Tagged: Geology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:31 pm on October 6, 2022 Permalink | Reply
    Tags: "Metamorphic core complexes", "Study Shows Gravitational Forces Deep Within the Earth Have Great Impact on Landscape Evolution", , , Collaborative national research centers on integrating tectonics climate and mammal diversity., , Geology, ,   

    From Stoney Brook University – SUNY : “Study Shows Gravitational Forces Deep Within the Earth Have Great Impact on Landscape Evolution” 

    Stoney Brook bloc

    From Stoney Brook University – SUNY

    10.6.22

    Collaborative national research centers on integrating tectonics climate and mammal diversity.

    Stony Brook University is leading a research project that focuses on the interplay between the evolution of the landscape, climate and fossil record of mammal evolution and diversification in the Western United States. A little explored aspect of this geosciences research is the connection between gravitational forces deep in the Earth and landscape evolution. Now in a newly published paper in Nature Communications [below], the researchers show by way of computer modeling that deep roots under mountain belts (analogous to the massive ice below the tip of an iceberg) trigger dramatic movements along faults that result in collapse of the mountain belt and exposure of rocks that were once some 15 miles below the surface.

    The origin of these enigmatic exposures, called “metamorphic core complexes,” has been hotly debated within the scientific community. This study finding may alter the way scientists attempt to uncover the history of Earth as an evolving planet.

    Lead principal investigator William E. Holt, PhD, a Professor of Geophysics the Department of Geosciences in the School of Arts and Sciences at Stony Brook University, first author Alireza Bahadori, a former PhD student under Holt and now at Columbia University, and colleagues found that these core complexes are a fossil signature of past mountain belts in the Western United States that occupied regions around Phoenix and Las Vegas. These mountain areas left traces in the form of gravel deposits from ancient northward and eastward flowing rivers, found today south and west of Flagstaff, Arizona.

    1
    These visuals from the modeling illustrate metamorphic core complex development showing crustal stresses and strain rates, faults, uplift of deeper rocks, and sedimentation from surface erosion. These processes of core complex development occur after a thickened crustal root supporting topography is weakened through the introduction of heat, fluids, and partial melt. Credit: Alireza Bahadori and William E. Holt.

    The work articulated in the paper highlights the development of what the research team terms as a general model for metamorphic core complex formation and a demonstration that they result from the collapse of a mountain belt supported by a thickened crustal root.

    The authors further explain: “We show that gravitational body forces generated by topography and crustal root cause an upward flow pattern of the ductile lower-middle crust, facilitated by a detachment surface evolving into a low-angle normal fault. This detachment surface acquires large amounts of finite strain, consistent with thick mylonite zones found in metamorphic core complexes.”

    The work builds on research also published in Nature Communications [below] in 2022. Holt and colleagues published a first-of-a-kind model in three dimensions to illustrate the linkage between climate and tectonics to simulate the landscape and erosion/deposition history of the region before, during and after the formation of these metamorphic core complexes.

    This modeling was linked to a global climate model that predicted precipitation trends throughout the southwestern U.S. over time. The 3-D model accurately predicts deposition of sediments in basins that contain the mammal fossil and climate records.

    The group also published a paper in Science Advances [below] in November 2021, led by team member Katie Loughney.

    This research showed that a major peak in mammal diversification can be statistically tied to the peak in extensional collapse of the ancient mountain belts. Thus, the collaborative study is the first of its kind to quantify how deep Earth forces combine with climate to influence the landscape and impact mammal diversification and species dispersal found within the fossil record.

    The study required the vast computing resources provided by the High-Performance Computing Cluster SeaWulf at Stony Brook University. The climate modeling, produced by Ran Feng, University of Connecticut, was supported by the Cheyenne supercomputer maintained at NCAR-Wyoming Supercomputing Center.

    Much of the research that led to these findings reported each of the papers was supported by multiple grants from the National Science Foundation, including grant number EAR-1814051 to Stony Brook University.

    In addition to Holt, the national collaborative team included several researchers from Stony Brook University: Drs. Emma Troy Rasbury, Daniel Davis, Ali Bahadori (now at Columbia University) and Tara Smiley. Other colleagues include researchers from the University of Michigan (Drs. Catherine Badgley and Katie Loughney – now University of Georgia); University of Connecticut (Dr. Ran Feng); Purdue University (Dr. Lucy Flesch), as well a researcher from a consulting business, e4Sciences (Dr. Bruce Ward).

    Science papers:
    Nature Communications
    Nature Communications
    Science Advances 2021
    See the science papers for instructive material.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stoney Brook campus

    Stony Brook University-SUNY’s reach extends from its 1,039-acre campus on Long Island’s North Shore–encompassing the main academic areas, an 8,300-seat stadium and sports complex and Stony Brook Medicine–to Stony Brook Manhattan, a Research and Development Park, four business incubators including one at Calverton, New York, and the Stony Brook Southampton campus on Long Island’s East End. Stony Brook also co-manages Brookhaven National Laboratory, joining Princeton, the University of Chicago, Stanford, and the University of California on the list of major institutions involved in a research collaboration with a national lab.

    And Stony Brook is still growing. To the students, the scholars, the health professionals, the entrepreneurs and all the valued members who make up the vibrant Stony Brook community, this is a not only a great local and national university, but one that is making an impact on a global scale.

     
  • richardmitnick 1:44 pm on October 5, 2022 Permalink | Reply
    Tags: "What Can Zircons Tell Us About the Evolution of Plants?", , , , Events deep within Earth might chronicle the radiation of plants with roots and leaves and stems - a development that occurred about 430 million years ago., , , Geology, The versatile mineral could contain evidence of the evolution of land plants and their effect on the sedimentary system.   

    From “Eos” : “What Can Zircons Tell Us About the Evolution of Plants?” 

    Eos news bloc

    From “Eos”

    AT

    AGU

    10.5.22
    Alka Tripathy-Lang

    The versatile mineral could contain evidence of the evolution of land plants and their effect on the sedimentary system.

    1
    Zircons may record the evolution of vegetation like that lining the Swiss river Kander. Credit: Adrian Michael/Wikimedia, CC-BY-3.0.

    Geologists love zircon for its ability to tell time. They’ve also used these robust, tiny time capsules in a variety of studies ranging from estimating when water first appeared on Earth to exploring the origin of plate tectonics.

    Scientists led by Chris Spencer, an assistant professor of tectonics and geochemistry at Queen’s University in Kingston, Ont., Canada, combed through data from hundreds of thousands of zircons culled from numerous studies. In a recent paper in Nature Geoscience [below], they compiled only single crystals with three kinds of analyses—the age of the zircon and two additional measurements that serve as proxies for what the melt that birthed each crystal was like.

    With this data set, the authors posit that zircons—perhaps known best for recording magmatic and metamorphic events deep within Earth might chronicle the radiation of plants with roots and leaves and stems – a development that occurred about 430 million years ago.

    2
    Zircons. Credit: Alka Tripathy-Lang.

    Elements and Isotopes

    Zircon contains zirconium, silicon, and oxygen. Other elements, like uranium and hafnium, can also sneak into its structure; uranium isotopes are radioactive and decay to lead, providing geochronologists with a way to date nearly every zircon crystal.

    Oxygen—part of zircon’s backbone—has only stable, naturally occurring isotopes. Low-temperature surface processes preferentially sort these isotopes, divvying heavy from light. For example, water with light oxygen tends to evaporate first. Water with heavy oxygen will precipitate more readily as rain. And when water interacts with rock, weathering processes partially separate heavy oxygen from its lighter counterparts, explained Brenhin Keller, an assistant professor and geochronologist at Dartmouth who was not involved with this study.

    In particular, as rocks erode, they disintegrate into sands and eventually muds made from clays. Clays tend to incorporate more heavy oxygen, explained Annie Bauer, an assistant professor and geochronologist at the University of Wisconsin–Madison who was also not involved in this study. Subducting mud and mixing it into the mantle would result in melt—and likely zircon—featuring heavier oxygen than a melt that incorporates no crustal material or crust that experienced less weathering.

    Therefore, oxygen isotopes can be used as a proxy for whether a zircon crystal’s precursor melt contained rocks that spent time at the surface, explained Spencer.

    Zircons also contain plenty of hafnium, some of which is produced by the radioactive decay of lutetium. “To a first order, the lutetium-hafnium system will tell you about the source of a magma and therefore also the source of a zircon…crystallizing from that magma,” said Keller.

    If the magma contains melt fresh from the mantle, its hafnium signature will look very different from a melt signature containing old crust that’s been recycled via subduction. In Hawaii, for instance, freshly erupted basalts weather into sediments easily identified as being “from magmas that were extracted from the mantle very, very recently,” said Spencer. The hafnium isotope signatures of these sediments will indicate their youth. Sediments in the Amazon River delta, in contrast, come from several-billion-year-old cratons. “The rocks from which those sediments are derived have a very different [hafnium isotope signature] that goes back billions of years,” he explained.

    Chemical Correlation

    “At first blush…it just looks like shotgun blasts of data,” said Spencer, referring to the relationship between oxygen and hafnium signatures. There is a general lack of correlation for pre-Paleozoic zircons older than about 540 million years, but hafnium signatures do correlate with oxygen isotopes in younger zircons.

    Taken together, these data point to zircons coming from a mantle source containing old crust (from hafnium) that was exposed to liquid water (from oxygen), said Keller.

    This relationship is surprising, said Bauer, because “there’s no reason to expect hafnium and oxygen to correlate [in zircons].” Sediments incorporated into a mantle melt might contain heavier oxygen, indicating more weathering, but they need not have a distinct hafnium signature because “it’s just random sedimentary material.”

    Pinning down just when the two signatures began to correlate took some statistical sleuthing. Nevertheless, Spencer found a shift between 450 million and 430 million years ago that suggests some rapid, irreversible change in zircon chemistry, he said.

    Around 430 million years ago, few mountains were being built, said Spencer, which led him to surmise that something else must have caused the peculiar correlation.

    Prior to about 450 million years ago, river deposits tended to have very low proportions of mud, whereas after that, muddy river deposits increased. The cause of this shift to muddy rivers, said Spencer, “is the advent of land plants.” Roots, he explained, help hold mud and other sediment on river banks, which in turn helps rivers meander. Therefore, roots control what sediment eventually arrives in subduction zones to be carried down to the mantle, melted, and returned to the surface, perhaps with zircons transcribing the tale.

    Just how land plants changed the sediment cycle, however, is still being debated, Keller pointed out. For instance, plants stabilize banks, but they can also increase the extent of weathering. “It’s a reasonable hypothesis that [plants] should maybe do something to the global cycling of sediments,” he said, “and if so, then maybe you can see it in the geochemical record.”

    Ultimately, there are only about 5,000 zircons in Spencer’s database, which he described as “paltry” compared to other zircon data repositories that reach into the hundreds of thousands of analyses. The small sample size is a result of few studies obtaining both oxygen and hafnium information from a single zircon, in addition to age.

    “The main challenges are always representativeness,” said Keller, “and preservation bias.”

    “I anxiously await the time when we have 10,000 [analyses],” said Spencer. “At this moment, this is what we have.”

    Science paper:
    Nature Geoscience

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    “Eos” is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

     
  • richardmitnick 8:05 pm on October 4, 2022 Permalink | Reply
    Tags: "Dinosaur-killing asteroid triggered global tsunami that scoured seafloor thousands of miles from impact site", , , Geology, , ,   

    From The University of Michigan: “Dinosaur-killing asteroid triggered global tsunami that scoured seafloor thousands of miles from impact site” 

    U Michigan bloc

    From The University of Michigan

    10.4.22
    Jim Erickson


    Dinosaur-killing asteroid triggered global tsunami

    The miles-wide asteroid that struck Earth 66 million years ago wiped out nearly all the dinosaurs and roughly three-quarters of the planet’s plant and animal species.

    It also triggered a monstrous tsunami with mile-high waves that scoured the ocean floor thousands of miles from the impact site on Mexico’s Yucatan Peninsula, according to a new University of Michigan-led study.

    The study, published online Oct. 4 in the journal AGU Advances [below], presents the first global simulation of the Chicxulub impact tsunami to be published in a peer-reviewed scientific journal. In addition, U-M researchers reviewed the geological record at more than 100 sites worldwide and found evidence that supports their models’ predictions about the tsunami’s path and power.

    “This tsunami was strong enough to disturb and erode sediments in ocean basins halfway around the globe, leaving either a gap in the sedimentary records or a jumble of older sediments,” said lead author Molly Range, who conducted the modeling study for a master’s thesis under U-M physical oceanographer and study co-author Brian Arbic and U-M paleoceanographer and study co-author Ted Moore.

    Energy impact

    The review of the geological record focused on “boundary sections,” marine sediments deposited just before or just after the asteroid impact and the subsequent K-Pg mass extinction, which closed the Cretaceous Period.

    “The distribution of the erosion and hiatuses that we observed in the uppermost Cretaceous marine sediments are consistent with our model results, which gives us more confidence in the model predictions,” said Range, who started the project as an undergraduate in Arbic’s lab in the Department of Earth and Environmental Sciences.

    The study authors calculated that the initial energy in the impact tsunami was up to 30,000 times larger than the energy in the December 2004 Indian Ocean earthquake tsunami, which killed more than 230,000 people and is one of the largest tsunamis in the modern record.

    The team’s simulations show that the impact tsunami radiated mainly to the east and northeast into the North Atlantic Ocean, and to the southwest through the Central American Seaway (which used to separate North America and South America) into the South Pacific Ocean.

    21
    Modeled tsunami sea-surface height perturbation, in meters, 24 hours after the asteroid impact. This image shows results from the MOM6 model, one of two tsunami-propogation models used in the University of Michigan-led study. Image credit: From Range et al. in AGU Advances, 2022.

    In those basins and in some adjacent areas, underwater current speeds likely exceeded 20 centimeters per second (0.4 mph), a velocity that is strong enough to erode fine-grained sediments on the seafloor.

    In contrast, the South Atlantic, the North Pacific, the Indian Ocean and the region that is today the Mediterranean were largely shielded from the strongest effects of the tsunami, according to the team’s simulation. In those places, the modeled current speeds were likely less than the 20 cm/sec threshold.

    Geological corroboration

    For the review of the geological record, U-M’s Moore analyzed published records of 165 marine boundary sections and was able to obtain usable information from 120 of them. Most of the sediments came from cores collected during scientific ocean-drilling projects.

    The North Atlantic and South Pacific had the fewest sites with complete, uninterrupted K-Pg boundary sediments. In contrast, the largest number of complete K-Pg boundary sections were found in the South Atlantic, the North Pacific, the Indian Ocean and the Mediterranean.

    “We found corroboration in the geological record for the predicted areas of maximal impact in the open ocean,” said Arbic, professor of earth and environmental sciences. He oversaw the project. “The geological evidence definitely strengthens the paper.”

    Of special significance, according to the authors, are outcrops of the K-Pg boundary on the eastern shores of New Zealand’s north and south islands, which are more than 12,000 kilometers (7,500 miles) from the Yucatan impact site.

    The heavily disturbed and incomplete New Zealand sediments, called olistostromal deposits, were originally thought to be the result of local tectonic activity. But given the age of the deposits and their location directly in the modeled pathway of the Chicxulub impact tsunami, the U-M-led research team suspects a different origin.

    “We feel these deposits are recording the effects of the impact tsunami, and this is perhaps the most telling confirmation of the global significance of this event,” Range said.

    Comparing models

    The modeling portion of the study used a two-stage strategy. First, a large computer program called a hydrocode simulated the chaotic first 10 minutes of the event, which included the impact, crater formation and initiation of the tsunami. That work was conducted by co-author Brandon Johnson of Purdue University.

    Based on the findings of previous studies, the researchers modeled an asteroid that was 14 kilometers (8.7 miles) in diameter, moving at 12 kilometers per second (27,000 mph). It struck granitic crust overlain by thick sediments and shallow ocean waters, blasting a roughly 100-kilometer-wide (62-mile-wide) crater and ejecting dense clouds of soot and dust into the atmosphere.

    Two and a half minutes after the asteroid struck, a curtain of ejected material pushed a wall of water outward from the impact site, briefly forming a 4.5-kilometer-high (2.8-mile-high) wave that subsided as the ejecta fell back to Earth.

    Ten minutes after the projectile hit the Yucatan, and 220 kilometers (137 miles) from the point of impact, a 1.5-kilometer-high (0.93-mile-high) tsunami wave—ring-shaped and outward-propagating—began sweeping across the ocean in all directions, according to the U-M simulation.

    At the 10-minute mark, the results of Johnson’s iSALE hydrocode simulations were entered into two tsunami-propagation models, MOM6 and MOST, to track the giant waves across the ocean. MOM6 has been used to model tsunamis in the deep ocean, and NOAA uses the MOST model operationally for tsunami forecasts at its Tsunami Warning Centers.

    3
    Modeled tsunami sea-surface height perturbation, in meters, four hours after the asteroid impact. This image shows results from the MOM6 model, one of two tsunami-propogation models used in the University of Michigan-led study. Image credit: From Range et al. in AGU Advances, 2022.

    “The big result here is that two global models with differing formulations gave almost identical results, and the geologic data on complete and incomplete sections are consistent with those results,” said Moore, professor emeritus of earth and environmental sciences. “The models and the verification data match nicely.”

    According to the team’s simulation:

    One hour after impact, the tsunami had spread outside the Gulf of Mexico and into the North Atlantic.
    Four hours after impact, the waves had passed through the Central American Seaway and into the Pacific.
    Twenty-four hours after impact, the waves had crossed most of the Pacific from the east and most of the Atlantic from the west and entered the Indian Ocean from both sides.
    By 48 hours after impact, significant tsunami waves had reached most of the world’s coastlines.

    Dramatic wave heights

    For the current study, the researchers did not attempt to estimate the extent of coastal flooding caused by the tsunami.

    However, their models indicate that open-ocean wave heights in the Gulf of Mexico would have exceeded 100 meters (328 feet), with wave heights of more than 10 meters (32.8 feet) as the tsunami approached North Atlantic coastal regions and parts of South America’s Pacific coast.

    4
    Maximum tsunami wave amplitude, in centimeters, following the asteroid impact 66 million years ago. Image credit: From Range et al. in AGU Advances, 2022.

    As the tsunami neared those shorelines and encountered shallow bottom waters, wave heights would have increased dramatically through a process called shoaling. Current speeds would have exceeded the 20 centimeters per second threshold for most coastal areas worldwide.

    “Depending on the geometries of the coast and the advancing waves, most coastal regions would be inundated and eroded to some extent,” according to the study authors. “Any historically documented tsunamis pale in comparison with such global impact.”

    The follow-up

    A follow-up study is planned to model the extent of coastal inundation worldwide, Arbic said. That study will be led by Vasily Titov of the National Oceanic and Atmospheric Administration’s Pacific Marine Environmental Lab, who is a co-author of the AGU Advances paper.

    In addition to Range, Arbic, Moore, Johnson and Titov, the study authors are Alistair Adcroft of Princeton University, Joseph Ansong of the University of Ghana, Christopher Hollis of Victoria University of Wellington, Jeroen Ritsema of the University of Michigan, Christopher Scotese of the PALEOMAP Project, and He Wang of NOAA’s Geophysical Fluid Dynamics Laboratory and the University Corporation for Atmospheric Research.

    Funding was provided by the National Science Foundation and the University of Michigan Associate Professor Support Fund, which is supported by the Margaret and Herman Sokol Faculty Awards. The MOM6 simulations were carried out on the Flux supercomputer provided by the University of Michigan Advanced Research Computing Technical Services.

    Science paper:
    AGU Advances

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please support STEM education in your local school system

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States, the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

    At over $12.4 billion in 2019, Michigan’s endowment is among the largest of any university. As of October 2019, 53 MacArthur “genius award” winners (29 alumni winners and 24 faculty winners), 26 Nobel Prize winners, six Turing Award winners, one Fields Medalist and one Mitchell Scholar have been affiliated with the university. Its alumni include eight heads of state or government, including President of the United States Gerald Ford; 38 cabinet-level officials; and 26 living billionaires. It also has many alumni who are Fulbright Scholars and MacArthur Fellows.

    Research

    Michigan is one of the founding members (in the year 1900) of the Association of American Universities. With over 6,200 faculty members, 73 of whom are members of the National Academy and 471 of whom hold an endowed chair in their discipline, the university manages one of the largest annual collegiate research budgets of any university in the United States. According to the National Science Foundation, Michigan spent $1.6 billion on research and development in 2018, ranking it 2nd in the nation. This figure totaled over $1 billion in 2009. The Medical School spent the most at over $445 million, while the College of Engineering was second at more than $160 million. U-M also has a technology transfer office, which is the university conduit between laboratory research and corporate commercialization interests.

    In 2009, the university signed an agreement to purchase a facility formerly owned by Pfizer. The acquisition includes over 170 acres (0.69 km^2) of property, and 30 major buildings comprising roughly 1,600,000 square feet (150,000 m^2) of wet laboratory space, and 400,000 square feet (37,000 m^2) of administrative space. At the time of the agreement, the university’s intentions for the space were not set, but the expectation was that the new space would allow the university to ramp up its research and ultimately employ in excess of 2,000 people.

    The university is also a major contributor to the medical field with the EKG and the gastroscope. The university’s 13,000-acre (53 km^2) biological station in the Northern Lower Peninsula of Michigan is one of only 47 Biosphere Reserves in the United States.

    In the mid-1960s U-M researchers worked with IBM to develop a new virtual memory architectural model that became part of IBM’s Model 360/67 mainframe computer (the 360/67 was initially dubbed the 360/65M where the “M” stood for Michigan). The Michigan Terminal System (MTS), an early time-sharing computer operating system developed at U-M, was the first system outside of IBM to use the 360/67’s virtual memory features.

    U-M is home to the National Election Studies and the University of Michigan Consumer Sentiment Index. The Correlates of War project, also located at U-M, is an accumulation of scientific knowledge about war. The university is also home to major research centers in optics, reconfigurable manufacturing systems, wireless integrated microsystems, and social sciences. The University of Michigan Transportation Research Institute and the Life Sciences Institute are located at the university. The Institute for Social Research (ISR), the nation’s longest-standing laboratory for interdisciplinary research in the social sciences, is home to the Survey Research Center, Research Center for Group Dynamics, Center for Political Studies, Population Studies Center, and Inter-Consortium for Political and Social Research. Undergraduate students are able to participate in various research projects through the Undergraduate Research Opportunity Program (UROP) as well as the UROP/Creative-Programs.

    The U-M library system comprises nineteen individual libraries with twenty-four separate collections—roughly 13.3 million volumes. U-M was the original home of the JSTOR database, which contains about 750,000 digitized pages from the entire pre-1990 backfile of ten journals of history and economics, and has initiated a book digitization program in collaboration with Google. The University of Michigan Press is also a part of the U-M library system.

    In the late 1960s U-M, together with Michigan State University and Wayne State University, founded the Merit Network, one of the first university computer networks. The Merit Network was then and remains today administratively hosted by U-M. Another major contribution took place in 1987 when a proposal submitted by the Merit Network together with its partners IBM, MCI, and the State of Michigan won a national competition to upgrade and expand the National Science Foundation Network (NSFNET) backbone from 56,000 to 1.5 million, and later to 45 million bits per second. In 2006, U-M joined with Michigan State University and Wayne State University to create the the University Research Corridor. This effort was undertaken to highlight the capabilities of the state’s three leading research institutions and drive the transformation of Michigan’s economy. The three universities are electronically interconnected via the Michigan LambdaRail (MiLR, pronounced ‘MY-lar’), a high-speed data network providing 10 Gbit/s connections between the three university campuses and other national and international network connection points in Chicago.

     
  • richardmitnick 8:31 pm on September 29, 2022 Permalink | Reply
    Tags: , Australia is also expected to play a role in this important Earth event first colliding with Asia and then connecting America and Asia once the Pacific Ocean closes., , , Geology, Mirage News, Over the past two billion years Earth’s continents have collided together to form a supercontinent every 600 million years., The Pacific Ocean is what is left of the Panthalassa super ocean that started to form 700 million years ago when the previous supercontinent started to break apart., The resulting new supercontinent has already been named Amasia because some believe that the Pacific Ocean will close when America collides with Asia., The world’s next supercontinent-Amasia-will most likely form when the Pacific Ocean closes in 200 to 300 million years.   

    From Curtin University (AU) Via Mirage News: “Pacific Ocean set to make way for world’s next supercontinent” 

    From Curtin University (AU)

    Via

    Mirage News

    9.30.22

    New Curtin University-led research has found that the world’s next supercontinent-Amasia-will most likely form when the Pacific Ocean closes in 200 to 300 million years.

    1
    A possible Amasia configuration 280 Myr into the future.

    Published in National Science Review [below], the research team used a supercomputer to simulate how a supercontinent forms and found that because the Earth has been cooling for billions of years, the thickness and strength of the plates under the oceans reduce with time, making it difficult for the next supercontinent to assemble by closing the “young” oceans, such as the Atlantic or Indian oceans.

    Lead author Dr Chuan Huang, from Curtin’s Earth Dynamics Research Group and the School of Earth and Planetary Sciences, said the new findings were significant and provided insights into what would happen to Earth in the next 200 million years.

    “Over the past two billion years Earth’s continents have collided together to form a supercontinent every 600 million years, known as the supercontinent cycle. This means that the current continents are due to come together again in a couple of hundred of million years’ time,” Dr Huang said.

    “The resulting new supercontinent has already been named Amasia because some believe that the Pacific Ocean will close (as opposed to the Atlantic and Indian oceans) when America collides with Asia. Australia is also expected to play a role in this important Earth event, first colliding with Asia and then connecting America and Asia once the Pacific Ocean closes.

    “By simulating how the Earth’s tectonic plates are expected to evolve using a supercomputer, we were able to show that in less than 300 million years’ time it is likely to be the Pacific Ocean that will close, allowing for the formation of Amasia, debunking some previous scientific theories.”

    The Pacific Ocean is what is left of the Panthalassa super ocean that started to form 700 million years ago when the previous supercontinent started to break apart. It is the oldest ocean we have on Earth, and it started shrinking from its maximum size since the dinosaur time. It is currently shrinking in size by a few centimetres per year and its current dimension of about 10 thousand kilometres is predicted to take two to three hundred million years to close.

    Co-author John Curtin Distinguished Professor Zheng-Xiang Li, also from Curtin’s School of Earth and Planetary Sciences, said that having the whole world dominated by a single continental mass would dramatically alter Earth’s ecosystem and environment.

    “Earth as we know it will be drastically different when Amasia forms. The sea level is expected to be lower, and the vast interior of the supercontinent will be very arid with high daily temperature ranges,” Professor Li said.

    “Currently, Earth consists of seven continents with widely different ecosystems and human cultures, so it would be fascinating to think what the world might look like in 200 to 300 million years’ time.”

    The research was co-authored by researchers from Curtin’s School of Earth and Planetary Sciences and Peking University in China.

    Science paper:
    National Science Review

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Curtin University (AU) is an Australian public research university based in Bentley and Perth, Western Australia. The university is named after the 14th Prime Minister of Australia, John Curtin, and is the largest university in Western Australia, with over 58,000 students (as of 2016).

    Curtin would like to pay respect to the indigenous members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Wadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.

    Curtin was conferred university status after legislation was passed by the Parliament of Western Australia in 1986. Since then, the university has been expanding its presence and has campuses in Singapore, Malaysia, Dubai and Mauritius. It has ties with 90 exchange universities in 20 countries. The University comprises five main faculties with over 95 specialists centres. The University formerly had a Sydney campus between 2005 & 2016. On 17 September 2015, Curtin University Council made a decision to close its Sydney campus by early 2017.

    Curtin University is a member of Australian Technology Network (ATN), and is active in research in a range of academic and practical fields, including Resources and Energy (e.g., petroleum gas), Information and Communication, Health, Ageing and Well-being (Public Health), Communities and Changing Environments, Growth and Prosperity and Creative Writing.

    It is the only Western Australian university to produce a PhD recipient of the AINSE gold medal, which is the highest recognition for PhD-level research excellence in Australia and New Zealand.

    Curtin has become active in research and partnerships overseas, particularly in mainland China. It is involved in a number of business, management, and research projects, particularly in supercomputing, where the university participates in a tri-continental array with nodes in Perth, Beijing, and Edinburgh. Western Australia has become an important exporter of minerals, petroleum and natural gas. The Chinese Premier Wen Jiabao visited the Woodside-funded hydrocarbon research facility during his visit to Australia in 2005.

     
  • richardmitnick 8:42 am on September 29, 2022 Permalink | Reply
    Tags: "'I was there when the volcano erupted.'", , , Geology, Petrology, ,   

    From The University of Delaware : “‘I was there when the volcano erupted.'” 

    U Delaware bloc

    From The University of Delaware

    August 1, 2022
    Tracey Bryant

    1
    Abigail Nalesnik, doctoral student in geology at the University of Delaware, looks through a rangefinder at the eruption in Kīlauea‘s Halema‘uma‘u crater the evening of September 30, 2021. She was on the first response team from the U.S. Geological Survey’s Hawaiian Volcano Observatory to visit the eruption and helped make measurements of the active fountains and monitor the lava lake level to track how quickly it was rising. Photo taken from a closed area of Hawai‘i Volcanoes National Park by Kendra Lynn, USGS.

    2
    Kilauea on the southeastern shore of the Big Island of Hawaiʻi. Credit USGS June 12, 2018.

    It is Wednesday, September 29, 2021, 3:21 p.m. Hawai‘i Standard Time (HST). Abigail Nalesnik is finishing up her fieldwork for the day. The University of Delaware doctoral student had been collecting samples of volcanic rock along a gully west of the summit of Kīlauea — one of the most active volcanoes in the world — working alongside Kendra J. Lynn, geologist for the U.S. Geological Survey and an affiliated professor at UD.

    3
    Kendra Lynn, geologist with the U.S. Geological Survey, collects fragments of rock, called tephra, ejected from the volcano. Photo courtesy of USGS.

    Then the alert came.

    “There was an earthquake swarm under the summit, although we hadn’t felt anything,” Nalesnik said. “As we began driving from my field site, we saw the smoke rising out of Halema‘uma‘u crater. It was an amazing first view of a volcanic plume!”

    Witnessing a volcano erupt is an unforgettable experience. And Kīlauea — one of the world’s youngest volcanoes, known to Hawai’ians as the home of the revered goddess Pelehonuamea (Pele) — has offered up this incredible spectacle with some frequency. At this rupture in Earth’s crust, lava and gas have exploded from a magma chamber below the surface dozens of times since 1952 like a giant pressure cooker blowing its top.

    Within minutes after seeing the plume, the USGS team began deploying to the eruption site in a closed area of Hawai‘i Volcanoes National Park.

    “We drove down an old portion of park road around the summit crater and began to study the fresh lava that had been thrown up and out of the crater,” Lynn said. “Now cooled, these freshly made rocks, ranging from a millimeter to 15 centimeters in diameter, were very vesicular – meaning they had a lot of gas bubbles – when they were quenched. These feather-light pumices were already rolling across the road and landscape, being buffeted about by the wind.”
    _________________________________________________________________
    Where is Kīlauea volcano?

    Kīlauea is the youngest and southeasternmost volcano on the island of Hawaii, which is known as the “Big Island” because it is larger than all of the other Hawaiian islands combined. It is also the largest island in the U.S.

    How hot is erupting lava?

    According to the U.S. Geological Survey, Kīlauea lava’s eruption temperature is about 1170° Celsius (2140° Fahrenheit). Once exposed to the air, the lava cools down quickly — by hundreds of degrees per second.

    A rising lava lake

    Since the 2021 eruption, lava in Halema‘uma‘u crater has risen 70 meters (230 feet) — that’s taller than a 20-story building. This molten rock, estimated at 10.5 billion gallons, would fill 200 million bathtubs — one for about every person in Brazil!

    Read the USGS Report

    HAWAIIAN VOLCANO OBSERVATORY DAILY UPDATE
    U.S. Geological Survey
    Thursday, January 13, 2022, 10:50 AM HST (Thursday, January 13, 2022, 20:50 UTC)

    How many active volcanoes are there on Earth?

    Most of the world’s volcanoes are underwater, on the ocean floor, where Earth’s tectonic plates — giant slabs of the planet’s crust — are being pulled apart. Outside of these, about 1,350 potentially active volcanoes exist around the globe, and about 500 are estimated to have erupted in human history. The Pacific Rim has so many volcanoes it is known as the “Ring of Fire.”


    _________________________________________________________________

    Q: What does an erupting volcano sound like?

    Lynn was impressed by the sound of the rocks and particles called tephra being ejected from the volcano.

    “The rolling clasts made a light ‘tink, tink, tink’ that made me instantly think of Christmas ornaments. When the wind gusts died down, there was an incredible sloshing sound, like waves on a beach. This was the lava and the active eruption, which was out of sight deep in the crater beyond where we were working.”

    Nalesnik will never forget the sound of the lava fountains.

    “Somewhat like very heavy water splashing down onto the lava lake, but unlike anything I’ve heard before. You could hear the fountains without being very close to the edge of the crater.”

    Q: And what about the smell?

    “Not fantastic,” Nalesnik said, due to the sulfur dioxide, which smells like burnt matches. What’s more, sulfur dioxide irritates the eyes, nose and throat, causing you to cough and have a tight feeling in the chest. Headache, nausea, fatigue are other effects. Thus, gas masks were necessary to be in the area. But the view more than made up for it.

    “Arriving at the edge of the crater to do measurements, the glow of the lava lake was surreal, with each small fountain and bubble of lava a fiery orange-red.”

    Q: What do you wear working near a volcano?

    With the eruption occurring deep inside Halema‘uma‘u crater, the researchers monitored the event from a distance and were not close enough to sample the lava. Still, they could feel the heat due to the vast size of the lava lake — estimated to be 70 floors deep if the Empire State Building were plopped into it.

    “You can feel the heat on your face, but it is surprisingly chilly at the summit with the strong winds,” Nalesnik said.

    Each team member wears a respirator, a critical piece of personal protective equipment (PPE) that must be worn when sulfur dioxide is present, Lynn said. They also wear an electronic gas badge calibrated to vibrate and beep to signal the concentration levels of sulfur dioxide, so they can quickly get out of areas inundated with gas. Other essentials include high-visibility uniforms, hard hats, cotton pants (synthetic materials melt when close to an active lava field), sturdy leather boots, and when windy, goggles to protect the eyes from blowing ash.

    Q: How do you study an erupting volcano, and why is it important?

    Volcanoes are among Nature’s greatest wonders, but they also can be extremely dangerous. Kīlauea’s eruption in 2018 caused evacuations in residential areas southeast of Hawai‘i Volcanoes National Park, as fissures opened up in the Earth’s crust — some 22 of these long, narrow cracks — and the large flows of lava destroyed more than 700 homes, as well as roads, schools and businesses. For months, residents downwind had to wear N95 masks to protect themselves from toxic ash and sulfur dioxide gas.

    The scientists at the Hawaiian Volcano Observatory (HVO) have wide-ranging skills for studying such an explosive phenomenon. As a field geologist, Lynn works with her team to monitor the eruption on site. In addition to a permanent network of time-lapse and networked cameras, they capture the volcanic activity with high-resolution photographs and videos. They also use a rangefinder to measure the height of the lava lake and other features in the crater, which helps them to make important calculations such as lava fountain heights and effusion rates, which might increase if an eruption is gaining intensity or decrease if an eruption is waning.

    Lynn is also a petrologist — a scientist who studies the composition, texture and structure of rocks and minerals to understand how and when they formed — so she collects samples of tephra and olivine, a mineral rich in iron and manganese, for polishing and chemical analysis back in the lab. Olivine can provide clues as to when and where the magma was stored in the volcano prior to the eruption.

    “I look for patterns in the chemistry of erupted lavas that might help us to understand how the volcano behaves over decades to centuries,” Lynn said. “This might give us a better idea of what to expect in the future and be better prepared for the hazards associated with such events. In general, our monitoring observations help assess hazards and risk in real time, and the information allows the National Park Service and other agencies to make decisions.”

    Q: What’s the most surprising thing about working around an active volcano?

    “I was surprised at how much there is to do!” Nalesnik said. “There are various specialties at HVO, such as the gas team that measures the volcano emissions, the seismology team that monitors the earthquakes, and of course the geology team that studies the physical deposits. These and several other teams have so many different avenues for study and analyses that reflect on different aspects of the volcano. It was great to see them all working together to navigate this current eruption and learn all that we can.”

    For Lynn, the sheer scale of Earth’s outburst never gets old.

    “I am shocked every time I see an eruption at how big it is — that we can have fountains of lava over 60 feet tall — that’s taller than a four-story building!”

    Q: Where does this experience rank on your geo-bucket list?

    “Participating in an active eruption response was definitely #1 on my bucket list!” said Nalesnik, who had received funding from the National Science Foundation to do work at the site for her UD doctoral research under the guidance of her adviser, Professor Jessica Warren. “Driving from my field site, seeing the plume rising out of Halema‘uma‘u, feeling so excited and nervous, will be a memory I keep for the rest of my life. As volcanoes are such dynamic landforms, I am thankful I had my gear packed and was prepared in case something happened during my short visit. Five weeks isn’t a very long time.”

    For Lynn, Kīlauea has always been a very special place. “Growing up, I dreamed of studying it, and when I finally got that opportunity in graduate school, visiting the volcano changed my life forever,” she said. “Kīlauea is my favorite place on Earth, and is also a special and sacred place in Hawaii, home to Pelehonuamea, goddess of the volcano. As a guest in Hawaii and at Kīlauea, I am constantly in awe of Pele.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Delaware campus

    The University of Delaware is a public land-grant research university located in Newark, Delaware. University of Delaware (US) is the largest university in Delaware. It offers three associate’s programs, 148 bachelor’s programs, 121 master’s programs (with 13 joint degrees), and 55 doctoral programs across its eight colleges. The main campus is in Newark, with satellite campuses in Dover, the Wilmington area, Lewes, and Georgetown. It is considered a large institution with approximately 18,200 undergraduate and 4,200 graduate students. It is a privately governed university which receives public funding for being a land-grant, sea-grant, and space-grant state-supported research institution.

    The University of Delaware is classified among “R1: Doctoral Universities – Very high research activity”. According to The National Science Foundation, UD spent $186 million on research and development in 2018, ranking it 119th in the nation. It is recognized with the Community Engagement Classification by the Carnegie Foundation for the Advancement of Teaching.

    The University of Delaware is one of only four schools in North America with a major in art conservation. In 1923, it was the first American university to offer a study-abroad program.

    The University of Delaware traces its origins to a “Free School,” founded in New London, Pennsylvania in 1743. The school moved to Newark, Delaware by 1765, becoming the Newark Academy. The academy trustees secured a charter for Newark College in 1833 and the academy became part of the college, which changed its name to Delaware College in 1843. While it is not considered one of the colonial colleges because it was not a chartered institution of higher education during the colonial era, its original class of ten students included George Read, Thomas McKean, and James Smith, all three of whom went on to sign the Declaration of Independence. Read also later signed the United States Constitution.

    Science, Technology and Advanced Research (STAR) Campus

    On October 23, 2009, The University of Delaware signed an agreement with Chrysler to purchase a shuttered vehicle assembly plant adjacent to the university for $24.25 million as part of Chrysler’s bankruptcy restructuring plan. The university has developed the 272-acre (1.10 km^2) site into the Science, Technology and Advanced Research (STAR) Campus. The site is the new home of University of Delaware (US)’s College of Health Sciences, which includes teaching and research laboratories and several public health clinics. The STAR Campus also includes research facilities for University of Delaware (US)’s vehicle-to-grid technology, as well as Delaware Technology Park, SevOne, CareNow, Independent Prosthetics and Orthotics, and the East Coast headquarters of Bloom Energy. In 2020 [needs an update], University of Delaware expects to open the Ammon Pinozzotto Biopharmaceutical Innovation Center, which will become the new home of the UD-led National Institute for Innovation in Manufacturing Biopharmaceuticals. Also, Chemours recently opened its global research and development facility, known as the Discovery Hub, on the STAR Campus in 2020. The new Newark Regional Transportation Center on the STAR Campus will serve passengers of Amtrak and regional rail.

    Academics

    The university is organized into nine colleges:

    Alfred Lerner College of Business and Economics
    College of Agriculture and Natural Resources
    College of Arts and Sciences
    College of Earth, Ocean and Environment
    College of Education and Human Development
    College of Engineering
    College of Health Sciences
    Graduate College
    Honors College

    There are also five schools:

    Joseph R. Biden, Jr. School of Public Policy and Administration (part of the College of Arts & Sciences)
    School of Education (part of the College of Education & Human Development)
    School of Marine Science and Policy (part of the College of Earth, Ocean and Environment)
    School of Nursing (part of the College of Health Sciences)
    School of Music (part of the College of Arts & Sciences)

     
  • richardmitnick 7:50 am on September 29, 2022 Permalink | Reply
    Tags: "Here is how olivine may trigger deep earthquakes", , , , Geology, , ,   

    From “Science News” : “Here is how olivine may trigger deep earthquakes” 

    From “Science News”

    9.26.22
    Nikk Ogasa

    1
    The transformation of olivine (the yellow-green mineral seen in this rock) into wadsleyite hundreds of kilometers underground may set off the deepest earthquakes ever recorded. Credit: Joel Papalini/iStock/Getty Images Plus.

    Cocooned within the bowels of the Earth, one mineral’s metamorphosis into another may trigger some of the deepest earthquakes ever detected.

    These cryptic tremors — known as deep-focus earthquakes — are a seismic conundrum. They violently rupture at depths greater than 300 kilometers, where intense temperatures and pressures are thought to force rocks to flow smoothly. Now, experiments suggest that those same hellish conditions might also sometimes transform olivine — the primary mineral in Earth’s mantle — into the mineral wadsleyite. This mineral switch-up can destabilize the surrounding rock, enabling earthquakes at otherwise impossible depths, mineral physicist Tomohiro Ohuchi and colleagues report September 15 in Nature Communications [below].

    “It’s been a real puzzle for many scientists because earthquakes shouldn’t occur deeper than 300 kilometers,” says Ohuchi, of Ehime University in Matsuyama, Japan.

    Fig. 1: Summary of experimental conditions.
    2
    a Throughgoing faulting occurred. b No throughgoing faulting occurred. The long-dashed arrows indicate the P-T-t paths for our experiments. Squares, triangles, and diamonds represent the P-T-t path#1 (normal), #2 (overpressurized just before the deformation), and #3 (temperature ramping during the deformation), respectively. Large symbols represent the runs with throughgoing faulting (M2676, M3100, and M3425). Crosses show the lower limit of the peak temperature during the throughgoing faulting (estimated from the microstructures: see text for details). Short dashed lines are the estimated T-paths of shear heating. Red thick arrows show the temperature ranges during each deformation run of path#3. Solid and open symbols represent the runs in which the OL100 and OL92 samples were used, respectively. The equilibrium boundaries of α (olivine), β (wadsleyite), and γ (ringwoodite) for Mg1.8Fe0.2SiO4 are shown by gray solid lines14,34. Pale orange curve: solidus for dry lherzolite26. Dark-orange curve: liquidus for dry lherzolite26. Brown curve: melting of forsterite25. Pink curve: incongruent melting of γ-Fe2SiO4 to a liquid phase and stishovite (Sti)24 (i.e., the lower limit of the melting temperature of β/γ-Mg1.8Fe0.2SiO4). The M2472 run, in which a blow-out occurred in the early stage of deformation, is not shown.

    Fig. 2: Summary of experimental results as a function of temperature.
    3
    a Temperature dependence of the yield strength of the samples. Creep strength of olivine (Ol) is calculated assuming the Peierls creep for sintered dry/wet aggregates15,16,17, wet dislocation (disl.) creep18 and wet dislocation-accommodated grain boundary sliding (dislGBS; for a typical grain size of 10 µm)19. Water content of 190 wt. ppm is assumed for the calculations. b Temperature dependence of averaged acoustic emission (AE) rate (symbols) and cumulative AE energy release (gray bars). Symbols and red thick-arrows are the same as those in Fig. 1. The error bars represent the uncertainties in temperature or stress.

    More instructive images are available in the science paper.

    Deep-focus earthquakes usually occur at subduction zones where tectonic plates made of oceanic crust — rich in olivine — plunge toward the mantle (SN: 1/13/21). Since the quakes’ seismic waves lose strength during their long ascent to the surface, they aren’t typically dangerous. But that doesn’t mean the quakes aren’t sometimes powerful. In 2013, a magnitude 8.3 deep-focus quake struck around 609 kilometers below the Sea of Okhotsk, just off Russia’s eastern coast.

    Past studies [Nature Letters (below)] hinted that unstable olivine crystals could spawn deep quakes. But those studies tested other minerals that were similar in composition to olivine but deform at lower pressures, Ohuchi says, or the experiments didn’t strain samples enough to form faults.

    He and his team decided to put olivine itself to the test. To replicate conditions deep underground, the researchers heated and squeezed olivine crystals up to nearly 1100° Celsius and 17 gigapascals. Then the team used a mechanical press to further compress the olivine slowly and monitored the deformation.

    From 11 to 17 gigapascals and about 800° to 900° C, the olivine recrystallized into thin layers containing new wadsleyite and smaller olivine grains. The researchers also found tiny faults and recorded bursts of sound waves — indicative of miniature earthquakes. Along subducting tectonic plates, many of these thin layers grow and link to form weak regions in the rock, upon which faults and earthquakes can initiate, the researchers suggest.

    “The transformation really wreaks havoc with the [rock’s] mechanical stability,” says geophysicist Pamela Burnley of the University of Nevada, Las Vegas, who was not involved in the research. The findings help confirm that olivine transformations are enabling deep-focus earthquakes, she says.

    Next, Ohuchi’s team plans to experiment on olivine at even higher pressures to gain insights into the mineral’s deformation at greater depths.

    Science paper:
    Nature Communications
    Nature Letters

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

     
  • richardmitnick 10:27 am on September 28, 2022 Permalink | Reply
    Tags: "Deepest scientific ocean drilling effort sheds light on Japan’s next ‘big one’ ", , , , Geology, ,   

    From The University of Washington And The University of Texas-Austin: “Deepest scientific ocean drilling effort sheds light on Japan’s next ‘big one’ “ 

    From The University of Washington

    And

    The University of Texas-Austin

    9.22.22

    1
    The deep-sea scientific drilling vessel Chikyu, which in 2018 performed the deepest drilling of a subduction zone earthquake fault. Credit: Wikimedia/Gleam.

    Scientists who drilled deeper into an undersea earthquake fault than ever before have found that the tectonic stress in Japan’s Nankai subduction zone is less than expected.

    The results of the study led by the University of Washington and the University of Texas at Austin, published Sept. 5 in Geology [below], are a puzzle, since the fault produces a great earthquake almost every century and was thought to be building for another big one.

    Although the Nankai fault has been stuck for decades, the findings reveal that it is not yet showing major signs of pent-up tectonic stress. Authors say the result doesn’t alter the long-term outlook for the fault, which last ruptured in 1946, when it caused a tsunami that killed thousands, and is expected to do so again during the next 50 years.

    The findings will help scientists home in on the link between tectonic forces and the earthquake cycle. This could potentially lead to better earthquake forecasts, both at Nankai and other megathrust faults, like the Cascadia subduction zone off the coast of Washington and Oregon.

    2
    Harold Tobin of the University Washington inspects drilling pipes. Researchers used similar equipment during a record-breaking attempt to drill Japan’s Nankai fault in 2018. Credit: University of Washington.

    “Right now, we have no way of knowing if the big one for Cascadia — a magnitude-9 scale earthquake and tsunami — will happen this afternoon or 200 years from now,” said lead author Harold Tobin, a UW professor of Earth and space sciences and co-chief scientist on the drilling expedition. “But I have some optimism that with more and more direct observations like this one from Japan we can start to recognize when something anomalous is occurring and that the risk of an earthquake is heightened in a way that could help people prepare.

    “We learn how these faults work by studying them all over the world, and that knowledge will directly translate into insight into the Cascadia hazard as well.”

    Megathrust faults such as Nankai and Cascadia, and the tsunamis they generate, are among the most powerful and damaging on the globe. Scientists say they currently have no reliable way of knowing when and where the next big one will hit.

    The hope is that by directly measuring the force felt between tectonic plates pushing on each other — tectonic stress — scientists can learn when a great earthquake is ready to happen.

    “This is the heart of the subduction zone, right above where the fault is locked, where the expectation was that the system should be storing energy between earthquakes,” said co-author Demian Saffer at University of Texas-Austin, who also co-led the scientific drilling expedition. “It changes the way we’re thinking about stress in these systems.”

    The nature of tectonics means that the great earthquake faults are found in deep ocean, miles under the seafloor, making them incredibly challenging to measure directly. Tobin and Saffer’s drilling expedition is the closest scientists have come.

    Their record-breaking feat took place in 2018 aboard a Japanese scientific drilling ship, the Chikyu, which drilled almost 2 miles, or just over 3 kilometers, into the tectonic plate before the borehole got too unstable to continue — 1 mile short of the fault.

    Nevertheless, the researchers gathered invaluable data about subsurface conditions near the fault, including stress. To do that, they measured how much the borehole changed shape as the Earth squeezed it from the sides, then pumped water to see what it took to force its walls back out. That told them the direction and strength of horizontal stress felt by the plate pushing on the fault.

    Contrary to predictions, the horizontal stress expected to have built up since the most recent great earthquake was close to zero, as if the system had already released its pent-up energy.

    The researchers suggested several explanations: It could be that the fault simply needs less pent-up energy than thought to slip in a big earthquake, or that the stresses are lurking nearer to the fault than the drilling reached. Or it could be that the tectonic push will come suddenly in the coming years. Either way, the researchers said the drilling showed the need for further investigation and long-term monitoring of the fault.

    “Findings like this can seem like they muddy the picture, because things aren’t as simple as our theory or models predicted they were,” Tobin said. “But that just means we’re gaining more understanding of how the real world works, and the real world is messy and complicated.”

    The research was funded by the Integrated Ocean Drilling Program and the Japan Agency for Marine-Earth Science and Technology, or JAMSTEC. Other co-authors are Takehiro Hirose at JAMSTEC and David Castillo at Insight GeoMechanics in Australia.

    Science paper:
    Geology

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.
    Stem Education Coalition

    University of Texas-Austin

    University of Texas-Austin campus

    The University of Texas-Austin is a public research university in Austin, Texas and the flagship institution of the University of Texas System. Founded in 1883, the University of Texas was inducted into the Association of American Universities in 1929, becoming only the third university in the American South to be elected. The institution has the nation’s seventh-largest single-campus enrollment, with over 50,000 undergraduate and graduate students and over 24,000 faculty and staff.

    A Public Ivy, it is a major center for academic research. The university houses seven museums and seventeen libraries, including the LBJ Presidential Library and the Blanton Museum of Art, and operates various auxiliary research facilities, such as the J. J. Pickle Research Campus and the McDonald Observatory. As of November 2020, 13 Nobel Prize winners, four Pulitzer Prize winners, two Turing Award winners, two Fields medalists, two Wolf Prize winners, and two Abel prize winners have been affiliated with the school as alumni, faculty members or researchers. The university has also been affiliated with three Primetime Emmy Award winners, and has produced a total of 143 Olympic medalists.

    Student-athletes compete as the Texas Longhorns and are members of the Big 12 Conference. Its Longhorn Network is the only sports network featuring the college sports of a single university. The Longhorns have won four NCAA Division I National Football Championships, six NCAA Division I National Baseball Championships, thirteen NCAA Division I National Men’s Swimming and Diving Championships, and has claimed more titles in men’s and women’s sports than any other school in the Big 12 since the league was founded in 1996.

    Establishment

    The first mention of a public university in Texas can be traced to the 1827 constitution for the Mexican state of Coahuila y Tejas. Although Title 6, Article 217 of the Constitution promised to establish public education in the arts and sciences, no action was taken by the Mexican government. After Texas obtained its independence from Mexico in 1836, the Texas Congress adopted the Constitution of the Republic, which, under Section 5 of its General Provisions, stated “It shall be the duty of Congress, as soon as circumstances will permit, to provide, by law, a general system of education.”

    On April 18, 1838, “An Act to Establish the University of Texas” was referred to a special committee of the Texas Congress, but was not reported back for further action. On January 26, 1839, the Texas Congress agreed to set aside fifty leagues of land—approximately 288,000 acres (117,000 ha)—towards the establishment of a publicly funded university. In addition, 40 acres (16 ha) in the new capital of Austin were reserved and designated “College Hill”. (The term “Forty Acres” is colloquially used to refer to the University as a whole. The original 40 acres is the area from Guadalupe to Speedway and 21st Street to 24th Street.)

    In 1845, Texas was annexed into the United States. The state’s Constitution of 1845 failed to mention higher education. On February 11, 1858, the Seventh Texas Legislature approved O.B. 102, an act to establish the University of Texas, which set aside $100,000 in United States bonds toward construction of the state’s first publicly funded university (the $100,000 was an allocation from the $10 million the state received pursuant to the Compromise of 1850 and Texas’s relinquishing claims to lands outside its present boundaries). The legislature also designated land reserved for the encouragement of railroad construction toward the university’s endowment. On January 31, 1860, the state legislature, wanting to avoid raising taxes, passed an act authorizing the money set aside for the University of Texas to be used for frontier defense in west Texas to protect settlers from Indian attacks.

    Texas’s secession from the Union and the American Civil War delayed repayment of the borrowed monies. At the end of the Civil War in 1865, The University of Texas’s endowment was just over $16,000 in warrants and nothing substantive had been done to organize the university’s operations. This effort to establish a University was again mandated by Article 7, Section 10 of the Texas Constitution of 1876 which directed the legislature to “establish, organize and provide for the maintenance, support and direction of a university of the first class, to be located by a vote of the people of this State, and styled “The University of Texas”.

    Additionally, Article 7, Section 11 of the 1876 Constitution established the Permanent University Fund, a sovereign wealth fund managed by the Board of Regents of the University of Texas and dedicated to the maintenance of the university. Because some state legislators perceived an extravagance in the construction of academic buildings of other universities, Article 7, Section 14 of the Constitution expressly prohibited the legislature from using the state’s general revenue to fund construction of university buildings. Funds for constructing university buildings had to come from the university’s endowment or from private gifts to the university, but the university’s operating expenses could come from the state’s general revenues.

    The 1876 Constitution also revoked the endowment of the railroad lands of the Act of 1858, but dedicated 1,000,000 acres (400,000 ha) of land, along with other property appropriated for the university, to the Permanent University Fund. This was greatly to the detriment of the university as the lands the Constitution of 1876 granted the university represented less than 5% of the value of the lands granted to the university under the Act of 1858 (the lands close to the railroads were quite valuable, while the lands granted the university were in far west Texas, distant from sources of transportation and water). The more valuable lands reverted to the fund to support general education in the state (the Special School Fund).

    On April 10, 1883, the legislature supplemented the Permanent University Fund with another 1,000,000 acres (400,000 ha) of land in west Texas granted to the Texas and Pacific Railroad but returned to the state as seemingly too worthless to even survey. The legislature additionally appropriated $256,272.57 to repay the funds taken from the university in 1860 to pay for frontier defense and for transfers to the state’s General Fund in 1861 and 1862. The 1883 grant of land increased the land in the Permanent University Fund to almost 2.2 million acres. Under the Act of 1858, the university was entitled to just over 1,000 acres (400 ha) of land for every mile of railroad built in the state. Had the 1876 Constitution not revoked the original 1858 grant of land, by 1883, the university lands would have totaled 3.2 million acres, so the 1883 grant was to restore lands taken from the university by the 1876 Constitution, not an act of munificence.

    On March 30, 1881, the legislature set forth the university’s structure and organization and called for an election to establish its location. By popular election on September 6, 1881, Austin (with 30,913 votes) was chosen as the site. Galveston, having come in second in the election (with 20,741 votes), was designated the location of the medical department (Houston was third with 12,586 votes). On November 17, 1882, on the original “College Hill,” an official ceremony commemorated the laying of the cornerstone of the Old Main building. University President Ashbel Smith, presiding over the ceremony, prophetically proclaimed “Texas holds embedded in its earth rocks and minerals which now lie idle because unknown, resources of incalculable industrial utility, of wealth and power. Smite the earth, smite the rocks with the rod of knowledge and fountains of unstinted wealth will gush forth.” The University of Texas officially opened its doors on September 15, 1883.

    Expansion and growth

    In 1890, George Washington Brackenridge donated $18,000 for the construction of a three-story brick mess hall known as Brackenridge Hall (affectionately known as “B.Hall”), one of the university’s most storied buildings and one that played an important place in university life until its demolition in 1952.

    The old Victorian-Gothic Main Building served as the central point of the campus’s 40-acre (16 ha) site, and was used for nearly all purposes. But by the 1930s, discussions arose about the need for new library space, and the Main Building was razed in 1934 over the objections of many students and faculty. The modern-day tower and Main Building were constructed in its place.

    In 1910, George Washington Brackenridge again displayed his philanthropy, this time donating 500 acres (200 ha) on the Colorado River to the university. A vote by the regents to move the campus to the donated land was met with outrage, and the land has only been used for auxiliary purposes such as graduate student housing. Part of the tract was sold in the late-1990s for luxury housing, and there are controversial proposals to sell the remainder of the tract. The Brackenridge Field Laboratory was established on 82 acres (33 ha) of the land in 1967.

    In 1916, Gov. James E. Ferguson became involved in a serious quarrel with the University of Texas. The controversy grew out of the board of regents’ refusal to remove certain faculty members whom the governor found objectionable. When Ferguson found he could not have his way, he vetoed practically the entire appropriation for the university. Without sufficient funding, the university would have been forced to close its doors. In the middle of the controversy, Ferguson’s critics brought to light a number of irregularities on the part of the governor. Eventually, the Texas House of Representatives prepared 21 charges against Ferguson, and the Senate convicted him on 10 of them, including misapplication of public funds and receiving $156,000 from an unnamed source. The Texas Senate removed Ferguson as governor and declared him ineligible to hold office.

    In 1921, the legislature appropriated $1.35 million for the purchase of land next to the main campus. However, expansion was hampered by the restriction against using state revenues to fund construction of university buildings as set forth in Article 7, Section 14 of the Constitution. With the completion of Santa Rita No. 1 well and the discovery of oil on university-owned lands in 1923, the university added significantly to its Permanent University Fund. The additional income from Permanent University Fund investments allowed for bond issues in 1931 and 1947, which allowed the legislature to address funding for the university along with the Agricultural and Mechanical College (now known as Texas A&M University). With sufficient funds to finance construction on both campuses, on April 8, 1931, the Forty Second Legislature passed H.B. 368. which dedicated the Agricultural and Mechanical College a 1/3 interest in the Available University Fund, the annual income from Permanent University Fund investments.

    The University of Texas was inducted into The Association of American Universities in 1929. During World War II, the University of Texas was one of 131 colleges and universities nationally that took part in the V-12 Navy College Training Program which offered students a path to a Navy commission.

    In 1950, following Sweatt v. Painter, the University of Texas was the first major university in the South to accept an African-American student. John S. Chase went on to become the first licensed African-American architect in Texas.

    In the fall of 1956, the first black students entered the university’s undergraduate class. Black students were permitted to live in campus dorms, but were barred from campus cafeterias. The University of Texas integrated its facilities and desegregated its dorms in 1965. UT, which had had an open admissions policy, adopted standardized testing for admissions in the mid-1950s at least in part as a conscious strategy to minimize the number of Black undergraduates, given that they were no longer able to simply bar their entry after the Brown decision.

    Following growth in enrollment after World War II, the university unveiled an ambitious master plan in 1960 designed for “10 years of growth” that was intended to “boost the University of Texas into the ranks of the top state universities in the nation.” In 1965, the Texas Legislature granted the university Board of Regents to use eminent domain to purchase additional properties surrounding the original 40 acres (160,000 m^2). The university began buying parcels of land to the north, south, and east of the existing campus, particularly in the Blackland neighborhood to the east and the Brackenridge tract to the southeast, in hopes of using the land to relocate the university’s intramural fields, baseball field, tennis courts, and parking lots.

    On March 6, 1967, the Sixtieth Texas Legislature changed the university’s official name from “The University of Texas” to “The University of Texas at Austin” to reflect the growth of the University of Texas System.

    Recent history

    The first presidential library on a university campus was dedicated on May 22, 1971, with former President Johnson, Lady Bird Johnson and then-President Richard Nixon in attendance. Constructed on the eastern side of the main campus, the Lyndon Baines Johnson Library and Museum is one of 13 presidential libraries administered by the National Archives and Records Administration.

    A statue of Martin Luther King Jr. was unveiled on campus in 1999 and subsequently vandalized. By 2004, John Butler, a professor at the McCombs School of Business suggested moving it to Morehouse College, a historically black college, “a place where he is loved”.

    The University of Texas-Austin has experienced a wave of new construction recently with several significant buildings. On April 30, 2006, the school opened the Blanton Museum of Art. In August 2008, the AT&T Executive Education and Conference Center opened, with the hotel and conference center forming part of a new gateway to the university. Also in 2008, Darrell K Royal-Texas Memorial Stadium was expanded to a seating capacity of 100,119, making it the largest stadium (by capacity) in the state of Texas at the time.

    u-washington-campus

    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.

    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

    The University of Washington is a public research university in Seattle, Washington, United States. Founded in 1861, University of Washington is one of the oldest universities on the West Coast; it was established in downtown Seattle approximately a decade after the city’s founding to aid its economic development. Today, the university’s 703-acre main Seattle campus is in the University District above the Montlake Cut, within the urban Puget Sound region of the Pacific Northwest. The university has additional campuses in Tacoma and Bothell. Overall, University of Washington encompasses over 500 buildings and over 20 million gross square footage of space, including one of the largest library systems in the world with more than 26 university libraries, as well as the UW Tower, lecture halls, art centers, museums, laboratories, stadiums, and conference centers. The university offers bachelor’s, master’s, and doctoral degrees through 140 departments in various colleges and schools, sees a total student enrollment of roughly 46,000 annually, and functions on a quarter system.

    University of Washington is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, UW spent $1.41 billion on research and development in 2018, ranking it 5th in the nation. As the flagship institution of the six public universities in Washington state, it is known for its medical, engineering and scientific research as well as its highly competitive computer science and engineering programs. Additionally, University of Washington continues to benefit from its deep historic ties and major collaborations with numerous technology giants in the region, such as Amazon, Boeing, Nintendo, and particularly Microsoft. Paul G. Allen, Bill Gates and others spent significant time at Washington computer labs for a startup venture before founding Microsoft and other ventures. The University of Washington’s 22 varsity sports teams are also highly competitive, competing as the Huskies in the Pac-12 Conference of the NCAA Division I, representing the United States at the Olympic Games, and other major competitions.

    The university has been affiliated with many notable alumni and faculty, including 21 Nobel Prize laureates and numerous Pulitzer Prize winners, Fulbright Scholars, Rhodes Scholars and Marshall Scholars.

    In 1854, territorial governor Isaac Stevens recommended the establishment of a university in the Washington Territory. Prominent Seattle-area residents, including Methodist preacher Daniel Bagley, saw this as a chance to add to the city’s potential and prestige. Bagley learned of a law that allowed United States territories to sell land to raise money in support of public schools. At the time, Arthur A. Denny, one of the founders of Seattle and a member of the territorial legislature, aimed to increase the city’s importance by moving the territory’s capital from Olympia to Seattle. However, Bagley eventually convinced Denny that the establishment of a university would assist more in the development of Seattle’s economy. Two universities were initially chartered, but later the decision was repealed in favor of a single university in Lewis County provided that locally donated land was available. When no site emerged, Denny successfully petitioned the legislature to reconsider Seattle as a location in 1858.

    In 1861, scouting began for an appropriate 10 acres (4 ha) site in Seattle to serve as a new university campus. Arthur and Mary Denny donated eight acres, while fellow pioneers Edward Lander, and Charlie and Mary Terry, donated two acres on Denny’s Knoll in downtown Seattle. More specifically, this tract was bounded by 4th Avenue to the west, 6th Avenue to the east, Union Street to the north, and Seneca Streets to the south.

    John Pike, for whom Pike Street is named, was the university’s architect and builder. It was opened on November 4, 1861, as the Territorial University of Washington. The legislature passed articles incorporating the University, and establishing its Board of Regents in 1862. The school initially struggled, closing three times: in 1863 for low enrollment, and again in 1867 and 1876 due to funds shortage. University of Washington awarded its first graduate Clara Antoinette McCarty Wilt in 1876, with a bachelor’s degree in science.

    19th century relocation

    By the time Washington state entered the Union in 1889, both Seattle and the University had grown substantially. University of Washington’s total undergraduate enrollment increased from 30 to nearly 300 students, and the campus’s relative isolation in downtown Seattle faced encroaching development. A special legislative committee, headed by University of Washington graduate Edmond Meany, was created to find a new campus to better serve the growing student population and faculty. The committee eventually selected a site on the northeast of downtown Seattle called Union Bay, which was the land of the Duwamish, and the legislature appropriated funds for its purchase and construction. In 1895, the University relocated to the new campus by moving into the newly built Denny Hall. The University Regents tried and failed to sell the old campus, eventually settling with leasing the area. This would later become one of the University’s most valuable pieces of real estate in modern-day Seattle, generating millions in annual revenue with what is now called the Metropolitan Tract. The original Territorial University building was torn down in 1908, and its former site now houses the Fairmont Olympic Hotel.

    The sole-surviving remnants of Washington’s first building are four 24-foot (7.3 m), white, hand-fluted cedar, Ionic columns. They were salvaged by Edmond S. Meany, one of the University’s first graduates and former head of its history department. Meany and his colleague, Dean Herbert T. Condon, dubbed the columns as “Loyalty,” “Industry,” “Faith”, and “Efficiency”, or “LIFE.” The columns now stand in the Sylvan Grove Theater.

    20th century expansion

    Organizers of the 1909 Alaska-Yukon-Pacific Exposition eyed the still largely undeveloped campus as a prime setting for their world’s fair. They came to an agreement with Washington’s Board of Regents that allowed them to use the campus grounds for the exposition, surrounding today’s Drumheller Fountain facing towards Mount Rainier. In exchange, organizers agreed Washington would take over the campus and its development after the fair’s conclusion. This arrangement led to a detailed site plan and several new buildings, prepared in part by John Charles Olmsted. The plan was later incorporated into the overall University of Washington campus master plan, permanently affecting the campus layout.

    Both World Wars brought the military to campus, with certain facilities temporarily lent to the federal government. In spite of this, subsequent post-war periods were times of dramatic growth for the University. The period between the wars saw a significant expansion of the upper campus. Construction of the Liberal Arts Quadrangle, known to students as “The Quad,” began in 1916 and continued to 1939. The University’s architectural centerpiece, Suzzallo Library, was built in 1926 and expanded in 1935.

    After World War II, further growth came with the G.I. Bill. Among the most important developments of this period was the opening of the School of Medicine in 1946, which is now consistently ranked as the top medical school in the United States. It would eventually lead to the University of Washington Medical Center, ranked by U.S. News and World Report as one of the top ten hospitals in the nation.

    In 1942, all persons of Japanese ancestry in the Seattle area were forced into inland internment camps as part of Executive Order 9066 following the attack on Pearl Harbor. During this difficult time, university president Lee Paul Sieg took an active and sympathetic leadership role in advocating for and facilitating the transfer of Japanese American students to universities and colleges away from the Pacific Coast to help them avoid the mass incarceration. Nevertheless, many Japanese American students and “soon-to-be” graduates were unable to transfer successfully in the short time window or receive diplomas before being incarcerated. It was only many years later that they would be recognized for their accomplishments during the University of Washington’s Long Journey Home ceremonial event that was held in May 2008.

    From 1958 to 1973, the University of Washington saw a tremendous growth in student enrollment, its faculties and operating budget, and also its prestige under the leadership of Charles Odegaard. University of Washington student enrollment had more than doubled to 34,000 as the baby boom generation came of age. However, this era was also marked by high levels of student activism, as was the case at many American universities. Much of the unrest focused around civil rights and opposition to the Vietnam War. In response to anti-Vietnam War protests by the late 1960s, the University Safety and Security Division became the University of Washington Police Department.

    Odegaard instituted a vision of building a “community of scholars”, convincing the Washington State legislatures to increase investment in the University. Washington senators, such as Henry M. Jackson and Warren G. Magnuson, also used their political clout to gather research funds for the University of Washington. The results included an increase in the operating budget from $37 million in 1958 to over $400 million in 1973, solidifying University of Washington as a top recipient of federal research funds in the United States. The establishment of technology giants such as Microsoft, Boeing and Amazon in the local area also proved to be highly influential in the University of Washington’s fortunes, not only improving graduate prospects but also helping to attract millions of dollars in university and research funding through its distinguished faculty and extensive alumni network.

    21st century

    In 1990, the University of Washington opened its additional campuses in Bothell and Tacoma. Although originally intended for students who have already completed two years of higher education, both schools have since become four-year universities with the authority to grant degrees. The first freshman classes at these campuses started in fall 2006. Today both Bothell and Tacoma also offer a selection of master’s degree programs.

    In 2012, the University began exploring plans and governmental approval to expand the main Seattle campus, including significant increases in student housing, teaching facilities for the growing student body and faculty, as well as expanded public transit options. The University of Washington light rail station was completed in March 2015, connecting Seattle’s Capitol Hill neighborhood to the University of Washington Husky Stadium within five minutes of rail travel time. It offers a previously unavailable option of transportation into and out of the campus, designed specifically to reduce dependence on private vehicles, bicycles and local King County buses.

    University of Washington has been listed as a “Public Ivy” in Greene’s Guides since 2001, and is an elected member of the American Association of Universities. Among the faculty by 2012, there have been 151 members of American Association for the Advancement of Science, 68 members of the National Academy of Sciences, 67 members of the American Academy of Arts and Sciences, 53 members of the National Academy of Medicine, 29 winners of the Presidential Early Career Award for Scientists and Engineers, 21 members of the National Academy of Engineering, 15 Howard Hughes Medical Institute Investigators, 15 MacArthur Fellows, 9 winners of the Gairdner Foundation International Award, 5 winners of the National Medal of Science, 7 Nobel Prize laureates, 5 winners of Albert Lasker Award for Clinical Medical Research, 4 members of the American Philosophical Society, 2 winners of the National Book Award, 2 winners of the National Medal of Arts, 2 Pulitzer Prize winners, 1 winner of the Fields Medal, and 1 member of the National Academy of Public Administration. Among UW students by 2012, there were 136 Fulbright Scholars, 35 Rhodes Scholars, 7 Marshall Scholars and 4 Gates Cambridge Scholars. UW is recognized as a top producer of Fulbright Scholars, ranking 2nd in the US in 2017.

    The Academic Ranking of World Universities (ARWU) has consistently ranked University of Washington as one of the top 20 universities worldwide every year since its first release. In 2019, University of Washington ranked 14th worldwide out of 500 by the ARWU, 26th worldwide out of 981 in the Times Higher Education World University Rankings, and 28th worldwide out of 101 in the Times World Reputation Rankings. Meanwhile, QS World University Rankings ranked it 68th worldwide, out of over 900.

    U.S. News & World Report ranked University of Washington 8th out of nearly 1,500 universities worldwide for 2021, with University of Washington’s undergraduate program tied for 58th among 389 national universities in the U.S. and tied for 19th among 209 public universities.

    In 2019, it ranked 10th among the universities around the world by SCImago Institutions Rankings. In 2017, the Leiden Ranking, which focuses on science and the impact of scientific publications among the world’s 500 major universities, ranked University of Washington 12th globally and 5th in the U.S.

    In 2019, Kiplinger Magazine’s review of “top college values” named University of Washington 5th for in-state students and 10th for out-of-state students among U.S. public colleges, and 84th overall out of 500 schools. In the Washington Monthly National University Rankings University of Washington was ranked 15th domestically in 2018, based on its contribution to the public good as measured by social mobility, research, and promoting public service.

     
  • richardmitnick 8:25 am on September 27, 2022 Permalink | Reply
    Tags: "Taiwan earthquake sequence may signal future shocks", , , , Geology, ,   

    From “temblor” : “Taiwan earthquake sequence may signal future shocks” 

    1

    From “temblor”

    9.26.22
    Shinji Toda, Ph.D., IRIDeS, Tohoku University
    Ross S. Stein, Ph.D., Temblor, Inc.

    The east coast of Taiwan is among the most seismically active sites in the world. Fifteen events of magnitude 6.5 or larger that have struck in the past 85 years, several of which occurred as sequences. On Sept. 17, a magnitude-6.5 quake struck, followed 17 hours later by a magnitude-6.9 quake 10 kilometers (6 miles) away. In retrospect, we can say that the 6.5 event was a large foreshock. Together, these events have loaded adjacent faults, and so the sequence may not be over.

    A foreshock strikes adjacent fault

    As always, we don’t know a quake is a foreshock until a larger one strikes soon thereafter. There was nothing about the magnitude 6.5 that marked it for future greatness. In this way, one can think of the mainshock as an “over-achieving aftershock,” in that it was larger than its mainshock —in this case, four times larger.

    These two earthquakes don’t appear to have struck the same fault, which may mean that the foreshock brought the adjacent fault closer to failure. The foreshock appears to have slipped a patch of the Longitudinal Valley Fault, which is inclined to the east, whereas the mainshock appears to have slipped the Central Range Structure Fault, inclined to the west. The Longitudinal Valley Fault, and perhaps both, partially creep, and so only a portion of their slip is accommodated by earthquakes (Hsu and Bürgmann, 2006).

    1
    Aftershocks during the first three days of the earthquake sequence, with the Longitudinal Valley Fault strands in red (left panel). The USGS model of where the slip was concentrated is shown in the right panel, along with slip in the 2003 magnitude-6.8 shock from Thomas et al. (2014).

    These faults are a product of the rapid western convergence of the Philippine Sea Plate with the island of Taiwan (part of the Eurasian Plate). Both faults have high slip rates and, based on their lengths and earthquake history, both are capable of still larger shocks than those that occurred on September 17 (Chan et al., 2020).

    2
    Taiwan is caught in a plate tectonic vice, with the Philippine Sea Plate colliding with Taiwan along the Longitudinal Valley Fault and the Eurasian Plate colliding with the island on its west coast (from Thomas et al., 2014).

    How likely is a magnitude-6.9 shock here?

    The answer is “very.” Temblor’s Global Earthquake Activity Rate (T-GEAR) model provides an answer. T-GEAR is a blend of strain rate measured from GPS and the past 117 years of quakes. One sees that the 2022 event struck in the most seismically active part of Taiwan, where quakes of this size have a return period or recurrence interval (the typical time between events) of about 25 years. In 1951, Taiwan suffered a storm of quakes along its east coast, with a half dozen magnitude-7.0 or larger quakes spread out over 150 kilometers (Chen et al., 2008). One also sees that a magnitude-6.8 event struck in 2003 very close to the current sequence.

    3
    The return period (the average time between quakes) for magnitude-6.9 quakes in Taiwan reveals the east coast to be the most seismically active on the island, consistent with the region’s history of large shocks (Chan et al. 2020) and its high strain rate as measured by GPS.

    Could the M 6.9 also be a foreshock?

    Foreshocks are rare; progressive mainshocks are more common (as in 1951), and aftershocks are ubiquitous. So, forecasting the distribution of aftershocks is tractable and valuable, even if they end up being smaller than the mainshock or the foreshock. We can calculate where the chances of subsequent shocks have increased as a result of the magnitude 6.9, and where they have decreased, using the theory of Coulomb stress transfer (Toda et al., 2011).

    3
    Faults brought closer to failure by the magnitude-6.9 rupture turn red (left panel). Faults are represented by the focal mechanisms (“beachballs”) of past magnitude-3.9 or larger earthquakes from the Taiwan BATS catalog (Institute of Earth Sciences, 1996). These stress changes, along with the background seismicity from 1996-2020, are used to forecast the number and distribution of magnitude-5 or larger earthquakes in the 30-day period beginning on Sept. 20, 2022 (right panel). We expect aftershocks to be concentrated along the coastal region adjacent to and along the Longitudinal Valley Fault system.

    Temblor forecasts about 14 magnitude-5 or larger shocks in the next month. We use Realtime Risk (Toda and Stein, 2020) to calculate the Coulomb stress imparted by the mainshock to surrounding faults, and how the stress changes the quake rates over time. For this, we use the past seismicity and focal mechanisms from the BATS network (Institute of Earth Sciences, Academia Sinica, 1996). About one magnitude-5 or larger shock occurred in the past decade, whereas we forecast about 12 in the next 30 days, and perhaps one quake larger than magnitude 6. The quakes are expected near the epicenters of the magnitude-6.5 and -6.9 shocks, and also 60-75 kilometers to the north, at the northern edge of the magnitude-6.9 rupture. This might mean a re-rupturing of the fault or faults that slipped in the 1951 sequence. Given the ~25-year repeat time of magnitude-7 quakes in this region, the 70 years that has elapsed since 1951 would seem sufficient to recharge those faults and create conditions for subsequent events.

    Bottom Line

    Further mainshocks are, by no means, a certainty, but we can say this: They are more likely now than they were before September 17, and the region has a history of progressive earthquake sequences.

    Acknowledgments

    We thank our colleagues at E-DREaM, the Earthquake Disaster & Risk Evaluation and Management Center, National Central University, and the Institute of Earth Sciences, Academia Sinica, Taiwan, with whom we have collaborated for more than 20 years.

    References

    Chung-Han Chan, Kuo-Fong Ma, J Bruce H Shyu, Ya-Ting Lee, Yu-Ju Wang, Jia-Cian Gao, Yin-Tung Yen, Ruey-Juin Rau; Probabilistic seismic hazard assessment for Taiwan: TEM PSHA2020. Earthquake Spectra2020;; 36 (1_suppl): 137–159. doi: https://doi.org/10.1177/8755293020951587

    Chen, K. H., Toda, S., andRau, R. -J. (2008), A leaping, triggered sequence along a segmented fault: The 1951 ML 7.3 Hualien-Taitung earthquake sequence in eastern Taiwan, J. Geophys. Res., 113, B02304, doi:10.1029/2007JB005048.

    Hsu, L., and Bürgmann, R. (2006), Surface creep along the Longitudinal Valley fault, Taiwan from InSAR measurements, Geophys. Res. Lett., 33, L06312, doi:10.1029/2005GL024624.

    Institute of Earth Sciences, Academia Sinica, Taiwan (1996): Broadband Array in Taiwan for Seismology. Institute of Earth Sciences, Academia Sinica, Taiwan. Other/Seismic Network. doi:10.7914/SN/TW

    Shinji Toda, Ross S. Stein; Long‐ and Short‐Term Stress Interaction of the 2019 Ridgecrest Sequence and Coulomb‐Based Earthquake Forecasts. Bulletin of the Seismological Society of America 2020; 110 (4): 1765–1780. doi: https://doi.org/10.1785/0120200169

    Thomas, M. Y., Avouac, J.-P., Champenois, J., Lee, J.-C., and Kuo, L.-C. (2014), Spatiotemporal evolution of seismic and aseismic slip on the Longitudinal Valley Fault, Taiwan, J. Geophys. Res. Solid Earth, 119, 5114– 5139, doi:10.1002/2013JB010603.

    Toda, Shinji, Stein, R.S., Sevilgen, Volkan, and Lin, Jian, 2011, Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching—user guide: U.S. Geological Survey Open-File Report 2011–1060, 63 p., available at https://pubs.usgs.gov/of/2011/1060/.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ___________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:

    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

     
  • richardmitnick 10:34 am on September 23, 2022 Permalink | Reply
    Tags: "Why does Earth have continents?", , , , Geology,   

    From “Astronomy Magazine” : “Why does Earth have continents?” 

    From “Astronomy Magazine”

    9.15.22
    Erik Klemetti

    If you were to arrive in our solar system never having seen it before, you’d be impressed with variety. Giant gas planets with rings, moons spanning from minuscule to enormous, icy comets that hurtle in from the edges, rocky planets all with varying amounts of atmospheres. It almost seems like no two planets/moons formed the same way, but one really sticks out as an oddball.

    It’s Earth. Our planet has liquid water (weird!) It has life (even weirder!) It has plate tectonics churning away (continued weirdness!) It even has gigantic masses of rocks unlike anything else in the solar system (totally weird!) Those masses are the continents, made of rocks like granite, sandstone, gneiss, slate, andesite, rhyolite and more.

    The rest of the planets are almost entirely basalt or something close, but Earth. No, earth hides most of its basalt surface under deep oceans, instead letting its freak flag fly with continental rocks showing off to any passersby.

    All of these unique features are connected. Plate tectonics may exist on Earth because we have liquid water at the surface. Life might be a product of the abundant water and volcanism. The composition of the Earth’s continents might be a product of life’s interactions with rock. It is all deep time evolution of minerals, rocks and organism that make Earth what it is.

    What are continents anyway?

    There is still a lot unknown about the formation of our continents. We’re pretty sure that no other planet has the silica-rich continental masses that Earth possesses. Mars might have a little bit of what geologists call “evolved” rocks (in other words, more silica than basalt). Venus could have a little bit as well. The Moon has anorthosite highlands that are a bit like continents except they formed from lighter minerals floating in a primordial magma ocean … that and those highlands are mostly all the same stuff.

    No planet has the complex melange of volcanic rocks, sediment, metamorphic rocks and cooled magma that are Earth’s continents. The current theory, based on the ages of tiny zircon crystals found in Australia, is that our continents may have started forming over 4 billion years ago. However, whether they all formed quickly to close to their current size or have been slowly growing over time is an open question.

    What makes continents so special?

    Well, they are less dense and much thicker than the other flavour of plate on Earth, oceanic plates. Our ocean basins exist mainly because the crust underneath them are denser and thinner basalt plates, meaning they sit lower on the Earth’s ductile mantle (note: the Earth’s mantle is not made of molten magma). The continents, on the other hand, sit high because of their lower density and thicker profile, much like a volleyball sits higher in a pool than a tennis ball (a concept we call isostasy).

    This difference does more than just create the different shapes of Earth’s surface. Continents are so buoyant that they can’t get shoved back into Earth’s mantle like the denser continental crust. Thus is born features like mountain belts formed from continental collision and subduction zones (and their volcanoes) where oceanic crust dives underneath continental crust.

    The continents change as well. With plate tectonics comes the “supercontinent cycle” (also known as the Wilson Cycle) where continents collide to form massive supercontinents like Pangaea and then split apart over hundreds of millions of years. Today, the only thing we have close to a supercontinent is the amalgam of Europe, Asia and India.

    The core of continents

    The oldest parts of our continents are called cratons (and if those rocks are exposed at the surface, they’re called shields.) They represent the nucleus of each major continent, usually much smaller than the continent as a whole. These areas haven’t seen much in the ways of active tectonic processes like collisions or rifts for hundreds of millions to billions of years.

    In North America, the craton stretches from northern Canada and Greenland (where the oldest rocks going back 3-4 billion years) to the south into Texas, but only parts of it are exposed at the surface. Most continents are more than just their cratons, so we know that the continents didn’t form all at once in the early history of the Earth. You can check out a map of the world’s cratons below to get a sense of the old cores of continents.
    One of the biggest questions might be what got the whole continent thing started … and what keeps it going. It didn’t seem to happen at the other rocky planets of our solar system. This means that there are some factors that are likely intrinsic to Earth — our liquid water and molten/solid core — that helped continents develop as fully as they have. However, as they say, that’s not all.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Astronomy is a magazine about the science and hobby of Astronomy. Based near Milwaukee in Waukesha, Wisconsin, it is produced by Kalmbach Publishing. Astronomy’s readers include those interested in astronomy and those who want to know about sky events, observing techniques, astrophotography, and amateur astronomy in general.

    Astronomy was founded in 1973 by Stephen A. Walther, a graduate of The University of Wisconsin–Stevens Point and amateur astronomer. The first issue, August 1973, consisted of 48 pages with five feature articles and information about what to see in the sky that month. Issues contained astrophotos and illustrations created by astronomical artists. Walther had worked part time as a planetarium lecturer at The University of Wisconsin–Milwaukee and developed an interest in photographing constellations at an early age. Although even in childhood he was interested to obsession in Astronomy, he did so poorly in mathematics that his mother despaired that he would ever be able to earn a living. However, he graduated in Journalism from the University of Wisconsin Stevens Point, and as a senior class project he created a business plan for a magazine for amateur astronomers. With the help of his brother David, he was able to bring the magazine to fruition. He died in 1977.

     
  • richardmitnick 7:47 pm on September 19, 2022 Permalink | Reply
    Tags: "Magnitude-7.6 earthquake shakes coastal Mexico", , , , Geology, ,   

    From “temblor” : “Magnitude-7.6 earthquake shakes coastal Mexico” 

    1

    From “temblor”

    9.19.22

    A magnitude-7.6 quake struck along the western coast of Central Mexico at 1:05 p.m. local time on Monday. Photos of damage are filtering in.

    1
    Monday’s earthquake struck along the west coast.

    Coincidentally, the quake fell on the anniversary of two other large earthquakes in the region: the 2017 Puebla earthquake and the 1985 Mexico City earthquake. It also came less than an hour after the country performed a memorial earthquake drill. Though many people may find the coincidence rather curious — that three intense earthquakes shook this region on September 19 of various years — there is no scientific significance to the date.

    The likelihood of such a large earthquake striking is “totally independent of the month or the date,” says Hector Gonzales-Huizar, a seismologist at the Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California. “Similar earthquakes have occurred in Mexico during different dates of the year.”

    2
    Two other earthquakes have struck in the recent past on Sept 19th. Scientists assure that the date is a coincidence.

    The temblor likely occurred on a thrust fault, according to U.S. Geological survey calculations. Given the estimated depth of the event, which was relatively shallow at 23.5 kilometers (14.6 miles), it could have struck along the megathrust that separates the subducting Cocos tectonic plate from the North American Plate. Seismologists examining the event will provide more detail on the exact location of the quake in the coming days.

    Earthquakes of this magnitude are not uncommon along Mexico’s tectonically active west coast.

    3
    Mexico is prone to strong shaking from earthquakes.

    Tsunami waves are possible along coastal regions near the epicenter, according to the U.S. Tsunami Warning system. No threat is expected for areas farther out. Small tsunami waves are impacting coastal Mexico, and surges will likely continue for several hours. Any populations in the region should avoid the coast during that time.

    This is a developing story.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    _____________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:

    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: