produced large earthquakes in the last 100 years, including the dramatic 8.0-magnitude Michoacán earthquake in 1985 that killed more than 10,000 people in Mexico City. One of the exceptions is the Guerrero seismic gap. This portion of the Mexican subduction zone has not ruptured in a large (M>7) earthquake since at least 1911. Instead, large and relatively shallow slow-slip events — which release energy slowly over days to months without generating strong seismic waves — occur there approximately every 3-5 years.

    Up to now, we do not fully understand why the Guerrero gap has a distinct slip behavior than its neighboring segments that regularly rupture in great earthquakes. Fluids (e.g. seawater) delivered into the subduction zone by the incoming oceanic plate are commonly invoked by scientists to explain the occurrence of slow slip events in other subduction zones worldwide, although evidence of fluids in the Guerrero gap and elsewhere remains very limited. With this project, we want to better quantify the volume and distribution of fluids in the incoming oceanic plate, their fate at depth as well as the variations in the amount of fluids between the Guerrero gap and its neighboring segments in order to explore how fluids contribute to the presence of slow-slip events in the shallow part of this gap.

    1
    Map of our survey plan in and around the Guerrero gap offshore the Pacific coast of Mexico near Acapulco.

    During our cruise, we are using sound waves to probe under the seafloor to look for the plate boundary fault zone or ‘megathrust fault’ (where the two tectonic plates meet on the seafloor) down to a depth of about 15 kilometers, and to characterize the architecture and properties of the downgoing and overriding plates. For our investigation, we are making use of Columbia University’s R/V Marcus G. Langseth operated by the Office of Marine Operations at the Lamont-Doherty Earth Observatory.

    Our survey, which is funded by the National Science Foundation, will be the first-ever active-source seismic imaging study within the Guerrero gap and its neighboring segments.

    In the first part of the cruise, we are using ocean-bottom seismometers from the Ocean Bottom Seismometer Instrument Center at the Woods Hole Institution of Oceanography. We deploy the seismometers on the seafloor along pre-defined profiles to record sound waves generated by the high-quality and powerful sound source of the R/V Marcus G. Langseth. The reflection and refraction of the sound waves through the subseafloor will provide important information about the properties of the different layers in the subsurface (e.g. their composition and presence of fluids).

    In the second part of the cruise, we will be using the same sound source and will be towing a 15-kilometer-long cable that comprises 1,200 hydrophones spaced 12.5 meters apart. This long cable or “streamer” will record the echoes coming from different layers in the subsurface and produce images of the architecture of the subseafloor, including the amount and style of faulting.

    This project involves a strong collaboration with Mexican and Japanese collaborators. Mexican collaborators from the Universidad Nacional Autónoma de Mexico (UNAM), Víctor Manuel Cruz-Atienza and Jorge Real-Pérez, are sailing with us. Since 2017, they have had an amphibious array of broadband seismometers and geodetic stations deployed in the Guerrero Gap. This array is able to record small background earthquakes and tectonic tremors, as well as silent deformation associated with slow-slip events or stress build-up. Combining our active-source seismic observations with their passive-source seismic observations will be a very powerful tool to understand how this seismic gap works, with the ultimate goal of better assessing the long-term earthquake potential of this anomalous region and the associated hazards for local Mexican inhabitants.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Earth Institute is a research institute at Columbia University that was established in 1995. Its stated mission is to address complex issues facing the planet and its inhabitants, with a focus on sustainable development. With an interdisciplinary approach, this includes research in climate change, geology, global health, economics, management, agriculture, ecosystems, urbanization, energy, hazards, and water. The Earth Institute’s activities are guided by the idea that science and technological tools that already exist could be applied to greatly improve conditions for the world’s poor, while preserving the natural systems that support life on Earth.

    The Earth Institute supports pioneering projects in the biological, engineering, social, and health sciences, while actively encouraging interdisciplinary projects—often combining natural and social sciences—in pursuit of solutions to real world problems and a sustainable planet. In its work, the Earth Institute remains mindful of the staggering disparities between rich and poor nations, and the tremendous impact that global-scale problems—such as the HIV/AIDS pandemic, climate change and extreme poverty—have on all nations.

    Columbia U Campus
    Columbia University was founded in 1754 as King’s College by royal charter of King George II of England. It is the oldest institution of higher learning in the state of New York and the fifth oldest in the United States.

    University Mission Statement

    Columbia University is one of the world’s most important centers of research and at the same time a distinctive and distinguished learning environment for undergraduates and graduate students in many scholarly and professional fields. The University recognizes the importance of its location in New York City and seeks to link its research and teaching to the vast resources of a great metropolis. It seeks to attract a diverse and international faculty and student body, to support research and teaching on global issues, and to create academic relationships with many countries and regions. It expects all areas of the University to advance knowledge and learning at the highest level and to convey the products of its efforts to the world.

    Columbia University is a private Ivy League research university in New York City. Established in 1754 on the grounds of Trinity Church in Manhattan Columbia is the oldest institution of higher education in New York and the fifth-oldest institution of higher learning in the United States. It is one of nine colonial colleges founded prior to the Declaration of Independence, seven of which belong to the Ivy League. Columbia is ranked among the top universities in the world by major education publications.

    Columbia was established as King’s College by royal charter from King George II of Great Britain in reaction to the founding of Princeton College. It was renamed Columbia College in 1784 following the American Revolution, and in 1787 was placed under a private board of trustees headed by former students Alexander Hamilton and John Jay. In 1896, the campus was moved to its current location in Morningside Heights and renamed Columbia University.

    Columbia scientists and scholars have played an important role in scientific breakthroughs including brain-computer interface; the laser and maser; nuclear magnetic resonance; the first nuclear pile; the first nuclear fission reaction in the Americas; the first evidence for plate tectonics and continental drift; and much of the initial research and planning for the Manhattan Project during World War II. Columbia is organized into twenty schools, including four undergraduate schools and 15 graduate schools. The university’s research efforts include the Lamont–Doherty Earth Observatory, the Goddard Institute for Space Studies, and accelerator laboratories with major technology firms such as IBM. Columbia is a founding member of the Association of American Universities and was the first school in the United States to grant the M.D. degree. With over 14 million volumes, Columbia University Library is the third largest private research library in the United States.

    The university’s endowment stands at $11.26 billion in 2020, among the largest of any academic institution. As of October 2020, Columbia’s alumni, faculty, and staff have included: five Founding Fathers of the United States—among them a co-author of the United States Constitution and a co-author of the Declaration of Independence; three U.S. presidents; 29 foreign heads of state; ten justices of the United States Supreme Court, one of whom currently serves; 96 Nobel laureates; five Fields Medalists; 122 National Academy of Sciences members; 53 living billionaires; eleven Olympic medalists; 33 Academy Award winners; and 125 Pulitzer Prize recipients.

     
  • richardmitnick 12:36 pm on June 25, 2022 Permalink | Reply
    Tags: "Seismic waves from earthquakes reveal changes in the Earth’s outer core", A little over 20 years later in September 2018 a second big earthquake hit the same location., , During the 2018 earthquake a set of seismic waves known as SKS waves traveled about one second faster than their counterparts had in 1997., , , Geology, In May 1997 a large earthquake shook the Kermadec Islands region in the South Pacific Ocean., In seismic waves and their changes in speed on a decade time scale Zhou saw a means for “direct sampling” of the outer core., Our understanding of convection in the Earth’s outer core and its role in driving the planet’s magnetic field is based on theory., Scientists have never directly observed convective flows or how they may be changing., The outer core is sandwiched between the mantle-the thick layer of rock underneath the Earth’s crust-and the inner core- the planet’s deepest interior layer., , Without its magnetic field the Earth could not sustain life., Without the moving flows of liquid metal in the outer core the magnetic field wouldn’t work.   

    From The Virginia Polytechnic Institute and State University: “Seismic waves from earthquakes reveal changes in the Earth’s outer core” 

    From The Virginia Polytechnic Institute and State University

    23 Jun 2022
    Suzanne Irby

    Our understanding of convection in the Earth’s outer core and its role in driving the planet’s magnetic field is based on theory. Scientists have never directly observed convective flows or how they may be changing. Geoscientist Ying Zhou puts proof forward for the first time.

    1
    The blue path illustrates a core-penetrating seismic wave moving through a region in the outer core, where the seismic speed has increased because a low-density flow has moved into the region. Image courtesy of Ying Zhou.

    In May 1997 a large earthquake shook the Kermadec Islands region in the South Pacific Ocean. A little over 20 years later in September 2018 a second big earthquake hit the same location, its waves of seismic energy emanating from the same region.

    Though the earthquakes occurred two decades apart, because they occurred in the same region, they’d be expected to send seismic waves through the Earth’s layers at the same speed, said Ying Zhou, a geoscientist with the Department of Geosciences in the Virginia Tech College of Science.

    But in data recorded at four of more than 150 Global Seismographic Network stations that log seismic vibrations in real time, Zhou found an anomaly among the twin events: During the 2018 earthquake a set of seismic waves known as SKS waves traveled about one second faster than their counterparts had in 1997.

    According to Zhou, whose findings were recently published in Nature Communications Earth & Environment, that one-second discrepancy in SKS wave travel time gives us an important and unprecedented glimpse of what’s happening deeper in the Earth’s interior, in its outer core.

    1
    Blue lines are seismic rays in the outer core, where core-penetrating seismic waves moved through that region faster in 2018 than in 1997. Image courtesy of Ying Zhou.

    What’s inside counts

    The outer core is sandwiched between the mantle-the thick layer of rock underneath the Earth’s crust-and the inner core- the planet’s deepest interior layer. It’s composed mainly of liquid iron that undergoes convection, or fluid flow, as the Earth cools. This resulting swirling of liquid metal produces electrical currents responsible for generating the Earth’s magnetic field, which protects the planet and all life on it from harmful radiation and solar winds.

    Without its magnetic field the Earth could not sustain life, and without the moving flows of liquid metal in the outer core the magnetic field wouldn’t work. But scientific understanding of this dynamic is based on simulations, said Zhou, an associate professor. “We only know that in theory, if you have convection in the outer core, you’ll be able to generate the magnetic field,” she said.

    Scientists also have only been able to speculate about the source of gradual changes in strength and direction of the magnetic field that have been observed, which likely involves changing flows in the outer core.

    “If you look at the north geomagnetic pole, it’s currently moving at a speed of about 50 kilometers [31 miles] per year,” Zhou said. “It’s moving away from Canada and toward Siberia. The magnetic field is not the same every day. It’s changing. Since it’s changing, we also speculate that convection in the outer core is changing with time, but there’s no direct evidence. We’ve never seen it.”

    Zhou set out to find that evidence. The changes happening in the outer core aren’t dramatic, she said, but they’re worth confirming and fundamentally understanding. In seismic waves and their changes in speed on a decade time scale Zhou saw a means for “direct sampling” of the outer core. That’s because the SKS waves she studied pass right through it.

    “SKS” represents three phases of the wave: First it goes through the mantle as an S wave, or shear wave; then into the outer core as a compressional wave; then back out through the mantle as an S wave. How fast these waves travel depend in part on the density of the outer core that’s in their path. If the density is lower in a region of the outer core as the wave penetrates it, the wave will travel faster, just as the anomalous SKS waves did in 2018.

    “Something has changed along the path of that wave, so it can go faster now,” Zhou said.

    To Zhou, the difference in wave speed points to low-density regions forming in the outer core in the 20 years since the 1997 earthquake. That higher SKS wave speed during the 2018 earthquake can be attributed to the release of light elements such as hydrogen, carbon, and oxygen in the outer core during convection that takes place as the Earth cools, she said.

    “The material that was there 20 years ago is no longer there,” Zhou said. “This is new material, and it’s lighter. These light elements will move upward and change the density in the region where they’re located.”

    To Zhou, it’s evidence that movement really is happening in the core, and it’s changing over time, as scientists have theorized. “We’re able to see it now,” she said. “If we’re able to see it from seismic waves, in the future, we could set up seismic stations and monitor that flow.”

    What’s next

    That’s Zhou’s next effort. Using a method of wave measurement known as interferometry, her team plans to analyze continuous seismic recordings from two seismic stations, one of which will serve as a “virtual” earthquake source, she said.

    “We can use earthquakes, but the limitation of relying on earthquake data is that we can’t really control the locations of the earthquakes,” Zhou said. “But we can control the locations of seismic stations. We can put the stations anywhere we want them to be, with the wave path from one station to the other station going through the outer core. If we monitor that over time, then we can see how core-penetrating seismic waves between those two stations change. With that, we will be better able to see the movement of fluid in the outer core with time.”

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Virginia Polytechnic Institute and State University is a public, land-grant, research university with its main campus in Blacksburg, Virginia. It also has educational facilities in six regions statewide and a study-abroad site in Riva San Vitale, Switzerland. Through its Corps of Cadets ROTC program, Virginia Tech is also designated as one of six senior military colleges in the United States.

    Virginia Tech offers 280 undergraduate and graduate degree programs to some 34,400 students and manages a research portfolio of $522 million, placing it 46th among universities in the U.S. for research expenditures and the only Virginia school listed among the top 50.[11] Virginia Tech is the state’s second-largest public university by enrollment. The deadliest mass shooting on an American college campus occurred on campus in 2007, during which a student fatally shot 32 other students and faculty members and wounded 23 other people.

     
  • richardmitnick 8:36 am on June 25, 2022 Permalink | Reply
    Tags: "Geoscientists to study structure and properties of Antarctic lithosphere", , , Determining the thermal and compositional structure of Antarctica using seismic; gravity and topography data and petrological modeling., , Geology, The interaction between the ice sheets and the solid Earth strongly influences the evolution of the glacial system and rapid ice mass loss has in Antarctica and Greenland., The scientists will use the new thermochemical model of Antarctica together with others from Africa; Australia; South America and India to present a complete picture of evolution of the lithosphere.,   

    From Washington University in St. Louis: “Geoscientists to study structure and properties of Antarctic lithosphere” 

    Wash U Bloc

    From Washington University in St. Louis

    June 24, 2022
    Talia Ogliore
    talia.ogliore@wustl.edu

    1
    Emperor penguins on the sea ice of East Antarctica (Image: Shutterstock)

    Walid Ben Mansour, a postdoctoral research associate in the Department of Earth and Planetary Sciences in Arts & Sciences at Washington University in St. Louis, received a $191,601 grant from the National Science Foundation to determine the thermal and compositional structure of Antarctica using seismic, gravity and topography data and petrological modeling. Ben Mansour’s co-investigator is Douglas A. Wiens, the Robert S. Brookings Distinguished Professor of Earth and Planetary Science​s in Arts & Sciences.

    Global warming is not the only factor that affects the presence of ice sheets and icefields on Earth. The interaction between the ice sheets and the solid Earth strongly influences the evolution of the glacial system and rapid ice mass loss has in Antarctica and Greenland, as Wiens’ previous research has shown [Nature Communications].

    In this new project, Ben Mansour and Wiens will use the latest geophysical datasets in Antarctica — those that are most sensitive to the physical state of the mantle (seismic velocity, gravity anomalies, topography) — to estimate 3D temperature variations down to 380 km depth, as well as the average composition in iron of the mantle across the continent.

    Ben Mansour previously used a similar methodology to illuminate the lithosphere and sub-lithosphere in Africa [Nature Geoscience]. His research showed a good correlation between the thermochemical structure and geological boundaries. For the new project, Ben Mansour and Wiens expect to identify these boundaries beneath East Antarctica, covered by a 2-4 km thick ice layer.

    As part of a larger research plan, Ben Mansour and Wiens will use the new thermochemical model of Antarctica together with others from Africa, Australia, South America and India to present a complete picture of evolution of the lithosphere since the ancient supercontinent called Gondwana broke up and split into the land masses we recognize as continents today.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Wash U campus

    Washington University in St. Louis is a private research university in Greater St. Louis with its main campus (Danforth) mostly in unincorporated St. Louis County, Missouri, and Clayton, Missouri. It also has a West Campus in Clayton, North Campus in the West End neighborhood of St. Louis, Missouri, and Medical Campus in the Central West End neighborhood of St. Louis, Missouri.

    Founded in 1853 and named after George Washington, the university has students and faculty from all 50 U.S. states and more than 120 countries. Washington University is composed of seven graduate and undergraduate schools that encompass a broad range of academic fields. To prevent confusion over its location, the Board of Trustees added the phrase “in St. Louis” in 1976. Washington University is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”.

    As of 2020, 25 Nobel laureates in economics, physiology and medicine, chemistry, and physics have been affiliated with Washington University, ten having done the major part of their pioneering research at the university. In 2019, Clarivate Analytics ranked Washington University 7th in the world for most cited researchers. The university also received the 4th highest amount of National Institutes of Health medical research grants among medical schools in 2019.

    Washington University was conceived by 17 St. Louis business, political, and religious leaders concerned by the lack of institutions of higher learning in the Midwest. Missouri State Senator Wayman Crow and Unitarian minister William Greenleaf Eliot, grandfather of the poet T.S. Eliot, led the effort.

    The university’s first chancellor was Joseph Gibson Hoyt. Crow secured the university charter from the Missouri General Assembly in 1853, and Eliot was named President of the Board of Trustees. Early on, Eliot solicited support from members of the local business community, including John O’Fallon, but Eliot failed to secure a permanent endowment. Washington University is unusual among major American universities in not having had a prior financial endowment. The institution had no backing of a religious organization, single wealthy patron, or earmarked government support.

    During the three years following its inception, the university bore three different names. The board first approved “Eliot Seminary,” but William Eliot was uncomfortable with naming a university after himself and objected to the establishment of a seminary, which would implicitly be charged with teaching a religious faith. He favored a nonsectarian university. In 1854, the Board of Trustees changed the name to “Washington Institute” in honor of George Washington, and because the charter was coincidentally passed on Washington’s birthday, February 22. Naming the university after the nation’s first president, only seven years before the American Civil War and during a time of bitter national division, was no coincidence. During this time of conflict, Americans universally admired George Washington as the father of the United States and a symbol of national unity. The Board of Trustees believed that the university should be a force of unity in a strongly divided Missouri. In 1856, the university amended its name to “Washington University.” The university amended its name once more in 1976, when the Board of Trustees voted to add the suffix “in St. Louis” to distinguish the university from the over two dozen other universities bearing Washington’s name.

    Although chartered as a university, for many years Washington University functioned primarily as a night school located on 17th Street and Washington Avenue in the heart of downtown St. Louis. Owing to limited financial resources, Washington University initially used public buildings. Classes began on October 22, 1854, at the Benton School building. At first the university paid for the evening classes, but as their popularity grew, their funding was transferred to the St. Louis Public Schools. Eventually the board secured funds for the construction of Academic Hall and a half dozen other buildings. Later the university divided into three departments: the Manual Training School, Smith Academy, and the Mary Institute.

    In 1867, the university opened the first private nonsectarian law school west of the Mississippi River. By 1882, Washington University had expanded to numerous departments, which were housed in various buildings across St. Louis. Medical classes were first held at Washington University in 1891 after the St. Louis Medical College decided to affiliate with the university, establishing the School of Medicine. During the 1890s, Robert Sommers Brookings, the president of the Board of Trustees, undertook the tasks of reorganizing the university’s finances, putting them onto a sound foundation, and buying land for a new campus.

    In 1896, Holmes Smith, professor of Drawing and History of Art, designed what would become the basis for the modern-day university seal. The seal is made up of elements from the Washington family coat of arms, and the symbol of Louis IX, whom the city is named after.

    Washington University spent its first half century in downtown St. Louis bounded by Washington Ave., Lucas Place, and Locust Street. By the 1890s, owing to the dramatic expansion of the Medical School and a new benefactor in Robert Brookings, the university began to move west. The university board of directors began a process to find suitable ground and hired the landscape architecture firm Olmsted, Olmsted & Eliot of Boston. A committee of Robert S. Brookings, Henry Ware Eliot, and William Huse found a site of 103 acres (41.7 ha) just beyond Forest Park, located west of the city limits in St. Louis County. The elevation of the land was thought to resemble the Acropolis and inspired the nickname of “Hilltop” campus, renamed the Danforth campus in 2006 to honor former chancellor William H. Danforth.

    In 1899, the university opened a national design contest for the new campus. The renowned Philadelphia firm Cope & Stewardson (same architects who designed a large part of The University of Pennsylvania and Princeton University) won unanimously with its plan for a row of Collegiate Gothic quadrangles inspired by The University of Oxford (UK) and The University of Cambridge (UK). The cornerstone of the first building, Busch Hall, was laid on October 20, 1900. The construction of Brookings Hall, Ridgley, and Cupples began shortly thereafter. The school delayed occupying these buildings until 1905 to accommodate the 1904 World’s Fair and Olympics. The delay allowed the university to construct ten buildings instead of the seven originally planned. This original cluster of buildings set a precedent for the development of the Danforth Campus; Cope & Stewardson’s original plan and its choice of building materials have, with few exceptions, guided the construction and expansion of the Danforth Campus to the present day.

    By 1915, construction of a new medical complex was completed on Kingshighway in what is now St. Louis’s Central West End. Three years later, Washington University admitted its first women medical students.

    In 1922, a young physics professor, Arthur Holly Compton, conducted a series of experiments in the basement of Eads Hall that demonstrated the “particle” concept of electromagnetic radiation. Compton’s discovery, known as the “Compton Effect,” earned him the Nobel Prize in physics in 1927.

    During World War II, as part of the Manhattan Project, a cyclotron at Washington University was used to produce small quantities of the newly discovered element plutonium via neutron bombardment of uranium nitrate hexahydrate. The plutonium produced there in 1942 was shipped to the Metallurgical Laboratory Compton had established at The University of Chicago where Glenn Seaborg’s team used it for extraction, purification, and characterization studies of the exotic substance.

    After working for many years at the University of Chicago, Arthur Holly Compton returned to St. Louis in 1946 to serve as Washington University’s ninth chancellor. Compton reestablished the Washington University football team, making the declaration that athletics were to be henceforth played on a “strictly amateur” basis with no athletic scholarships. Under Compton’s leadership, enrollment at the university grew dramatically, fueled primarily by World War II veterans’ use of their GI Bill benefits.

    In 1947, Gerty Cori, a professor at the School of Medicine, became the first woman to win a Nobel Prize in Physiology or Medicine.

    Cray Cori II supercomputer at National Energy Research Scientific Computing Center(US) at DOE’s Lawrence Berkeley National Laboratory, named after Gerty Cori, the first American woman to win a Nobel Prize in science.

    Professors Carl and Gerty Cori became Washington University’s fifth and sixth Nobel laureates for their discovery of how glycogen is broken down and resynthesized in the body.

    The process of desegregation at Washington University began in 1947 with the School of Medicine and the School of Social Work. During the mid and late 1940s, the university was the target of critical editorials in the local African American press, letter-writing campaigns by churches and the local Urban League, and legal briefs by the NAACP intended to strip its tax-exempt status. In spring 1949, a Washington University student group, the Student Committee for the Admission of Negroes (SCAN), began campaigning for full racial integration. In May 1952, the Board of Trustees passed a resolution desegregating the school’s undergraduate divisions.

    During the latter half of the 20th century, Washington University transitioned from a strong regional university to a national research institution. In 1957, planning began for the construction of the “South 40,” a complex of modern residential halls which primarily house Freshmen and some Sophomore students. With the additional on-campus housing, Washington University, which had been predominantly a “streetcar college” of commuter students, began to attract a more national pool of applicants. By 1964, over two-thirds of incoming students came from outside the St. Louis area.

    In 1971, the Board of Trustees appointed Chancellor William Henry Danforth, who guided the university through the social and financial crises of the 1970s and strengthened the university’s often strained relationship with the St. Louis community. During his 24-year chancellorship, Danforth significantly improved the School of Medicine, established 70 new faculty chairs, secured a $1.72 billion endowment, and tripled the amount of student scholarships.

    In 1995, Mark S. Wrighton, former Provost at The Massachusetts Institute of Technology, was elected the university’s 14th chancellor. During Chancellor Wrighton’s tenure undergraduate applications to Washington University more than doubled. Since 1995, the university has added more than 190 endowed professorships, revamped its Arts & Sciences curriculum, and completed more than 30 new buildings.

    The growth of Washington University’s reputation coincided with a series of record-breaking fund-raising efforts during the last three decades. From 1983 to 1987, the Alliance for Washington University campaign raised $630.5 million, which was then the most successful fund-raising effort in national history. From 1998 to 2004, the Campaign for Washington University raised $1.55 billion, which was applied to additional scholarships, professorships, and research initiatives.

    In 2002, Washington University co-founded the Cortex Innovation Community in St. Louis’s Midtown neighborhood. Cortex is the largest innovation hub in the midwest, home to offices of Square, Microsoft, Aon, Boeing, and Centene. The innovation hub has generated more than 3,800 tech jobs in 14 years.

    In 2005, Washington University founded the McDonnell International Scholars Academy, an international network of premier research universities, with an initial endowment gift of $10 million from John F. McDonnell. The academy, which selects scholars from 35 partner universities around the world, was created with the intent to develop a cohort of future leaders, strengthen ties with top foreign universities, and promote global awareness and social responsibility.

    In 2019, Washington University unveiled a $360 million campus transformation project known as the East End Transformation. The transformation project, built on the original 1895 campus plan by Olmsted, Olmsted & Eliot, encompassed 18 acres of the Danforth Campus, adding five new buildings, expanding the university’s Mildred Lane Kemper Art Museum, relocating hundreds of surface parking spaces underground, and creating an expansive new park.

    In June 2019, Andrew D. Martin, former dean of the College of Literature, Science, and the Arts at The University of Michigan, was elected the university’s 15th chancellor. On the day of his inauguration, Chancellor Martin announced the WashU Pledge, a financial aid program allowing full-time Missouri and southern Illinois students who are Pell Grant-eligible or from families with annual incomes of $75,000 or less to attend the university cost-free.

    Washington University’s undergraduate program is ranked 14th in the nation in the 2022 U.S. News & World Report National Universities ranking, and 11th by The Wall Street Journal in their 2018 rankings. The university is ranked 22nd in the world for 2019 by The Academic Ranking of World Universities. Undergraduate admission to Washington University is characterized by The Carnegie Foundation and U.S. News & World Report as “most selective”. The Princeton Review, in its 2020 edition, gave the university an admissions selectivity rating of 99 out of 99. The acceptance rate for the class of 2024 (those entering in the fall of 2020) was 12.8%, with students selected from more than 27,900 applications. Of students admitted, 92 percent were in the top 10 percent of their class.

    The Princeton Review ranked Washington University 1st for Best College Dorms and 3rd for Best College Food, Best-Run Colleges, and Best Financial Aid in its 2020 edition. Niche listed the university as the best college for architecture and the second-best college campus and college dorms in the United States in 2020. The Washington University School of Medicine was ranked 6th for research by U.S. News & World Report in 2020 and has been listed among the top ten medical schools since the rankings were first published in 1987. Additionally, U.S. News & World Report ranked the university’s genetics and physical therapy as tied for first place. QS World University Rankings ranked Washington University 6th in the world for anatomy and physiology in 2020. In January 2020, Olin Business School was named The Poets & Quants MBA Program of 2019. Washington University has also been recognized as the 12th best university employer in the country by Forbes.

    Washington University was named one of the “25 New Ivies” by Newsweek in 2006 and has also been called a “Hidden Ivy”.

    A 2014 study ranked Washington University #1 in the country for income inequality, when measured as the ratio of number of students from the top 1% of the income scale to number of students from the bottom 60% of the income scale. About 22% of Washington University’s students came from the top 1%, while only about 6% came from the bottom 60%. In 2015, university administration announced plans to increase the number of Pell-eligible recipients on campus from 6% to 13% by 2020, and in 2019 15% of the university’s student body was eligible for Pell Grants. In October 2019, then newly inaugurated Chancellor Andrew D. Martin announced the WashU Pledge, a financial aid program that provides a free undergraduate education to all full-time Missouri and Southern Illinois students who are Pell Grant-eligible or from families with annual incomes of $75,000 or less. The university’s refusal to divest from the fossil fuel industry has drawn controversy in recent years.

    Research

    Virtually all faculty members at Washington University engage in academic research, offering opportunities for both undergraduate and graduate students across the university’s seven schools. Known for its interdisciplinary and departmental collaboration, many of Washington University’s research centers and institutes are collaborative efforts between many areas on campus. More than 60% of undergraduates are involved in faculty research across all areas; it is an institutional priority for undergraduates to be allowed to participate in advanced research. According to the Center for Measuring University Performance, it is considered to be one of the top 10 private research universities in the nation. A dedicated Office of Undergraduate Research is located on the Danforth Campus and serves as a resource to post research opportunities, advise students in finding appropriate positions matching their interests, publish undergraduate research journals, and award research grants to make it financially possible to perform research.

    According to the National Science Foundation, Washington University spent $816 million on research and development in 2018, ranking it 27th in the nation. The university has over 150 National Institutes of Health funded inventions, with many of them licensed to private companies. Governmental agencies and non-profit foundations such as the NIH, Department of Defense, National Science Foundation, and National Aeronautics Space Agency provide the majority of research grant funding, with Washington University being one of the top recipients in NIH grants from year-to-year. Nearly 80% of NIH grants to institutions in the state of Missouri went to Washington University alone in 2007. Washington University and its Medical School play a large part in the Human Genome Project, where it contributes approximately 25% of the finished sequence. The Genome Sequencing Center has decoded the genome of many animals, plants, and cellular organisms, including the platypus, chimpanzee, cat, and corn.

    NASA hosts its Planetary Data System Geosciences Node on the campus of Washington University. Professors, students, and researchers have been heavily involved with many unmanned missions to Mars. Professor Raymond Arvidson has been deputy principal investigator of the Mars Exploration Rover mission and co-investigator of the Phoenix lander robotic arm.

    Washington University professor Joseph Lowenstein, with the assistance of several undergraduate students, has been involved in editing, annotating, making a digital archive of the first publication of poet Edmund Spenser’s collective works in 100 years. A large grant from the National Endowment for the Humanities has been given to support this ambitious project centralized at Washington University with support from other colleges in the United States.

    In 2019, Folding@Home, a distributed computing project for performing molecular dynamics simulations of protein dynamics, was moved to Washington University School of Medicine from Stanford University. The project, currently led by Dr. Greg Bowman, uses the idle CPU time of personal computers owned by volunteers to conduct protein folding research. Folding@home’s research is primarily focused on biomedical problems such as Alzheimer’s disease, Cancer, Coronavirus disease 2019, and Ebola virus disease. In April 2020, Folding@home became the world’s first exaFLOP computing system with a peak performance of 1.5 exaflops, making it more than seven times faster than the world’s fastest supercomputer, Summit, and more powerful than the top 100 supercomputers in the world, combined.

    ORNL OLCF IBM AC922 SUMMIT supercomputer, was No.1 on the TOP500..

     
  • richardmitnick 8:27 am on June 23, 2022 Permalink | Reply
    Tags: "Lost Continents Could Be Hidden Inside Earth", At mid-ocean ridges bubbling magma escapes through rifts in the sea floor to form new crust., Convection currents in the mantle can transport large blocks of the earth’s crust-called cratons-over vast distances., , , , Geology, , , Rocks are perhaps up to 2.7 billion years old., The Chinese Academy of Sciences, The Kaapvaal craton in South Africa, The Kaapvaal craton is the closest ancient continental crust to the Southwest Indian Ridge. But it’s also a whopping 1200 miles away., The Woods Hole Oceanographic Institute, There are a lot of plumes under Africa because it was the center of the supercontinent Pangea.   

    From “Discover Magazine” : “Lost Continents Could Be Hidden Inside Earth” 

    DiscoverMag

    From “Discover Magazine”

    Jun 16, 2022
    Theo Nicitopoulos

    1
    Silfra Fissure, located at Thingvellir National Park in Iceland, lies on the mid-Atlantic ridge. (Credit: VicPhotoria/Shutterstock)

    At mid-ocean ridges bubbling magma escapes through rifts in the sea floor to form new crust. Below, partially melted, taffy-like mantle rock spreads in opposite directions — stretching the new crust until it forms an extensive valley system surrounded by ridges of hills and mountains.

    These abyssal seascapes, not unlike landscapes found above sea level, are the last places that pieces of continents would be expected to turn up. Yet in a recent study published in Science Advances, researchers have discovered that it is indeed possible: Newly dated rocks from the Southwest Indian Ridge, located between Africa and Antarctica, are not only remnants of a continent; they are also old enough to support the hypothesis that much of Earth’s continents formed early on and became “lost” or hidden deep below Earth’s ocean crust.

    Chuan-Zhou Liu, a marine geologist at the Chinese Academy of Sciences in Beijing, visited the Woods Hole Oceanographic Institute in 2017 to collect the rock samples dredged from the ridge previously. “I wouldn’t have suspected the rocks are from continents,” he says, “because they look like the ones you would typically find on the sea floor.”

    His analysis showed the rocks are perhaps up to 2.7 billion years old — old enough to have been around when Earth’s first continents formed. Finding out which ancient continent they came from, however, is difficult.

    2
    Credit: Liu et al. Science Advances.

    Liu says convection currents in the mantle can transport large blocks of the earth’s crust-called cratons-over vast distances. One particular craton caught the researcher’s attention: “There is evidence that the ‘keel’ of the Kaapvaal craton in South Africa has been dislodged,” he says.

    The Kaapvaal craton is the closest ancient continental crust to the Southwest Indian Ridge. But it’s also a whopping 1,200 miles away.

    To have reached the ridge, Liu and his colleagues propose that plumes of hot, rising mantle rock beneath South Africa eroded the bottom of the craton, dislodging pieces that were then transported by convection currents to the ocean ridge. “There are a lot of plumes under Africa because it was the center of the supercontinent Pangea that heated the mantle,” says co-author Ross Mitchell, a geophysicist at the same academy as Liu.

    The researchers performed computer simulations and found that up to 20 percent of the Kaapvaal craton could have been removed in this way and recycled to the ocean rift in as little as 100 million years.

    A Game of Hide and Seek

    The discovery also provides insight into the evolution of Earth’s other continents. Traditionally, because there are few very old rocks at the surface, the continents are thought to have grown gradually. But now there’s another explanation: Maybe much of the continents formed early on and were recycled back into the mantle.

    “If Earth once had voluminous continents, surely these ‘lost continents’ are hidden below the crust,” says Mitchell. The recycling of lost continents into the depths may have been possible thanks to plumes that were even hotter during Earth’s early history, he adds. “If it’s happening today, it would have really been happening back then.”

    If these rocks are from lost continents, the researchers’ computer simulations suggest that there could be more at mid-ocean ridges. “Perhaps we haven’t discovered more because we didn’t know to look for them,” says Mitchell. For him, ocean ridges have suddenly become more attractive in the study of the evolution of continents. “I couldn’t imagine I would have a reason to go out to the middle of the ocean,” he says.

    Even better, the ocean around the Southwest Indian Ridge is particularly rough. “Ross, get ready to pack your suitcase,” says Liu.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: