Tagged: Gemini Observatory Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:48 am on May 26, 2016 Permalink | Reply
    Tags: , , Gemini Observatory, , Resolving an Exoplanet’s Motion to Constrain a Young Planetary System   

    From Gemini: “Resolving an Exoplanet’s Motion to Constrain a Young Planetary System” 

    NOAO

    Gemini Observatory
    Gemini Observatory

    May 24, 2016

    1
    Figure 1. (Left:) Zoom-in images on HD 95086 b obtained with GPI at the first and last epochs. The magenta crosses show the measured positions (for clarity, the size of the symbol is not representative of the precision). Significant orbital motion is detected within the GPI data. (Right:) Deepest image obtained on HD 95086 with GPI at K1 on April 8, 2015.

    2
    Figure 2. Schematic diagram of the HD 95086 system in the sky plane. The positions of HD 95086 b are plotted (black circles – VLT/NaCo L0, red triangles – GPI K1, blue squares – GPI H), as well as a hundred representative orbital fits randomly drawn from the analysis The inner and outer dust rings are indicated as the gray shaded regions (Su et al., 2015). For clarity, the astrometric measurements are also shown within an inset.

    Using the Gemini Planet Imager astronomers have successfully monitored the motion of a planet around the forming exoplanet system orbiting the star HD 95086 and suggest that more unseen planets are present.

    NOAO Gemini Planet Imager on Gemini South
    NOAO Gemini Planet Imager on Gemini South

    The large international team, led by Julien Rameau, a postdoctoral researcher at the Université de Montréal (Canada), used the Gemini Planet Imager (GPI) at the Gemini South telescope in Chile to observe the system over a period from 2013 until early this year. “During this short time we directly imaged the exoplanet, known as HD 95086 b, a 4-5 Jupiter mass planet, and its motion,” says Rameau. With these data, Rameau and his team determined that this planet is orbiting nearly face-on from our perspective, at about 60 astronomical units or twice the distance between our Sun and Neptune, and it has a low eccentricity, or nearly circular, orbit. Rameau adds, “This extremely high-resolution imaging with GPI was critical to setting constraints on the overall system.” They suggested that this planet could not be responsible for the 50au-wide gap in the system’s debris disk inferred from previous observations in the infrared. ”Because of the orbital configuration of planet b, we conclude that another body, or bodies, are necessary to explain the architecture of the system”

    The team’s results are to be published in The Astrophysical Journal Letters (preprint on astro-ph).

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Gemini North
    Gemini North, Hawai’i

    Gemini South
    Gemini South, Chile
    AURA Icon

    Gemini’s mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

    The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai’i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

    The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country’s contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

     
  • richardmitnick 9:08 am on May 19, 2016 Permalink | Reply
    Tags: , , Gemini Observatory, Helium’s Role in the Pulsation of Early White Dwarfs   

    From Gemini: “Helium’s Role in the Pulsation of Early White Dwarfs” 

    NOAO

    Gemini Observatory
    Gemini Observatory

    Before low-medium mass stars become white dwarfs they pulsate wildly and eventually spew their outer layers into space – often forming beautiful planetary nebulae.

    Planetary nebula Cat's Eye
    Planetary nebula Cat’s Eye, Hubble

    NASA/ESA Hubble Telescope
    NASA/ESA Hubble Telescope

    The same stars are predicted to continue pulsating during their transformation to a white dwarf, if they have helium in their atmospheres. A team from the University of Oklahoma used Gemini North, in conjunction with the 1.2-meter FLWO telescope in Arizona, to observe a much-sought-after link between these pulsations and helium in the star’s atmospheres.

    CfA Whipple 1.2 meter telescope Whipple 1.2 meter telescope interior Harvard, located in Amado, Arizona on Mount Hopkins interior Harvard
    CfA Whipple 1.2 meter telescope interior, located in Amado, Arizona on Mount Hopkins

    The researchers studied a trio of low mass white dwarf precursors, each with a mass less than one-third the mass of our Sun, and with pulsations ranging from approximately 5-10 minutes. According to team leader Dr. Alexandros Gianninas these GMOS-N observations appear to confirm the predictions of models based on non-adiabatic pulsation theory that predict the helium connection. “The nature of the observed pulsations matches almost perfectly with the predictions of our models,” said Gianninas. “Helium is the crucial ingredient that allows these stars to pulsate; models that don’t include it don’t predict pulsations. Our discovery represents the first concrete proof that these soon-to-be white dwarfs must still have helium at or near the surface.” The team plans to continue with additional observations to pinpoint the thickness of the hydrogen layer, and how it interacts with the helium, to better understand the dynamics of the oscillations.

    1
    Light curves (left) and Fourier amplitude spectra (right) for the three new pulsating low-mass white dwarfs. The red tick marks denote the significant frequencies which lie above the detection threshold of four times the average noise level.

    Dr. Alexandros Gianninas is a postdoctoral fellow at the University of Oklahoma and was assisted in this work by undergraduate student Brandon Curd, Professor Mukremin Kilic, Professor Gilles Fontaine at Université de Montréal and Dr. Warren Brown at the Smithsonian Astrophysical Observatory.

    The team’s results are published in The Astrophysical Journal Letters, 822, L27.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Gemini North
    Gemini North, Hawai’i

    Gemini South
    Gemini South, Chile
    AURA Icon

    Gemini’s mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

    The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai’i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

    The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country’s contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

     
  • richardmitnick 5:59 pm on February 19, 2016 Permalink | Reply
    Tags: , , , Gemini Observatory   

    From Gemini Observatory: “Are the Coolest Brown Dwarfs Loners?” 

    NOAO

    Gemini Observatory
    Gemini Observatory

    February 18, 2016

    Astronomers use Gemini’s high-resolution multi-conjugate adaptive optics system to look for elusive companions to the lowest mass brown dwarfs.

    Y-type brown dwarfs, the coolest type of brown dwarfs known, provide an important link in the study of objects between stars and planets.

    Brown dwarf
    Brown dwarf

    While the fraction of binary systems associated with warmer and brighter brown dwarfs is well-established, because the Y spectral class is so new (the first Y-type brown dwarfs were only confirmed in 2011) there is little known about what fraction of Y dwarfs have companions. The Y dwarfs are generally lower in mass than the warmer brown dwarfs. For the warmer brown dwarfs, the frequency of binary systems diminishes with brown dwarf mass, and companions tend to be closer to their host and lower in mass themselves. Scientists wonder if this same trend continues for the Y dwarfs.

    A research team, led by Daniela Opitz (University of New South Wales), utilized the high spatial resolution and infrared sensitivity of the Gemini Multi-Conjugate Adaptive Optics System (GeMS) to help fill this gap in our understanding.

    Gemini GeMS
    GeMS

    Their work, recently accepted for publication in The Astrophysical Journal and available on astro-ph, uses GeMS on five Y dwarfs discovered by the NASA Wide-field Infrared Survey Explorer (WISE) to look for evidence of companions.

    NASA Wise Telescope
    NASA/WISE

    The team found no evidence for equal-mass binaries with separations greater than 0.5-1.9 Astronomical Units, which is consistent with what is observed in the warmer and brighter brown dwarfs.

    While more studies are needed to fully understand the binary fractions of Y-type brown dwarfs, this work establishes a solid foundation for future work at Gemini and other infrared optimized telescopes.

    Paper Abstract
    The NASA Wide-field Infrared Survey Explorer (WISE) has discovered almost all the known members of the new class of Y-type brown dwarfs. Most of these Y dwarfs have been identified as isolated objects in the field. It is known that binaries with L- and T-type brown dwarf primaries are less prevalent than either M-dwarf or solar-type primaries, they tend to have smaller separations and are more frequently detected in near-equal mass configurations. The binary statistics for Y-type brown dwarfs, however, are sparse, and so it is unclear if the same trends that hold for L- and T-type brown dwarfs also hold for Y-type ones. In addition, the detection of binary companions to very cool Y dwarfs may well be the best means available for discovering even colder objects. We present results for binary properties of a sample of five WISE Y dwarfs with the Gemini Multi-Conjugate Adaptive Optics System (GeMS). We find no evidence for binary companions in these data, which suggests these systems are not equal-luminosity (or equal-mass) binaries with separations larger than 0.5-1.9 AU. For equal-mass binaries at an age of 5 Gyr, we find that the binary binding energies ruled out by our observations (i.e. 1011 erg) are consistent with those observed in previous studies of hotter ultra-cool dwarfs.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Gemini North
    Gemini North, Hawai’i

    Gemini South
    Gemini South, Chile
    AURA Icon

    Gemini’s mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

    The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai’i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

    The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country’s contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

     
  • richardmitnick 4:48 pm on January 7, 2016 Permalink | Reply
    Tags: , , Gemini Observatory   

    From Gemini Observatory via UC Berkeley 

    NOAO

    Gemini Observatory
    Gemini Observatory

    UC Berkeley
    UC Berkeley

    January 7, 2016
    Science Contacts:

    Sukanya Chakrabarti
    Rochester Institute of Technology
    chakrabarti”at”astro.rit.edu

    Rodolfo Angeloni
    Gemini Observatory
    Gemini South Telescope, Chile
    rangelon”at”gemini.edu

    Media Contacts:

    Peter Michaud
    Gemini Observatory
    Desk: +1 (808) 974-2510
    Cell: +1 (808) 936-6643
    pmichaud”at”gemini.edu

    Alexis-Ann Acohido
    Media Relations Intern
    Gemini Observatory
    Desk: +1 (808) 974-2528
    aacohido”at”gemini.edu

    Temp 1

    Ripples in gas at the outer disk of our galaxy have puzzled astronomers since they were first revealed by radio observations a decade ago. Now, astronomers believe they have found the culprit – a dwarf galaxy, containing dark, unseen material, which skimmed the outskirts of our galaxy a few hundred million years ago.

    The research, led by Sukanya Chakrabarti of the Rochester Institute of Technology, presents the first plausible explanation for the galactic ripples. “It’s a bit like throwing a stone into a pond and making ripples,” said Chakrabarti at today’s press conference at the 227th meeting of the American Astronomical Society in Kissimmee, Florida.

    “Of course we aren’t talking about a pond, but our galaxy, which is tens of thousands of light years across, and made of stars and gas, but the result is the same – ripples!” Chakrabarti adds that this work is part of a new discipline called galactoseismology, “This is really the first non-theoretical application of this field, where we can infer things about the unseen composition of galaxies from analyzing galactic-quakes.”

    To reach their conclusion the research team studied a trio of stars, called Cepheid variables, which are part of the likely dwarf galaxy now estimated to lie about 300,000 light years away from our galaxy in the direction of the constellation Norma.

    Temp 2
    RS Puppis as imaged by Hubble (HST), example of a Cepheid variable

    “We have a pretty good idea of the distance to these stars because the intrinsic brightness of Cepheid variable stars depends on their period of pulsation, which we can measure,” says Chakrabarti. “What I wanted to know was how fast this speeding bullet was going when it passed by our galaxy – with that information we can begin to understand the dynamics, and ultimately how much unseen dark matter is there.”

    To do that, Chakrabarti and her team focused on three Cepheids in the tiny galaxy. Using spectroscopic observations obtained at the Gemini Observatory (as well as the Magellan Telescope, and the WiFeS spectrograph) the researchers found that the stars are all speeding away at similar velocities – about 450,000 mph (~ 200 kilometers/second). “This really implicates these stars as being part of an organized, fast-moving system which we believe is a dwarf galaxy. It’s also very likely that this dwarf satellite brushed our galaxy millions of years ago and left ripples in its wake,” said Chakrabarti.

    Magellan 6.5 meter telescopes
    Magellan Telescope

    ANU WiFeS Wide Field Spctrograph
    ANU/WiFeS spectrograph

    “This new, potentially powerful way to study how stars, gas and dust are distributed in galaxies is really quite exciting,” said Chris Davis, program director at the U.S. National Science Foundation that funds roughly 65% of Gemini as part of its international partnership, as well as this research program. “Known as galactoseismology, it can trace both visible and invisible materials, including the elusive dark matter. It’s a great way to better understand how galaxies and neighboring satellite dwarf galaxies interact as well.”

    Gemini Observatory astronomer Rodolfo Angeloni oversaw the observations at the Gemini South telescope in Chile. He adds that Gemini South is uniquely well-equipped to make these types of observations. “The combination of Gemini’s silver-coated mirror and the versatility of the infrared spectrograph Flamingos-2 really made this work possible.” However, he continues, “These were especially faint and remote targets – we really had to push the limits.”

    The team plans to continue this work by looking for more Cepheid variable stars in our galaxy’s halo. “There could be a population of yet undiscovered Cepheid variables that formed from a gas-rich dwarf galaxy falling into our galaxy’s halo,” said Chakrabarti. “With the capabilities of today’s telescopes and instruments we should be able to sample enough of the Milky Way’s halo to make reasonable estimates on dark matter content – one of the greatest mysteries in astronomy today!”

    The international research team includes Rodolfo Angeloni, Ken Freeman, Leo Blitz, among others, and RIT research scientist Benjamin Sargent and Andrew Lipnicky, a graduate student in the astrophysical sciences and technology program. The Gemini observations were made possible by an award of Director’s Discretionary Time, and the research was funded by NSF research grant #1517488.

    Additional background on this research on TEDx talk by Principal Investigator at: https://www.youtube.com/watch?v=I9tel-ZCswM.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Gemini North
    Gemini North, Hawai’i

    Gemini South
    Gemini South, Chile
    AURA Icon

    Gemini’s mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

    The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai’i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

    The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country’s contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

     
  • richardmitnick 7:23 pm on November 10, 2015 Permalink | Reply
    Tags: , , Gemini Observatory   

    From Gemini: “Illumination of the Early Universe by Quasars: Korea’s 1st Result as Limited Gemini Partner” 

    NOAO

    Gemini Observatory
    Gemini Observatory

    November 10, 2015

    1
    Figure 1. Color composite-image of IMS J2204+0111 at z=6 (about 1 billion years after the Big Bang). IMS J2204+0111 is the red object at the center and its distance from us is 12.8 billion light years. Because of the expansion of the universe, distant objects like IMS J2204+0111 move away from us almost at the speed of the light, making their light to shift into near-infrared wavelength (phenomenon, called “redshift”). This makes them look very red in comparison to other objects, and this special color feature enabled the team to identify distant quasar candidates.

    A team of Korean astronomers discovered a faint quasar in the early Universe which sheds light on the main sources of illumination about 1 billion years after the Big Bang. The team used the Gemini South telescope in Chile, and several telescopes on Maunakea in Hawai‘i, to make the discovery. This is the first published scientific result from the Korean astronomical community since the Korea Astronomy and Space Science Institute (KASI) joined in a limited partnership with Gemini at the beginning of 2015.

    The history of objects we see today in the Universe started when the first stars formed a few hundred million years after the Big Bang. However, it has been unclear what types of objects illuminated the intergalactic medium in order to ionize neutral atoms (called the re-ionization of the universe).

    Quasars, because they are so bright, have been suggested as one of the main “culprits” for the source of re-ionizing energy. Quasars shine when supermassive black holes at the centers of galaxies vigorously accrete gas and stars – they can blaze at up to 100 times the total brightness of their host galaxies. Knowing the number of quasars in the early Universe with moderate luminosity (from about a few to 10 times more luminous than our Milky Way galaxy) can provide an important clue to solving this puzzle, since moderate luminosity quasars dominate the available illumination provided by quasars.

    However, moderate luminosity quasars are faint (because they are so distant), and rare, so it is challenging to find them. So far, only two or three such objects have been identified. In order to find moderate luminosity quasars at a redshift of 6 (or about one billion years after the Big Bang), the team performed a moderately wide and deep imaging survey, called the Infrared Medium-deep Survey (IMS) using the data taken with telescopes on Maunakea, including the United Kingdom Infrared Telescope [UKIRT], and the Canada-France-Hawai‘i Telescope [CFHT]. In a subset of these data, the team identified 7 faint quasar candidates. Subsequently, the spectrum of one of these quasars, obtained with the Gemini Multi-Object Spectrograph (GMOS) at the Gemini South telescope in July 2015, revealed that the object is indeed a much sought-after moderate luminosity quasar in the early Universe.

    United Kingdom Infrared Telescope Exterior
    UKIRT

    Canada-France-Hawaii Telescope
    CFHT

    Gemini Multi Object Spectrograph
    GMOS

    The newly discovered quasar, named as IMS J220417.92+011144.8, is expected to harbor a black hole of about 10 million to 100 million solar masses. Its distance is about 12.8 billion light-years from us. The discovery of IMS J2204+0111 and the statistical results of the survey suggest that quasars can only contribute up to about 10% of the re-ionizing flux in the early Universe. This value is lower than expected and doesn’t provide enough energy to fully account for the re-ionization of the Universe. Additionally, the redshifts of the other quasar candidates are still unknown; if they turn out not to be quasars, this number would be reduced even further. Therefore, it is unlikely that quasars are the dominant sources of illumination in the early Universe: 90% or more of the light must originate from other objects.

    The discovery was made possible thanks to the GMOS’s high sensitivity to infrared light where most of the light of such high-redshift quasars is concentrated. This work was carried out by Yongjung Kim (lead author), Myungshin Im (Principal Investigator), and Yiseul Jeon of Seoul National University, Minjin Kim at Korea Astronomy and Space Science Institute, and 14 other collaborators. The result was published in the November 10 issue of The Astrophysical Journal Letters, and the paper is available on the astro-ph.

    2
    Figure 2: GMOS spectrum of IMS J2204+0111. A prominent break in the spectrum is visible at the wavelength of about 8500 Å. The feature corresponds to the Hydrogen Lyman-α line which has a wavelength of 1216 Å at rest. It is now shifted to 8500 Å, suggesting that this object is moving away from us at the redshift of 5.944. The sharp break is caused because neutral hydrogen around the quasar absorbed the light at the wavelength below the Lyman-α line.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Gemini North
    Gemini North, Hawai’i

    Gemini South
    Gemini South, Chile
    AURA Icon

    Gemini’s mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

    The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai’i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

    The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country’s contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

     
  • richardmitnick 5:06 am on October 30, 2015 Permalink | Reply
    Tags: , , Gemini Observatory,   

    From Gemini- “Time Delay in Lensed Quasar: First Fast Turnaround Result” 

    NOAO

    Gemini Observatory
    Gemini Observatory

    October 29, 2015

    A team of Norwegian and US astronomers, using data from Gemini North and the Nordic Optical Telescope (NOT), have measured the time delay in images of a quasar lensed by a foreground cluster of galaxies.

    Nordic Optical telescope
    Nordic Optical telescope interior
    NOT

    The Gemini observations are the first published result obtained with the innovative Fast Turnaround (FT) mode of observing.

    A distant quasar may have its light split into multiple images by a foreground galaxy cluster that acts as a gravitational lens. The light travels along different paths of differing lengths to form each of these images. Quasars themselves are intrinsically variable, so the observed fading and brightening of each image happens at different observed times. Measuring these “time delays” yields tight constraints on the mass distribution in the lensing cluster, as well as the lensing geometry, and hence cosmology.

    The team monitored the redshift z=2.82 quasar SDSS J2222+2754 over the course of three years, using the NOT and Gemini+GMOS-N. They found a time delay of 48 and 722 days for two pairs of the quasar’s lensed images. The Gemini data were instrumental in refining the time delay measurements for the quasar image that leads the other image by ~ 2 years and hence predicts the behavior of other images of the quasar; continuing monitoring of the system will now allow further observations that take advantage of that 2 year peek into the future.

    Under Gemini’s FT mode, users can submit proposals every month and (if accepted) receive data 1-4 months after their initial proposal idea. The mode can be used for any kind of scientifically valuable project that needs just a few hours of observing time. Since the program’s launch in January, it has been used to follow up discoveries of new solar system objects, obtain data sets needed to complete projects, and also for short, self-contained programs. For more information, see the FT web pages: http://www.gemini.edu/sciops/observing-gemini/observing-modes/fast-turnaround.

    This work is available on Astro-ph at: http://arxiv.org/abs/1505.06187.

    Paper Abstract:

    We report first results from an ongoing monitoring campaign to measure time delays between the six images of the quasar SDSS J2222+2745, gravitationally lensed by a galaxy cluster. The time delay between A and B, the two most highly magnified images, is measured to be τAB=47.7±6.0 days (95% confidence interval), consistent with previous model predictions for this lens system. The strong intrinsic variability of the quasar also allows us to derive a time delay value of τCA=722±24 days between image C and A, in spite of modest overlap between their light curves in the current data set. Image C, which is predicted to lead all the other lensed quasar images, has undergone a sharp, monotonic flux increase of 60-75% during 2014. A corresponding brightening is firmly predicted to occur in images A and B during 2016. The amplitude of this rise indicates that time delays involving all six known images in this system, including those of the demagnified central images D-F, will be obtainable from further ground-based monitoring of this system during the next few years.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Gemini North
    Gemini North, Hawai’i

    Gemini South
    Gemini South, Chile
    AURA Icon

    Gemini’s mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

    The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai’i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

    The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country’s contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

     
  • richardmitnick 11:10 am on October 7, 2015 Permalink | Reply
    Tags: , , Gemini Observatory   

    From GEMINI: “The Deepest Ground-based Photometry in a Crowded Field” 

    NOAO

    Gemini Observatory
    Gemini Observatory

    September 30, 2015

    Expecting to resolve stars deep into the crowded field of a globular cluster is a tall order for ground-based telescopes.

    1
    The Messier 80 globular cluster in the constellation Scorpius is located about 30,000 light-years from the Sun and contains hundreds of thousands of stars.[1]

    However, Paolo Turri (University of Victoria, Canada) and colleagues have used the Gemini Multi-conjugate adaptive optics System (GeMS) with the Gemini South Adaptive Optics Imager (GSAOI) to do just that.
    5
    Left: (Ks, F606W-Ks) color–magnitude diagram of NGC 1851; the detail of the double SGB is shown in the inset. Right: same as the left panel with average photometric (random) uncertainties indicated. Overlaid is the fiducial line with the approximate locations of the main sequence turnoff and main sequence knee highlighted by red dots.

    Gemini GeMS
    GeMS

    Gemini GSAOI
    Gemini GSAOI instrument
    GSAOI and instrument

    Their data present the most accurate and deepest near-infrared photometry from the ground of a crowded field. It also illustrates the remarkable potential of MCAO-equipped Extremely Large Telescopes of the future.

    Their Ks measurements of the Galactic globular cluster NGC 1851 are combined with HST photometry and the resulting color-magnitude diagram demonstrates that the ground-based data is of an unprecedented depth and precision for crowded field observations.

    3
    A Ultraviolet image of NGC 1851.
    Credit: NASA/GALEX

    NASA Galex telescope
    NASA/GALEX

    NASA Hubble Telescope
    NASA/ESA HST

    The delivered image quality approaches Gemini’s diffraction limit, with an average measured full-width at half-maximum (FHWM) of 0.09 arcsecond. The work is published in The Astrophysical Journal Letters.

    Abstract:

    The Extremely Large Telescopes currently under construction have a collecting area that is an order of magnitude larger than the present largest optical telescopes. For seeing-limited observations the performance will scale as the collecting area, but with the successful use of adaptive optics (AO), for many applications it will scale as D4 (where D is the diameter of the primary mirror).

    ESO E-ELT
    ESO E-ELT Interior
    ESO/E-ELT 39 meter telescope

    TMT
    TMT Schematic
    UCO/Caltech Thirty Meter Telescope (TMT)

    TMT Schematic

    Giant Magellan Telescope
    Giant Magellan Interior
    21 meter Giant Magellan Telescope at Las Campanas, Chile.

    Central to the success of the ELTs, therefore, is the successful use of multi-conjugate adaptive optics (MCAO) which applies a high degree of correction over a field of view larger than the few arcseconds that limits classical AO systems. In this Letter, we report on the analysis of crowded field images taken on the central region of the galactic globular cluster NGC 1851 in the Ks band using the Gemini Multi-conjugate Adaptive Optics System (GeMS) at the Gemini South Telescope, the only science-grade MCAO system in operation. We use this cluster as a benchmark to verify the ability to achieve precise near-infrared photometry by presenting the deepest Ks photometry in crowded fields ever obtained from the ground. We construct a color–magnitude diagram in combination with the F606W band from the Hubble Space Telescope/Advanced Camera for Surveys [ACS].

    NASA Hubble ACS
    ACS

    As well as detecting the “knee” in the lower main sequence at Ks ‘20.5, we also detect the double subgiant branch of NGC 1851, which demonstrates the high photometric accuracy of GeMS in crowded fields.

    1.The Hubble Heritage team (1999-07-01). Hubble Images a Swarm of Ancient Stars. HubbleSite News Desk (Space Telescope Science Institute). Retrieved 2006-05-26.

    4
    Hubble Images a Swarm of Ancient Stars
    This stellar swarm is M80 (NGC 6093), one of the densest of the 147 known globular star clusters in the Milky Way galaxy. Located about 28,000 light-years from Earth, M80 contains hundreds of thousands of stars, all held together by their mutual gravitational attraction. Globular clusters are particularly useful for studying stellar evolution, since all of the stars in the cluster have the same age (about 15 billion years), but cover a range of stellar masses. Every star visible in this image is either more highly evolved than, or in a few rare cases more massive than, our own Sun. Especially obvious are the bright red giants, which are stars similar to the Sun in mass that are nearing the ends of their lives.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Gemini North
    Gemini North, Hawai’i

    Gemini South
    Gemini South, Chile
    AURA Icon

    Gemini’s mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

    The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai’i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

    The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country’s contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

     
  • richardmitnick 6:28 pm on October 1, 2015 Permalink | Reply
    Tags: An intern's night at Gemini North, , , Gemini Observatory   

    From Gemini: “A Gemini Intern’s Night on the Summit!” A Great Story 

    NOAO

    Gemini Observatory
    Gemini Observatory

    1 Oct 2015
    alexis

    Aloha! I’m a University of Hawai‘i at Hilo student interning at [NOAO]Gemini Observatory in the Public Information and Outreach department. In order to share more about what being an astronomer is like, I decided to live the days of a certain type of astronomer, a Science Operations Specialist (SOS), for a weekend at the Gemini North telescope.

    1
    hrough the criss-crossing beams of Gemini’s vents I could see Haleakala, Canada-France-Hawaii Telescope [CFHT], both the Keck, and Subaru telescopes.

    CFHT Telescope
    CFHT nterior
    CFHT

    Keck Observatory
    Keck Observatory Interior
    UCO/KECK

    NAOJ Subaru Telescope
    NAOJ Subaru Telescope interior
    NAOJ/Subaru

    2
    Once the shutter (what the telescope “looks” through) and the primary mirror are open, we head back down to the control room where the science begins.

    Imagine sitting in a cold room with three other people and 29 monitors for 10 hours every night, all weekend long. Well that’s exactly what I did and it was awesome. Operating the eight-meter Gemini telescope is done via computers and when we were not immersed in our screens, numbers, and excitement, we were talking and laughing about everything from genetic expression, globalization of nations and cultures, 1980’s rappers, and German idioms (“Have you tomatoes on your eyes” is the German equivalent of the expression “Are you blind?/ that outcome was entirely obvious”). There was also much food and hot cocoa involved.

    “Observing” is most exciting to me when we are taking direct images of galaxies, supernovae, or comets (etc.) in the infrared. For example, at one point the observer took images of a comet at very short intervals in order to trace its path and in each picture we could see its movement against a background of streaking stars. Spectra are cool too, but not as instantaneously gratifying due to their needing further data analysis to really determine what exactly you are looking at (e.g. Does this galaxy have HII or H-alpha forming regions?) But by far, the best image I saw was from my SOS’s collection of awesome telescope pictures:

    3
    It’s a bright young star with its protoplanetary disk, saturating the charge-coupled device (CCD) in just the right way.

    During especially long exposures (data-collection periods in which the telescope’s instrument’s shutter remains open to receive more light), the other intern and I would bundle up in thick layers of jackets and scarfs and venture outside the observatory with a pair of infrared goggles. With those goggles we could see five times as many stars; sharp, green and beautiful. We could see Keck 2’s laser aiding its exploration of the night sky. Without the goggles, we admired the long dusty plane of our Milky Way.

    Some days I couldn’t sleep. Being nocturnal is hard. So I learned new things about Hale Pohaku as well: the pool table is slanted, always check the expiration dates on yogurt, I’m terrible at ping pong.

    Mild altitude sickness near the summit is common, but Gemini workers are accustomed to the elevation. I’ve listened to the experiences of other interns and I’ve heard horror stories (e.g. tour groups puking in the dome). Gemini is a great employer in terms of giving days off in compensation for time on the mountain. I was at the summit only three nights. So my transition back to a day schedule and lower altitude was not too bad. But others, after being on the mountain for five days, need at least one full day to readjust. On my second night of observing, my heart rate spiked after eating instant ramen. My SOS administered oxygen to me via a CHAD unit and cannula (nose tubes and mini O2 tank). I kept the nose tube as a souvenir.

    Knowing exactly how a specific science is done goes a long way toward being able to communicate its importance and function to general audiences, and I hope to one day teach Astronomy to grade schoolers here on the Big Island so that they might discover even more about our universe than we can currently imagine.

    4
    Me and Gemini’s primary mirror! Photo Credit: Conor O’Neill

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Gemini North
    Gemini North, Hawai’i

    Gemini South
    Gemini South, Chile
    AURA Icon

    Gemini’s mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

    The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai’i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

    The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country’s contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

     
  • richardmitnick 3:09 pm on September 29, 2015 Permalink | Reply
    Tags: , , Gemini North, Gemini Observatory   

    From Gemini: “Searching for Orphan Stars Amid Starbirth Fireworks” 

    NOAO

    Gemini Observatory
    Gemini Observatory

    September 25, 2015
    Science Contact:

    Bo Reipurth
    Institute for Astronomy
    University of Hawaii at Manoa
    reipurth”at”hawaii.edu

    Media Contact:

    Peter Michaud
    Gemini Observatory
    Hilo, HI 96720
    Office: +1 (808) 974-2510
    Cell: +1 (808) 936-6643
    pmichaud”at”gemini.edu

    1
    The HH 24 jet complex emanates from a dense cloud core that hosts a small multiple protostellar system known as SSV63. The nebulous star to the south is the visible T Tauri star SSV59. Color image based on the following filters with composite image color assignments in parenthesis: g (blue), r (cyan), I (orange), hydrogen-alpha (red), sulfur II (blue)) images obtained with GMOS on Gemini North in 0.5 arcsecond seeing, and NIRI. Field of view is 4.2×5.1 arcminutes, orientation: north up, east left. Credit: Gemini Observatory/AURA/B. Reipurth, C. Aspin, Travis Rector.

    A new Gemini Observatory image reveals the remarkable “fireworks” that accompany the birth of stars. The image captures in unprecedented clarity the fascinating structures of a gas jet complex emanating from a stellar nursery at supersonic speeds. The striking new image hints at the dynamic (and messy) process of star birth. Researchers believe they have also found a collection of runaway (orphan) stars that result from all this activity..

    Gemini Observatory has released one of the most detailed images ever obtained of emerging gas jets streaming from a region of newborn stars. The region, known as the Herbig-Haro 24 (HH 24) Complex, contains no less than six jets streaming from a small cluster of young stars embedded in a molecular cloud in the direction of the constellation of Orion.

    “This is the highest concentration of jets known anywhere,” says Principal Investigator Bo Reipurth of the University of Hawaii’s Institute for Astronomy (IfA), who adds, “We also think the very dynamic environment causes some of the lowest mass stars in the area to be expelled, and our Gemini data are supporting that idea.”

    Reipurth along with co-researcher, Colin Aspin, also at the IfA, are using the Gemini North data from the Gemini Multi-Object Spectrograph (GMOS), as well as the Gemini Near-Infrared Imager [NIRI], to study the region which was discovered in 1963 by George Herbig and Len Kuhi. Located in the Orion B cloud, at a distance of about 400 parsecs, or about 1,300 light-years from our Solar System, this region is rich in young stars and has been extensively studied in all types of light, from radio waves to X-rays.

    GEMINI North GMOS
    GMOS

    GEMINI North NIRI
    NIRI

    “The Gemini data are the best ever obtained from the ground of this remarkable jet complex and are showing us striking new detail,” says Aspin. Reipurth and Aspin add that they are particularly interested in the fine structure and “excitation distribution” of these jets.

    “One jet is highly disturbed, suggesting that the source may be a close binary whose orbit perturbs the jet body,” says Reipurth.

    The researchers report that the jet complex emanates from what is called a Class~I protostar, SSV63, which high-resolution infrared imaging reveals to have at least five components. More sources are found in this region, but only at longer, submillimeter wavelengths of light, suggesting that there are even younger, and more deeply embedded sources in the region. All of these embedded sources are located within the dense molecular cloud core.

    A search for dim optical and infrared young stars has revealed several faint optical stars located well outside the star-forming core. In particular, a halo of five faint Hydrogen-alpha emission stars (which emit large amounts of red light) has been found with GMOS surrounding the HH 24 Complex well outside the dense cloud core. Gemini spectroscopy of the hydrogen alpha emission stars show that they are early or mid-M dwarfs (very low-mass stars), with at least one of which being a borderline brown dwarf.

    The presence of these five very low-mass stars well outside the star-forming cloud core is puzzling, because in their present location the gas is far too tenuous for the stars to have formed there. Instead they are likely orphaned protostars ejected shortly after birth from the nearby star-forming core. Such ejections occur when many stars are formed closely together within the same cloud core. The crowded stars start moving around each other in a chaotic dance, ultimately leading to the ejection of the smallest ones.

    A consequence of such ejections is that pairs of the remaining stars bind together gravitationally. The dense gas that surrounds the newly formed pairs brakes their motion, so they gradually spiral together to form tight binary systems with highly eccentric orbits. Each time the two components are closest in their orbits they disturb each other, leading to accretion of gas, and an outflow event that we see as supersonic jets. The many knots in the jets thus represent a series of such perturbations.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Gemini North
    Gemini North, Hawai’i

    Gemini South
    Gemini South, Chile
    AURA Icon

    Gemini’s mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

    The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai’i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

    The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country’s contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

     
  • richardmitnick 2:26 pm on September 18, 2015 Permalink | Reply
    Tags: , , , Gemini Observatory,   

    From Gemini: “Gemini Pairs with CFHT to Launch Pilot Program” 

    NOAO

    Gemini Observatory
    Gemini Observatory

    This year, the Canada-France-Hawaii Telescope (CFHT) in a partnership with the Gemini Observatory and the Hawai‘i State Department of Education is launching a pilot program, tentatively titled the Maunakea Telescope and Technology project.

    CFHT
    CFHT Interior
    CFHT

    Ultimately, the project will allow high school students on Oahu and Hawaii Island to obtain data with the CFHT telescope. Initially, students will use existing Gemini data to produce color images and begin investigations with the data as part of the Live from Gemini virtual field trip program. Earlier this month, teachers from local high schools and staff from Hawai‘i observatories discussed plans on what they hope to gain from the program and how the program will work.

    “We want to develop within the community a sense of pride and ownership in the observatories and STEM [Science, Technology, Engineering, Math] programs,” said Doug Simons, Director of CFHT, “It’s a unique and powerful educational opportunity.”

    Students in high school classes at Waiakea (Big Island) and Kapolei (Oahu) will pair with mentors from CFHT, Gemini, and the Institute for Astronomy in Manoa to develop astronomy projects that are their own. These projects could be used for science fair and capstone projects, as well as STEM degree designation requirements. Mentors and teachers will then help students draft proposals vying for telescope time at CFHT. The students will be treated like principal investigators (PI’s) on their research project and will collect and analyze the data.

    Participating teachers said the project would help kids get exposure to the telescopes and tech fields. They want their students to have access to and awareness of the tools, resources, and careers available in Hawai‘i.

    “We want kids that are passionate as opposed to kids that are ‘the best and the brightest,’” said Naidah Gamurot, science teacher at Kapolei High School, “We want to provide opportunities for kids at all levels.”

    With the success of the program, Gemini and CFHT hope to make this an annual program that expands to more schools and observatories.

    1
    Mentors, teachers, and observatory staff discussing the pilot program.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Gemini North
    Gemini North, Hawai’i

    Gemini South
    Gemini South, Chile
    AURA Icon

    The Gemini Observatory consists of twin 8.1-meter diameter optical/infrared telescopes located on two of the best observing sites on the planet. From their locations on mountains in Hawai‘i and Chile, Gemini Observatory’s telescopes can collectively access the entire sky.
    Gemini was built and is operated by a partnership of six countries including the United States, Canada, Chile, Australia, Brazil and Argentina. Any astronomer in these countries can apply for time on Gemini, which is allocated in proportion to each partner’s financial stake.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 560 other followers

%d bloggers like this: