From EOS: “El Niño May Have Kicked Off Thwaites Glacier Retreat”

Eos news bloc

From “Eos” EOS

At

AGU

2.26.24
Grace van Deelen

Antarctica’s “Doomsday Glacier” started losing mass midcentury, around the same time as its neighboring glacier.

1
An unusual El Niño event may have jump-started the retreat of Thwaites Glacier. Credit: NASA ICE/Flickr, CC BY 2.0.

Antarctica’s Thwaites Glacier is currently losing significant mass, contributing to around 4% of all global sea level rise. Now, new research suggests that the start of Thwaites’s current retreat aligns with that of the nearby Pine Island Glacier, which is also losing mass rapidly.

The findings, published in the PNAS indicate that the mass loss was more likely spurred by regional conditions, such as an El Niño event, rather than dynamics unique to the glaciers themselves.

Clues in Cores

Thwaites and its neighbor, Pine Island Glacier, are part of the West Antarctic Ice Sheet, the area of the continental ice sheet that is retreating most quickly. If Thwaites continues to retreat at current rates, it will contribute several centimeters to global sea level rise by 2100 and has thus been nicknamed the “Doomsday Glacier.”

Scientists have observed accelerating ice loss from Thwaites since the 1970s, mostly via satellite data. But satellite data are “really not enough of a record to understand what controls such a big system,” Wellner said. Understanding the glacier’s presatellite past helps scientists know “what the ice is capable of,” she said. “How fast can it really change? And what mechanisms drive that change?”

In the new study, researchers used marine sediment cores collected from near the Thwaites Glacier in 2019. The team dated the sediment in the cores using lead-210, a radioactive isotope that’s present in the ocean and binds to sediment as it settles onto the seafloor. The ratio of lead-210 in sediment compared to its radiogenic daughter products can tell scientists when the sediment was deposited.

The cores also showed a visible transition from sediment deposited beneath a glacier to marine sediment, marking when the glacier retreated from its foothold on the ocean floor. The analysis is “amazing, quality scientific work,” said David Holland, a physical climate scientist at New York University who was not involved in the new research.

The analysis showed that Thwaites likely began to retreat around the 1940s, coinciding with the beginning of a retreat phase at neighboring Pine Island Glacier that had been determined by previous research [Nature 2016].

The results are in line with evidence provided by a series of parallel ridges in the seafloor near Thwaites, which researchers say indicates a period of rapid retreat that likely occurred in the 1940s.

Evidence that both glaciers began retreating around the same time indicates that the glacial mass loss is driven not by factors unique to the glaciers themselves, such as their shapes or the structures of their internal plumbing, but by external factors such as region-wide shifts in climate.

In particular, a prolonged El Niño that occurred from 1939 to 1942 could have spurred the retreat of both glaciers, according to the authors. El Niño events tend to bring warmer-than-average temperatures to the Southern Ocean and cause warm water to flow onto the continental shelf upon which the Thwaites Glacier sits, according to the authors.

A Shifting System

The radiocarbon dating done by the researchers showed that the edge of the Thwaites Glacier was near its current position around 9,400 years ago and was relatively stable until modern retreat started around the 1940s.

The study implies that even a short-term change in regional climate, such as the 1940s El Niño, can cause long-term glacial retreat, said study coauthor James Smith, a marine geologist at the British Antarctic Survey, in a statement.

It makes “perfect sense” that an El Niño event would kick off the retreat, Holland said. Distant changes in the tropics, such as an event in the El Niño–Southern Oscillation weather phenomenon, can create wind patterns and ocean conditions near Thwaites that would lead to glacial retreat, he said.

Why the glaciers did not quickly recover from the 1940s perturbations is an open question, according to Wellner. She hypothesized that multiple destabilizing factors in addition to an El Niño event could have combined to weaken the glacier. Additionally, both Thwaites and Pine Island Glaciers are grounded in very deep water, meaning that once their footholds are lost, it’s very difficult for them to gain back any lost mass.

“Once the system is kicked out of balance, the retreat is ongoing,” Wellner said in a statement.

Attributing the start of the glacial retreat to the 1940s El Niño event or to other causes such as human-caused climate change is a task for a future analysis, said Wellner. “Because we know these two glaciers are retreating in conjunction with each other, we are looking for external drivers. And the external drivers that happen around the right time are increased anthropogenic warming,” she said. But directly pinpointing the cause of the retreat is a “step farther” than what the new paper shows, she said.

See the full article here .

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply” at the bottom of the post.

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

“Eos” is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

From The School of Environmental and Forest Sciences In The College of the Environment At The University of Washington: “A School of Environmental and Forest Sciences-led study finds post-fire recovery is faster than expected in the forests of the western Cascades”

1

From The School of Environmental and Forest Sciences

In
1

The College of the Environment

At

The University of Washington

1.29.24 [Just today in social media.]

New research [Forest Ecology and Management] published by the SEFS Harvey Lab looks at how forests west of the Cascade crest in Washington and northern Oregon are recovering from recent large and severe fires. The answer? Surprisingly fast, when compared to many interior dry forests elsewhere in the western US. When it comes to recovery, the age of the forest prior to the fire had an impact, with old-growth forests showing more abundant and diverse tree seedlings establishing after the fire compared to forests that were younger and simpler in structure before the fire.

1
Photo by: Sofia Kruszka.

In other forests of western North America, post-fire tree regeneration has slowed or potentially stopped altogether in some cases due to increases in fire size, severity, or frequency in combination with warmer and drier post-fire conditions. However, even after recent large and severe fires, the burned forests on the west side of the Cascades are exhibiting rapid natural post-fire tree regeneration and forest recovery. 82% of stands where the fire was severe and killed all the pre-fire trees had post-fire regeneration rates that exceeded Washington state forest practice minimum density thresholds by 3-5 years post-fire, suggesting that, overall, naturally occurring tree regeneration is sufficient for meeting management objectives of forest recovery. Seedling density increased in areas with cooler and wetter conditions and with proximity to surviving live trees; but, surprisingly, tree seedlings were abundant at distances up to 400 meters from the nearest live tree. As lead author and PhD student Madison Laughlin put it “Seeing abundant post-fire tree seedlings at such far distances from live mature trees suggests we may be underestimating seed availability following severe fire in these forests. Seeds might be dispersing farther than previously thought, or some cones on trees that were killed by fire might persist, if not burned, and provide an on-site seed source. These are hypotheses we are currently testing in our ongoing research.”

2
Lead author and SEFS PhD student Madison Laughlin. Photo by: Brian Harvey.

This research highlights the importance of old-growth forests and suggests that the complexity in older forests promotes forest resilience to severe, stand-replacing wildfires. Because these areas burn infrequently relative to other drier forest ecosystems in the western US, little research has been conducted on post-fire regeneration in the region. As warming continues due to climate change and wildfire potential increases in northwestern Cascadia, it will be critical to understand how forests are re-establishing with trees after severe fire. “Post-fire recovery of forest ecosystems is something that can play out over very long time scales, especially in forests that are characterized in part by infrequent and severe fires. These findings are encouraging signs for forest resilience to these kinds of fires in the northwestern Cascades, and our future re-measurements of these plots will help us track long-term recovery”, mentioned SEFS Professor Brian Harvey, senior author on the study. “We’re also measuring multiple complementary response variables in coordinated studies so we can track things like the entire post-fire plant community as well as the post-fire fuel profiles and potential for subsequent reburns in these areas. This collectively is helping us build understanding of how fire affects a wide diversity of ecosystem components, and with our partners, co-develop strategies for managing that diversity pre- and post-fire.”

The study was published in the journal Forest Ecology and Management, led by SEFS PhD student Madison Laughlin with coauthors Jenna Morris, Liliana Rangel-Parra, and Brian Harvey from Professor Brian Harvey’s lab in SEFS, and Drs Dan Donato and Joshua Halofsky at the Washington Department of Natural Resources. It uncovers a critical piece in our understanding of forest resilience and managing post-fire landscapes. The findings suggest a high capacity for recovery from large and severe fires that are characteristic in forests west of the Cascades in Washington and northern Oregon—particularly in areas with old-growth forests.

This research was supported by a grant from the United States Geological Survey Northwest Climate Adaptation Science Center, the USDA Forest Service – PNW Research Station as part of the Westside Fire and Climate Adaptation Research Initiative, the Good Neighbor Authority between the USDA Forest Service and Washington Department of Natural Resources, the Jack Corkery and George Corkery Jr. Endowed Professorship in Forest Sciences, and support from Jerry Franklin.

See the full article here .

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply” near the bottom of the post.


five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.
Stem Education Coalition

4

The University of Washington College of the Environment

Diversity, equity and inclusion at the Program on the Environment

How do we accomplish change that lasts, especially with complex issues such as diversity, equity and inclusion? That question lies at the heart of conversations that have been occurring over the past two years in University of Washington’s Program on the Environment (PoE). PoE is an interdisciplinary undergraduate program where students study and reflect upon intersections of the environment and human societies, and the primary unit in the College of the Environment offering a Bachelor of Arts degree. Their unit’s size (5 core faculty, 2 staff, plus several pre- and post-doctoral instructors) allows everyone in PoE to meet as a whole and to focus regularly on discussions about diversity, equity and inclusion, rather than delegating DEI work to a committee.

“One of the advantages of a small community is that we can all meet to talk about diversity initiatives at least quarterly,” said PoE Director Gary Handwerk. “The common university committee structure and bureaucracy itself can be impediments to real change.”

Some of the changes so far have included major revisions to the curriculum that introduce new course requirements in sustainability and environmental justice, and embedding and threading DEI concepts throughout all courses, deeply weaving it into the fabric of environmental awareness.

PoE also collaborated with Program on Climate Change’s Becky Alexander in creating a workshop for faculty to collaborate on integrating climate justice concepts into an array of courses across the College. These conversations among faculty from seven different units helped extend the “embed and thread” model across the College. Based on positive feedback from participants, this workshop will be offered again in winter 2022 and 2023, with participation expanded to faculty from across the University. Handwerk is “optimistic that this workshop will have long-term effects and create a framework for probing and transformative conversations across the College.”

In fall of 2021, PoE members launched an annual Autumn Seminar Series focused on Environmental Justice. Students enrolled in an associated one-credit course and participated in live sessions with speakers on Zoom, while UW and community members could tune into a livestream (later archived on the PoE YouTube page). This dual format allowed students and attendees to converse beyond the walls of a classroom and university. Enrolled students also actively participated in an online discussion forum following each presentation. This year’s series, “Indigenous Perspectives on the Environment,” brought in Indigenous voices representing a number of tribes from across the United States and Canada.

“I liked being able to hear different people’s experiences that I might not otherwise have been able to hear,” said student Tia Vontver. “The opportunity to hear from voices not through research papers or in a textbook, but directly from them was invaluable. Traditional ecological knowledge is passed down through stories, so I’ve been able to hear many different perspectives through these speakers.”

Larger challenges, however, remain. It is one thing to feature marginalized voices weekly at a seminar, and quite another to shift the demographic diversity of the faculty or student body as a whole. Handwerk acknowledges that difficult and crucial goals like these remain ahead, but he is optimistic that efforts like those described above will help to create an infrastructure and climate conducive to recruiting and retaining a robustly diverse group of faculty and students.

u-washington-campus

The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked very highly in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.

So, what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

The University of Washington is a public research university in Seattle, Washington, United States. Founded in 1861, University of Washington is one of the oldest universities on the West Coast; it was established in downtown Seattle approximately a decade after the city’s founding to aid its economic development. Today, the university’s 703-acre main Seattle campus is in the University District above the Montlake Cut, within the urban Puget Sound region of the Pacific Northwest. The university has additional campuses in Tacoma and Bothell. Overall, University of Washington encompasses over 500 buildings and over 20 million gross square footage of space, including one of the largest library systems in the world with more than 26 university libraries, as well as the UW Tower, lecture halls, art centers, museums, laboratories, stadiums, and conference centers. The university offers bachelor’s, master’s, and doctoral degrees through 140 departments in various colleges and schools, sees a total student enrollment of over 46,000 annually, and functions on a quarter system.

University of Washington is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, UW spends billions on research and development, ranking it very highly in the nation. As the flagship institution of the six public universities in Washington state, it is known for its medical, engineering and scientific research as well as its highly competitive computer science and engineering programs. Additionally, University of Washington continues to benefit from its deep historic ties and major collaborations with numerous technology giants in the region, such as Amazon, Boeing, Nintendo, and particularly Microsoft. Paul G. Allen, Bill Gates and others spent significant time at Washington computer labs for a startup venture before founding Microsoft and other ventures. The University of Washington’s 22 varsity sports teams are also highly competitive, competing as the Huskies in the Pac-12 Conference of the NCAA Division I, representing the United States at the Olympic Games, and other major competitions.

The university has been affiliated with many notable alumni and faculty, including Nobel Prize laureates, Pulitzer Prize winners, Fulbright Scholars, Rhodes Scholars and Marshall Scholars.

In 1854, territorial governor Isaac Stevens recommended the establishment of a university in the Washington Territory. Prominent Seattle-area residents, including Methodist preacher Daniel Bagley, saw this as a chance to add to the city’s potential and prestige. Bagley learned of a law that allowed United States territories to sell land to raise money in support of public schools. At the time, Arthur A. Denny, one of the founders of Seattle and a member of the territorial legislature, aimed to increase the city’s importance by moving the territory’s capital from Olympia to Seattle. However, Bagley eventually convinced Denny that the establishment of a university would assist more in the development of Seattle’s economy. Two universities were initially chartered, but later the decision was repealed in favor of a single university in Lewis County provided that locally donated land was available. When no site emerged, Denny successfully petitioned the legislature to reconsider Seattle as a location in 1858.

In 1861, scouting began for an appropriate 10 acres (4 ha) site in Seattle to serve as a new university campus. Arthur and Mary Denny donated eight acres, while fellow pioneers Edward Lander, and Charlie and Mary Terry, donated two acres on Denny’s Knoll in downtown Seattle. More specifically, this tract was bounded by 4th Avenue to the west, 6th Avenue to the east, Union Street to the north, and Seneca Streets to the south.

John Pike, for whom Pike Street is named, was the university’s architect and builder. It was opened on November 4, 1861, as the Territorial University of Washington. The legislature passed articles incorporating the University, and establishing its Board of Regents in 1862. The school initially struggled, closing three times: in 1863 for low enrollment, and again in 1867 and 1876 due to funds shortage. University of Washington awarded its first graduate Clara Antoinette McCarty Wilt in 1876, with a bachelor’s degree in science.

19th century relocation

By the time Washington state entered the Union in 1889, both Seattle and the University had grown substantially. University of Washington’s total undergraduate enrollment increased from 30 to nearly 300 students, and the campus’s relative isolation in downtown Seattle faced encroaching development. A special legislative committee, headed by University of Washington graduate Edmond Meany, was created to find a new campus to better serve the growing student population and faculty. The committee eventually selected a site on the northeast of downtown Seattle called Union Bay, which was the land of the Duwamish, and the legislature appropriated funds for its purchase and construction. In 1895, the University relocated to the new campus by moving into the newly built Denny Hall. The University Regents tried and failed to sell the old campus, eventually settling with leasing the area. This would later become one of the University’s most valuable pieces of real estate in modern-day Seattle, generating millions in annual revenue with what is now called the Metropolitan Tract. The original Territorial University building was torn down in 1908, and its former site now houses the Fairmont Olympic Hotel.

The sole-surviving remnants of Washington’s first building are four 24-foot (7.3 m), white, hand-fluted cedar, Ionic columns. They were salvaged by Edmond S. Meany, one of the University’s first graduates and former head of its history department. Meany and his colleague, Dean Herbert T. Condon, dubbed the columns as “Loyalty,” “Industry,” “Faith”, and “Efficiency”, or “LIFE.” The columns now stand in the Sylvan Grove Theater.

20th century expansion

Organizers of the 1909 Alaska-Yukon-Pacific Exposition eyed the still largely undeveloped campus as a prime setting for their world’s fair. They came to an agreement with Washington’s Board of Regents that allowed them to use the campus grounds for the exposition, surrounding today’s Drumheller Fountain facing towards Mount Rainier. In exchange, organizers agreed Washington would take over the campus and its development after the fair’s conclusion. This arrangement led to a detailed site plan and several new buildings, prepared in part by John Charles Olmsted. The plan was later incorporated into the overall University of Washington campus master plan, permanently affecting the campus layout.

Both World Wars brought the military to campus, with certain facilities temporarily lent to the federal government. In spite of this, subsequent post-war periods were times of dramatic growth for the University. The period between the wars saw a significant expansion of the upper campus. Construction of the Liberal Arts Quadrangle, known to students as “The Quad,” began in 1916 and continued to 1939. The University’s architectural centerpiece, Suzzallo Library, was built in 1926 and expanded in 1935.

After World War II, further growth came with the G.I. Bill. Among the most important developments of this period was the opening of the School of Medicine in 1946, which is now consistently ranked as the top medical school in the United States. It would eventually lead to the University of Washington Medical Center, ranked by U.S. News and World Report as one of the top ten hospitals in the nation.

In 1942, all persons of Japanese ancestry in the Seattle area were forced into inland internment camps as part of Executive Order 9066 following the attack on Pearl Harbor. During this difficult time, university president Lee Paul Sieg took an active and sympathetic leadership role in advocating for and facilitating the transfer of Japanese American students to universities and colleges away from the Pacific Coast to help them avoid the mass incarceration. Nevertheless, many Japanese American students and “soon-to-be” graduates were unable to transfer successfully in the short time window or receive diplomas before being incarcerated. It was only many years later that they would be recognized for their accomplishments during the University of Washington’s Long Journey Home ceremonial event that was held in May 2008.

From 1958 to 1973, the University of Washington saw a tremendous growth in student enrollment, its faculties and operating budget, and also its prestige under the leadership of Charles Odegaard. University of Washington student enrollment had more than doubled to 34,000 as the baby boom generation came of age. However, this era was also marked by high levels of student activism, as was the case at many American universities. Much of the unrest focused around civil rights and opposition to the Vietnam War. In response to anti-Vietnam War protests by the late 1960s, the University Safety and Security Division became the University of Washington Police Department.

Odegaard instituted a vision of building a “community of scholars”, convincing the Washington State legislatures to increase investment in the University. Washington senators, such as Henry M. Jackson and Warren G. Magnuson, also used their political clout to gather research funds for the University of Washington. The results included an increase in the operating budget from $37 million in 1958 to over $400 million in 1973, solidifying University of Washington as a top recipient of federal research funds in the United States. The establishment of technology giants such as Microsoft, Boeing and Amazon in the local area also proved to be highly influential in the University of Washington’s fortunes, not only improving graduate prospects but also helping to attract millions of dollars in university and research funding through its distinguished faculty and extensive alumni network.

21st century

In 1990, the University of Washington opened its additional campuses in Bothell and Tacoma. Although originally intended for students who have already completed two years of higher education, both schools have since become four-year universities with the authority to grant degrees. The first freshman classes at these campuses started in fall 2006. Today both Bothell and Tacoma also offer a selection of master’s degree programs.

In 2012, the University began exploring plans and governmental approval to expand the main Seattle campus, including significant increases in student housing, teaching facilities for the growing student body and faculty, as well as expanded public transit options. The University of Washington light rail station was completed in March 2015, connecting Seattle’s Capitol Hill neighborhood to the University of Washington Husky Stadium within five minutes of rail travel time. It offers a previously unavailable option of transportation into and out of the campus, designed specifically to reduce dependence on private vehicles, bicycles and local King County buses.

University of Washington has been listed as a “Public Ivy” in Greene’s Guides since 2001, and is an elected member of the American Association of Universities. Among the faculty there have been many members of American Association for the Advancement of Science, the National Academy of Sciences, the American Academy of Arts and Sciences, the National Academy of Medicine, winners of the Presidential Early Career Award for Scientists and Engineers, members of the National Academy of Engineering, Howard Hughes Medical Institute Investigators, MacArthur Fellows, the Gairdner Foundation International Award, the National Medal of Science, Nobel Prize laureates, the Albert Lasker Award for Clinical Medical Research, members of the American Philosophical Society, winners of the National Book Award, winners of the National Medal of Arts, Pulitzer Prize winners, the Fields Medal, and the National Academy of Public Administration. There have been Fulbright Scholars, Rhodes Scholars, Marshall Scholars and Gates Cambridge Scholars. UW is recognized as a top producer of Fulbright Scholars.

The ARWUhas consistently ranked University of Washington as one of the top 20 universities worldwide every year since its first release. The University of Washington is constantly ranked highly by the ARWU, the Times Higher Education World University Rankings, and in the Times World Reputation Rankings. Meanwhile, QS World University Rankings ranked it highly worldwide.

U.S. News & World Report ranks the University of Washington very highly out of nearly 1,500 universities worldwide, with University of Washington’s undergraduate program very highly among 389 national universities in the U.S.

The SCImago Institutions Rankings, and the Leiden Ranking, which focuses on science and the impact of scientific publications among the world’s 500 major universities, ranked University of Washington very highly globally and in the U.S.

Kiplinger Magazine’s review of “top college values” named University of Washington very highly for in-state students and very highly for out-of-state students among U.S. public colleges, and very highly overall out of 500 schools. In the Washington Monthly National University Rankings University of Washington was ranked very highly domestically, based on its contribution to the public good as measured by social mobility, research, and promoting public service.

From The Conversation : “New study – side-effects of expanding forests could limit their potential to tackle climate change”

From The Conversation

2.22.24
James Weber | University of Reading (UK)
James A. King | University of Sheffield (UK)

1
The complex effects of planting more trees need to be taken into consideration. Mikai/Shutterstock

Tackling climate change by planting trees has an intuitive appeal. They absorb the greenhouse gas carbon dioxide from the atmosphere without using expensive technology.

The suggestion that you can plant trees to offset your carbon emissions is widespread. Many businesses, from those selling shoes to booze, now offer to plant a tree with each purchase, and more than 60 countries have signed up to the Bonn Challenge, which aims to restore degraded and deforested landscapes.

However, expanding tree cover could affect the climate in complex ways. Using models of the Earth’s atmosphere, land and oceans, we have simulated widescale future forestation. Our new study [Science] shows that this increases atmospheric carbon dioxide removal, beneficial for tackling climate change. But side-effects, including changes to other greenhouse gases and the reflectivity of the land surface, may partially oppose this.

Our findings suggest that while forestation – the restoration and expansion of forests – can play a role in tackling climate change, its potential may be smaller than previously thought.

When forestation occurs alongside other climate change mitigation strategies, such as reducing emissions of greenhouse gases, the negative side-effects have a smaller impact. So, forestation will be more effective as part of wider efforts to pursue sustainable development. Trees can help fight climate change, but relying on them alone won’t be enough.

What does the future hold?

Future climate projections suggest that to keep warming below the Paris Agreement 2°C target, greenhouse gas emissions must reach net-zero by the mid-to-late 21st century, and become net negative thereafter. As some industries, such as aviation and shipping, will be exceedingly difficult to decarbonize fully, carbon removal will be needed.

Forestation is a widely proposed strategy for carbon removal. If deployed sustainably – by planting mixtures of native trees rather than monocultures, for instance – forestation can provide other benefits including protecting biodiversity [Nature Climate Change], reducing soil erosion, and improving flood protection.

We considered an “extensive forestation” strategy which expands existing forests over the course of the 21st century in line with current proposals, adding trees where they are expected to thrive while avoiding croplands.

In our models, we paired this strategy with two future climate scenarios – a “minimal effort” scenario with average global warming exceeding 4°C, and a “Paris-compatible” scenario with extensive climate mitigation efforts. We could then compare the extensive forestation outcome to simulations with the same climate but where levels of forestation followed more expected trends: the minimal effort scenario sees forest cover drop as agriculture expands, and the Paris-compatible scenario features modest increases in global forest cover.

Up in the air

The Earth’s energy balance depends on the energy coming in from the Sun and the energy escaping back out to space. Increasing forest cover changes the Earth’s overall energy balance. Generally, changes that decrease outgoing radiation cause warming. The greenhouse effect works this way, as outgoing radiation is trapped by gases in the atmosphere.

Forestation’s ability to lower atmospheric CO₂, and therefore increase the radiation escaping to space, has been well studied. However, the amount of carbon that could feasibly be removed remains a subject of debate.

Forestation generally reduces land surface reflectivity (albedo) as darker trees replace lighter grassland. Decreases in albedo levels oppose the beneficial reduction of atmospheric CO₂, as less radiation escapes back to space. This is particularly important at higher latitudes, where trees cover land that would otherwise be covered with snow. Our scenario features forest expansion primarily in temperate and tropical regions.

Forests emit large quantities of volatile organic compounds (VOCs), with these emissions increasing with rising temperatures. VOCs react chemically in the atmosphere, affecting the concentrations of methane and ozone, which are also greenhouse gases. We find the enhanced VOC emissions from greater forest cover and temperatures increase levels of methane and, typically, ozone. This reduces the amount of radiation escaping to space, further opposing the removal of carbon.

However, the reaction products of VOCs can contribute to aerosols, which reflect incoming solar radiation and help form clouds. Increases in these aerosols with rising VOC emissions from greater forest cover result in more radiation escaping to space.

We find the net effect of changes to albedo, ozone, methane and aerosol is to reduce the amount of radiation escaping to space, cancelling out part of the benefit of reducing atmospheric CO₂. In a future where climate mitigation is not a priority, up to 30% of the benefit is cancelled out, while in a Paris-compatible future, this drops to 15%.

4
Top: Difference in tree cover between extensive forestation and minimal effort scenarios at 2095. Effect on energy balance due to the forest cover differences from albedo change (Middle) and aerosol change (Bottom). Red indicates a net increase in energy balance (warming) and blue a net decrease (cooling).

Cooler solutions

Tackling climate change requires efforts from all sectors. While forestation will play a role, our work shows that its benefits may not be as great as previously thought. However, these negative side-effects aren’t as impactful if we pursue other strategies, especially reducing our greenhouse gas emissions, alongside forestation.

This study hasn’t considered local temperature changes from forestation as a result of evaporative cooling, or the impact of changes to atmospheric composition caused by changes in the frequencies and severities of wildfires. Further work in these areas will complement our research.

Nevertheless, our study suggests that forestation alone is unlikely to fix our warming planet. We need to rapidly reduce our emissions while enhancing the ability of the natural world to store carbon. It is important to stress-test climate mitigation strategies in detail, because so many complex systems are at play.

See the full article here .

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply” at the bottom of the post.

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

The Conversation launched as a pilot project in October 2014. It is an independent source of news and views from the academic and research community, delivered direct to the public.
Our team of professional editors work with university and research institute experts to unlock their knowledge for use by the wider public.
Access to independent, high quality, authenticated, explanatory journalism underpins a functioning democracy. Our aim is to promote better understanding of current affairs and complex issues. And hopefully allow for a better quality of public discourse and conversation.

From The Rochester Institute of Technology: “RIT researchers highlight the changing connectivity of the Amazon rainforest to global climate”

From The Rochester Institute of Technology

2.22.24
Mollie Radzinski

Team uses an innovative approach for analyzing large-scale climate data known as “climate network analysis”.

1
The Amazon rainforest is one of the largest ecosystems in the world, and its climate is changing due to warming and deforestation. Researchers from Rochester Institute of Technology studied the region’s connectivity to the global climate crisis. Credit: Tarcisio Schnaider/stock.adobe.com

The Amazon rainforest is a unique region where climatologists have studied the effects of warming and deforestation for decades. With the global climate crisis becoming more evident, a new study is linking the Amazon to climate change around the rest of the world.

Scholars at Rochester Institute of Technology have looked at the issue from a mathematical perspective and have reinforced the idea that the Amazon’s climate is very much connected to the global climate system and that the connectivity is reconfiguring.

Mathematical modeling Ph.D. student Adam Giammarese ’21 BS/MS (applied mathematics) and Assistant Professor Nishant Malik recently had their findings published as a featured article in Chaos: An Interdisciplinary Journal of Nonlinear Science. Giammarese began the work as part of RIT’s Research Experience for Undergraduates (REU) program, along with co-author Jacob Brown.

The team used both old and new approaches to climate network analysis for their research, analyzing decades of temperature data.

“The goal was to look at it purely from a mathematics and data perspective and to see what results we could find that mesh well with other findings about the Amazon and other climate changes,” said Giammarese.

3
Researchers used climate network analysis, an innovative approach, to study the Amazon rainforest’s climate data and its connectivity to other climate regions. Credit: Adam Giammarese/RIT.

As Malik explained, our planet’s climate system comprises several highly vulnerable elements called tipping points. These tipping points have critical warming thresholds. Once global warming crosses the threshold, the specific climate element will irreversibly collapse. The Amazon rainforest is one such tipping point, and it is also one of the most important ecosystems on earth.

“If such a big ecosystem disappears,” Malik added, “it will have a catastrophic consequence for our planet. We wanted to see if there are already signs of its interactions reconfiguring in the climate system.”

The researchers found that not only is the Amazon’s climate linked to the global climate system, but that it is changing, becoming even more connected to other climate regions around the world.

“It shows how vulnerable our climate system is,” said Malik. “We have provided proof that it is connected and it is changing its connectivity.”

In their analysis, the authors observed that the Amazon’s regional climate patterns have started to disappear as the Amazon is gaining more long-range links. The more change that comes to the Amazon region, the more impact it will have on the overall planet as the connectivity expands.

With these findings, Giammarese believes the next step is to look at other tipping points around the globe, like in the Arctic Circle, applying the same methodology used for climate network analysis. Looking at other climate regions and their interactions and connectivity would help provide a clearer picture of the global climate crisis.

“I think it would help discover how close we are to reaching tipping points and how we can mitigate them,” said Giammarese. “The main extension of the work is the methodology and how it can be applied to other places.”

See the full article here .

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply” near the bottom of the post.

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

The Rochester Institute of Technology is a private doctoral university within the town of Henrietta in the Rochester, New York metropolitan area.

RIT is composed of nine academic colleges, including National Technical Institute for the Deaf(RIT). The Institute is one of only a small number of engineering institutes in the State of New York, including New York Institute of Technology, SUNY Polytechnic Institute, and Rensselaer Polytechnic Institute. It is most widely known for its fine arts, computing, engineering, and imaging science programs; several fine arts programs routinely rank in the national “Top 10” according to US News & World Report.

The university offers undergraduate and graduate degrees, including doctoral and professional degrees and online masters as well.

The university was founded in 1829 and is the tenth largest private university in the country in terms of full-time students. It is internationally known for its science; computer; engineering; and art programs as well as for the National Technical Institute for the Deaf- a leading deaf-education institution that provides educational opportunities to more than 1000 deaf and hard-of-hearing students. RIT is known for its Co-op program that gives students professional and industrial experience. It has the fourth oldest and one of the largest Co-op programs in the world. It is classified among “R2: Doctoral Universities – High research activity”.

RIT’s student population is approximately 19,000 students, about 16,000 undergraduate and 3000 graduate. Demographically, students attend from all 50 states in the United States and from more than 100 countries around the world. The university has more than 4000 active faculty and staff members who engage with the students in a wide range of academic activities and research projects. It also has branches abroad, its global campuses, located in China, Croatia and United Arab Emirates (Dubai).

RIT alumni and faculty members have been recipients of the Pulitzer Prize.

History

The university began as a result of an 1891 merger between Rochester Athenæum, a literary society founded in 1829 by Colonel Nathaniel Rochester and associates and The Mechanics Institute- a Rochester school of practical technical training for local residents founded in 1885 by a consortium of local businessmen including Captain Henry Lomb- co-founder of Bausch & Lomb. The name of the merged institution at the time was called Rochester Athenæum and Mechanics Institute (RAMI). The Mechanics Institute however, was considered as the surviving school by taking over The Rochester Athenaeum’s charter. From the time of the merger until 1944 RAMI celebrated The former Mechanics Institute’s 1885 founding charter. In 1944 the school changed its name to Rochester Institute of Technology and re-established The Athenaeum’s 1829 founding charter and became a full-fledged research university.

The university originally resided within the city of Rochester, New York, proper, on a block bounded by the Erie Canal; South Plymouth Avenue; Spring Street; and South Washington Street (approximately 43.152632°N 77.615157°W). Its art department was originally located in the Bevier Memorial Building. By the middle of the twentieth century, RIT began to outgrow its facilities, and surrounding land was scarce and expensive. Additionally in 1959 the New York Department of Public Works announced a new freeway- the Inner Loop- was to be built through the city along a path that bisected the university’s campus and required demolition of key university buildings. In 1961 an unanticipated donation of $3.27 million ($27,977,071 today) from local Grace Watson (for whom RIT’s dining hall was later named) allowed the university to purchase land for a new 1,300-acre (5.3 km^2) campus several miles south along the east bank of the Genesee River in suburban Henrietta. Upon completion in 1968 the university moved to the new suburban campus, where it resides today.

In 1966 RIT was selected by the Federal government to be the site of the newly founded National Technical Institute for the Deaf (NTID). NTID admitted its first students in 1968 concurrent with RIT’s transition to the Henrietta campus.

In 1979 RIT took over Eisenhower College- a liberal arts college located in Seneca Falls, New York. Despite making a 5-year commitment to keep Eisenhower open RIT announced in July 1982 that the college would close immediately. One final year of operation by Eisenhower’s academic program took place in the 1982–83 school year on the Henrietta campus. The final Eisenhower graduation took place in May 1983 back in Seneca Falls.

In 1990 RIT started its first PhD program in Imaging Science – the first PhD program of its kind in the U.S. RIT subsequently established PhD programs in six other fields: Astrophysical Sciences and Technology; Computing and Information Sciences; Color Science; Microsystems Engineering; Sustainability; and Engineering. In 1996 RIT became the first college in the U.S to offer a Software Engineering degree at the undergraduate level.

Colleges

RIT has nine colleges:

RIT College of Engineering Technology
Saunders College of Business
B. Thomas Golisano College of Computing and Information Sciences
Kate Gleason College of Engineering
RIT College of Health Sciences and Technology
College of Art and Design
RIT College of Liberal Arts
RIT College of Science
National Technical Institute for the Deaf

There are also three smaller academic units that grant degrees but do not have full college faculties:

RIT Center for Multidisciplinary Studies
Golisano Institute for Sustainability
University Studies

In addition to these colleges, RIT operates three branch campuses in Europe, one in the Middle East and one in East Asia:

RIT Croatia (formerly the American College of Management and Technology) in Dubrovnik and Zagreb, Croatia
RIT Kosovo (formerly the American University in Kosovo) in Pristina, Kosovo
RIT Dubai in Dubai, United Arab Emirates
RIT China-Weihai Campus

RIT also has international partnerships with the following schools:

Yeditepe University İstanbul Eğitim ve Kültür Vakfı] (TR) in Istanbul, Turkey
Birla Institute of Technology and Science [बिरला इंस्टिट्यूट ऑफ़ टेक्नोलॉजी एंड साइंस] (IN) in India
Mother and Teacher Pontifical Catholic University [Pontificia Universidad Católica Madre y Maestra] (DO)
Santo Domingo Institute of Technology[Instituto Tecnológico de Santo Domingo – INTEC] (DO) in Dominican Republic
Central American Technological University [La universidad global de Honduras] (HN)
University of the North [Universidad del Norte] (COL)in Colombia
Peruvian University of Applied Sciences [Universidad Peruana de Ciencias Aplicadas] (PE) (UPC) in Peru
Research

RIT’s research programs are rapidly expanding. The total value of research grants to university faculty total over $50 million. The university currently offers eight PhD programs: Imaging science; Microsystems Engineering; Computing and Information Sciences; Color science; Astrophysical Sciences and Technology; Sustainability; Engineering; and Mathematical modeling.

In 1986 RIT founded the Chester F. Carlson Center for Imaging Science and started its first doctoral program in Imaging Science in 1989. The Imaging Science department also offers the only Bachelors (BS) and Masters (MS) degree programs in imaging science in the country. The Carlson Center features a diverse research portfolio; its major research areas include Digital Image Restoration; Remote Sensing; Magnetic Resonance Imaging; Printing Systems Research; Color Science; Nanoimaging; Imaging Detectors; Astronomical Imaging; Visual Perception; and Ultrasonic Imaging.

The Center for Microelectronic and Computer Engineering was founded by RIT in 1986. The university was the first university to offer a bachelor’s degree in Microelectronic Engineering. The Center’s facilities include 50,000 square feet (4,600 m^2) of building space with 10,000 square feet (930 m^2) of clean room space. The building will undergo an expansion later this year. Its research programs include nano-imaging; nano-lithography; nano-power; micro-optical devices; photonics subsystems integration; high-fidelity modeling and heterogeneous simulation; microelectronic manufacturing; microsystems integration; and micro-optical networks for computational applications.

The Center for Advancing the Study of CyberInfrastructure (CASCI) is a multidisciplinary center housed in the College of Computing and Information Sciences. The Departments of Computer science; Software Engineering; Information technology; Computer engineering; Imaging Science; and Bioinformatics collaborate in a variety of research programs at this center. RIT was the first university to launch a Bachelor’s program in Information technology in 1991; the first university to launch a Bachelor’s program in Software Engineering in 1996 and was also among the first universities to launch a Computer Science Bachelor’s program in 1972. RIT helped standardize the Forth programming language and developed the CLAWS software package.

The Center for Computational Relativity and Gravitation was founded in 2007. The CCRG comprises faculty and postdoctoral research associates working in the areas of general relativity; gravitational waves; and galactic dynamics. Computing facilities in the CCRG include gravity Simulator, a novel 32-node supercomputer that uses special-purpose hardware to achieve speeds of 4TFlops in gravitational N-body calculations, and new Horizons [image N/A], a state-of-the art 85-node Linux cluster for numerical relativity simulations.

Gravity Simulator at the Center for Computational Relativity and Gravitation, RIT, Rochester, New York.

The Center for Detectors was founded in 2010. The CfD designs; develops; and implements new advanced sensor technologies through collaboration with academic researchers; industry engineers; government scientists; and university/college students. The CfD operates four laboratories and has approximately a dozen funded projects to advance detectors in a broad array of applications, e.g. astrophysics; biomedical imaging; Earth system science; and inter-planetary travel. Center members span eight departments and four colleges.

RIT has collaborated with many industry players in the field of research as well, including IBM; Xerox; Rochester’s Democrat and Chronicle; Siemens; National Aeronautics Space Agency; and the Defense Advanced Research Projects Agency (DARPA). In 2005, it was announced by Russell W. Bessette- Executive Director New York State Office of Science Technology & Academic Research (NYSTAR), that RIT will lead the SUNY University at Buffalo and Alfred University in an initiative to create key technologies in microsystems; photonics; nanomaterials; and remote sensing systems and to integrate next generation IT systems. In addition, the collaboratory is tasked with helping to facilitate economic development and tech transfer in New York State. More than 35 other notable organizations have joined the collaboratory, including Boeing, Eastman Kodak, IBM, Intel, SEMATECH, ITT, Motorola, Xerox, and several Federal agencies, including as NASA.

RIT has emerged as a national leader in manufacturing research. In 2017, the U.S. Department of Energy selected RIT to lead its Reducing Embodied-Energy and Decreasing Emissions (REMADE) Institute aimed at forging new clean energy measures through the Manufacturing USA initiative. RIT also participates in five other Manufacturing USA research institutes.

From Nature : “Buried microplastics complicate efforts to define the Anthropocene”

From Nature

2.21.24
Katharine Sanderson

Plastic particles in sediments could help to pin down the start of a new geological epoch. But their ability to migrate to older layers is muddying the waters.

1
Particles from plastic waste find their way into sediments that settle at the bottom of lakes. Credit: Piero Cruciatti/Anadolu via Getty.

The presence of microplastics in layers of material that settle at the bottom of lakes might be an unreliable way to determine the onset of the Anthropocene — the geological epoch marking the consequences of human activity on the environment. That is the conclusion of researchers who have shown that tiny plastic particles can infiltrate deep into old sediments.

The date when the Anthropocene began is still being debated. But the presence of microplastics is one of the measures that geologists look at when analyzing material from lakes and seas to see whether human activity has made an impact. And microplastic content has also been suggested as a way to date geological sediments.

In a study published today in Science Advances, researchers looked for plastics in sediment from three lakes in Latvia: Seksu, Pinku and Usmas.

They found 14 types of plastic in sediment samples. In all three of the lakes, the most recent, uppermost sediment layers contained the most plastic particles. But the team also found that smaller, narrower particles had traveled down into much older sediments that formed long before plastic production began in the 1950s. For example, particles of the biodegradable plastics polylactic acid (PLA) and polyhydroxybutyrate (PHB) were found in sediment that is more than 200 years old. The researchers used established techniques to date sediment samples, measuring the amounts of lead isotopes and spheroidal carbon-containing particles that the samples contained.

“It is clear geologists cannot use microplastics as precise markers,” says co-author Inta Dimante-Deimantovica, an ecologist at the Latvian Institute of Aquatic Ecology in Riga. “The beginning of the Anthropocene cannot be defined at 1950 based on microplastic remains in lake sediments.”

Other lakes show different trends, says Felipe García-Rodríguez, a geoscientist at the University of the Republic of Uruguay in Montevideo who has previously studied the Patos-Mirim lagoon system in South America and concluded that microplastics can be used as accurate markers for the onset of the Anthropocene. He agrees that these plastics can migrate downwards in sediment, but says that the extent to which this happens depends on the sedimentary system being studied.

Dimante-Deimantovica says that her team’s findings indicate that caution is needed if microplastics are going to be used to work out when the Anthropocene began. “There are great number of aspects in determining the onset of Anthropocene,” she says. “Microplastics won’t provide a clear solution.”

See the full article here .

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply” at the bottom of the post.

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

”Nature” is a weekly international journal publishing the finest peer-reviewed research in all fields of science and technology on the basis of its originality, importance, interdisciplinary interest, timeliness, accessibility, elegance and surprising conclusions. Nature also provides rapid, authoritative, insightful and arresting news and interpretation of topical and coming trends affecting science, scientists and the wider public.

From The DOE’s Lawrence Berkeley National Laboratory: “Air Pollution Hides Increases in Rainfall”

From The DOE’s Lawrence Berkeley National Laboratory

2.22.24
Lauren Biron
lbiron@lbl.gov

1
Humans have an impact on rainfall through both air pollution and greenhouse gas emissions. yangphoto/iStock

For much of the last century, the drying effect of aerosols has masked increases in rainfall from greenhouse gases – but as aerosol emissions diminish, average and extreme rains may ramp up.
___________________________
Key Takeaways

-In a new study, researchers broke down how human-induced greenhouse gas and aerosol emissions influence rainfall in the United States.
-Greenhouse gas emissions increase rainfall, while aerosols have a long-term drying effect as well as short-term impacts that vary with the seasons.
-As aerosols decrease, their long-term drying effect will likely diminish, causing rainfall averages and extremes to rapidly increase.
___________________________
We know that greenhouse gas emissions like carbon dioxide should increase rainfall. The emissions heat the atmosphere, causing a one-two punch: warmer oceans make it easier for water to evaporate, and warmer air can hold more water vapor, meaning more moisture is available to fall as rain. But for much of the 20th century, that increase in precipitation didn’t clearly show up in the data.

A new study led by researchers at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) finds that the expected increase in rain has been largely offset by the drying effect of aerosols – emissions like sulfur dioxide that are produced by burning fossil fuels, and commonly thought of as air pollution or smog. The research is published today in the journal Nature Communications.

Fig. 1: Fraction of the contiguous United States (CONUS) with a significant attribution conclusion for the slow and fast precipitation response in each season across spatial scales.
2
a, b show results for precipitation rate and 20-year return values, respectively. Conclusions are based on null hypothesis tests of no effect for the fast and slow response, and we show results for successively subdividing the CONUS into one, two, four, 13, or 75 regions [36*] as well as 0.25° × 0.25° grid boxes. Testing individual subregions or grid boxes accounts for the effect of internal variability, and we include a multiple testing adjustment to yield statistical significance with both moderate and strong significance (see “Methods”).
*Science paper reference.
See the science paper for further instructive material with images.

“This is the first time that we can really understand what’s causing extreme rainfall to change within the continental U.S.,” said Mark Risser, a research scientist at Berkeley Lab and one of the lead authors for the study. He noted that until the 1970s, the expected increases to extreme rainfall were offset by aerosols. But the Clean Air Act caused a drastic reduction in air pollution in the United States. “The aerosol masking was turned off quite suddenly. That means rainfall might ramp up much more quickly than we would have otherwise predicted.”

Traditional climate models have struggled to confidently predict the human impact on rainfall at scales smaller than a continent – and that regional level is precisely where most climate change adaptations and mitigations take place. By using a new method and relying heavily on measurements from rain gauges from 1900 to 2020, researchers were able to more robustly determine how human activities have influenced rainfall in the United States.

“Prior to our study, the Intergovernmental Panel on Climate Change [IPCC] had concluded that the evidence was mixed and inconclusive for changes in U.S. precipitation due to global warming,” said Bill Collins, associate laboratory director for the Earth and Environmental Sciences Area at Berkeley Lab and co-lead author on the study. “We have now provided conclusive evidence for higher rainfall and also helped explain why past studies assessed by the IPCC reached conflicting conclusions.”

Specifically, the study isolates how greenhouse gas and aerosol emissions affect both average and extreme rainfall. Researchers confirmed that increased greenhouse gas emissions, which quickly disperse over the whole planet, cause an increase in rainfall. The impact from aerosols is more nuanced. Over the long term, aerosols cool the planet, which causes a drying effect. But they also have a faster, more local response. That fast impact depends on the season, with aerosols generally reducing rainfall in the winter and spring, and amplifying it in summer and fall over much of the United States.

3
These maps show how aerosol and greenhouse gas emissions influence extreme rainfall across the seasons. Green indicates an increase in rain, while brown means a decrease. Greenhouse gases largely increase rainfall across all the seasons, but aerosols work in two ways: the slow impact generally causes drying across the seasons, while the fast impact causes more drying in the winter and spring, and more rain in the summer and fall. (Credit: Berkeley Lab)

“The seasonality piece is really important,” Risser said. “For rainfall, the nature of climate change depends on what season you’re talking about, since different kinds of weather systems create precipitation in different parts of the year.”

Some of the conflicting studies looking at precipitation trends of the last century can be explained by how the effect of aerosols offsets the effect of greenhouse gases, and how models and simulations factor in these two driving forces. The researchers noted that tracking aerosols and incorporating them more fully into models and simulations will be important for improving the predictions used for infrastructure design and water resource management.

The United States has already seen examples of recent increases in extreme precipitation, with several intense, record-setting storms in the past few years.

“Thanks to improvements in air quality, the aerosols that shielded us from the worst effects of global warming are declining worldwide,” Collins said. “Our work shows that the increases in extreme precipitation driven by elevated ocean temperatures will become increasingly obvious during this decade.”

See the full article here .

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply” at the bottom of the post.

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

LBNL campus
Berkeley Lab campus Aerial View

Bringing Science Solutions to the World

In the world of science, The Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” A number of Nobel prizes are associated with Berkeley Lab. Lab scientists are members of the The National Academy of Sciences, one of the highest honors for a scientist in the United States. A number of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. A number of our engineers have been elected to the The National Academy of Engineering, and a number of our scientists have been elected into The Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

Berkeley Lab is a member of the national laboratory system supported by The DOE through its Office of Science. It is managed by the University of California-Berkeley and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above The University of California-Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs a large number of scientists, engineers and support staff. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California-Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

History

1931–1941

The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California-Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

E.O. Lawrence’ first cyclotron.

LBNL 88 inch cyclotron.

LBNL 88 inch cyclotron.

Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded The DOE’s Los Alamos Laboratory, and Robert Wilson founded The DOE’s Fermi National Accelerator Laboratory.

1942–1950

Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s DOE Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.

1951–2018

After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now The Department of Energy . The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now The DOE’s Lawrence Livermore National Laboratory) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

The lab remains owned by the Department of Energy , with management from the University of California-Berkeley. Companies such as Intel were funding the lab’s research into computing chips.

Science mission

From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

Berkeley Lab operates five major National User Facilities for the DOE Office of Science:

The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.

The DOE’s Lawrence Berkeley National Laboratory Advanced Light Source.

The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

Berkeley Lab Laser Accelerator (BELLA) Center

A view of BELLA, the Berkeley Lab Laser Accelerator. Credit: Roy Kaltschmidt-Berkeley Lab.
LBNL FLEXLAB.

The DOE Joint Genome Institute supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, the DOE’s Lawrence Livermore National Laboratory, the DOE’s Oak Ridge National Laboratory (ORNL), the DOE’s Pacific Northwest National Laboratory (PNNL), and the DOE’s HudsonAlpha Institute for Biotechnology . The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. A large number of scientist-users take advantage of JGI’s capabilities for their research every year.

LBNL Molecular Foundry

The LBNL Molecular Foundry is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

The DOE’s NERSC National Energy Research Scientific Computing Center is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

DOE’s NERSC National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory.

Cray Cori II supercomputer at National Energy Research Scientific Computing Center at DOE’s Lawrence Berkeley National Laboratory, named after Gerty Cori, the first American woman to win a Nobel Prize in science.

Cray Shasta Perlmutter SC18 AMD Epyc Nvidia pre-exascale supercomputer.

NERSC is a DOE Office of Science User Facility.

The DOE’s Energy Science Network is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory, the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science , and the DOE’s Lawrence Livermore National Laboratory (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. The DOE’s Argonne National Laboratory leads JCESR and Berkeley Lab is a major partner.

From The Robert R. McCormick School of Engineering At Northwestern University : “Understanding how soil traps carbon”

From The Robert R. McCormick School of Engineering

At

Northwestern U bloc

Northwestern University

2.5.24 [Just today in social media.]
Amanda Morris
amandamo@northwestern.edu

1
Holding 2,500 billion tons of sequestered carbon, soil is one of Earth’s largest carbon sinks — second only to the ocean.

When carbon molecules from plants enter the soil, they hit a definitive fork in the road.

Either the carbon gets trapped in the soil for days or even years, where it is effectively sequestered from immediately entering the atmosphere. Or it feeds microbes, which then respire carbon dioxide (CO2) into the ever-warming environment.

In a new study, which was published in the PNAS, Northwestern University researchers determined the factors that could tip plant-based organic matter in one direction or the other.

Fig. 1.
2
Adsorption hierarchy and binding conformations of biomolecules on a smectite clay. (A) Chemical structures and liquid-state 1H NMR spectrum for the ten investigated biomolecules; bold portion in the NMR spectrum with the specific ppm value indicates peak used for each biomolecule quantitation; chemical structure is shown at the dominant protonation state at pH 7.0. (B) Kd of each biomolecule in a single-compound solution reacted with Na-MMT (white bars) or Mg-MMT (green bars); a significant difference between the two adsorption scenarios was determined from two-tailed Student’s t test and denoted by *(P < 0.05), **(P < 0.01), and ***(P < 0.001). (C) X-ray diffraction-determined interlayer nanopore size (d001) in Na-MMT (white symbols) and Mg-MMT (green symbols) as a function of adsorbed amount of selected biomolecules (µmol biomolecule per g of MMT); the solid lines are intended as eye guides for increasing d001 values; dashed lines represent the d001 of the reference Na-MMT (dashed gray line) and reference Mg-MMT (dashed green line). (D) Optimized model adsorbate structures of the ten biomolecules adsorbed on Na-MMT. (E) Normalized energy for (Top) electrostatic attraction and (Bottom) Van der Waals interactions in the in the dynamic configurations of model adsorbates the model adsorbates over the course of the molecular dynamics simulations with Na-MMT (n = 2,000) where median value is indicated by the horizontal solid line, and first and third quartiles are indicated by the horizontal dashed lines; statistically significant differences (P < 0.05) are denoted by a change in letter; significance was determined by two-tailed Student’s t test. Color scheme for atoms: C (gray), H (white), O (red), N (dark blue), Mg (green), water (light blue), and atoms in MMT (light yellow); isomorphic substitution sites in MMT octahedral sheet (Al3+→Mg2+) in dark brown; red and blue arrows point to positively and negatively charged moieties in the biomolecule, respectively; and, H-bonds and metal coordination are indicated by dashed blue and red lines, respectively. In (D), only water molecules involved in water-bridged H-bonds between the biomolecule and the clay surface are shown; all other water molecules in the hydrated adsorbate conformation are removed for clarity. The H-bond criteria were set to 2.5 Å for the maximum distance and 120° for the minimum angle between the H-bond donor and acceptor. Data for (B), (C), and (E) are provided in SI Appendix, Table S1–S3, respectively. Compound name abbreviations are provided in (A) and other abbreviations are described in the text.
See the science paper for further instructive material with images.

By combining laboratory experiments and molecular modeling, researchers examined interactions between organic carbon biomolecules and a type of clay minerals known for trapping organic matter in soil. They found that electrostatic charges, structural features of carbon molecules, surrounding metal nutrients in soil and competition among molecules all play major roles in soil’s ability (or inability) to trap carbon.

The new findings could help researchers predict which soil chemistries are most favorable for trapping carbon — potentially leading to soil-based solutions for slowing human-caused climate change.

“The amount of organic carbon stored in soil is about 10 times the amount of carbon in the atmosphere,” said Northwestern’s Ludmilla Aristilde, the study’s senior author. “If this enormous reservoir is perturbed, it would have substantial ripple effects. There are many efforts to keep carbon trapped to prevent it from entering the atmosphere. If we want to do that, then we first must understand the mechanisms at play.”

An expert in the dynamics of organics in environmental processes, Aristilde is an associate professor of civil and environmental engineering at Northwestern’s McCormick School of Engineering and is a member of the Center for Synthetic Biology and of the Paula M. Trienens Institute for Sustainability and Energy. Jiaxing Wang, a Ph.D. student in Aristilde’s laboratory, is the paper’s first author. Rebecca Wilson, an undergraduate student at Northwestern, is the paper’s second author.

Holding 2,500 billion tons of sequestered carbon, soil is one of Earth’s largest carbon sinks — second only to the ocean. But even though soil is all around us, researchers are only just beginning to understand how it locks in carbon to sequester it from the carbon cycle.

To investigate this process, Aristilde and her team looked to smectite clay, a type of clay mineral known to sequester carbon in natural soils. Then, they examined how the clay mineral’s surface bonded to ten different biomolecules — including amino acids, sugars related cellulose and phenolic acids related to lignin — with varying chemistry and structures.

“We decided to study this clay mineral because it’s everywhere,” Aristilde said. “Nearly all soils have clay minerals. Also, clays are prevalent in semi-arid and temperate climates — regions that we know will be affected by climate change.”

Opposites attract

Aristilde and her team first looked at interactions between clay minerals and individual biomolecules. Because clay minerals are negatively charged, biomolecules with positively charged components (lysine, histidine and threonine) experienced the strongest binding. But, interestingly, this binding was not solely determined by electrostatic charges. Using 3D computational modeling, the researchers found that the structure of the biomolecules also played a role.

“There are instances where two molecules are both positively charged, yet one has a better interaction with the clay than the other,” Aristilde said. “It’s because the structural features of the binding are also important. A molecule has to be flexible enough to adopt a structural arrangement that can position itself in a way that aligns its positively charged components with the clay. The lysine, for example, has a long arm with a positive charge that it can use to anchor itself.”

A little help from friends

Following this logic, one might assume that negatively charged biomolecules were unable to bind to the clay. But Aristilde and her team discovered that surrounding, natural metal nutrients could intervene. Positively charged metals, such as magnesium and calcium, formed a bridge between the negatively charged biomolecules and clay minerals to create a bond.

“Even with a biomolecule that wouldn’t normally bind to the clay, we saw a significant increase in binding when magnesium was there,” Aristilde said. “So, natural metal constituents in the soil can facilitate carbon trapping. Although this is a widely reported phenomenon, we shed light on the structures and mechanisms.”

Mix and mingle

When studying interactions between individual biomolecules and clay minerals, the researchers found binding was predictable and straightforward. To attain information more closely aligned with real-world environments, Aristilde and her team mixed the different biomolecules together.

“We know different types of biomolecules in the environment exists together,” Aristilde said. “So, we also performed experiments with a mixture of biomolecules.”

Although the researchers initially thought the biomolecules would compete with one another to interact with the clay, they instead discovered unexpected behaviors. In a surprising twist, even positively charged biomolecules with flexible structures were inhibited from binding to the clay minerals. While they easily bonded to the clay when alone, the biomolecules’ urges to bond with one another appears to supersede their attractions to the clay.

“This has not been shown before,” Aristilde said. “The energy of attraction between two biomolecules was actually higher than the energy of attraction of a biomolecule to the clay. That led to a decrease in adsorption. It changes the way we think about how molecules compete on the surface. They aren’t just competing for binding sites on the surface. They can actually attract each other.”

What’s next

Next, Aristilde and her team plan to examine how biomolecules interact with minerals in soils found in warmer regions, including tropical climates. In another related project, they aim to explore how organic matter is transported in rivers and other water systems.

“Now that we have studied clay minerals found mostly in temperate zones, we want to understand other types of minerals,” Aristilde said. “How do they trap organic matter? Are the processes the same or different? If we want to keep carbon trapped in soil, then we need to understand how it’s all assembled and how this assembly affects accessibility to microbes.”

See the full article here .

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply” at the bottom of the post.

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

Established in 1909, the The Robert R.McCormick School of Engineering is one of twelve constituent schools at Northwestern University. Most engineering classes are held in the Technological Institute (1942), which students commonly refer to as “Tech.” In October 2005, another building affiliated with the School, the Ford Motor Company Engineering Design Center, opened.

The trustees of Northwestern University founded a College of Technology in June 1873, but in his report for 1876-77, President Oliver Marcy announced that the new college had failed for lack of financial resources to develop the faculty and facilities.

In 1891, President Henry Wade Rogers called for the founding of a new Engineering School, stating that universities in general were “not performing the work necessary to prepare men for the various activities of modern life, so different from the life their fathers lived half a century ago.” This was realized in 1909, when the new College of Engineering was opened in Swift Hall. Operationally, the Engineering School until the mid-1920s was a department of the College of Liberal Arts. The major emphasis was on a broad general education with a particular stress on mathematics and science. In 1937, the Engineering School ran into difficulties with the American Engineers’ Council for Professional Development, which denied the School accreditation. In response, a four-year curriculum satisfying the ECPD was put into place.

In 1939, Walter Patton Murphy (1873–1942), a wealthy inventor of railroad equipment, donated $6.735 million to the School of Engineering. Murphy meant for the Institute to offer a “cooperative” education, whereby academic courses and practical application in industrial settings were closely integrated. In 1942, Northwestern received an additional bequest of $28 million from Murphy’s estate to provide for an engineering school “second to none.” A cooperative education program was designed in the late 1930s by Charles F. Kettering, former research head of General Motors, and Herman Schneider, dean of the engineering school at the University of Cincinnati. The program required undergraduates to work outside the classroom in technical positions for several terms over the course of their college years.

Northwestern South Campus.

Northwestern University is a private research university in Evanston, Illinois. Founded in 1851 to serve the former Northwest Territory, the university is a founding member of the Big Ten Conference.

On May 31, 1850, nine men gathered to begin planning a university that would serve the Northwest Territory.

Given that they had little money, no land and limited higher education experience, their vision was ambitious. But through a combination of creative financing, shrewd politicking, religious inspiration and an abundance of hard work, the founders of Northwestern University were able to make that dream a reality.

In 1853, the founders purchased a 379-acre tract of land on the shore of Lake Michigan 12 miles north of Chicago. They established a campus and developed the land near it, naming the surrounding town Evanston in honor of one of the University’s founders, John Evans. After completing its first building in 1855, Northwestern began classes that fall with two faculty members and 10 students.
Twenty-one presidents have presided over Northwestern in the years since. The University has grown to include 12 schools and colleges, with additional campuses in Chicago and Doha, Qatar.

Northwestern is known for its focus on interdisciplinary education, extensive research output, and student traditions. The university provides instruction in over 200 formal academic concentrations, including various dual degree programs. The university is composed of eleven undergraduate, graduate, and professional schools, which include the Kellogg School of Management, the Pritzker School of Law, the Feinberg School of Medicine, the Weinberg College of Arts and Sciences, the Bienen School of Music, the McCormick School of Engineering and Applied Science, the Medill School of Journalism, the School of Communication, the School of Professional Studies, the School of Education and Social Policy, and The Graduate School. The university has over 22,000 enrolled students, including over 9,000 undergraduates and over 14,000 graduate students.
Valued at $12.2 billion, Northwestern’s endowment is among the largest university endowments in the United States. Its numerous research programs bring in nearly $900 million in sponsored research each year.

Northwestern’s main 240-acre (97 ha) campus lies along the shores of Lake Michigan in Evanston, 12 miles north of Downtown Chicago. The university’s law, medical, and professional schools, along with its nationally ranked Northwestern Memorial Hospital, are located on a 25-acre (10 ha) campus in Chicago’s Streeterville neighborhood. The university also maintains a campus in Doha, Qatar and locations in San Francisco, California, Washington, D.C. and Miami, Florida.

Northwestern’s faculty and alumni have included Fields Medalists, Nobel Prize laureates, Pulitzer Prize winners, MacArthur Fellows, Rhodes Scholars, Marshall Scholars, National Medal of Science winners, National Humanities Medal recipients, members of the American Academy of Arts and Sciences, living billionaires, Olympic medalists, and U.S. Supreme Court Justices. Northwestern alumni have founded notable companies and organizations such as the Mayo Clinic, The Blackstone Group, Kirkland & Ellis, U.S. Steel, Guggenheim Partners, Accenture, Aon Corporation, AQR Capital, Booz Allen Hamilton, and Melvin Capital.

The foundation of Northwestern University can be traced to a meeting on May 31, 1850, of nine prominent Chicago businessmen, Methodist leaders, and attorneys who had formed the idea of establishing a university to serve what had been known from 1787 to 1803 as the Northwest Territory. On January 28, 1851, the Illinois General Assembly granted a charter to the Trustees of the North-Western University, making it the first chartered university in Illinois. The school’s nine founders, all of whom were Methodists (three of them ministers), knelt in prayer and worship before launching their first organizational meeting. Although they affiliated the university with the Methodist Episcopal Church, they favored a non-sectarian admissions policy, believing that Northwestern should serve all people in the newly developing territory by bettering the economy in Evanston.

John Evans, for whom Evanston is named, bought 379 acres (153 ha) of land along Lake Michigan in 1853, and Philo Judson developed plans for what would become the city of Evanston, Illinois. The first building, Old College, opened on November 5, 1855. To raise funds for its construction, Northwestern sold $100 “perpetual scholarships” entitling the purchaser and his heirs to free tuition. Another building, University Hall, was built in 1869 of the same Joliet limestone as the Chicago Water Tower, also built in 1869, one of the few buildings in the heart of Chicago to survive the Great Chicago Fire of 1871. In 1873 the Evanston College for Ladies merged with Northwestern, and Frances Willard, who later gained fame as a suffragette and as one of the founders of the Woman’s Christian Temperance Union (WCTU), became the school’s first dean of women (Willard Residential College, built in 1938, honors her name). Northwestern admitted its first female students in 1869, and the first woman was graduated in 1874.

Northwestern fielded its first intercollegiate football team in 1882, later becoming a founding member of the Big Ten Conference. In the 1870s and 1880s, Northwestern affiliated itself with already existing schools of law, medicine, and dentistry in Chicago. Northwestern University Pritzker School of Law is the oldest law school in Chicago. As the university’s enrollments grew, these professional schools were integrated with the undergraduate college in Evanston; the result was a modern research university combining professional, graduate, and undergraduate programs, which gave equal weight to teaching and research. By the turn of the century, Northwestern had grown in stature to become the third largest university in the United States after Harvard University and the University of Michigan.

Under Walter Dill Scott’s presidency from 1920 to 1939, Northwestern began construction of an integrated campus in Chicago designed by James Gamble Rogers, noted for his design of the Yale University campus, to house the professional schools. The university also established the Kellogg School of Management and built several prominent buildings on the Evanston campus, including Dyche Stadium, now named Ryan Field, and Deering Library among others. In the 1920s, Northwestern became one of the first six universities in the United States to establish a Naval Reserve Officers Training Corps (NROTC). In 1939, Northwestern hosted the first-ever NCAA Men’s Division I Basketball Championship game in the original Patten Gymnasium, which was later demolished and relocated farther north, along with the Dearborn Observatory, to make room for the Technological Institute.

After the golden years of the 1920s, the Great Depression in the United States (1929–1941) had a severe impact on the university’s finances. Its annual income dropped 25 percent from $4.8 million in 1930-31 to $3.6 million in 1933-34. Investment income shrank, fewer people could pay full tuition, and annual giving from alumni and philanthropists fell from $870,000 in 1932 to a low of $331,000 in 1935. The university responded with two salary cuts of 10 percent each for all employees. It imposed hiring and building freezes and slashed appropriations for maintenance, books, and research. Having had a balanced budget in 1930-31, the university now faced deficits of roughly $100,000 for the next four years. Enrollments fell in most schools, with law and music suffering the biggest declines. However, the movement toward state certification of school teachers prompted Northwestern to start a new graduate program in education, thereby bringing in new students and much needed income. In June 1933, Robert Maynard Hutchins, president of the University of Chicago, proposed a merger of the two universities, estimating annual savings of $1.7 million. The two presidents were enthusiastic, and the faculty liked the idea; many Northwestern alumni, however, opposed it, fearing the loss of their Alma Mater and its many traditions that distinguished Northwestern from Chicago. The medical school, for example, was oriented toward training practitioners, and alumni feared it would lose its mission if it were merged into the more research-oriented University of Chicago Medical School. The merger plan was ultimately dropped. In 1935, the Deering family rescued the university budget with an unrestricted gift of $6 million, bringing the budget up to $5.4 million in 1938-39. This allowed many of the previous spending cuts to be restored, including half of the salary reductions.

Like other American research universities, Northwestern was transformed by World War II (1939–1945). Regular enrollment fell dramatically, but the school opened high-intensity, short-term programs that trained over 50,000 military personnel, including future president John F. Kennedy. Northwestern’s existing NROTC program proved to be a boon to the university as it trained over 36,000 sailors over the course of the war, leading Northwestern to be called the “Annapolis of the Midwest.” Franklyn B. Snyder led the university from 1939 to 1949, and after the war, surging enrollments under the G.I. Bill drove dramatic expansion of both campuses. In 1948, prominent anthropologist Melville J. Herskovits founded the Program of African Studies at Northwestern, the first center of its kind at an American academic institution. J. Roscoe Miller’s tenure as president from 1949 to 1970 saw an expansion of the Evanston campus, with the construction of the Lakefill on Lake Michigan, growth of the faculty and new academic programs, and polarizing Vietnam-era student protests. In 1978, the first and second Unabomber attacks occurred at Northwestern University. Relations between Evanston and Northwestern became strained throughout much of the post-war era because of episodes of disruptive student activism, disputes over municipal zoning, building codes, and law enforcement, as well as restrictions on the sale of alcohol near campus until 1972. Northwestern’s exemption from state and municipal property-tax obligations under its original charter has historically been a source of town-and-gown tension.

Although government support for universities declined in the 1970s and 1980s, President Arnold R. Weber was able to stabilize university finances, leading to a revitalization of its campuses. As admissions to colleges and universities grew increasingly competitive in the 1990s and 2000s, President Henry S. Bienen’s tenure saw a notable increase in the number and quality of undergraduate applicants, continued expansion of the facilities and faculty, and renewed athletic competitiveness. In 1999, Northwestern student journalists uncovered information exonerating Illinois death-row inmate Anthony Porter two days before his scheduled execution. The Innocence Project has since exonerated 10 more men. On January 11, 2003, in a speech at Northwestern School of Law’s Lincoln Hall, then Governor of Illinois George Ryan announced that he would commute the sentences of more than 150 death-row inmates.

In the 2010s, a 5-year capital campaign resulted in a new music center, a replacement building for the business school, and a $270 million athletic complex. In 2014, President Barack Obama delivered a seminal economics speech at the Evanston campus.

Organization and administration

Governance

Northwestern is privately owned and governed by an appointed Board of Trustees, which is composed of 70 members. The board delegates its power to an elected president who serves as the chief executive officer of the university. Northwestern has had sixteen presidents in its history.

Students are formally involved in the university’s administration through the Associated Student Government, elected representatives of the undergraduate students, and the Graduate Student Association, which represents the university’s graduate students.

The admission requirements, degree requirements, courses of study, and disciplinary and degree recommendations for each of Northwestern’s 12 schools are determined by the voting members of that school’s faculty (assistant professor and above).

Undergraduate and graduate schools

Evanston Campus:

Weinberg College of Arts and Sciences (1851)
Northwestern School of Communication (1878)
Bienen School of Music (1895)
McCormick School of Engineering and Applied Science (1909)
Medill School of Journalism (1921)
School of Education and Social Policy (1926)
School of Professional Studies (1933)

Graduate and professional

Evanston Campus

Kellogg School of Management (1908)

The Graduate School
Endowment

In 1996, Princess Diana made a trip to Evanston to raise money for the university hospital’s Robert H. Lurie Comprehensive Cancer Center at the invitation of then President Bienen. Her visit raised a total of $1.5 million for cancer research.

In 2003, Northwestern finished a five-year capital campaign that raised $1.55 billion, exceeding its fundraising goal by $550 million.

In 2014, Northwestern launched the “We Will” campaign with a fundraising goal of $3.75 billion. As of December 31, 2019, the university has received $4.78 billion from 164,026 donors.

Sustainability

In January 2009, the Green Power Partnership (sponsored by the EPA) listed Northwestern as one of the top 10 universities in the country in purchasing energy from renewable sources. The university matches 74 million kilowatt hours (kWh) of its annual energy use with Green-e Certified Renewable Energy Certificates (RECs). This green power commitment represents 30 percent of the university’s total annual electricity use and places Northwestern in the EPA’s Green Power Leadership Club. The Initiative for Sustainability and Energy at Northwestern (ISEN), supporting research, teaching and outreach in these themes, was launched in 2008.

Northwestern requires that all new buildings be LEED-certified. Silverman Hall on the Evanston campus was awarded Gold LEED Certification in 2010; Wieboldt Hall on the Chicago campus was awarded Gold LEED Certification in 2007, and the Ford Motor Company Engineering Design Center on the Evanston campus was awarded Silver LEED Certification in 2006. New construction and renovation projects will be designed to provide at least a 20% improvement over energy code requirements where feasible. At the beginning of the 2008–09 academic year, the university also released the Evanston Campus Framework Plan, which outlines plans for future development of the university’s Evanston campus. The plan not only emphasizes sustainable building construction, but also focuses on reducing the energy costs of transportation by optimizing pedestrian and bicycle access. Northwestern has had a comprehensive recycling program in place since 1990. The university recycles over 1,500 tons of waste, or 30% of all waste produced on campus, each year. All landscape waste at the university is composted.

Academics

Education and rankings

Northwestern is a large, residential research university, and is ranked among the top universities in the United States. The university is a leading institution in the fields of materials engineering, chemistry, business, economics, education, journalism, and communications. It is also prominent in law and medicine. Accredited by the Higher Learning Commission and the respective national professional organizations for chemistry, psychology, business, education, journalism, music, engineering, law, and medicine, the university offers 124 undergraduate programs and 145 graduate and professional programs. Northwestern annually confers over 2,100 bachelor’s degrees; over 3,200 master’s degrees, over 500 doctoral degrees, and over 400 professional. Since 1951, Northwestern has awarded 520 honorary degrees. Northwestern also has chapters of academic honor societies such as Phi Beta Kappa (Alpha of Illinois), Eta Kappa Nu, Tau Beta Pi, Eta Sigma Phi (Beta Chapter), Lambda Pi Eta, and Alpha Sigma Lambda (Alpha Chapter).

The four-year, full-time undergraduate program comprises the majority of enrollments at the university. Although there is no university-wide core curriculum, a foundation in the liberal arts and sciences is required for all majors; individual degree requirements are set by the faculty of each school. The university heavily emphasizes interdisciplinary learning, with 72% of undergrads combining two or more areas of study. Northwestern’s full-time undergraduate and graduate programs operate on an approximately 10-week academic quarter system with the academic year beginning in late September and ending in early June. Undergraduates typically take four courses each quarter and twelve courses in an academic year and are required to complete at least twelve quarters on campus to graduate. Northwestern offers honors, accelerated, and joint degree programs in medicine, science, mathematics, engineering, and journalism. The comprehensive doctoral graduate program has high coexistence with undergraduate programs.

Despite being a mid-sized university, Northwestern maintains a relatively low student to faculty ratio of 6:1.

Research

Northwestern was elected to the Association of American Universities in 1917, and is classified as an R1 university, denoting “very high” research activity. Northwestern’s schools of management, engineering, and communication are among the most academically productive in the nation. The university annually receives over $900 million in research funding and houses over 90 school-based and 40 university-wide research institutes and centers. Northwestern also supports nearly 1,500 research laboratories across two campuses, predominately in the medical and biological sciences.

Northwestern is home to the Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern Institute for Complex Systems, Nanoscale Science and Engineering Center, Materials Research Center, Center for Quantum Devices, Institute for Policy Research, International Institute for Nanotechnology, Center for Catalysis and Surface Science, Buffet Center for International and Comparative Studies, the Initiative for Sustainability and Energy at Northwestern, and the Argonne/Northwestern Solar Energy Research Center among other centers for interdisciplinary research.

Student body

Northwestern enrolls over 9,000 full-time undergraduate, 9,000 full-time graduate, and 3,900 part-time students. The freshman retention rates are about 98%. 86% of students graduate after four years and 92% graduate after five years. These numbers can largely be attributed to the university’s various specialized degree programs, such as those that allow students to earn master’s degrees with a one or two year extension of their undergraduate program.

The undergraduate population is drawn from all 50 states and over 75 foreign countries. 20% of students have been Grant recipients and 12.56% were first-generation college students. Northwestern also enrolls a high number of National Merit Scholars.

Approximately 39% of undergraduate students are enrolled in the Weinberg College of Arts and Sciences; 22% in the McCormick School of Engineering and Applied Science; 14% in the School of Communication; 12% in the Medill School of Journalism; 6% in the Bienen School of Music; and 7% in the School of Education and Social Policy. The five most commonly awarded undergraduate degrees are economics, journalism, communication studies, psychology, and political science. The Kellogg School of Management’s MBA, the School of Law’s JD, and the Feinberg School of Medicine’s MD are the three largest professional degree programs by enrollment. With over 2,500 students enrolled in science, engineering, and health fields, the largest graduate programs by enrollment include chemistry, integrated biology, material sciences, electrical and computer engineering, neuroscience, and economics.

Athletics

Northwestern is a charter member of the Big Ten Conference. It is the conference’s only private university and possesses the smallest undergraduate enrollment (the next-smallest member, the University of Iowa, is roughly three times as large, with almost 22,000 undergraduates).

Northwestern fields 19 intercollegiate athletic teams (8 men’s and 11 women’s) in addition to numerous club sports. Northwestern’s varsity programs have had NCAA or bowl postseason appearances. Northwestern is one of five private AAU members to compete in NCAA Power Five conferences (the other four being Duke, Stanford, USC, and Vanderbilt) and maintains a 98% NCAA Graduation Success Rate, the highest among Football Bowl Subdivision schools.

In 2018, the school opened the Walter Athletics Center, a $270 million state of the art lakefront facility for its athletics teams.

Nickname and mascot

Before 1924, Northwestern teams were known as “The Purple” and unofficially as “The Fighting Methodists.” The name Wildcats was bestowed upon the university in 1924 by Wallace Abbey, a writer for the Chicago Daily Tribune, who wrote that even in a loss to the University of Chicago, “Football players had not come down from Evanston; “Wildcats” would be a name better suited to “[Coach Glenn] Thistletwaite’s boys.” The name was so popular that university board members made “Wildcats” the official nickname just months later. In 1972, the student body voted to change the official nickname to “Purple Haze,” but the new name never stuck.

The mascot of Northwestern Athletics is “Willie the Wildcat”. Prior to Willie, the team mascot had been a live, caged bear cub from the Lincoln Park Zoo named Furpaw, who was brought to the playing field on game days to greet the fans. After a losing season however, the team decided that Furpaw was to blame for its misfortune and decided to select a new mascot. “Willie the Wildcat” made his debut in 1933, first as a logo and then in three dimensions in 1947, when members of the Alpha Delta fraternity dressed as wildcats during a Homecoming Parade.

Traditions

Northwestern’s official motto, “Quaecumque sunt vera,” was adopted by the university in 1890. The Latin phrase translates to “Whatsoever things are true” and comes from the Epistle of Paul to the Philippians (Philippians 4:8), in which St. Paul admonishes the Christians in the Greek city of Philippi. In addition to this motto, the university crest features a Greek phrase taken from the Gospel of John inscribed on the pages of an open book, ήρης χάριτος και αληθείας or “the word full of grace and truth” (John 1:14).
Alma Mater is the Northwestern Hymn. The original Latin version of the hymn was written in 1907 by Peter Christian Lutkin, the first dean of the School of Music from 1883 to 1931. In 1953, then Director-of-Bands John Paynter recruited an undergraduate music student, Thomas Tyra (’54), to write an English version of the song, which today is performed by the Marching Band during halftime at Wildcat football games and by the orchestra during ceremonies and other special occasions.
Purple became Northwestern’s official color in 1892, replacing black and gold after a university committee concluded that too many other universities had used these colors. Today, Northwestern’s official color is purple, although white is something of an official color as well, being mentioned in both the university’s earliest song, Alma Mater (1907) (“Hail to purple, hail to white”) and in many university guidelines.
The Rock, a 6-foot high quartzite boulder donated by the Class of 1902, originally served as a water fountain. It was painted over by students in the 1940s as a prank and has since become a popular vehicle of self-expression on campus.
Armadillo Day, commonly known as Dillo Day, is the largest student-run music festival in the country. The festival is hosted every Spring on Northwestern’s Lakefront.
Primal Scream is held every quarter at 9 p.m. on the Sunday before finals week. Students lean out of windows or gather in courtyards and scream to help relieve stress.
In the past, students would throw marshmallows during football games, but this tradition has since been discontinued.

Philanthropy

One of Northwestern’s most notable student charity events is Dance Marathon, the most established and largest student-run philanthropy in the nation. The annual 30-hour event is among the most widely-attended events on campus. It has raised over $1 million for charity every year since 2011 and has donated a total of $13 million to children’s charities since its conception.

The Northwestern Community Development Corps (NCDC) is a student-run organization that connects hundreds of student volunteers to community development projects in Evanston and Chicago throughout the year. The group also holds a number of annual community events, including Project Pumpkin, a Halloween celebration that provides over 800 local children with carnival events and a safe venue to trick-or-treat each year.

Many Northwestern students participate in the Freshman Urban Program, an initiative for students interested in community service to work on addressing social issues facing the city of Chicago, and the university’s Global Engagement Studies Institute (GESI) programs, including group service-learning expeditions in Asia, Africa, or Latin America in conjunction with the Foundation for Sustainable Development.

Several internationally recognized non-profit organizations were established at Northwestern, including the World Health Imaging, Informatics and Telemedicine Alliance, a spin-off from an engineering student’s honors thesis.
Media

Print

Established in 1881, The Daily Northwestern is the university’s main student newspaper and is published on weekdays during the academic year. It is directed entirely by undergraduate students and owned by the Students Publishing Company. Although it serves the Northwestern community, the Daily has no business ties to the university and is supported wholly by advertisers.
North by Northwestern is an online undergraduate magazine established in September 2006 by students at the Medill School of Journalism. Published on weekdays, it consists of updates on news stories and special events throughout the year. It also publishes a quarterly print magazine.
Syllabus is the university’s undergraduate yearbook. It is distributed in late May and features a culmination of the year’s events at Northwestern. First published in 1885, the yearbook is published by Students Publishing Company and edited by Northwestern students.
Northwestern Flipside is an undergraduate satirical magazine. Founded in 2009, it publishes a weekly issue both in print and online.
Helicon is the university’s undergraduate literary magazine. Established in 1979, it is published twice a year: a web issue is released in the winter and a print issue with a web complement is released in the spring.
The Protest is Northwestern’s quarterly social justice magazine.

The Northwestern division of Student Multicultural Affairs supports a number of publications for particular cultural groups including Ahora, a magazine about Hispanic and Latino/a culture and campus life; Al Bayan, published by the Northwestern Muslim-cultural Student Association; BlackBoard Magazine, a magazine centered around African-American student life; and NUAsian, a magazine and blog on Asian and Asian-American culture and issues.
The Northwestern University Law Review is a scholarly legal publication and student organization at Northwestern University School of Law. Its primary purpose is to publish a journal of broad legal scholarship. The Law Review publishes six issues each year. Student editors make the editorial and organizational decisions and select articles submitted by professors, judges, and practitioners, as well as student pieces. The Law Review also publishes scholarly pieces weekly on the Colloquy.
The Northwestern Journal of Technology and Intellectual Property is a law review published by an independent student organization at Northwestern University School of Law.
The Northwestern Interdisciplinary Law Review is a scholarly legal publication published annually by an editorial board of Northwestern undergraduates. Its mission is to publish interdisciplinary legal research, drawing from fields such as history, literature, economics, philosophy, and art. Founded in 2008, the journal features articles by professors, law students, practitioners, and undergraduates. It is funded by the Buffett Center for International and Comparative Studies and the Office of the Provost.

Web-based

Established in January 2011, Sherman Ave is a humor website that often publishes content on Northwestern student life. Most of its staff writers are current Northwestern undergraduates writing under various pseudonyms. The website is popular among students for its interviews of prominent campus figures, Freshman Guide, and live-tweeting coverage of football games. In Fall 2012, the website promoted a satiric campaign to end the Vanderbilt University football team’s custom of clubbing baby seals.
Politics & Policy is dedicated to the analysis of current events and public policy. Established in 2010 by students at the Weinberg College of Arts and Sciences, School of Communication, and Medill School of Journalism, the publication reaches students on more than 250 college campuses around the world. Run entirely by undergraduates, it is published several times a week and features material ranging from short summaries of events to extended research pieces. The publication is financed in part by the Buffett Center.
Northwestern Business Review is a campus source for business news. Founded in 2005, it has an online presence as well as a quarterly print schedule.
TriQuarterly Online (formerly TriQuarterly) is a literary magazine published twice a year featuring poetry, fiction, nonfiction, drama, literary essays, reviews, blog posts, and art.
The Queer Reader is Northwestern’s first radical feminist and LGBTQ+ publication.

Radio, film, and television

WNUR (89.3 FM) is a 7,200-watt radio station that broadcasts to the city of Chicago and its northern suburbs. WNUR’s programming consists of music (jazz, classical, and rock), literature, politics, current events, varsity sports (football, men’s and women’s basketball, baseball, softball, and women’s lacrosse), and breaking news on weekdays.
Studio 22 is a student-run production company that produces roughly ten films each year. The organization financed the first film Zach Braff directed, and many of its films have featured students who would later go into professional acting, including Zach Gilford of Friday Night Lights.
Applause for a Cause is currently the only student-run production company in the nation to create feature-length films for charity. It was founded in 2010 and has raised over $5,000 to date for various local and national organizations across the United States.
Northwestern News Network is a student television news and sports network, serving the Northwestern and Evanston communities. Its studios and newsroom are located on the fourth floor of the McCormick Tribune Center on Northwestern’s Evanston campus. NNN is funded by the Medill School of Journalism.

From The College of Agriculture and Life Sciences At The University of Arizona: “‘The future is fungal’ – Research finds fungi that live in healthy plants are sensitive to climate change”

From The College of Agriculture and Life Sciences

At

The University of Arizona

2.20.24
Media contact
Mikayla Mace Kelley
Science Writer, University Communications
mikaylamace@arizona.edu
520-621-1878

Researcher contact
Betsy Arnold
School of Plant Sciences
arnold@ag.arizona.edu
520-396-0854

The findings, more than a decade in the making, reveal a rich diversity of beneficial fungi living in boreal forest trees, with implications about the health of forests.

2
Betsy Arnold and her team accessed remote areas of the boreal forests of eastern North America by floatplane. A view from the window shows spruce trees growing from a carpet of moss and lichens, and the lake on which the researchers were to land. Credit: Betsy Arnold.

Spruce, pine, fir and other trees tower across the frigid swaths of land that span North America, northern Europe and Russia in a great ring around the world. These boreal forests constitute the largest land ecosystem and the northernmost forests on Earth.

Nestled within the photosynthetic, or light-eating, tissue of the boreal trees – and within the bountiful cloud-like lichens and feathery mosses that carpet the ground between them – are fungi. These fungi are endophytes, meaning they live within plants, often in a mutually beneficial arrangement.

“To be a plant is to live in a fungal world,” said Betsy Arnold, a professor in the School of Plant Sciences in the College of Agriculture, Life and Environmental Sciences and the Department of Ecology and Evolutionary Biology in the College of Science and a member of the BIO5 Institute. “Endophytic fungi are vital to the health of plants in ways that aren’t yet totally understood, but what we do know from endophytes in general is that they’re very good at protecting plants against disease and helping plants be more resilient to environmental stressors, like heat. They’ve been part of an important revolution in our thinking about plants.”

Over a decade ago, Arnold and her team set out on a monthlong adventure deep into the wilderness of northeastern Canada to understand how these fungal species adapted across different microenvironments and how they might fare under future climate change.

They found great diversity among the fungi and that they were adapted in highly specific ways to their local conditions, implying that they will be sensitive to future changes in climate. With the health of fungi so closely tied to the health of their hosts, these findings have implications for the overall health of future boreal forests and for our planet.

“Boreal forests are central to our planet’s carbon and water cycles,” Arnold said. “And our work highlights that they are home to some of the most evolutionarily diverse fungal endophytes in the world – endophytes that are found nowhere else.”

After over a decade of analysis, their findings were published in the journal Current Biology.

“Our collaborative study shed light on the diversity in the boreal biome of newly discovered endophytic fungi and their sensitivity to climate,” said study co-lead author Shuzo Oita, who completed his doctoral studies in Arnold’s lab and is now a research scientist at Sumitomo Chemical Co., Ltd. “Endophytes are often overlooked because they occur in healthy plant tissues, but their importance in biodiversity and ecosystems has been revealed recently.”

Flying for fungi

Collecting the data to come to this conclusion was a gargantuan effort that required Arnold and her colleagues to undertake some of the most intense fieldwork of her life, she said.

For a month during the summer of 2011, the team contracted with an expert pilot “to access places where the roads don’t go,” Arnold said. The team of six traversed the southern boreal forests of Canada all the way up to the edge of the Arctic tundra, landing their float plane in lakes along the way.

2
The team flew from lake to lake in a DeHavilland Otter with expert pilot Jacques Bérubé (center) providing access to remote sites for the project’s field team, under the co-leadership of François Lutzoni (left) of Duke University and UArizona’s Betsy Arnold. Credit: Betsy Arnold.

Thirty-six times they took off and landed among remote lakes dotting the landscape. Typically, they spent about six to 24 hours at each sample site.

By day, they collected healthy spruce tree leaves and fresh mosses and lichens from the ground, stowing their scientific treasure in zip-close bags as they went. They also drilled tree ring cores, hoping to reveal their pasts, such as their age and wildfire exposure. They also measured various forest characteristics to understand how plants vary across the landscape.

By night, as the northern lights fluttered overhead, they processed their samples in portable laboratories inside the pilots’ quarters. They surface-sterilized fresh tissues to prepare them for DNA extraction and isolated fungal cultures to visualize and document strains living within their samples.

“We often worked until 2 or 3 in the morning and would sleep for a few hours before flying on to the next site,” Arnold said. The long days paid off: “In the fungal world, an hour of field work is a year of characterization and a decade of potential analysis. And in just a few weeks’ time, we covered a lot of ground.”

As they traveled from the warmer southern regions to the colder north, they repeated their sampling at approximately 100-mile intervals. They also sampled along a single band of latitude that was equally vast but represented very little change in climate, Arnold said. They strategically sampled in these two dimensions to ensure that any differences in fungal biodiversity were truly driven by environment differences rather than distance alone. Together, they flew nearly 1,500 miles in the DeHavilland Otter that was their mobile home, often sharing their traveling space with extra tanks of fuel.

Older studies have examined the correlation between biodiversity and latitude, which is often used as a proxy for climate. These studies found that in general, life becomes more diverse closer to the equator, Arnold said. For example, for many groups of organisms, those in tropical rainforests are more biodiverse than those in the Arctic tundra.

It turns out, it’s not that simple when it comes to fungi in the boreal zone.

“We show that boreal fungal communities don’t necessarily change with climate in the same predictable way as plant communities. Instead, the effect of climate on these fungi is highly dependent on both the fungal species and the host,” said co-lead author Jana U’Ren, who completed her doctoral work and conducted the laboratory analysis for this project as a postdoctoral scientist with Arnold before moving to Washington State University. “This means that we need to protect plants and their fungal endophytes across the boreal biome, and not just in one location, or we risk losing vital biodiversity and protective fungi in these important forests.”

Arnold thinks that the special climate dependence of these fungal endophytes reflects a process of co-evolution with their hosts – or “research and development,” as she put it – as plants find the ideal endophyte partner and flourish despite the distinctive stresses that plants face in these harsh northern landscapes.

“Endophytes are found all around the world, but there are distinctive ones in different environments. We think that symbioses with endophytes are, in part, how plants overcome environmental challenges at a global scale – that is, with their internal fungal partners,” Arnold said. “There’s not a lot of information about exactly what an individual endophyte does for an individual plant. So, our study is foundational in the sense that we tried to figure out who these endophytes are, and how they’re distributed, and how they might change with a shifting climate.”

3
Cladonia, a lichen, grows in a white puff only a few inches above a carpet of a moss called Pleurozium. Like the iconic black spruce (Picea) of the boreal belt, they harbor diverse endophytic fungi that live symbiotically within their healthy tissues. Credit: Betsy Arnold.

She hopes that future research can build off their findings.

“What we do know is that we’re losing that biodiversity when those forests are changing, and we don’t yet know what the key functional elements are,” she said.

Collaborator François Lutzoni, a professor of biology at Duke University and co-architect of this study with Arnold, agreed.

“This was some of the most complex fieldwork I have ever done, but also one of the most exhilarating research experiences I have had,” Lutzoni said. “To document biodiversity in our changing world is essential research. The specimens we collected are deposited in herbaria and therefore have lasting value to understand how species, their distributions, their genes and the ecosystems they inhabit change over time. In turn, the best way for herbaria to serve the scientific community is by being integrated with research labs in world-class universities.”

Within this mindset, Arnold is now working to use home-grown Arizona endophytes to enhance crop resilience in this changing world.

“Just like boreal forests harbor an unexpected diversity of endophytes, so too do plants here in Arizona,” Arnold said. “Our next steps are to tap these rich and ancient endophytes as tools for helping plants thrive. Ultimately, we hope that by understanding these fungi at a global scale, we can not only chart the past and future of a key element of our planet’s biodiversity, but we also can harness those in our local areas to make crops thrive with limited water and rising temperatures. You might say that the future is fungal.”

Other co-authors are Jolanta Miadlikowska from Duke University, Bernard Ball from University College Dublin and Duke University, Ignazio Carbone from North Carolina State University, Georgiana May from the University of Minnesota, Naupaka B. Zimmerman from the University of San Francisco, Denis Valle from the University of Florida and Valerie Trouet from the University of Arizona Laboratory of Tree Ring Research.

This research was funded through a National Science Foundation initiative called Dimensions of Biodiversity.

See the full article here .

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply” near the bottom of the post.


five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.

Stem Education Coalition

The College of Agriculture and Life Sciences
With an education and research portfolio that stretches from soil sciences, to resource management, to retailing, and from beneath the soil to outer space, the University of Arizona’s College of Agriculture and Life Sciences offers 20 undergraduate degree programs across five schools and five departments. CALS research touches on nearly every aspect of modern life and has played a pivotal role in Arizona’s and the global economy over the course of its 137-year history.

Uniquely positioned in the southern Arizona desert to offer solutions to problems affecting much of the world in the 21st century, the college continues to build on its heritage of advancing the frontiers of science to improve the human condition.

The University of Arizona enrolls over 49,000 students in 19 separate colleges/schools, including The University of Arizona College of Medicine in Tucson and Phoenix and the James E. Rogers College of Law, and is affiliated with two academic medical centers (Banner – University Medical Center Tucson and Banner – University Medical Center Phoenix). The University of Arizona is one of three universities governed by the Arizona Board of Regents. The university is part of the Association of American Universities and is the only member from Arizona, and also part of the Universities Research Association.

Known as the Arizona Wildcats (often shortened to “Cats”), The University of Arizona’s intercollegiate athletic teams are members of the Pac-12 Conference of the NCAA. The University of Arizona athletes have won national titles in several sports, most notably men’s basketball, baseball, and softball. The official colors of the university and its athletic teams are cardinal red and navy blue.

After the passage of the Morrill Land-Grant Act of 1862, the push for a university in Arizona grew. The Arizona Territory’s “Thieving Thirteenth” Legislature approved The University of Arizona in 1885 and selected the city of Tucson to receive the appropriation to build the university. Tucson hoped to receive the appropriation for the territory’s mental hospital, which carried a $100,000 allocation instead of the $25,000 allotted to the territory’s only university Arizona State University was also chartered in 1885, but it was created as Arizona’s normal school, and not a university). Flooding on the Salt River delayed Tucson’s legislators, and by the time they reached Prescott, back-room deals allocating the most desirable territorial institutions had been made. Tucson was largely disappointed with receiving what was viewed as an inferior prize.

With no parties willing to provide land for the new institution, the citizens of Tucson prepared to return the money to the Territorial Legislature until two gamblers and a saloon keeper decided to donate the land to build the school. Construction of Old Main, the first building on campus, began on October 27, 1887, and classes met for the first time in 1891 with 32 students in Old Main, which is still in use today. Because there were no high schools in Arizona Territory, the university maintained separate preparatory classes for the first 23 years of operation.

Research

The University of Arizona is classified among “R1: Doctoral Universities – Very high research activity”. UArizona is the fourth most awarded public university by National Aeronautics and Space Administration for research. The University of Arizona was awarded over $300 million for its Lunar and Planetary Laboratory (LPL) to lead NASA’s 2007–08 mission to Mars to explore the Martian Arctic, and $800 million for its OSIRIS-REx mission, the first in U.S. history to sample an asteroid.

National Aeronautics Space Agency UArizona OSIRIS-REx Spacecraft.

The LPL’s work in the Cassini spacecraft orbit around Saturn is larger than any other university globally.

National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganization](EU)/ASI Italian Space Agency [Agenzia Spaziale Italiana](IT) Cassini Spacecraft.

The University of Arizona laboratory designed and operated the atmospheric radiation investigations and imaging on the probe. The University of Arizona operates the HiRISE camera, a part of the Mars Reconnaissance Orbiter.

U Arizona NASA Mars Reconnaisance HiRISE Camera.
NASA Mars Reconnaissance Orbiter.

While using the HiRISE camera in 2011, University of Arizona alumnus Lujendra Ojha and his team discovered proof of liquid water on the surface of Mars—a discovery confirmed by NASA in 2015.

The University of Arizona receives more NASA grants annually than the next nine top NASA/JPL-Caltech-funded universities combined. The University of Arizona’s Lunar and Planetary Laboratory is actively involved in ten spacecraft missions: Cassini VIMS; Grail; the HiRISE camera orbiting Mars; the Juno mission orbiting Jupiter; Lunar Reconnaissance Orbiter (LRO); Maven, which will explore Mars’ upper atmosphere and interactions with the sun; Solar Probe Plus, a historic mission into the Sun’s atmosphere for the first time; Rosetta’s VIRTIS; WISE; and OSIRIS-REx, the first U.S. sample-return mission to a near-earth asteroid, which launched on September 8, 2016.

NASA – GRAIL [Gravity Recovery and Interior Laboratory] Flying in Formation. Artist’s Concept. Credit: NASA.
National Aeronautics Space Agency Juno at Jupiter.
NASA Lunar Reconnaissance Orbiter.
NASA Mars MAVEN.
NASA/Mars MAVEN
NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker. The Johns Hopkins University Applied Physics Lab.
NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker.The Johns Hopkins University Applied Physics Lab annotated.
National Aeronautics and Space Administration Wise/NEOWISE Telescope.

The University of Arizona students have been selected as Truman, Rhodes, Goldwater, and Fulbright Scholars. According to The Chronicle of Higher Education, UArizona is among the top producers of Fulbright awards.

The University of Arizona is a member of the Association of Universities for Research in Astronomy , a consortium of institutions pursuing research in astronomy. The association operates observatories and telescopes, notably Kitt Peak National Observatory just outside Tucson.

NSF NOIRLab NOAO Kitt Peak National Observatory on Kitt Peak in the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers (55 mi) west-southwest of Tucson, Altitude 2,096 m (6,877 ft). annotated.

Led by Roger Angel, researchers in the Steward Observatory Mirror Lab at The University of Arizona are working in concert to build the world’s most advanced telescope. Known as the Giant Magellan Telescope (CL), it will produce images 10 times sharper than those from the Earth-orbiting Hubble Telescope.

GMT
Gregorian Optical Giant Magellan Telescope(CL) 21 meters, to be at the Carnegie Institution for Science’s Las Campanas Observatory(CL) some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high. Credit: Giant Magellan Telescope–GMTO Corporation.

GMT will ultimately cost $1 billion. Researchers from at least nine institutions are working to secure the funding for the project. The telescope will include seven 18-ton mirrors capable of providing clear images of volcanoes and riverbeds on Mars and mountains on the moon at a rate 40 times faster than the world’s current large telescopes. The mirrors of the Giant Magellan Telescope will be built at The University of Arizona and transported to a permanent mountaintop site in the Chilean Andes where the telescope will be constructed.

Reaching Mars in March 2006, the Mars Reconnaissance Orbiter contained the HiRISE camera, with Principal Investigator Alfred McEwen as the lead on the project. This National Aeronautics and Space Agency mission to Mars carrying the UArizona-designed camera is capturing the highest-resolution images of the planet ever seen. The journey of the orbiter was 300 million miles. In August 2007, The University of Arizona, under the charge of Scientist Peter Smith, led the Phoenix Mars Mission, the first mission completely controlled by a university. Reaching the planet’s surface in May 2008, the mission’s purpose was to improve knowledge of the Martian Arctic. The Arizona Radio Observatory , a part of The University of Arizona Department of Astronomy Steward Observatory , operates the Submillimeter Telescope on Mount Graham.

U Arizona Submillimeter Telescope located on Mt. Graham near Safford, Arizona, Altitude 3,191 m (10,469 ft)
NRAO 12m Arizona Radio Telescope, at U Arizona Department of Astronomy and Steward Observatory at Kitt Peak National Observatory, In the Sonoran Desert on the Tohono O’odham Nation Arizona USA, Altitude 1,914 m (6,280 ft).
U Arizona Steward Observatory at NSF’s NOIRLab NOAO Kitt Peak National Observatory in the Arizona-Sonoran Desert 88 kilometers 55 mi west-southwest of Tucson, Arizona in the Quinlan Mountains of the Tohono O’odham Nation, altitude 2,096 m (6,877 ft).

The National Science Foundation funds the iPlant Collaborative in with a $50 million grant. In 2013, iPlant Collaborative received a $50 million renewal grant. Rebranded in late 2015 as “CyVerse”, the collaborative cloud-based data management platform is moving beyond life sciences to provide cloud-computing access across all scientific disciplines.

In June 2011, the university announced it would assume full ownership of the Biosphere 2 scientific research facility in Oracle, Arizona, north of Tucson, effective July 1. Biosphere 2 was constructed by private developers (funded mainly by Texas businessman and philanthropist Ed Bass) with its first closed system experiment commencing in 1991. The university had been the official management partner of the facility for research purposes since 2007.

University of Arizona mirror lab. Where else in the world can you find an astronomical observatory mirror lab under a football stadium?
University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why the UA is a university unlike any other.
University of Arizona Landscape Evolution Observatory at Biosphere 2.

From Stanford University And The University of California-Los Angeles: “The Weather Man” Daniel Swain

From Stanford University

And

The University of California-Los Angeles

2.6.24
Tracie White
Illustrations by Tim O’Brien

Daniel Swain studies extreme floods. And droughts. And wildfires. Then he explains them to the rest of us.

1

7:00 a.m., 45 degrees F

The moment Daniel Swain wakes up, he gets whipped about by hurricane-force winds. “A Category 5, literally overnight, hits Acapulco,” says the 34-year-old climate scientist and self-described weather geek, who gets battered daily by the onslaught of catastrophic weather headlines: wildfires, megafloods, haboobs (an intense dust storm), atmospheric rivers, bomb cyclones. Everyone’s asking: Did climate change cause these disasters? And, more and more, they want Swain to answer.

Swain, PhD ’16, rolls over in bed in Boulder, Colo., and checks his cell phone for emails. Then, retainer still in his mouth, he calls back the first reporter of the day. It’s October 25, and Isabella Kwai at The New York Times wants to know whether climate change is responsible for the record-breaking speed and ferocity of Hurricane Otis, which rapidly intensified and made landfall in Acapulco as the eastern Pacific’s strongest hurricane on record. It caught everyone off guard. Swain posted on “X” (formerly known as Twitter) just hours before the storm hit: “A tropical cyclone undergoing explosive intensification unexpectedly on final approach to a major urban area . . . is up there on list of nightmare weather scenarios becoming more likely in a warming #climate.”

Swain is simultaneously 1,600 miles away from the tempest and at the eye of the storm. His ability to explain science to the masses—think the Carl Sagan of weather—has made him one of the media’s go-to climate experts. He’s a staff research scientist at UCLA’s Institute of the Environment and Sustainability who spends more than 1,100 hours each year on public-facing climate and weather communication, explaining whether (often, yes) and how climate change is raising the number and exacer­bating the viciousness of weather disasters. “I’m a physical scientist, but I not only study how the physics and thermo­dynamics of weather evolve but how they affect people,” says Swain. “I lead investigations into how extreme events like floods and droughts and wildfires are changing in a warming climate, and what we might do about it.”

He translates that science to everyday people, even as the number of weather-disaster headlines grows each year. “To be quite honest, it’s nerve-racking,” says Swain. “There’s such a demand. But there’s a climate emergency, and we need climate scientists to talk to the world about it.”

No bells, no whistles. No fancy clothes, makeup, or vitriolic speech. Sometimes he doesn’t even shave for the camera. Just a calm, matter-of-fact voice talking about science on the radio, online, on TV. In 2023, he gave nearly 300 media interviews—sometimes at midnight or in his car. The New York Times, CNN, and the BBC keep him on speed dial. Social media is Swain’s home base. His Weather West blog reaches millions. His weekly Weather West “office hours” on YouTube are public and interactive, doubling as de facto press conferences. His tweets reach 40 million people per year. “I don’t think that he appreciates fully how influential he is of the public understanding of weather events, certainly in California but increasingly around the world,” says Stanford professor of earth system science Noah Diffenbaugh, ’96, MS ’97, Swain’s doctoral adviser and mentor. “He’s such a recognizable presence in newspapers and radio and television. Daniel’s the only climate scientist I know who’s been able to do that.”

There’s no established job description for climate communicator—what Swain calls himself—and no traditional source of funding. He’s not particularly a high-energy person, nor is he naturally gregarious; in fact, he has a chronic medical condition that often saps his energy. But his work is needed, he says. “Climate change is an increasingly big part of what’s driving weather extremes today,” Swain says. “I connect the dots between the two. There’s a lot of misunderstanding about how a warming climate affects day-to-day variations in weather, but my goal is to push public perception toward what the science actually says.” So when reporters call him, he does his best to call them back.

Swain finishes the phone call with the Times reporter and schedules a Zoom interview with Reuters for noon. Then he brushes his teeth. He’s used to a barrage of requests when there’s a catastrophic weather event. Take August 2020, when, over three days, California experienced 14,000 lightning strikes from “dry” thunderstorms. More than 650 reported wildfires followed, eventually turning the skies over San Francisco a dystopian orange. “In a matter of weeks, I did more than 100 interviews with television, radio, and newspaper outlets, and walked a social media audience of millions through the disaster unfolding in their own backyards,” he wrote in a recent essay for Nature.

Swain’s desire to understand the physics of weather stretches back to his preschool years. In 1993, his family moved from San Francisco across the Golden Gate Bridge to San Rafael, and the 4-year-old found himself wondering where all that Bay City fog had gone. Two years later, Swain spent the first big storm of his life under his parents’ bed. He lay listening to screeching 100 mile-per-hour winds around his family’s home, perched on a ridge east of Mount Tamalpais. But he was more excited than scared. The huge winter storm of 1995 that blew northward from San Francisco and destroyed the historic Conservatory of Flowers just got 6-year-old Swain wired.

“To this day, it’s the strongest winds I’ve ever experienced,” he says. “It sent a wind tunnel through our house.” It broke windows. Shards of glass embedded in one of his little brother’s stuffies, which was sitting in an empty bedroom. “I remember being fascinated,” he says. So naturally, when he got a little older, he put a weather station on top of that house. And then, in high school, he launched his Weather West blog. “It was read by about 10 people,” Swain says, laughing. “I was a weather geek. It didn’t exactly make me popular.” Two decades, 550 posts, and 2 million readers later, well, who’s popular now?

Swain graduated from UC Davis with a bachelor’s degree in atmospheric science. He knew then that something big was happening on the weather front, and he wanted to understand how climate change was influencing the daily forecast. So at Stanford, he studied earth system science and set about using physics to understand the causes of changing North Pacific climate extremes. “From the beginning, Daniel had a clear sense of wanting to show how climate change was affecting the weather conditions that matter for people,” says Diffenbaugh. “A lot of that is extreme weather.” Swain focused on the causes of persistent patterns in the atmosphere—long periods of drought or exceptionally rainy winters—and how climate change might be exacerbating them.

The first extreme weather event he studied was the record-setting California drought that began in 2012. He caught the attention of both the media and the scientific community after he coined the term Ridiculously Resilient Ridge, referring to a persistent ridge of high pressure caused by unusual oceanic warmth in the western tropical Pacific Ocean. That ridge was blocking weather fronts from bringing rain into California. The term was initially tongue-in-cheek. Today the Ridiculously Resilient Ridge (aka RRR or Triple R) has a Wikipedia page.

“One day, I was sitting in my car, waiting to pick up one of my kids, reading the news on my phone,” says Diffenbaugh. “And I saw this article in The Economist about the drought. It mentioned this Ridiculously Resilient Ridge. I thought, ‘Oh, wow, that’s interesting. That’s quite a branding success.’ I click on the page and there’s a picture of Daniel Swain.”

Diffenbaugh recommended that Swain write a scientific paper about the Ridiculously Resilient Ridge, and Swain did, in 2014. By then, the phrase was all over the internet. “Journalists started calling while I was still at Stanford,” says Swain. “I gave into it initially, and the demand just kept growing from there.”

Swain’s long, lanky frame is seated ramrod straight in front of his computer screen, scrolling for the latest updates about Hurricane Otis. At noon, he signs in to Zoom and starts answering questions again.

Reuters: “Hurricane Otis wasn’t in the forecast until about six to 10 hours before it occurred. What would you say were the factors that played into its fierce intensification?”

Swain: “Tropical cyclones, or hurricanes, require a few different ingredients. I think the most unusual one was the warmth of water temperature in the Pacific Ocean off the west coast of Mexico. It’s much higher than usual. This provided a lot of extra potential intensity to this storm. We expect to see increases in intensification of storms like this in a warming climate.”

Swain’s dog, Luna, bored by the topic, snores softly. She’s asleep just behind him, next to a bookshelf filled with weather disaster titles: The Terror by Dan Simmons; The Water Will Come by Jeff Goodell; Fire Weather by John Vaillant. And the deceptively hopeful-sounding Paradise by Lizzie Johnson, which tells the story of the 2018 Camp Fire that burned the town of Paradise, Calif., to the ground. Swain was interviewed by Johnson for the book. The day of the fire, he found himself glued to the comment section of his blog, warning anyone who asked about evacuation to get out.

“During the Camp Fire, people were commenting, ‘I’m afraid. What should we do? Do we stay or do we go?’ Literally life or death,” he says. He wrote them back: “There is a huge fire coming toward you very fast. Leave now.” As they fled, they sent him progressively more horrifying images of burning homes and trees like huge, flaming matchsticks. “This makes me extremely uncomfortable—that I was their best bet for help,” says Swain.

Swain doesn’t socialize much. He doesn’t have time. His world revolves around his home life, his work, and taking care of his health. He has posted online about his chronic health condition, Ehlers-Danlos syndrome, a heritable connective tissue disease that, for him, results in fatigue, gastrointestinal problems, and injuries—he can partially dislocate a wrist mopping the kitchen floor. He works to keep his health condition under control when he has down time, traveling to specialists in Utah, taking medications and supplements, and being cautious about any physical activity. When he hikes in the Colorado Rocky Mountains, he’s careful and tries to keep his wobbly ankles from giving out. Doctors don’t have a full understanding of EDS. So, Swain researches his illness himself, much like he does climate science, constantly looking for and sifting through new data, analyzing it, and sometimes sharing what he discovers online with the public. “If it’s this difficult to parse even as a professional scientist and science communicator, I can only imagine how challenging this task is for most other folks struggling with complex/chronic illnesses,” he wrote on Twitter.

It helps if he can exert some control over his own schedule to minimize fatigue. The virtual world has helped him do that. He mostly works from a small, extra bedroom in an aging rental home perched at an elevation of 5,400 feet in Boulder, where he lives with his partner, Jilmarie Stephens, a research scientist at the University of Colorado-Boulder.

When Swain was hired at UCLA in 2018, Peter Kareiva, the then director of the Institute of the Environment and Sustainability, supported a nontraditional career path that would allow Swain to split his time between research and climate communication, with the proviso that he find grants to fund much of his work. That same year, Swain was invited to join a group at the National Center for Atmospheric Research (NCAR) located in Boulder, which has two labs located at the base of the Rocky Mountains.

“Daniel had a very clear vision about how he wanted to contribute to science and the world, using social media and his website,” says Kareiva, a research professor at UCLA. “We will not solve climate change without a movement, and communication and social media are key to that. Most science papers are never even read. What we do as scientists only matters if it has an impact on the world. We need at least 100 more Daniels.”

And yet financial support for this type of work is never assured. In a recent essay in Nature, Swain writes about what he says is a desperate need for more institutions to fund climate communication by scientists. “Having a foot firmly planted in both research and public-engagement worlds has been crucial,” he writes. “Even as I write this, it’s unclear whether there will be funding to extend my present role beyond the next six months.”

“Ready?” says the NBC reporter on the computer screen. “Can we just have you count to 10, please?”

“Yep. One, two, three, four, five, six, seven, eight, nine, 10,” Swain says.

“Walk me through in a really concise way why we saw this tropical storm, literally overnight, turn into a Category 5 hurricane, when it comes to climate change,” the reporter says.

“So, as the Earth warms, not only does the atmosphere warm or air temperatures increase, but the oceans are warming as well. And because warm tropical oceans are hurricane fuel, the maximum potential intensity of hurricanes is set by how warm the oceans are,” Swain says.

An hour later, Swain lets Luna out and prepares for the second half of his day: He’ll spend the next five hours on a paper for a science journal. It’s a review of research on weather whiplash in California—the phenomenon of rapid swings between extremes, such as the 2023 floods that came on the heels of a severe drought. Using atmospheric modeling, Swain predicted in a 2018 Nature Climate Change study that there would be a 25 percent to 100 percent increase in extreme dry-to-wet precipitation events in the years ahead. Recent weather events support that hypothesis, and Swain’s follow-up research analyzes the ways those events are seriously stressing California’s water storage and flood control infrastructure.

“What’s remarkable about this summer is that the record-shattering heat has occurred not only over land but also in the oceans,” Swain explained in an interview with Katie Couric on YouTube in August, “like the hot tub [temperature] water in certain parts of the shallow coastal regions off the Gulf of Mexico.” In a warming climate, the atmosphere acts as a kitchen sponge, he explains later. It soaks up water but also wrings it out. The more rapid the evaporation, the more intense the precipitation. When it rains, there are heavier downpours and more extreme flood events.

“It really comes down to thermo­dynamics,” he says. The increasing temperatures caused by greenhouse gases lead to more droughts, but they also cause more intense precipitation. The atmosphere is thirstier, so it takes more water from the land and from plants. The sponge holds more water vapor. That’s why California is experiencing these wild alternations, he says, from extremely dry to extremely wet. “It explains the role climate change plays in turning a tropical storm overnight into hurricane forces,” he says.

In 2023, things got “ludicrously crazy” for both Swain and the world. It was the hottest year in recorded history. Summer temperatures broke records worldwide. The NOAA reported 28 confirmed weather/climate disaster events with losses exceeding $1 billion—among them a drought, four flooding events, 19 severe storm events, two tropical cyclones, and a killer wildfire. Overall, catastrophic weather events resulted in the deaths of 492 people in the United States. “Next year may well be worse than that,” Swain says. “It’s mind-blowing when you think about that.”
===
“There have always been floods and wildfires, hurricanes and storms,” Swain continues. “It’s just that now, climate change plays a role in most weather disasters”—pumped-up storms, more intense and longer droughts and wildfire seasons, and heavier rains and flooding. It also plays a role in our ability to manage those disasters, Swain says. In a 2023 paper he published in Communications Earth & Environment, for example, he provides evidence that climate change is shifting the ideal timing of prescribed burns (which help mitigate wildfire risk) from spring and autumn to winter.

The day after Hurricane Otis strikes, Swain’s schedule has calmed down, so he takes time to make the short drive from his home up to the NCAR Mesa Lab, situated in a majestic spot where the Rocky Mountains meet the plains. Sometimes he’ll sit in his Hyundai in the parking lot, looking out his windshield at the movements of the clouds while doing media interviews on his cell phone. Today he scrolls through weather news updates on the aftermath of Hurricane Otis, keeping informed for the next interview that pops up, or his next blog post. In total, 52 people will be reported dead due to the disaster. The hurricane destroyed homes and hotels, high-rises and hospitals. Swain’s name will appear in at least a dozen stories on Hurricane Otis, including one by David Wallace-Wells, an opinion writer for The New York Times, columnist for The New York Times Magazine, and bestselling author of The Uninhabitable Earth: Life After Warming. “It’s easy to get pulled into overly dramatic ways of looking at where the world is going,” says Wallace-Wells, who routinely listens to Swain’s office hours and considers him a key source when he needs information on weather events. “Daniel helps people know how we can better calibrate those fears with the use of scientific rigor. He’s incredibly valuable.”

From the parking lot in the mountains, Swain often watches the weather that blows across the wide-open plains that stretch for hundreds of miles, all the way to the Mississippi River. He never tires of examining weather in real time, learning from it. He studies the interplay between the weather and the clouds at this spot where storms continually roll in and roll out.

“After all these years,” he says, “I’m still a weather geek.”

See the full article here.

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply” at the bottom of the post.

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

UC LA Campus

For nearly 100 years, The University of California-Los Angeles has been a pioneer, persevering through impossibility, turning the futile into the attainable.

We doubt the critics, reject the status quo and see opportunity in dissatisfaction. Our campus, faculty and students are driven by optimism. It is not naïve; it is essential. And it has fueled every accomplishment, allowing us to redefine what’s possible, time after time.

This can-do perspective has brought us Nobel Prizes, Rhodes Scholarships, NCAA titles and Olympic medals. Our faculty and alumni helped create the Internet and pioneered reverse osmosis. And more than 100 companies have been created based on technology developed at UCLA.

The University of California-Los Angeles is a public land-grant research university in Los Angeles, California. The University of California-Los Angeles traces its early origins back to 1882 as the southern branch of the California State Normal School (now San Jose State University). It became the Southern Branch of The University of California in 1919, making it the second-oldest (after University of California-Berkeley ) of the 10-campus University of California system.

The University of California-Los Angeles offers over 300 undergraduate and graduate degree programs in a wide range of disciplines, enrolling about 32,000 undergraduate and 13,000 graduate students.

The university is organized into six undergraduate colleges; seven professional schools; and four professional health science schools. The undergraduate colleges are the College of Letters and Science; Samueli School of Engineering; School of the Arts and Architecture; Herb Alpert School of Music; School of Theater, Film and Television; and School of Nursing.

The University of California-Los Angeles is called a “Public Ivy”, and is ranked among the best public universities in the United States by major college and university rankings. Nobel laureates, Fields Medalists, Turing Award winners, and Chief Scientists of the U.S. Air Force have been affiliated with The University of California-Los Angeles as faculty, researchers or alumni. Among the current faculty members, many have been elected to the National Academy of Sciences, the National Academy of Engineering , the Institute of Medicine; and the American Academy of Arts and Sciences .

The university was elected to the Association of American Universities in 1974.

The University of California-Los Angeles student-athletes compete as the Bruins in the Pac-12 Conference. The Bruins have won many national championships and NCAA team championships. The University of California-Los Angeles students, coaches, and staff have won a great many Olympic medals: gold, silver and bronze. The University of California-Los Angeles student-athletes have competed in every Olympics since 1920 with one exception (1924).

In 1914, the school moved to a new campus on Vermont Avenue (now the site of Los Angeles City College) in East Hollywood. In 1917, UC Regent Edward Augustus Dickson, the only regent representing the Southland at the time and Ernest Carroll Moore- Director of the Normal School, began to lobby the State Legislature to enable the school to become the second University of California campus, after University of California-Berkeley. They met resistance from University of California-Berkeley alumni, Northern California members of the state legislature, and Benjamin Ide Wheeler- President of the University of California from 1899 to 1919 who were all vigorously opposed to the idea of a southern campus. However, David Prescott Barrows the new President of the University of California did not share Wheeler’s objections.

On May 23, 1919, the Southern Californians’ efforts were rewarded when Governor William D. Stephens signed Assembly Bill 626 into law which acquired the land and buildings and transformed the Los Angeles Normal School into the Southern Branch of the University of California. The same legislation added its general undergraduate program- the Junior College. The Southern Branch campus opened on September 15 of that year offering two-year undergraduate programs to 250 Junior College students and 1,250 students in the Teachers College under Moore’s continued direction. Southern Californians were furious that their so-called “branch” provided only an inferior junior college program (mocked at the time by The University of Southern California students as “the twig”) and continued to fight Northern Californians (specifically, Berkeley) for the right to three and then four years of instruction culminating in bachelor’s degrees. On December 11, 1923 the Board of Regents authorized a fourth year of instruction and transformed the Junior College into the College of Letters and Science which awarded its first bachelor’s degrees on June 12, 1925.

Under University of California President William Wallace Campbell, enrollment at the Southern Branch expanded so rapidly that by the mid-1920s the institution was outgrowing the 25-acre Vermont Avenue location. The Regents searched for a new location and announced their selection of the so-called “Beverly Site”—just west of Beverly Hills—on March 21, 1925 edging out the panoramic hills of the still-empty Palos Verdes Peninsula. After the athletic teams entered the Pacific Coast conference in 1926 the Southern Branch student council adopted the nickname “Bruins”, a name offered by the student council at The University of California-Berkeley. In 1927, the Regents renamed the Southern Branch the University of California at Los Angeles (the word “at” was officially replaced by a comma in 1958 in line with other UC campuses). In the same year the state broke ground in Westwood on land sold for $1 million- less than one-third its value- by real estate developers Edwin and Harold Janss for whom the Janss Steps are named. The campus in Westwood opened to students in 1929.

The original four buildings were the College Library (now Powell Library); Royce Hall; the Physics-Biology Building (which became the Humanities Building and is now the Renee and David Kaplan Hall); and the Chemistry Building (now Haines Hall) arrayed around a quadrangular courtyard on the 400-acre (1.6 km^2) campus. The first undergraduate classes on the new campus were held in 1929 with 5,500 students. After lobbying by alumni; faculty; administration and community leaders University of California-Los Angeles was permitted to award the master’s degree in 1933 and the doctorate in 1936 against continued resistance from The University of California-Berkeley.

Maturity as a university

During its first 32 years University of California-Los Angeles was treated as an off-site department of The University of California. As such its presiding officer was called a “provost” and reported to the main campus in Berkeley. In 1951 University of California-Los Angeles was formally elevated to co-equal status with The University of California-Berkeley, and its presiding officer Raymond B. Allen was the first chief executive to be granted the title of chancellor. The appointment of Franklin David Murphy to the position of Chancellor in 1960 helped spark an era of tremendous growth of facilities and faculty honors. By the end of the decade The University of California-Los Angeles had achieved distinction in a wide range of subjects. This era also secured University of California-Los Angeles’s position as a proper university and not simply a branch of the University of California system. This change is exemplified by an incident involving Chancellor Murphy, which was described by him:

“I picked up the telephone and called in from somewhere and the phone operator said, “University of California.” And I said, “Is this Berkeley?” She said, “No.” I said, “Well who have I gotten to?” ” University of California-Los Angeles.” I said, “Why didn’t you say University of California-Los Angeles?” “Oh”, she said, “we’re instructed to say University of California.” So, the next morning I went to the office and wrote a memo; I said, “Will you please instruct the operators, as of noon today, when they answer the phone to say, ‘ University of California-Los Angeles.'” And they said, “You know they won’t like it at Berkeley.” And I said, “Well, let’s just see. There are a few things maybe we can do around here without getting their permission.”

Recent history

On June 1, 2016 two men were killed in a murder-suicide at an engineering building in the university. School officials put the campus on lockdown as Los Angeles Police Department officers including SWAT cleared the campus.

In 2018, a student-led community coalition known as “Westwood Forward” successfully led an effort to break The University of California-Los Angeles and Westwood Village away from the existing Westwood Neighborhood Council and form a new North Westwood Neighborhood Council with over 2,000 out of 3,521 stakeholders voting in favor of the split. Westwood Forward’s campaign focused on making housing more affordable and encouraging nightlife in Westwood by opposing many of the restrictions on housing developments and restaurants the Westwood Neighborhood Council had promoted.

Academics

Divisions

Undergraduate

College of Letters and Science
Social Sciences Division
Humanities Division
Physical Sciences Division
Life Sciences Division
School of the Arts and Architecture
Henry Samueli School of Engineering and Applied Science (HSSEAS)
Herb Alpert School of Music
School of Theater, Film and Television
School of Nursing
Luskin School of Public Affairs

Graduate

Graduate School of Education & Information Studies (GSEIS)
School of Law
Anderson School of Management
Luskin School of Public Affairs
David Geffen School of Medicine
School of Dentistry
Jonathan and Karin Fielding School of Public Health
Semel Institute for Neuroscience and Human Behavior
School of Nursing

Research

The University of California-Los Angeles is classified among “R1: Doctoral Universities – Very high research activity” and has well over $2 billion in research expenditures.

Rankings

National

The U.S. News & World Report Best Colleges report ranks UCLA very high among public universities. The Washington Monthly ranks UCLA very highly among national universities, with criteria based on research, community service, and social mobility. The Money Magazine Best Colleges ranks UCLA very high in the United States, based on educational quality, affordability and alumni earnings. The Daily Beast’s Best Colleges report ranks UCLA very highly in the country. The Kiplinger Best College Values ranks UCLA very high for value among American public universities.
The Wall Street Journal and The Times Higher Education rank UCLA very high among national universities. The Top American Research Universities report by the Center for Measuring University Performance ranks UCLA very high in power, resources, faculty, and education. The Princeton Review College Hopes & Worries Survey ranked UCLA as a “Dream College” among students and among parents. The National Science Foundation ranked UCLA very high among American universities for research and development expenditures. The New York Times ranks UCLA very high for economic upward-mobility among 65 “elite” colleges in the United States.

Global

The Times Higher Education World University Rankings ranks UCLA very high in the world for academics, for US Public University for academics, and high in the world for reputation. UCLA is ranked very high among the universities around the world by SCImago Institutions Rankings. UCLA is ranked very high in The QS World University Rankings in the world and very high in North America by The Academic Ranking of World Universities (ARWU). The Center for World University Rankings (CWUR) ranks the university very high in the world based on quality of education, alumni employment, quality of faculty, publications, influence, citations, broad impact, and patents. The U.S. News & World Report Best Global University Rankings report ranks UCLA very high in the world. The CWTS Leiden ranking of universities based on scientific impact ranks UCLA very high in the world. The University Ranking by Academic Performance (URAP) conducted by the Middle East Technical University ranks UCLA very high in the world based on the quantity, quality and impact of research articles and citations. The Webometrics Ranking of World Universities ranks UCLA very high in the world based on the presence, impact, openness and excellence of its research publications.

Stanford University campus.

Leland and Jane Stanford founded Stanford University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Stanford faculty, staff, and alumni have won the Nobel Prize, including some current faculty members.

Stanford University, officially Leland Stanford Junior University, is a private research university located in Stanford, California. Stanford was founded in 1885 by Leland and Jane Stanford in memory of their only child, Leland Stanford Jr., who had died of typhoid fever at age 15 the previous year. Stanford is consistently ranked as among the most prestigious and top universities in the world by major education publications. It is also one of the top fundraising institutions in the country, becoming the first school to raise more than a billion dollars in a year.

Leland Stanford was a U.S. senator and former governor of California who made his fortune as a railroad tycoon. The school admitted its first students on October 1, 1891, as a coeducational and non-denominational institution. Stanford University struggled financially after the death of Leland Stanford in 1893 and again after much of the campus was damaged by the 1906 San Francisco earthquake. Following World War II, provost Frederick Terman supported faculty and graduates’ entrepreneurialism to build self-sufficient local industry in what would later be known as Silicon Valley.

The university is organized around seven schools: three schools consisting of 40 academic departments at the undergraduate level as well as four professional schools that focus on graduate programs in law, medicine, education, and business. All schools are on the same campus. Students compete in 36 varsity sports, and the university is one of two private institutions in the Division I FBS Pac-12 Conference. It has gained many NCAA team championships, and Stanford has won the NACDA Directors’ Cup for many years. In addition, Stanford students and alumni have won many Olympic medals including many gold medals.

A number of Nobel laureates, Turing Award laureates, and Fields Medalists have been affiliated with Stanford as students, alumni, faculty, or staff. In addition, Stanford is particularly noted for its entrepreneurship and is one of the most successful universities in attracting funding for start-ups. Stanford alumni have founded numerous companies. Stanford is the alma mater of presidents of the United States, a number of living billionaires, and a number of astronauts. It is also one of the leading producers of Fulbright Scholars, Marshall Scholars, Rhodes Scholars, and members of the United States Congress.

Stanford University was founded in 1885 by Leland and Jane Stanford, dedicated to Leland Stanford Jr, their only child. The institution opened in 1891 on Stanford’s previous Palo Alto farm.

Jane and Leland Stanford modeled their university after the great eastern universities, most specifically Cornell University. Stanford opened being called the “Cornell of the West” in 1891 due to faculty being former Cornell affiliates (either professors, alumni, or both) including its first president, David Starr Jordan, and second president, John Casper Branner. Both Cornell and Stanford were among the first to have higher education be accessible, nonsectarian, and open to women as well as to men. Cornell is credited as one of the first American universities to adopt this radical departure from traditional education, and Stanford became an early adopter as well.

Despite being impacted by earthquakes in both 1906 and 1989, the campus was rebuilt each time. In 1919, The Hoover Institution on War, Revolution and Peace was started by Herbert Hoover to preserve artifacts related to World War I. The Stanford Medical Center, completed in 1959, is a teaching hospital with over 800 beds. The DOE’s SLAC National Accelerator Laboratory (originally named the Stanford Linear Accelerator Center), established in 1962, performs research in particle physics.

DOE’s SLAC National Accelerator Laboratory campus with world’s first x-ray laser- the Linac Coherent Light Source (LCLS) unveiled in 2009.

Land

Most of Stanford is on an 8,180-acre (12.8 sq mi; 33.1 km^2) campus, one of the largest in the United States. It is located on the San Francisco Peninsula, in the northwest part of the Santa Clara Valley (Silicon Valley) approximately 37 miles (60 km) southeast of San Francisco and approximately 20 miles (30 km) northwest of San Jose. In 2008, 60% of this land remained undeveloped.

Stanford’s main campus includes a census-designated place within unincorporated Santa Clara County, although some of the university land (such as the Stanford Shopping Center and the Stanford Research Park) is within the city limits of Palo Alto. The campus also includes much land in unincorporated San Mateo County (including the SLAC National Accelerator Laboratory and the Jasper Ridge Biological Preserve), as well as in the city limits of Menlo Park (Stanford Hills neighborhood), Woodside, and Portola Valley.

Non-central campus

Stanford currently operates in various locations outside of its central campus.

On the founding grant:

Jasper Ridge Biological Preserve is a 1,200-acre (490 ha) natural reserve south of the central campus owned by the university and used by wildlife biologists for research.

SLAC National Accelerator Laboratory is a facility west of the central campus operated by the university for the Department of Energy. It contains the longest linear particle accelerator in the world, 2 miles (3.2 km) on 426 acres (172 ha) of land. Golf course and a seasonal lake: The university also has its own golf course and a seasonal lake (Lake Lagunita, actually an irrigation reservoir), both home to the vulnerable California tiger salamander. As of 2012 Lake Lagunita was often dry and the university had no plans to artificially fill it.

Off the founding grant:

Hopkins Marine Station, in Pacific Grove, California, is a marine biology research center owned by the university since 1892., in Pacific Grove, California, is a marine biology research center owned by the university since 1892.
Study abroad locations: unlike typical study abroad programs, Stanford itself operates in several locations around the world; thus, each location has Stanford faculty-in-residence and staff in addition to students, creating a “mini-Stanford”.

Redwood City campus for many of the university’s administrative offices located in Redwood City, California, a few miles north of the main campus. In 2005, the university purchased a small, 35-acre (14 ha) campus in Midpoint Technology Park intended for staff offices; development was delayed by The Great Recession. In 2015 the university announced a development plan and the Redwood City campus opened in March 2019.

The Bass Center in Washington, DC provides a base, including housing, for the Stanford in Washington program for undergraduates. It includes a small art gallery open to the public.

China: Stanford Center at Peking University, housed in the Lee Jung Sen Building, is a small center for researchers and students in collaboration with Beijing University [北京大学](CN) (Kavli Institute for Astronomy and Astrophysics at Peking University (CN) (KIAA-PKU).

Administration and organization

Stanford is a private, non-profit university that is administered as a corporate trust governed by a privately appointed board of trustees with a maximum membership of 38. Trustees serve five-year terms (not more than two consecutive terms) and meet five times annually. A new trustee is chosen by the current trustees by ballot. The Stanford trustees also oversee the Stanford Research Park, the Stanford Shopping Center, the Cantor Center for Visual Arts, Stanford University Medical Center, and many associated medical facilities (including the Lucile Packard Children’s Hospital).

The board appoints a president to serve as the chief executive officer of the university, to prescribe the duties of professors and course of study, to manage financial and business affairs, and to appoint nine vice presidents. The provost is the chief academic and budget officer, to whom the deans of each of the seven schools report.

As of 2018, the university was organized into seven academic schools. The schools of Humanities and Sciences (27 departments), Engineering (nine departments), and Earth, Energy & Environmental Sciences (four departments) have both graduate and undergraduate programs while the Schools of Law, Medicine, Education and Business have graduate programs only. The powers and authority of the faculty are vested in the Academic Council, which is made up of tenure and non-tenure line faculty, research faculty, senior fellows in some policy centers and institutes, the president of the university, and some other academic administrators, but most matters are handled by the Faculty Senate, made up of 55 elected representatives of the faculty.

The Associated Students of Stanford University (ASSU) is the student government for Stanford and all registered students are members. Its elected leadership consists of the Undergraduate Senate elected by the undergraduate students, the Graduate Student Council elected by the graduate students, and the President and Vice President elected as a ticket by the entire student body.

Stanford is the beneficiary of a special clause in the California Constitution, which explicitly exempts Stanford property from taxation so long as the property is used for educational purposes.

Endowment and donations

Only Harvard University, the University of Texas System, and Yale University had larger endowments than Stanford.

In 2006, President John L. Hennessy launched a five-year campaign called the “Stanford Challenge”, which reached its $4.3 billion fundraising goal in 2009, two years ahead of time, but continued fundraising for the duration of the campaign. It concluded on December 31, 2011, having raised a total of $6.23 billion and breaking the previous campaign fundraising record of $3.88 billion held by Yale. Specifically, the campaign raised $253.7 million for undergraduate financial aid, as well as $2.33 billion for its initiative in “Seeking Solutions” to global problems, $1.61 billion for “Educating Leaders” by improving K-12 education, and $2.11 billion for “Foundation of Excellence” aimed at providing academic support for Stanford students and faculty. Funds supported a large number of new fellowships for graduate students, a number of newly endowed chairs for faculty, and some new or renovated buildings. The new funding also enabled the construction of a facility for stem cell research; a new campus for the business school; an expansion of the law school; a new Engineering Quad; a new art and art history building; an on-campus concert hall; a new art museum; and a planned expansion of the medical school, among other things. In 2012, the university raised $1.035 billion, becoming the first school to raise more than a billion dollars in a year.

Research centers and institutes

DOE’s SLAC National Accelerator Laboratory
Stanford Research Institute, a center of innovation to support economic development in the region.
Hoover Institution, a conservative American public policy institution and research institution that promotes personal and economic liberty, free enterprise, and limited government.
Hasso Plattner Institute of Design, a multidisciplinary design school in cooperation with the Hasso Plattner Institute of University of Potsdam [Universität Potsdam](DE) that integrates product design, engineering, and business management education).
Martin Luther King Jr. Research and Education Institute, which grew out of and still contains the Martin Luther King Jr. Papers Project.
John S. Knight Fellowship for Professional Journalists

Center for Ocean Solutions

Together with University of California-Berkeley and University of California-San Francisco, Stanford is part of the Biohub, a new medical science research center founded in 2016 by a $600 million commitment from Facebook CEO and founder Mark Zuckerberg and pediatrician Priscilla Chan.

Discoveries and innovation

Natural sciences

Biological synthesis of deoxyribonucleic acid (DNA) – Arthur Kornberg synthesized DNA material and won the Nobel Prize in Physiology or Medicine 1959 for his work at Stanford.
First Transgenic organism – Stanley Cohen and Herbert Boyer were the first scientists to transplant genes from one living organism to another, a fundamental discovery for genetic engineering. Thousands of products have been developed on the basis of their work, including human growth hormone and hepatitis B vaccine.
Laser – Arthur Leonard Schawlow shared the 1981 Nobel Prize in Physics with Nicolaas Bloembergen and Kai Siegbahn for his work on lasers.
Nuclear magnetic resonance – Felix Bloch developed new methods for nuclear magnetic precision measurements, which are the underlying principles of the MRI.

Computer and applied sciences

ARPANETStanford Research Institute, formerly part of Stanford but on a separate campus, was the site of one of the four original ARPANET nodes.

Internet—Stanford was the site where the original design of the Internet was undertaken. Vint Cerf led a research group to elaborate the design of the Transmission Control Protocol (TCP/IP) that he originally co-created with Robert E. Kahn (Bob Kahn) in 1973 and which formed the basis for the architecture of the Internet.

Frequency modulation synthesis – John Chowning of the Music department invented the FM music synthesis algorithm in 1967, and Stanford later licensed it to Yamaha Corporation.

Google – Google began in January 1996 as a research project by Larry Page and Sergey Brin when they were both PhD students at Stanford. They were working on the Stanford Digital Library Project (SDLP). The SDLP’s goal was “to develop the enabling technologies for a single, integrated and universal digital library” and it was funded through the National Science Foundation, among other federal agencies.

Klystron tube – invented by the brothers Russell and Sigurd Varian at Stanford. Their prototype was completed and demonstrated successfully on August 30, 1937. Upon publication in 1939, news of the klystron immediately influenced the work of U.S. and UK researchers working on radar equipment.

RISCARPA funded VLSI project of microprocessor design. Stanford and University of California- Berkeley are most associated with the popularization of this concept. The Stanford MIPS would go on to be commercialized as the successful MIPS architecture, while Berkeley RISC gave its name to the entire concept, commercialized as the SPARC. Another success from this era were IBM’s efforts that eventually led to the IBM POWER instruction set architecture, PowerPC, and Power ISA. As these projects matured, a wide variety of similar designs flourished in the late 1980s and especially the early 1990s, representing a major force in the Unix workstation market as well as embedded processors in laser printers, routers and similar products.
SUN workstation – Andy Bechtolsheim designed the SUN workstation for the Stanford University Network communications project as a personal CAD workstation, which led to Sun Microsystems.

Businesses and entrepreneurship

Stanford is one of the most successful universities in creating companies and licensing its inventions to existing companies; it is often held up as a model for technology transfer. Stanford’s Office of Technology Licensing is responsible for commercializing university research, intellectual property, and university-developed projects.

The university is described as having a strong venture culture in which students are encouraged, and often funded, to launch their own companies.

Companies founded by Stanford alumni generate more than $2.7 trillion in annual revenue, equivalent to the 10th-largest economy in the world.

Some companies closely associated with Stanford and their connections include:

Hewlett-Packard, 1939, co-founders William R. Hewlett (B.S, PhD) and David Packard (M.S).
Silicon Graphics, 1981, co-founders James H. Clark (Associate Professor) and several of his grad students.
Sun Microsystems, 1982, co-founders Vinod Khosla (M.B.A), Andy Bechtolsheim (PhD) and Scott McNealy (M.B.A).
Cisco, 1984, founders Leonard Bosack (M.S) and Sandy Lerner (M.S) who were in charge of Stanford Computer Science and Graduate School of Business computer operations groups respectively when the hardware was developed.
Yahoo!, 1994, co-founders Jerry Yang (B.S, M.S) and David Filo (M.S).
Google, 1998, co-founders Larry Page (M.S) and Sergey Brin (M.S).
LinkedIn, 2002, co-founders Reid Hoffman (B.S), Konstantin Guericke (B.S, M.S), Eric Lee (B.S), and Alan Liu (B.S).
Instagram, 2010, co-founders Kevin Systrom (B.S) and Mike Krieger (B.S).
Snapchat, 2011, co-founders Evan Spiegel and Bobby Murphy (B.S).
Coursera, 2012, co-founders Andrew Ng (Associate Professor) and Daphne Koller (Professor, PhD).

Student body

Women comprised 50.4% of undergraduates and 41.5% of graduate students. The freshman retention rate has been 99%.
The relatively low four-year graduation rate is a function of the university’s coterminal degree (or “coterm”) program, which allows students to earn a master’s degree as a 1-to-2-year extension of their undergraduate program.

As of 2010, fifteen percent of undergraduates were first-generation students.

Athletics

Stanford had 16 male varsity sports and 20 female varsity sports, 19 club sports and about 27 intramural sports. In 1930, following a unanimous vote by the Executive Committee for the Associated Students, the athletic department adopted the mascot “Indian.” The Indian symbol and name were dropped by President Richard Lyman in 1972, after objections from Native American students and a vote by the student senate. The sports teams are now officially referred to as the “Stanford Cardinal,” referring to the deep red color, not the cardinal bird. Stanford is a member of the Pac-12 Conference in most sports, the Mountain Pacific Sports Federation in several other sports, and the America East Conference in field hockey with the participation in the inter-collegiate NCAA’s Division I FBS.

Its traditional sports rival is the University of California-Berkeley, the neighbor to the north in the East Bay. The winner of the annual “Big Game” between the Cal and Cardinal football teams gains custody of the Stanford Axe.

Stanford has had at least one NCAA team champion every year since the 1976–77 school year and has earned many NCAA national team titles since its establishment, the most among universities, and Stanford has won many individual national championships, the most by any university. Stanford has won the award for the top-ranked Division 1 athletic program—the NACDA Directors’ Cup, formerly known as the Sears Cup—annually for the past twenty-four straight years. Stanford athletes have won medals in every Olympic Games since 1912, winning a large number of Olympic medals in total, many of them gold. In the 2008 Summer Olympics, and 2016 Summer Olympics, Stanford won more Olympic medals than any other university in the United States. Stanford athletes won 16 medals at the 2012 Summer Olympics (12 gold, two silver and two bronze), and 27 medals at the 2016 Summer Olympics.

Traditions

The unofficial motto of Stanford, selected by President Jordan, is Die Luft der Freiheit weht. Translated from the German language, this quotation from Ulrich von Hutten means, “The wind of freedom blows.” The motto was controversial during World War I, when anything in German was suspect; at that time the university disavowed that this motto was official.
Hail, Stanford, Hail! is the Stanford Hymn sometimes sung at ceremonies or adapted by the various University singing groups. It was written in 1892 by mechanical engineering professor Albert W. Smith and his wife, Mary Roberts Smith (in 1896 she earned the first Stanford doctorate in Economics and later became associate professor of Sociology), but was not officially adopted until after a performance on campus in March 1902 by the Mormon Tabernacle Choir.
“Uncommon Man/Uncommon Woman”: Stanford does not award honorary degrees, but in 1953 the degree of “Uncommon Man/Uncommon Woman” was created to recognize individuals who give rare and extraordinary service to the University. Technically, this degree is awarded by the Stanford Associates, a voluntary group that is part of the university’s alumni association. As Stanford’s highest honor, it is not conferred at prescribed intervals, but only when appropriate to recognize extraordinary service. Recipients include Herbert Hoover, Bill Hewlett, Dave Packard, Lucile Packard, and John Gardner.
Big Game events: The events in the week leading up to the Big Game vs. UC Berkeley, including Gaieties (a musical written, composed, produced, and performed by the students of Ram’s Head Theatrical Society).
“Viennese Ball”: a formal ball with waltzes that was initially started in the 1970s by students returning from the now-closed Stanford in Vienna overseas program. It is now open to all students.
“Full Moon on the Quad”: An annual event at Main Quad, where students gather to kiss one another starting at midnight. Typically organized by the Junior class cabinet, the festivities include live entertainment, such as music and dance performances.
“Band Run”: An annual festivity at the beginning of the school year, where the band picks up freshmen from dorms across campus while stopping to perform at each location, culminating in a finale performance at Main Quad.
“Mausoleum Party”: An annual Halloween Party at the Stanford Mausoleum, the final resting place of Leland Stanford Jr. and his parents. A 20-year tradition, the “Mausoleum Party” was on hiatus from 2002 to 2005 due to a lack of funding, but was revived in 2006. In 2008, it was hosted in Old Union rather than at the actual Mausoleum, because rain prohibited generators from being rented. In 2009, after fundraising efforts by the Junior Class Presidents and the ASSU Executive, the event was able to return to the Mausoleum despite facing budget cuts earlier in the year.
Former campus traditions include the “Big Game bonfire” on Lake Lagunita (a seasonal lake usually dry in the fall), which was formally ended in 1997 because of the presence of endangered salamanders in the lake bed.

Award laureates and scholars

Stanford’s current community of scholars includes:

Many Nobel Prize laureates
Many members of the National Academy of Sciences
Many members of National Academy of Engineering
Many members of National Academy of Medicine
A large number of members of the American Academy of Arts and Sciences
Many recipients of the National Medal of Science and the National Medal of Technology
Recipients of the National Humanities Medal
Members of American Philosophical Society
Fellows of the American Physics Society (since 1995)
A number of Pulitzer Prize winners
A large number of MacArthur Fellows
Some Wolf Foundation Prize winners
A Few ACL Lifetime Achievement Award winners
A number of AAAI fellows
Some Presidential Medal of Freedom winners

Stanford Land Acknowledgement
We recognize that Stanford sits on the ancestral land of the Muwekma Ohlone Tribe. This land was and continues to be of great importance to the Ohlone people. Consistent with our values of community and inclusion, we have a responsibility to acknowledge, honor and make visible the university’s relationship to Native peoples.

From EOS: “Climate Models Often Miss How Plants Respond to Drought”

Eos news bloc

From EOS

At

AGU

2.5.24
Rebecca Owen

New research suggests that Earth system models are underestimating the effect of low moisture levels on plants’ abilities to exchange carbon, water, and energy with the atmosphere.

1
Stomata (seen here magnified 100 times) allow plants to take in carbon dioxide and release water vapor. New research finds that climate models may be underestimating how stomatal response to drought affects climate. Credit: MarekMiś, CC BY 4.0

Plants both absorb carbon dioxide and release water vapor through their stomata, or pores on their leaves. In drought conditions, plants close these pores to conserve water, and this reduces their carbon dioxide uptake as well.

Earth system models are computer-based simulations used to gather information about the complex interactions between Earth’s atmosphere, land, oceans, ice, and living organisms. They can be a valuable tool for predicting the effects of climate change.

But new research by Green et al. reports that current models may be yielding inaccurate climate projections by underestimating how moisture availability affects stomatal conductance, or the way plants exchange carbon, water, and energy with the atmosphere.

The researchers used a combination of surface and near-surface air temperature information from satellites, as well as observation-based reanalysis data, to estimate global canopy conductance, or the sum of all stomatal conductance of leaves in a canopy. They then used this information to evaluate Earth system model performance.

Their findings suggested that Earth system models are underestimating the canopy conductance’s response to changes in moisture availability by about 33% and up to 50% in some cases. This is especially true in semiarid and subhumid regions such as savannas, croplands, and grasslands, where temperatures range from 5°C to 25°C.

This underestimation occurs because the models are not adequately reducing canopy conductance as the soil moisture levels change. Because canopy conductance plays an important role in atmospheric carbon, energy, and water movement, misrepresenting it can cause significant errors in climate projections during droughts.

Science paper:
AGU Advances

See the full article here .

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply” at the bottom of the post.

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

“Eos” is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.