Tagged: Gemini Observatory Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:35 am on May 18, 2017 Permalink | Reply
    Tags: , , , , Gemini continues to train local teachers in the use of mobile planetarium, Gemini Observatory   

    From Gemini: “Gemini continues to train local teachers in the use of mobile planetarium” 

    NOAO

    Gemini Observatory
    Gemini Observatory

    1

    More than 700 students from the city of Coquimbo were benefited with the functions of the mobile planetarium led by a group of three teachers who participated in the recent training programme of loans from the mobile Planetarium Gemini Observatory.

    Training of teachers was carried out between 2 and 12 of May and was in charge of the manager of the planetarium, Dalma Valenzuela, who guided teachers in basic concepts of astronomy, as well as the sequence of stages The Moon and characteristics of the solar system.

    During this training teachers learned several stories of stars relating to the history of mankind, South American, Polynesian culture and the classical Greek mythology associated with the names of the constellations.

    Quotas to be part of this training during the current year are exhausted. But do not hesitate to contact us to be part of the select group of teachers who will be trained for the 2018.
    Dalma Valenzuela
    dvalenzu@gemini.edu
    +56 51 2205-792

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Gemini/North telescope at Mauna Kea, Hawaii, USA
    Gemini/North telescope at Mauna Kea, Hawaii, USA

    Gemini South
    Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile

    AURA Icon

    Gemini’s mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

    The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai’i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

    The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country’s contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

     
  • richardmitnick 3:54 pm on February 27, 2017 Permalink | Reply
    Tags: , , , , First evidence of rocky planet formation in Tatooine system, Gemini Observatory, GMOS Gemini South, SDSS 1557,   

    From Gemini: “First evidence of rocky planet formation in Tatooine system” 

    NOAO

    Gemini Observatory
    Gemini Observatory

    February 23, 2017

    1
    A disc of rocky debris from a disrupted planetesimal surrounds white dwarf plus brown dwarf binary star. The white dwarf is the burn-out core of a star that was probably similar to the Sun, the brown dwarf is only ~60 times heavier than Jupiter, and the two stars go around each other in only a bit over two hours. Credit: Mark Garlick, UCL, University of Warwick and University of Sheffield.

    Using the Gemini Multi-Object Spectrograph (GMOS) on Gemini South, a team led by Jay Farihi (University College London) found, for the first time, a dust and debris disk surrounding a binary star with a white dwarf as a substellar companion.

    3
    GMOS on Gemini South

    To date, almost all of the known planetary systems which include a white dwarf are single stars. Using GMOS spectra Farihi et al. identified critical metal features in the spectrum as well as the higher Balmer lines. From the Gemini data the team estimated a surface temperature of 21,800 Kelvin (about 3.5 times hotter than the Sun) and a mass of ~0.4 solar masses for the white dwarf star and a mass of ~0.063 solar masses for the companion.

    The research is published in the February 27th online issue of Nature Astronomy.

    Evidence of planetary debris surrounding a double sun, ‘Tatooine-like’ system has been found for the first time by a UCL-led team of researchers.

    Published today in Nature Astronomy and funded by the Science and Technology Facilities Council and the European Research Council, the study finds the remains of shattered asteroids orbiting a double sun consisting of a white dwarf and a brown dwarf roughly 1000 light-years away in a system called SDSS 1557.

    The discovery is remarkable because the debris appears to be rocky and suggests that terrestrial planets like Tatooine – Luke Skywalker’s home world in Star Wars – might exist in the system. To date, all exoplanets discovered in orbit around double stars are gas giants, similar to Jupiter, and are thought to form in the icy regions of their systems.

    In contrast to the carbon-rich icy material found in other double star systems, the planetary material identified in the SDSS 1557 system has a high metal content, including silicon and magnesium. These elements were identified as the debris flowed from its orbit onto the surface of the star, polluting it temporarily with at least 1017 g (or 1.1 trillion US tons) of matter, equating it to an asteroid at least 4 km in size.

    Lead author, Dr Jay Farihi (UCL Physics & Astronomy), said: “Building rocky planets around two suns is a challenge because the gravity of both stars can push and pull tremendously, preventing bits of rock and dust from sticking together and growing into full-fledged planets. With the discovery of asteroid debris in the SDSS 1557 system, we see clear signatures of rocky planet assembly via large asteroids that formed, helping us understand how rocky exoplanets are made in double star systems.”

    In the Solar System, the asteroid belt contains the leftover building blocks for the terrestrial planets Mercury, Venus, Earth, and Mars, so planetary scientists study the asteroids to gain a better understanding of how rocky, and potentially habitable planets are formed. The same approach was used by the team to study the SDSS 1557 system as any planets within it cannot yet be detected directly but the debris is spread in a large belt around the double stars, which is a much larger target for analysis.

    The discovery came as a complete surprise, as the team assumed the dusty white dwarf was a single star but co-author Dr Steven Parsons (University of Valparaíso and University of Sheffield), an expert in double star (or binary) systems noticed the tell-tale signs. “We know of thousands of binaries similar to SDSS 1557 but this is the first time we’ve seen asteroid debris and pollution. The brown dwarf was effectively hidden by the dust until we looked with the right instrument”, added Parsons, “but when we observed SDSS 1557 in detail we recognised the brown dwarf’s subtle gravitational pull on the white dwarf.”

    The team studied the binary system and the chemical composition of the debris by measuring the absorption of different wavelengths of light or ‘spectra’, using the Gemini Observatory South telescope and the European Southern Observatory Very Large Telescope, both located in Chile.

    Co-author Professor Boris Gänsicke (University of Warwick) analysed these data and found they all told a consistent and compelling story. “Any metals we see in the white dwarf will disappear within a few weeks, and sink down into the interior, unless the debris is continuously flowing onto the star. We’ll be looking at SDSS 1557 next with Hubble, to conclusively show the dust is made of rock rather than ice.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Gemini/North telescope at Mauna Kea, Hawaii, USA
    Gemini/North telescope at Mauna Kea, Hawaii, USA

    Gemini South
    Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile

    AURA Icon

    Gemini’s mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

    The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai’i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

    The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country’s contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

     
  • richardmitnick 2:41 pm on February 7, 2017 Permalink | Reply
    Tags: Fading Active Galactic Nuclei, , Gemini Observatory   

    From Gemini: “Gemini Explores Fading Active Galactic Nuclei ID’d by Galaxy Zoo” 

    NOAO

    Gemini Observatory
    Gemini Observatory

    February 7, 2017

    Gemini follows up on candidate galaxies with fading active galactic nuclei (AGN) first identified thanks to the Galaxy Zoo citizen science project. Researchers find that these galaxies show a significant reduction in ionizing photons within the last 20,000 years. Additionally, the gas clouds around these fading AGN are dominated by rotation, unlike those around radio-loud AGN, which are outflows coming from the nuclei.

    1
    Figure 1: Minimum ionizing luminosity of extended AGN-ionized clouds along the projected radius. These Hubble Space Telescope data show a luminosity drop in the last 20,000 years before our direct view of the nucleus, characteristic for all AGN of this study.

    William C. Keel (University of Alabama) and his collaborators used Hα narrowband filters on the Hubble Space Telescope (HST) in conjunction with multi-object spectroscopy with the Gemini Multi-Object Spectrograph (GMOS) integral-field unit (IFU) on the Gemini North telescope on Maunakea to observe a set of fading active galactic nuclei (AGN). These fading AGN, identified in the Galaxy Zoo project, appear to have experienced a significant reduction in luminosity within 20,000 years or less based on this research.

    This work focused on nine AGN which are accompanied by extended ionized gas clouds larger than 10 kiloparsecs from these galaxies’ nuclei. Because these clouds span galaxy scales (or even larger) they can implicitly tell us about the luminosity history of the AGN. A common feature in this subset of AGN is a radial drop in luminosity within 20,000 year timeframes which can be observed in Figure 1, where rapid drops in the number of ionizing photons is shown.

    2
    Figure 2: [O III] emission-line profiles from the GMOS IFU spectra overlaid on the HST [O III] images for Mkn 1498, one of the galaxies studied in this work. This galaxy displays a ringlike emission feature dominated by rotation with a velocity range of ±175 km/sec, (the 700 km/sec referenced in the legend refers to the entire velocity range shown in each miniature line profile plot).

    The research team also used the GMOS IFU spectra to measure line ratios in these regions to probe their ionization mechanism and look for kinematic evidence of outflows – marked by large velocity ranges and often bipolar patterns in velocity – or other phenomena.

    The team’s results confirm what was hinted at by earlier, and less complete data (by the same team), that these fading AGN are structurally different from radio-loud AGN which are dominated by outflows. Instead, these fading AGN are dominated by rotation and consist largely of externally illuminated tidal debris. The rotation can be observed in Figure 2, based on Gemini data which shows shifting of the [O III] emission line due to rotation of the gas cloud.

    In summary, these results support the idea that AGN with extended emission regions are bright for periods 10,000-100,000 years, interspersed with substantially fainter episodes. Further work by the group will examine the ionization of circumnuclear gas, where direct AGN radiation may no longer be the most important source, and more detailed modeling of the gas motions in these galaxies.

    This work is accepted in The Astrophysical Journal and the paper can be found here.

    Also read this Galaxy Zoo blog posting describing this work.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Gemini/North telescope at Mauna Kea, Hawaii, USA
    Gemini/North telescope at Mauna Kea, Hawaii, USA

    Gemini South
    Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile

    AURA Icon

    Gemini’s mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

    The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai’i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

    The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country’s contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

     
  • richardmitnick 2:48 pm on December 28, 2016 Permalink | Reply
    Tags: , , , , Gemini Observatory, Korea Astronomy and Space Science Institute (KASI)   

    From Gemini: “Promoting Collaboration between Gemini and Korea” 

    NOAO

    Gemini Observatory
    Gemini Observatory

    28 Dec 2016
    Manuel Paredes

    1
    The group of astronomers finished the workshop with a visit to the Gemini South telescope located on Cerro Pachón. Photo courtesy of Seok-Jun Chang.

    Around 60 scientists from all around the world, gathered in the joint Chile-Korea-Gemini workshop on Accretion Processes
 in Symbiotic Stars and Related Objects, on December 4-7 at Universidad de La Serena, in Chile.

    In recent years, the Chilean and Korean astronomical communities have begun a path of collaboration that will bring them closer despite the great geographical distance between both countries. Therefore, astronomers based at both sides of the Pacific are fostering several official initiatives to improve partnerships in many aspects of astronomical research among different working groups.

    During the inaugural workshop, participants discussed the process of accretion (the growth of a body by the aggregation of matter to smaller bodies) in symbiotic stars ( a system composed of two stars: a red giant and a small white dwarf star, which are surrounded by a nebula), with the aims of future joint projects in stellar astrophysics.

    The workshop concluded with a visit to the Gemini-South Telescope, in Cerro Pachón, where participants interacted with the observatory staff to learn more about the engineering and technologies that go on “behind the scenes”.

    The organization of this successful meeting was led by astronomers Rodolfo Angeloni (Gemini South) and Hee-Won Lee (Sejong University) and the event was funded by the Gemini Observatory and Korea Astronomy and Space Science Institute (KASI).

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Gemini/North telescope at Mauna Kea, Hawaii, USA
    Gemini/North telescope at Mauna Kea, Hawaii, USA

    Gemini South
    Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile

    AURA Icon

    Gemini’s mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

    The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai’i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

    The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country’s contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

     
  • richardmitnick 11:49 am on November 21, 2016 Permalink | Reply
    Tags: , , Gemini Observatory,   

    From Gemini: “Are All Stars Created Equal?” 

    NOAO

    Gemini Observatory
    Gemini Observatory

    November 14, 2016
    Science Contacts:

    Alessio Caratti o Garatti
    Dublin Institute for Advanced Studies
    Email: alessio”at”cp.dias.ie
    Office: +353 1 4406656 ext.342
    Cell: +353 87 1091628

    Bringfried Stecklum
    Thüringer Landessternwarte Tautenburg
    Email: stecklum”at”tls-tautenburg.de
    Office: +49 36427 863
    Cell: +49 179 38088401

    Media Contact:

    Peter Michaud
    Gemini Observatory
    Hilo, Hawai‘i
    Email: pmichaud”at”gemini.edu
    Cell: (808) 936-6643

    1
    Artist’s impression of an accretion burst in a high-mass young stellar object like S255 NIRS 3. Image Credit: Deutsches SOFIA Institut (DSI)

    Astronomers using critical observations from the Gemini Observatory have found the strongest evidence yet that the formation of more massive stars follow a path similar to their lower-mass brethren – but on steroids!

    3
    Pre-outburst (left) and outburst (middle) near-infrared images (K, H, J bands) of the high-mass young stellar object S255IR NIRS 3, taken
    from 2009 UKIDSS archive data and the PANIC camera (Calar Alto Observatory, Man-Planck Society) in 2016, respectively, as well as
    outburst mid-infrared images (right) taken with FORCAST / SOFIA at 7.7, 19.7 and 31.5 microns (2016). Copyright: Caratti o Garatti.

    The new findings, that include data from Gemini, SOFIA, Calar Alto, and the European Southern Observatory, show that the episodic explosive outbursts within what are called accretion disks, known to occur during the formation of average mass stars like our Sun, also happen in the formation of very massive stars.

    “These outbursts, which are several orders of magnitude larger than their lower mass siblings, can release about as much energy as our Sun delivers in over 100,000 years,” said Dr. Alessio Caratti o Garatti of the Dublin Institute for Advanced Studies (Ireland). “Surprisingly, fireworks are observed not just at the end of the lives of massive stars, as supernovae, but also at their birth!”

    The international team of astronomers (led by Caratti o Garatti) published their work in the November 14th issue of the journal Nature Physics, presenting the first clear case that massive stars can form from clumpy disks of material – in much the same way as less massive stars. Previously it was thought that the accretion disks seen around lower mass stars would not survive around stars of higher mass due to their strong radiation pressure. Therefore, some other process would be necessary to account for the existence of more massive stars – which can exceed 50-100 times the mass of our Sun.

    “How accretion disks can survive around these massive stars is still a mystery, but the Gemini spectroscopic observations show the same fingerprints we see in lower mass stars,” said Caratti o Garatti. “Probably the accretion bursts reduce the radiation pressure of the central source and allow the star to form, but we still have a lot of explaining to do in order to account for these observations.”

    According to team member Dr. Bringfried Stecklum of the Thüringer Landessternwarte Tautenburg (Germany), “Studying the formation of high-mass stars is challenging because they are relatively rare and deeply embedded in their natal cloud, thus not visible in optical, or visible, light. This is why we need infrared instruments like the Near-infrared Integral Field Spectrograph (NIFS) at Gemini North on Maunakea in Hawai‘i.” The outburst events are also very rapid, probably lasting only a few years or less – which, for a star, is the blink of an eye, adding to their rarity.

    “The birth of truly massive stars has been a mystery that astronomers have been studying for decades. Only now, with large, infrared-optimized telescopes like Gemini, are we able to probe the details of this short-lived and, now it seems, rather explosive process,” notes Chris Davis, Program Director at the National Science Foundation which supports the operation of the Gemini Observatory and the development of its instruments. “These NIFS observations represent yet another coup for the Gemini Observatory.”

    The developing star observed in this study, S255IR NIRS 3, is relatively distant, some 6,000 light years away, with a mass estimated at about 20 times the mass of our Sun. The Gemini observations reveal that the source of the explosive outburst is a huge clump of gas, probably about twice the mass of Jupiter, accelerated to supersonic speeds and ingested by the forming star. The team estimates that the outburst began about 16 months ago and according to Caratti o Garatti it appears that the outburst is still active, but much weaker.

    “While low-mass stars, and possible planetary systems, can form basically next door to our Sun, the formation of high-mass stars is a complex and relatively rapid process that tends to happen rather far away in our galaxy, thousands, or even tens of thousands of light years away,” said Caratti o Garatti. He adds that the formation of these massive stars happens on timescales of 100,000 years, whereas it takes hundreds of times longer for lower mass stars like our Sun to form. “When we study the formation of higher mass stars it’s like watching a timelapse move when compared to less massive stars, although the process for massive stars is fast and furious, it still takes tens of thousands of years!”

    “While this research presents the strongest case yet for similar formation processes for low and high mass stars, there is still lots to understand,” concludes Stecklum. “Especially whether planets can form in the same way around stars at both ends of the mass spectrum.”

    Original Publication:
    Disk-mediated accretion burst in a high-mass young stellar object, A. Caratti o Garatti, B. Stecklum, R. Garcia Lopez, J. Eislöffel, T. P. Ray, A. Sanna, R. Cesaroni, C. M.Walmsley, R. D. Oudmaijer,W. J. deWit, L. Moscadelli, J. Greiner, A. Krabbe, C. Fischer, R. Klein and J. M. Ibañez , Nature Physics Journal Nov. 14 th 2016, DOI: 10.1038/NHPYS3942.

    See the full article here .

    Deutsches SOFIA Institute Release

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Gemini North
    Gemini North, Hawai’i

    Gemini South
    Gemini South, Chile
    AURA Icon

    Gemini’s mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

    The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai’i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

    The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country’s contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

     
  • richardmitnick 6:29 pm on October 13, 2016 Permalink | Reply
    Tags: , , Cluster’s Advanced Age in Razor-sharp Focus, Gemini Observatory, NGC 6624   

    From Gemini: “Cluster’s Advanced Age in Razor-sharp Focus” 

    NOAO

    Gemini Observatory
    Gemini Observatory

    October 11, 2016
    Science Contacts:

    Sara Saracino
    Department of Physics and Astronomy
    University of Bologna, Italy
    Email: sara.saracino”at”unibo.it
    Office: +39 051 2095788
    Cell: +39 3201607913

    Douglas Geisler
    Departamento de Astronomia
    Universidad de Concepción, Chile
    Email: dgeisler”at”astroudec.cl
    Office: 56-41-2203092
    Cell: 56-9-93078848

    Media Contacts:

    Peter Michaud
    Gemini Observatory
    Hilo, Hawai‘i
    Email: pmichaud”at”gemini.edu
    Cell: (808) 936-6643

    Manuel Paredes
    Gemini Observatory
    La Serena, Chile
    Email: mparedes”at”gemini.edu
    Phone: +56 (51) 2205671

    1
    Gemini Observatory GeMS image of NGC 6624 revealing individual stars to the cluster’s core. The Cluster’s age as determined with this study is between 11.5-12.5 billion years old, which confirms that it formed when the Universe was only a fraction of its current age of about 13.8 billion years. Composite color image by Travis Rector, University of Alaska Anchorage. Image Credit: Gemini Observatory/AURA.

    An international team of astronomers, using the Gemini Multi-conjugate adaptive optics System (GeMS) and the high resolution camera GSAOI, brought the ancient globular cluster NGC 6624 into razor-sharp focus and determined its age with very high accuracy - a challenging observation even from space.

    Gemini/GeMS
    Gemini/GeMS

    Gemini GSAOI instrument
    Gemini GSAOI instrument

    In addition to producing a beautiful image, this work ultimately helps astronomers to better understand the formation and evolution of our Galaxy during its earliest development when the Universe was less than two billion years old.

    Researchers using advanced adaptive optics technology at the Gemini South telescope in Chile probed the depths of the highly compact globular cluster NGC 6624, revealing pinpoint images of thousands of stars. The sharpness of the near-infrared images is competitive with that obtained from space with the Hubble Space Telescope in optical light. “With images this sharp, astronomers can do things that we never dreamed were possible from the ground,” says team member Douglas Geisler of the University of Concepción in Chile.

    The team obtained the imaging data using two filters that are sensitive to specific wavelength bands of near-infrared light, then plotted them on a color-magnitude diagram – a technique that reveals details about the evolutionary history of the cluster’s stars. According to first author Sara Saracino from the University of Bologna, this is the most accurate, and deepest, near-infrared color-magnitude diagram ever produced of this cluster and indeed perhaps the best-ever made for any bulge cluster. The results of this research will be published in The Astrophysical Journal.

    The observations provide a clear detection of the so-called “main-sequence knee,” a distinctive bend in the evolutionary track of low mass main-sequence stars (those that burn hydrogen into helium at their cores). This feature is extremely faint and therefore difficult to detect, requiring very precise photometry (measuring the brightness of individual stars). Photometry is generally a problem with most adaptive optics data.

    2
    The color-magnitude diagrams of NGC6624 obtained from the Gemini observations. All the main evolutionary sequences of the cluster are easily visible. These NIR diagrams turn out to be comparable to the HST optical ones, both in depth and in photometric accuracy. The photometric errors for each bin of Ks and J magnitudes are shown on the right side of the panels.

    This is the first time the main-sequence knee has been identified in this globular cluster. “Analysis of these razor-sharp images, and the very deep color-magnitude diagram, allows us to determine the age of the cluster to extremely high precision,” says Saracino. In turn, this helps to better understand the formation and evolution of our Milky Way bulge, which may well be the oldest component of the Galaxy. The new Gemini data reveal that the age of NGC 6624 is between 11.5-12.5 billion years old, almost as old as the Universe itself - estimated to be about 13.8 billion years old.

    NGC 6624 is also interesting because it has been classified as what astronomers call a post-core collapse cluster, meaning that this is a highly evolved system. The high quality of the data also allowed the researchers to perform a detailed study of the distribution of main-sequence stars of different masses outward from the center. As expected for such a highly evolved system, the team found evidence of a significant increase in low-mass stars at increasing distances from the cluster center.

    This study is part of a much larger research program aimed at shedding new light on the still debated processes that formed the Milky Way’s bulge using its globular cluster population. Due to the large amount of absorption by material between the stars in the Milky Way Galaxy, detailed studies of bulge globular clusters have been severely hampered until now. Geisler notes that the advent of the GeMS instrument now allows astronomers to penetrate the dust and study these clusters in the great detail they deserve. “It will certainly continue to provide us with very important clues about how our Galaxy formed and evolved,” he says.

    The Gemini Multi-conjugate adaptive optics System (GeMS), combined with the Gemini South Adaptive Optics Imager (GSAOI), delivers near diffraction-limited images of near-infrared light (0.9-2.5 microns), over a field nearly as large as the Hubble Space Telescope’s Wide Field Camera 3 (WFC3). Using five artificial laser guide stars, and up to three natural guide stars, GeMS/GSAOI can correct for atmospheric turbulence at an unprecedented level, making it the most powerful wide-field adaptive optics system currently available to astronomers.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Gemini North
    Gemini North, Hawai’i

    Gemini South
    Gemini South, Chile
    AURA Icon

    Gemini’s mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

    The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai’i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

    The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country’s contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

     
  • richardmitnick 9:01 am on September 27, 2016 Permalink | Reply
    Tags: , , Gemini Observatory, Lyman-alpha blobs, Mysterious 'Blobs' Can be Closer Than We Thought   

    From Gemini: “Mysterious ‘Blobs’ Can be Closer Than We Thought” 

    NOAO

    Gemini Observatory
    Gemini Observatory

    September 20, 2016

    1
    Gemini/GMOS images of the LAB host galaxies, taken in gri filters. The images reveal a broad variety of gaseous outflows driven by the AGN. The green color is caused by [OIII] narrow-line emission in the gas.

    Astronomers studying a mysterious phenomenon known as Lyman-alpha blobs (LABs) have discovered several of these high-energy objects in galaxies that are much closer than previously known. The discovery is significant because these closer specimens are much easier to study, and because they live at a time when the Universe was much older and more mature, allowing astronomers to study their evolution with cosmic time.

    The observations are of a rare type of relatively nearby galaxy, engulfed in large clouds of ionized gas as a result of violent, energetic activity in their cores. These closer specimens were first described in 2013, catching the astronomers’ attention with their luminosities and sizes. Data taken with the Gemini Observatory quickly revealed that these galaxies are unparalleled by any other objects known in the nearby Universe. To understand their nature and formation, observations with the Chandra X-ray observatory, the GALEX UV satellite, and the mid-infrared WISE satellite were included to augment the Gemini data.

    NASA/Chandra Telescope
    NASA/Chandra Telescope

    NASA/Galex telescope
    NASA/Galex telescope

    NASA/WISE Telescope
    NASA/WISE Telescope

    “Looking at the far ultraviolet images taken with GALEX, we realized that these huge ionized clouds of gas are similar to the Lyman-alpha blobs, or LABs,” says Mischa Schirmer of the Gemini Observatory. “So far, LABs were only known in the young Universe, at a time when galaxies were forming much more vigorously than today. It’s an exciting discovery that LABs may still exist 4-7 billion years later in the Universe, albeit in much lower numbers.” Schirmer adds that the existence of these objects has been postulated, but due to their scarcity they were difficult to find.

    LABs have puzzled astronomers since they were first discovered in 1999. They emit copious amounts of energetic far-ultraviolet radiation, yet their power sources often remained unknown. Hai Fu of the University of Iowa, and a co-author of the study, says that various explanations exist, “yet, taken together, they could still not explain all the data at hand.” The main problems are the LABs’ great distances, making them very dim. “Furthermore, their high redshifts make it difficult to access these parts of the spectrum from which we gain most information about their physical state”, adds Fu. “Having identified LABs at our cosmic doorstep makes our analysis so much easier.”

    One of the team’s surprising results is that the active galactic nuclei (AGN) in their sample are weak. AGN are supermassive black holes at the centers of galaxies, actively accreting material from their immediate surroundings. This process can release enormous amounts of energy and radiation, making AGN amongst the most luminous objects in the Universe. “Given the luminosity of the ionized gas in the LABs in our study, we expected the most powerful AGN in their centers. However, when we directly measured the energy output of the AGN with the Chandra X-ray telescope, we found the AGN 10 to 1000 times less powerful than required,” says Nancy Levenson of the Gemini Observatory. This means that the AGN must have rapidly faded within the last few 1000-10000 years. The ionizing radiation from their previous high state is still propagating through the galaxy, powering the gaseous nebula. Several such “ionization echoes” have been found by the Galaxy Zoo project in nearby galaxies, albeit none of them as powerful as in the objects of this study.

    “The most exciting result about our research is that the fading AGN naturally explain the absence of powerful sources in many LABs,” says Sangeeta Malhotra from Arizona State University. “The ultraviolet Lyman-alpha photons cannot leave the cloud of gas in a straight line like most other photons. Performing a random walk in the gas, the LAB can easily trap them for hundreds of thousands of years.” By the time the photons manage to escape, the central AGN may have long faded from the astronomers’ view, causing the apparent energy deficits.

    “It’s amazing that we could finally identify this missing piece of the puzzle,” says Schirmer. “However, there is still a tremendous amount of work to be done, now that we can embark on the details and the bigger picture with further observations.”

    The research included imaging and spectroscopic observations taken with the Gemini Multi-Object Spectrographs (GMOS) at both of the Gemini telescopes.

    GEMINI/North GMOS
    GEMINI/North GMOS

    Nearby LABs are extremely rare, with only about one found for every 1000 square degrees of sky. Once identified, the Gemini observations were straightforward because these LABs are very bright despite their light travel time distance of three billion light years. For comparison, the high redshift LABs that have been known so far, are typically 100 times dimmer and 2-3 times smaller. To unlock the LABs mysteries, the astronomers had to include further observations in X-ray, UV and infrared wavelengths, using the Chandra, GALEX and WISE satellites, respectively. The core team includes Mischa Schirmer (Gemini Observatory), Sangeeta Malhotra (Arizona State University), Nancy Levenson (Gemini Observatory), Hai Fu (University of Iowa), Rebecca Davies (Max-Planck Institute for Extraterrestial Physics), William Keel (University of Alabama), Paul Torrey (Harvard-Smithsonian Center for Astrophysics), and James Turner (Gemini Observatory). The research has been published at Monthly Notices of the Royal Astronomical Society.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Gemini North
    Gemini North, Hawai’i

    Gemini South
    Gemini South, Chile
    AURA Icon

    Gemini’s mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

    The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai’i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

    The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country’s contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

     
  • richardmitnick 2:58 pm on August 16, 2016 Permalink | Reply
    Tags: , , Could Gravitational Wave Events Flash in Visible Light?, Gemini Observatory,   

    From Gemini: “Could Gravitational Wave Events Flash in Visible Light?” 

    NOAO

    Gemini Observatory
    Gemini Observatory

    August 16, 2016

    Gemini explores the possibility of short-lived optical emission (visible light) from the violent events that produce gravitational waves.

    Even before the announcement of the first gravitational wave detection by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in February of this year, theorists wondered if the extreme energy required to produce strong gravitational waves might also produce a detectable optical flash.

    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib
    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

    Currently the most widely accepted explanation for gravitational wave events is the collision of black holes.

    SXS, the Simulating eXtreme Spacetimes (SXS) project
    SXS, the Simulating eXtreme Spacetimes (SXS) project

    The impact would send gravitational waves rippling through space at the speed of light. Thanks to LIGO the existence of gravitational waves is now confirmed, but unknown is the extent to which they might be accompanied by the emission of optical light or radiation at higher energies such as x-ray or gamma-rays.

    LSC LIGO Scientific Collaboration
    Caltech/MIT Advanced aLigo Hanford, WA, USA installation
    Caltech/MIT Advanced aLigo Hanford, WA, USA installation
    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA
    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    A recent study headed by Stephen Smartt at Queen’s University in Belfast and Ken Chambers from University of Hawai‘i could help answer this question. “We were looking for the perverbial needle in the haystack,” says Chambers. “The area of sky was about 290 square degrees, and while we found several potential sources, in the end none could be associated with the LIGO discovery source.” Smartt adds that the coordination of observations between wide-field telescopes like Pan-STARRS1 and deep spectroscopic follow-ups with Gemini were critical to the research which ultimately proved the concept for future gravitational wave events.

    Pannstars telescope, U Hawaii, Mauna Kea, Hawaii, USA
    Pannstars telescope, U Hawaii, Mauna Kea, Hawaii, USA

    “With this effort we’ve demonstrated that we can tile out the big sky area that LIGO thinks the source originated, find anything that is transient or variable to quite deep limits and then trigger a range of other powerful facilities like Gemini,” said Smartt. “It’s a big team project and I’m very excited about it’s potential. We have the tools to discover the sources in the next couple of years.”

    The paper, titled: A Search for an Optical Counterpart to the Gravitational Wave Event GW151226 has been accepted for publication in The Astrophysical Journal Letters and is also on astro-ph.

    The Gemini Observatory followup observations – to provide spectroscopic classifications of transient sources – were made with the Gemini Multi-Object Spectrograph (GMOS) on the Gemini North telescope on Maunakea in Hawai‘i. One interesting source is a supernova that occurred at roughly the same time as (within a few days of) the gravitational wave source, but it is too distant to be the counterpart. Data were also provided by Pan-STARRS1, the University of Hawai‘i’s 2.2-meter telescope, the ATLAS survey telescope, the Public ESO Spectroscopic Survey of Transient Objects (PESSTO), and an additional observation using the Hubble Space Telescope.

    U Hawaii 2.2 meter telescope, Mauna Kea, Hawaii, USA
    U Hawaii 2.2 meter telescope, Mauna Kea, Hawaii, USA

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Gemini North
    Gemini North, Hawai’i

    Gemini South
    Gemini South, Chile
    AURA Icon

    Gemini’s mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

    The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai’i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

    The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country’s contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

     
  • richardmitnick 1:49 pm on July 18, 2016 Permalink | Reply
    Tags: , , Gemini Observatory, ,   

    From Keck: “More Than 100 Planets Confirmed in Single Trove” 

    Keck Observatory

    Keck Observatory.
    Keck, with Subaru and IRTF (NASA Infrared Telescope Facility). Vadim Kurland

    Keck Observatory

    MEDIA CONTACT

    Steve Jefferson
    W. M. Keck Observatory
    (808) 881-3827
    sjefferson@keck.hawaii.edu

    MEDIA CONTACT

    Ian Crossfield
    University of Arizona
    (949) 923-0578
    ianc@lpl.arizona.edu

    1
    An artist’s impression of Kepler-78b, an Earth-sized rocky exoplanet discovered by Roberto Sanchis-Ojeda (MIT) using Kepler Space Telescope data, and confirmed by University of Hawaii astronomer Andrew Howard using W. M. Keck Observatory atop Mauna Kea. Courtesy of UH-Manoa.

    An international team of astronomers have discovered and confirmed a treasure trove of new worlds. The researchers achieved this extraordinary discovery of exoplanets by combining NASA’s K2 mission data with follow-up observations by Earth-based telescopes including the W. M. Keck Observatory on Maunakea, the twin Gemini telescopes on Maunakea and in Chile, the Automated Planet Finder of the University of California Observatories and the Large Binocular Telescope operated by the University of Arizona. The team confirmed more than 100 planets, including the first planetary system comprising four planets potentially similar to Earth. The discoveries are published online in The Astrophysical Journal Supplement Series.

    NASA/Kepler Telescope
    NASA/Kepler Telescope

    Gemini/North telescope at Manua Kea, Hawaii, USA
    Gemini/North telescope at Manua Kea, Hawaii, USA

    Gemini South telescope
    Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile

     UCO Lick Automated Planet Finder telescope
    UCO Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Large Binocular Telescope,  Mount Graham,  Arizona, USA
    U Arizona Large Binocular Telescope, Mount Graham, Arizona, USA

    Ironically, the bounty was made possible when the Kepler space telescope’s pointing system broke.

    In its initial mission, Kepler surveyed a specific patch of sky in the northern hemisphere, measuring the frequency with which planets whose sizes and temperatures are similar to Earth occur around stars like our sun. But when it lost its ability to precisely stare at its original target area in 2013, engineers created a second life for the telescope that is proving remarkably fruitful.

    The new mission, dubbed K2, has provided the capability of observing a series of independent target fields in the ecliptic plane with greater opportunities for Earth-based observatories in both the northern and southern hemispheres. Additionally, in contrast to the Kepler mission, K2 is an entirely community-driven mission with all targets proposed for by the scientific community. K2 now looks at a larger fraction of cooler, smaller, red dwarf-type stars, which are much more common in our Milky Way than sun-like stars.

    “Kepler’s original mission observed a small patch of sky as it was designed to conduct a demographic survey of the different types of planets,” said Ian Crossfield, a Sagan Fellow at the University of Arizona’s Lunar and Planetary Laboratory, who led the research effort. “This approach effectively meant that relatively few of the brightest, closest red dwarfs were included in Kepler’s survey. The K2 mission allows us to increase the number of small, red stars by a factor of 20 for further study.”

    One of the most interesting set of planets discovered in this study is a system of four potentially rocky planets, between 20 and 50 percent larger than Earth, orbiting a star less than half the size and with less light output than the Sun. Their orbital periods range from five-and-a-half to 24 days, and two of them may experience radiation levels from their star comparable to those on Earth.

    Despite their tight orbits — closer than Mercury’s orbit around the sun — the possibility that life could arise on a planet around such a star cannot be ruled out, according to Crossfield.

    “Because these smaller stars are so common in the Milky Way, it could be that life occurs much more frequently on planets orbiting cool, red stars rather than planets around stars like our sun,” Crossfield said.

    To validate candidate planets identified by K2, the researchers obtained high-resolution images of the planet-hosting stars from Keck Observatory’s near infrared camera (NIRC2), the Gemini and Large Binocular Telescope (among others) as well as high-resolution optical spectroscopy using Keck Observatory’s high resolution spectrograph (HIRES) instrument and the AUtomated Planet Finder. By dispersing the starlight, the spectrographs allowed the researchers to measure the physical properties of a star — such as mass, radius and temperature — and infer the properties of any planets orbiting it.

    Keck NIRC2 Camera
    Keck NIRC2 Camera

    Keck HIRES
    Keck HIRES

    “Our analysis shows that by the end of the K2 mission, we expect to double or triple the number of relatively small planets orbiting nearby, bright stars,” Crossfield said. “And because these planets orbit brighter stars, we’ll be able to more easily study everything possible about them, whether it’s measuring their masses with Doppler spectroscopy — already underway at Keck Observatory and APF — or measuring their atmospheric makeup with the James Webb Space Telescope in just a few years.”

    For a full list of authors and funding information, please see the research paper, “197 Candidates and 104 Validated Planets in K2’s First Five Fields,” available for download at https://www.lpl.arizona.edu/~ianc/docs/crossfield….

    NIRC2 (the Near-Infrared Camera, second generation) works in combination with the Keck II adaptive optics system to obtain very sharp images at near-infrared wavelengths, achieving spatial resolutions comparable to or better than those achieved by the Hubble Space Telescope at optical wavelengths. NIRC2 is probably best known for helping to provide definitive proof of a central massive black hole at the center of our galaxy. Astronomers also use NIRC2 to map surface features of solar system bodies, detect planets orbiting other stars, and study detailed morphology of distant galaxies.

    HIRES (the High-Resolution Echelle Spectrometer) produces spectra of single objects at very high spectral resolution, yet covering a wide wavelength range. It does this by separating the light into many “stripes” of spectra stacked across a mosaic of three large CCD detectors. HIRES is famous for finding planets orbiting other stars. Astronomers also use HIRES to study distant galaxies and quasars, finding clues to the Big Bang. 


    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.
    Keck UCal

    Keck NASA

    Keck Caltech

     
  • richardmitnick 4:54 pm on June 29, 2016 Permalink | Reply
    Tags: Anaïs Bernard, , , Gemini Observatory,   

    From Gemini: Women in Science – “Capturing “Shocking” Young Stars in N159W” Anaïs Bernard 

    NOAO

    Gemini Observatory
    Gemini Observatory

    29 Jun 2016
    alexis

    1
    Anaïs Bernard

    The world’s most advanced adaptive optics system reveals “shocking” details on star formation in a new image released by the Gemini Observatory. Benoit Neichel of the Laboratoire d’Astrophysique de Marseille, worked with PhD student Anaïs Bernard on the research behind the image. Bernard came to Gemini South with Neichel as part of Gemini’s Bring One, Get One program, and plans to complete her PhD based on this work in 2017.

    Bernard’s trip to Gemini was her first experience at a large telescope facility.

    “I was impressed by the laser guide stars propagating in the direction of the Large Magellanic Cloud (LMC), pointing to the field that we had carefully selected in the previous months,” says Bernard.

    Perfect Conditions

    Gemini systems were performing well, but the seeing conditions for the first three nights of their run weren’t great. Bernard said she and Neichel were anxious at the beginning of their observing night, but the sky was extremely clear. That particular night happened to be the best of the run, and they were lucky enough to capture N159W in the LMC with the Gemini Multi-object Spectrograph (GeMS) lasers and the Gemini South Adaptive Optics Imager (GSAOI) right from the first part of the night.

    Gemini/GeMS
    Gemini/GeMS

    Gemini GSAOI instrument
    Gemini GSAOI instrument

    Bernard emphasizes that those data represent a major step in her PhD program. She spent months selecting targets and adjusting all the observation parameters, learning how to position the field, where to take the background image, which star should be used for the photometric calibration.

    “I was impressed to see that everything ran exactly according to our plan, and the results came out even better than what I would have expected!”

    4
    Gemini South GeMS/GSAOI near-infrared image of the N159W field in the Large Magellanic Cloud. The image spans 1.5 arcminutes across, resolves stars to about 0.09 arcseconds, and is a composite of three filters (J, H, and Ks).

    Data Analysis

    Apart from the scientific analysis of the data, Bernard also used the images to develop new data reduction tools.

    “Those images are also the key data set that we are using to define and test new data reduction tools. As the level of details and the large field provided by GeMS/GSAOI are unique, new data reduction and analysis tools must be developed. This is also exciting because even once we are back in our office, far from the telescope, we can still significantly improve the quality of those sharp images, and optimize the scientific return of the instrument.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Gemini North
    Gemini North, Hawai’i

    Gemini South
    Gemini South, Chile
    AURA Icon

    Gemini’s mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

    The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai’i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

    The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country’s contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: