Tagged: Earth Observation Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:00 pm on July 25, 2017 Permalink | Reply
    Tags: , Allows for more fishing, , Australia is fringed by some of the richest marine ecosystems in the world, Australian government to roll back marine protections, Australian marine reserves reduced by government, Earth Observation   

    From AAAS: “Australian government to roll back marine protections 

    AAAS

    AAAS

    Jul. 24, 2017
    April Reese

    Draft plan leaves scientists seething.

    1
    Fishing camps in western Australia’s Houtman Abrolhos Islands. Controversial new marine reserve plan seeks to balance habitat protection with sustainable fishing. Bill Bachman/Alamy Stock Photo.

    Five years after the Australian government created one of the world’s largest networks of marine reserves, it has unveiled a heavily revised management blueprint that would curtail conservation. Some scientists are assailing the plan as deeply flawed. “I suppose you could say it’s an insult to the science community. It’s not evidence-based,” says David Booth, a marine ecologist at the University of Technology in Sydney, Australia.

    Australia is fringed by some of the richest marine ecosystems in the world. Recognizing the need to protect those resources, in 2012, after years of input from scientists and the public, the Australian government strung together a necklace of marine reserves encircling the continent. But following elections a few months later, the new conservative government commissioned an independent review to gather more public input. The draft plan, released on Friday, retains the 2012 plan’s boundaries but scales back protections in some areas to allow for more fishing.

    The proposal, which will undergo a 60-day public review period before heading to Parliament, which is expected to approve the plan, covers 44 marine reserves encompassing 36% of Australia’s exclusive economic zone—the wide ring of ocean from about 5 kilometers offshore to 370 kilometers out. In maps showing which activities will be allowed where in the reserves, large swaths of no-take “green” zones designated in 2012—areas in which no fishing or mining would be allowed—have been converted to “habitat protection zones,” where sea floor–ravaging activities such as trawling are barred but other types of fishing are permitted. Under the new plan, only 20% of the reserves would be green zones and more permissive “yellow” habitat protection zones would increase from 24% to 43%.

    2
    G. Grullón/Science

    Many marine scientists are dismayed. “They’ve nearly halved the level of protection,” says marine ecologist Jessica Meeuwig, director of the University of Western Australia’s Centre for Marine Futures in Perth. “It’s very demoralizing to the scientists who’ve done so much hard work,” Booth adds. “You would not believe the amount of work that’s been put into establishing these places. Then suddenly it all comes off the table.”

    The massive Coral Sea marine reserve, which buffets the Great Barrier Reef along Australia’s northeast coast, faces the biggest conservation rollback under the plan. About 76% of its sprawling 98-million-hectare expanse would be open to fishing, up from 46%. That would aid the tuna industry, according to the environment department. “They’ve saved the tuna fishery $4 million a year,” Meeuwig says. “So in order to save .03% of fishing revenue, we’ve scuppered what could be the single most important marine protected area in the Pacific.”

    See the full article here .

    The American Association for the Advancement of Science is an international non-profit organization dedicated to advancing science for the benefit of all people.

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

     
  • richardmitnick 2:13 pm on July 24, 2017 Permalink | Reply
    Tags: , “Our geological record from a cave illustrates that we still cannot predict when the next earthquake will happen.”, Earth Observation, , Looking for tsunami records in a sea cave,   

    From Rutgers: “Sea Cave Preserves 5,000-Year Snapshot of Tsunamis” 

    Rutgers University
    Rutgers University

    July 19, 2017
    Ken Branson

    Record tells us we don’t know much about predicting earthquakes that cause tsunamis.

    An international team of scientists digging in a sea cave in Indonesia has discovered the world’s most pristine record of tsunamis, a 5,000-year-old sedimentary snapshot that reveals for the first time how little is known about when earthquakes trigger massive waves.

    “The devastating 2004 Indian Ocean tsunami caught millions of coastal residents and the scientific community off-guard,” says co-author Benjamin Horton, a professor in the Department of Marine and Coastal Sciences at Rutgers University-New Brunswick.“Our geological record from a cave illustrates that we still cannot predict when the next earthquake will happen.”

    “Tsunamis are not evenly spaced through time,” says Charles Rubin, the study’s lead author and a professor at the Earth Observatory of Singapore, part of Nanyang Technological University. “Our geological record from a cave illustrates that we still cannot predict when the next earthquake will happen.” There can be long periods between tsunamis, but you can also get major tsunamis that are separated by just a few decades.”

    The discovery, reported in the current issue of Nature Communications, logs a number of firsts: the first record of ancient tsunami activity found in a sea cave; the first record for such a long time period in the Indian Ocean; and the most pristine record of tsunamis anywhere in the world.

    1
    The stratigraphy of the sea cave in Sumatra excavated by scientists from the Earth Observatory of Singapore, Rutgers and other institutions. The lighter bands are sand deposited by tsunamis over a period of 5,000 years; the darker bands are organic material. Photo: Earth Observatory of Singapore.

    The discovery was made in a sea cave on the west coast of Sumatra in Indonesia, just south of the city of Banda Aceh, which was devastated by the tsunami of December 2004. The stratigraphic record reveals successive layers of sand, bat droppings and other debris laid down by tsunamis between 7,900 and 2,900 years ago. The stratigraphy since 2,900 years ago was washed away by the 2004 tsunami.

    The L-shaped cave had a rim of rocks at the entrance that trapped successive layers of sand inside. The researchers dug six trenches and analyzed the alternating layers of sand and debris using radio carbon dating. The researchers define “pristine” as stratigraphic layers that are distinct and easy to read. “You have a layer of sand and a layer of organic material that includes bat droppings, so simply it is a layer of sand and a layer of bat crap, and so on, going back for 5,000 years,” Horton says.

    The record indicates that 11 tsunamis were generated during that period by earthquakes along the Sunda Megathrust, the 3,300-mile-long fault running from Myanmar to Sumatra in the Indian Ocean. The researchers found there were two tsunami-free millennia during the 5,000 years, and one century in which four tsunamis struck the coast. In general, the scientists report, smaller tsunamis occur relatively close together, followed by long dormant periods, followed by great quakes and tsunamis, such as the one that struck in 2004.

    2
    Using flourescent lights, Kerry Sieh and Charles Rubin of the Earth Observatory of Singapore look for charcoal and shells for radiocarbon dating. Photo: Earth Observatory of Singapore.

    Rubin, Horton and their colleagues were studying the seismic history of the Sunda Megathrust, which was responsible for the 2004 earthquake that triggered the disastrous tsunami. They were looking for places to take core samples that would give them a good stratigraphy. This involves looking for what Horton calls “depositional places” – coastal plains, coastal lake bottoms, any place to plunge a hollow metal cylinder six or seven meters down and produce a readable sample. But for various reasons, there was no site along the southwest coast of Sumatra that would do the job. But Patrick Daly, an archaeologist at EOS who had been working on a dig in the coastal cave, told Rubin and Horton about it and suggested it might be the place they were looking for.

    Looking for tsunami records in a sea cave was not something that would have occurred to Horton, and he says Daly’s professional generosity – archaeologists are careful about who gets near their digs – and his own and Rubin’s openness to insights from other disciplines made the research possible. Horton says this paper may be the most important in his career for another reason.

    “A lot of (the research) I’ve done is incremental,” he says. “I have a hypothesis, and I do deductive science to test the hypothesis. But this is really original, and original stuff doesn’t happen all that often.”

    See the full article here .

    Follow Rutgers Research here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    rutgers-campus

    Rutgers, The State University of New Jersey, is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

    Rutgers smaller
    Please give us back our original beautiful seal which the University stole away from us.
    As a ’67 graduate of University college, second in my class, I am proud to be a member of

    Alpha Sigma Lamda, National Honor Society of non-tradional students.

     
  • richardmitnick 11:33 am on July 24, 2017 Permalink | Reply
    Tags: , , , Earth Observation,   

    From CSIRO: “Extreme El Niño events to stay despite stabilisation” 

    CSIRO bloc

    Commonwealth Scientific and Industrial Research Organisation

    25 Jul 2017
    Chris Gerbing
    Communication Manager, Oceans And Atmosphere
    Phone +61 3 9545 2312
    Chris.Gerbing@csiro.au

    The frequency of extreme El Niño events is projected to increase for a further century after global mean temperature is stabilised at 1.5°C above pre-industrial levels.

    1
    Yale.

    Research published today in Nature Climate Change by an international team shows that if warming was halted to the aspirational 1.5°C target from the Paris Agreement, the frequency of extreme El Niño events could continue to increase, due to a continuation of faster warming in the eastern equatorial Pacific.

    CSIRO researcher and lead author Dr Guojian Wang said the growing risk of extreme El Niño events did not stabilise in a stabilised climate.

    “Currently the risk of extreme El Niño events is around five events per 100 years,” Dr Wang said.

    “This doubles to approximately 10 events per 100 years by 2050, when our modelled emissions scenario (RCP 2.6) reaches a peak of 1.5°C warming.

    “After this, as faster warming in the eastern equatorial Pacific persists, the risk of extreme El Niño continues upwards to about 14 events per 100 years by 2150.

    “This result is unexpected and shows that future generations will experience greater climate risks associated with extreme El Niño events than seen at 1.5°C warming.”

    The research was based on five climate models that provided future scenarios past the year 2100.

    The models were run using the Intergovernmental Panel on Climate Change’s lowest emissions scenario (RCP2.6), which requires negative emissions late in the century.

    Director of the Centre for Southern Hemisphere Oceans Research and report co-author, Dr Wenju Cai, said that this research continues important work on the impacts of climate change on the El Niño-Southern Oscillation which is a significant driver of global climate.

    “The most severe previous extreme El Niño events occurred in 1982/83, 1997/98 and 2015/16, years associated with worldwide climate extremes,” Dr Cai said.

    “Extreme El Niño events occur when the usual El Niño Pacific rainfall centre is pushed eastward toward South America, sometimes up to 16,000 kilometres, causing massive changes in the climate. The further east the centre moves, the more extreme the El Niño.

    “This pulls rainfall away from Australia bringing conditions that have commonly resulted in intense droughts across the nation. During such events, other countries like India, Ecuador, and China have experienced extreme events with serious socio-economic consequences.”

    Dr Cai added that while previous research suggested that extreme La Niña events would double under a 4.5°C warming scenario, results here indicated that under a scenario of climate stabilisation (i.e. 1.5°C warming) there was little or no change to these La Niña events.

    The research was conducted by researchers at the Hobart based Centre for Southern Hemisphere Oceans Research, an international collaboration between CSIRO, Qingdao National Laboratory for Marine Science and Technology, the University of New South Wales, and the University of Tasmania.

    The National Environmental Science Programme’s Earth System and Climate Change Hub co-funded this research.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    CSIRO campus

    CSIRO, the Commonwealth Scientific and Industrial Research Organisation, is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

     
  • richardmitnick 2:32 pm on July 14, 2017 Permalink | Reply
    Tags: , Earth Observation, , , ,   

    From temblor: “M=4.2 earthquake in Oklahoma widely felt throughout Midwest” 

    1

    temblor

    July 14, 2017
    David Jacobson

    1
    Shaking from today’s M=4.2 earthquake was widely felt in Oklahoma’s capital of Oklahoma City.

    At 8:47 a.m. local time this morning, a M=4.2 earthquake struck central Oklahoma in between the cities of Oklahoma City, Tulsa, and Stillwater. This was followed by five aftershocks, the largest of which was a M=3.8. At 10 a.m. local time, there have been over 1,500 felt reports from the mainshock on the USGS website, from all over the state of Oklahoma, and even in Wichita, Kansas, over 200 km away. So far, there are no reports of damage, which is unlikely given this quake’s moderate magnitude. Additionally, the USGS PAGER system estimates that economic losses should remain extremely minimal, and any fatalities are very unlikely.

    2
    This Temblor map shows the location of today’s M=4.2 earthquake in Oklahoma. This quake was widely felt throughout the state, and was also felt in 4 other surrounding states based on USGS felt reports.

    According to the USGS, today’s earthquake occurred at a depth of 9.3 km, and was right-lateral strike-slip in nature. This depth is relatively deep for Oklahoma, but still within the range frequently seen. Based on the fault map shown in the Temblor map above, and the strike-slip component of today’s earthquake, it occurred on an unmapped fault in the region. However, the orientation of the structure on which the quake struck is consistent with the regional compression direction outlined in Walsh and Zoback, 2016. Also labeled in the Temblor map is the large northeast-southwest-trending Wilzetta Fault. Based on this fault’s strike (northeast-southwest) and the regional compression, it is not at the preferred orientation to undergo a large rupture. This is good as given its length, it is capable of producing a large magnitude earthquake. Instead, faults with orientations similar to the fault on which today’s quake occurred have a higher likelihood of rupturing.

    While when most people think of earthquakes in Oklahoma, they think of induced quakes, based on Walsh and Zoback, 2016, there are no high output disposal wells in the area around today’s earthquake. While it is possible that in the last two years more wells have been put in, this is unlikely since following the 2016 M=5.8 Pawnee earthquake, disposal has been limited around the state. Therefore, today’s quake may have been more natural than many that occur in the state.

    Because Temblor does not factor in induced seismicity into the Hazard Rank, we must examine a Petersen et al., 2017 study in which both natural and induced seismicity is factored into the likelihood of damage. The map below shows the chance of damage from an earthquake in 2017 for the entire country. What may be eye-opening is that Oklahoma City has a higher likelihood of experiencing earthquake damage this year than both San Francisco and Los Angeles.

    3
    The 2017 seismic hazard forecast map reveals that Oklahoma City actually has a higher threat of experiencing a damaging earthquake than San Francisco and Los Angeles. (Figure from Petersen et. al., 2017)

    References
    USGS

    F. Rall Walsh, III, and Mark D. Zoback, Probabilistic assessment of potential fault slip related to injection-induced earthquakes: Application to north-central Oklahoma, USA, 2016, Geology, doi:10.1130/G38275.1

    Mark D. Petersen, Charles S. Mueller, Morgan P. Moschetti, Susan M. Hoover, Allison M. Shumway, Daniel E. McNamara, Robert A. Williams, Andrea L. Llenos, William L. Ellsworth, Andrew J. Michael, Justin L. Rubinstein, Arthur F. McGarr, and Kenneth S. Rukstales, 2017 One-Year Seismic-Hazard Forecast for the Central and Eastern United States from Induced and Natural Earthquakes, Seismological Research Letters, March 2017; 88 (2A), DOI: 10.1785/0220170005

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    You can help many citizen scientists in detecting earthquakes and getting the data to emergency services people in affected area.
    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    BOINCLarge

    BOINC WallPaper

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    Earthquake country is beautiful and enticing

    Almost everything we love about areas like the San Francisco bay area, the California Southland, Salt Lake City against the Wasatch range, Seattle on Puget Sound, and Portland, is brought to us by the faults. The faults have sculpted the ridges and valleys, and down-dropped the bays, and lifted the mountains which draw us to these western U.S. cities. So, we enjoy the fruits of the faults every day. That means we must learn to live with their occasional spoils: large but infrequent earthquakes. Becoming quake resilient is a small price to pay for living in such a great part of the world, and it is achievable at modest cost.

    A personal solution to a global problem

    Half of the world’s population lives near active faults, but most of us are unaware of this. You can learn if you are at risk and protect your home, land, and family.

    Temblor enables everyone in the continental United States, and many parts of the world, to learn their seismic, landslide, tsunami, and flood hazard. We help you determine the best way to reduce the risk to your home with proactive solutions.

    Earthquake maps, soil liquefaction, landslide zones, cost of earthquake damage

    In our iPhone and Android and web app, Temblor estimates the likelihood of seismic shaking and home damage. We show how the damage and its costs can be decreased by buying or renting a seismically safe home or retrofitting an older home.

    Please share Temblor with your friends and family to help them, and everyone, live well in earthquake country.

    Temblor is free and ad-free, and is a 2017 recipient of a highly competitive Small Business Innovation Research (‘SBIR’) grant from the U.S. National Science Foundation.

    ShakeAlert: Earthquake Early Warning

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications by 2018.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds, depending on the distance to the epicenter of the earthquake. For very large events like those expected on the San Andreas fault zone or the Cascadia subduction zone the warning time could be much longer because the affected area is much larger. ShakeAlert can give enough time to slow and stop trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications by 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” test users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California. This “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities
    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

     
  • richardmitnick 2:08 pm on July 14, 2017 Permalink | Reply
    Tags: , Earth Observation, , , ,   

    From temblor: “M=6.4 earthquake strikes off the coast of Papua New Guinea” 

    1

    temblor

    July 13, 2017
    David Jacobson

    1
    Today’s M=6.4 earthquake in Papua New Guinea struck near the island of New Ireland, in the eastern part of the country. (Photo from: Simon’s Jam Jar)

    At 3:36 a.m. local time, a M=6.4 earthquake struck Papua New Guinea just off the island of New Ireland. The eastern part of the country is sparsely populated meaning people were only exposed to light and lesser degrees of shaking. Because of this damage and fatalities are unlikely, and so far no reports of them have come in. Another reason why strong shaking was not felt is because the earthquake occurred offshore and at a depth of 47 km, according to the USGS (The European-Mediterranean Seismological Centre assigned it a depth of 40 km). Based on the USGS focal mechanism, this earthquake was thrust in nature. While compressional earthquakes are common in this region, given the proximity to the New Britain Trench, the strike of today’s earthquake makes it hard to reconcile.

    2
    This Temblor map shows the location of today’s earthquake in Papua New Guinea. While this earthquake was compressional in nature, based on the quake’s strike, it was likely not associated with subduction at the New Britain Trench.

    In the region around today’s earthquake, much of the seismicity is dominated by the subduction of the Australian Plate. North of the New Britain Trench, the Pacific Plate has been broken up into numerous microplates, all of which are being pushed in various directions. In the USGS map below, relative plate motions are shown, illustrating the complex dynamics of the region. Because of these plate motions, strike-slip and extensional earthquakes are also common. Nonetheless, large subduction zone earthquakes, including a M=7.9 in December 2016 are the events which cause the most damage and fatalities.

    3
    This map from the USGS shows historical seismicity and relative plate motions in the region around today’s M=6.4 earthquake (yellow star). What this map illustrates is that rapid deformation and high rates of seismicity is due to relative motion exceeding 100 mm/yr. In this map, one can see that the majority of quakes are associated with subduction at the New Britain Trench. (Map from USGS)

    Based on the Global Earthquake Activity Rate (GEAR) model, which is available in Temblor, today’s earthquake should not be considered surprising. This model uses global strain rates and seismicity since 1977 to forecast the likely earthquake magnitude in your lifetime anywhere on earth. From this model, which is in the figure below, one can see that a M=7.75+ earthquake is likely in your lifetime in this area. Such a large magnitude is likely because the area is undergoing rapid deformation due to plate motions of upwards of 100 mm/yr. Should there be any large aftershocks (so far there is only one M=4.8 in our catalog) we will update this post.

    4
    This Temblor map shows the Global Earthquake Activity Rate (GEAR) model for the region around Papua New Guinea. This model uses global strain rates and seismicity since 1977 to forecast the likely earthquake magnitude in your lifetime anywhere on earth. From this model, one can see that today’s M=6.4 earthquake should not be considered surprising as a M=7.75+ quake is possible.

    References [No links provided.]
    USGS
    European-Mediterranean Seismological Centre

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    You can help many citizen scientists in detecting earthquakes and getting the data to emergency services people in affected area.
    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    BOINCLarge

    BOINC WallPaper

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    Earthquake country is beautiful and enticing

    Almost everything we love about areas like the San Francisco bay area, the California Southland, Salt Lake City against the Wasatch range, Seattle on Puget Sound, and Portland, is brought to us by the faults. The faults have sculpted the ridges and valleys, and down-dropped the bays, and lifted the mountains which draw us to these western U.S. cities. So, we enjoy the fruits of the faults every day. That means we must learn to live with their occasional spoils: large but infrequent earthquakes. Becoming quake resilient is a small price to pay for living in such a great part of the world, and it is achievable at modest cost.

    A personal solution to a global problem

    Half of the world’s population lives near active faults, but most of us are unaware of this. You can learn if you are at risk and protect your home, land, and family.

    Temblor enables everyone in the continental United States, and many parts of the world, to learn their seismic, landslide, tsunami, and flood hazard. We help you determine the best way to reduce the risk to your home with proactive solutions.

    Earthquake maps, soil liquefaction, landslide zones, cost of earthquake damage

    In our iPhone and Android and web app, Temblor estimates the likelihood of seismic shaking and home damage. We show how the damage and its costs can be decreased by buying or renting a seismically safe home or retrofitting an older home.

    Please share Temblor with your friends and family to help them, and everyone, live well in earthquake country.

    Temblor is free and ad-free, and is a 2017 recipient of a highly competitive Small Business Innovation Research (‘SBIR’) grant from the U.S. National Science Foundation.

    ShakeAlert: Earthquake Early Warning

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications by 2018.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds, depending on the distance to the epicenter of the earthquake. For very large events like those expected on the San Andreas fault zone or the Cascadia subduction zone the warning time could be much longer because the affected area is much larger. ShakeAlert can give enough time to slow and stop trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications by 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” test users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California. This “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities
    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

     
  • richardmitnick 3:32 pm on July 13, 2017 Permalink | Reply
    Tags: , , Climate Change Damages U.S. Economy and Increases Inequality, Earth Observation,   

    From Rutgers: “Study: Climate Change Damages U.S. Economy, Increases Inequality” 

    Rutgers University
    Rutgers University

    June 29, 2017
    Todd B. Bates
    tbates@ucm.rutgers.edu
    848-932-0550.

    1
    A farmer in the Midwest struggles with drought conditions that could worsen periodically with climate change. Photo: Climate.gov and U.S. Climate Resilience Toolkit

    Severe costs ahead especially in South and lower Midwest, pioneering analysis projects.

    Unmitigated climate change will make the United States poorer and more unequal, according to a new study published today in the journal Science. The poorest third of counties could sustain economic damages costing as much as 20 percent of their income if warming proceeds unabated.

    States in the South and lower Midwest, which tend to be poor and hot already, will lose the most, with economic opportunity traveling northward and westward. Colder and richer counties along the northern border and in the Rockies could benefit the most as health, agriculture and energy costs are projected to improve.

    Overall, the study – led by Solomon Hsiang of the University of California, Berkeley, Robert Kopp of Rutgers University–New Brunswick, Amir Jina of the University of Chicago, and James Rising, also of UC Berkeley – projects losses, economic restructuring and widening inequality.

    “Unmitigated climate change will be very expensive for huge regions of the United States,” said Hsiang, Chancellor’s Associate Professor of Public Policy at UC Berkeley. “If we continue on the current path, our analysis indicates it may result in the largest transfer of wealth from the poor to the rich in the country’s history.”

    The pioneering study may settle the debate over whether climate change will help or hurt the U.S. economy, being the first to use state-of-the-art statistical methods and 116 climate projections developed by scientists around the world to price the impacts of climate change the way the insurance industry or an investor would, comparing risks and rewards. The team of economists and climate scientists computed the real-world costs and benefits: how agriculture, crime, health, energy demand, labor and coastal communities will be affected by higher temperatures, changing rainfall, rising seas and intensifying hurricanes.

    “In the absence of major efforts to reduce emissions and strengthen resilience, the Gulf Coast will take a massive hit,” said Kopp, a professor in Rutgers’ Department of Earth and Planetary Sciences and director of the Institute of Earth, Ocean, and Atmospheric Sciences. “Its exposure to sea-level rise – made worse by potentially stronger hurricanes – poses a major risk to its communities. Increasingly extreme heat will drive up violent crime, slow down workers, amp up air conditioning costs and threaten people’s lives.”

    3
    County-level annual damages in the median scenario for the climate from 2080 to 2099 under a business-as-usual emissions trajectory. Negative damages indicate economic benefits. Photo: Hsiang, Kopp, Jina, Rising, et al (2017).

    If emissions growth is not slowed, then the resulting 6 to 10 degrees Fahrenheit (3 to 5 degrees Celsius) of warming above 19th century levels projected for the last two decades of this century will have costs on par with the Great Recession – except they will not go away afterwards and damages for poor regions will be many times larger.

    “The ‘hidden costs’ of carbon dioxide emissions are no longer hidden, since now we can see them clearly in the data,” said Jina, a postdoctoral scholar in the Department of Economics at the University of Chicago. “The emissions coming out of our cars and power plants are reshaping the American economy. Here in the Midwest, we may see agricultural losses similar to the Dustbowl of the 1930s.”

    The study is the first of its kind to price warming using data and evidence accumulated by the research community over decades. From this data, the team estimates that for each 1 degree Fahrenheit (0.55 degrees Celsius) increase in global temperatures, the U.S. economy loses about 0.7 percent of Gross Domestic Product, with each degree of warming costing more than the last. This metric can help the country manage climate change as it does other systematic economic risks – for example, the way the Federal Reserve uses interest rates to manage the risk of recession.

    “We could not have done this study without the ongoing revolution in big data and computing,” said Rising, a Ciriacy-Wantrup Postdoctoral Fellow at UC Berkeley, describing the 29,000 simulations of the national economy run for the project. “For the first time in history, we can use these tools to peer ahead into the future. We are making decisions today about the kinds of lives we and our children want to lead. Had the computing revolution come 20 years later, we wouldn’t be able to see the economic hole we’re digging for ourselves.”

    Hsiang, Kopp, Jina, Rising and several of their coauthors are members of the Climate Impact Lab, a consortium that is building upon the study’s trailblazing approach to compute climate risks around the world.

    Co-authors of the study also include Michael Delgado, Shashank Mohan, Kate Larsen and Trevor Houser of the economic analysis firm Rhodium Group; Michael Oppenheimer and D.J. Rasmussen of Princeton University; and Robert Muir-Wood and Paul Wilson of the risk modeling and data analytics company RMS.

    See the full article here .

    Follow Rutgers Research here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    rutgers-campus

    Rutgers, The State University of New Jersey, is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

    Rutgers smaller
    Please give us back our original beautiful seal which the University stole away from us.
    As a ’67 graduate of University college, second in my class, I am proud to be a member of

    Alpha Sigma Lamda, National Honor Society of non-tradional students.

     
  • richardmitnick 11:01 am on July 13, 2017 Permalink | Reply
    Tags: , , , Earth Observation, The calving of a massive iceberg in Antarctica is not a sign of climate doom but it may weaken the remainder of the Larsen C ice shelf, What the trillion-tonne Larsen C iceberg means   

    From COSMOS: “What the trillion-tonne Larsen C iceberg means” 

    Cosmos Magazine bloc

    COSMOS

    13 July 2017
    Adrian Luckman

    The calving of a massive iceberg in Antarctica is not a sign of climate doom, but it may weaken the remainder of the Larsen C ice shelf.

    One of the largest icebergs ever recorded has just broken away from the Larsen C Ice Shelf in Antarctica. Over the past few years I’ve led a team that has been studying this ice shelf and monitoring change. We spent many weeks camped on the ice investigating melt ponds and their impact – and struggling to avoid sunburn thanks to the thin ozone layer. Our main approach, however, is to use satellites to keep an eye on things.

    ESA/Sentinal 1


    The SENTINEL-1 mission comprises a constellation of two polar-orbiting satellites, operating day and night performing C-band synthetic aperture radar imaging, enabling them to acquire imagery regardless of the weather.

    We’ve been surprised by the level of interest in what may simply be a rare but natural occurrence. Because, despite the media and public fascination, the Larsen C rift and iceberg “calving” is not a warning of imminent sea level rise, and any link to climate change is far from straightforward. This event is, however, a spectacular episode in the recent history of Antarctica’s ice shelves, involving forces beyond the human scale, in a place where few of us have been, and one which will fundamentally change the geography of this region.

    1
    The iceberg would barely fit inside Wales. Adrian Luckman / MIDAS, Author provided

    Ice shelves are found where glaciers meet the ocean and the climate is cold enough to sustain the ice as it goes afloat. Located mostly around Antarctica, these floating platforms of ice a few hundred meters thick form natural barriers which slow the flow of glaciers into the ocean and thereby regulate sea level rise. In a warming world, ice shelves are of particular scientific interest because they are susceptible both to atmospheric warming from above and ocean warming from below.

    2
    The ice shelves of the Antarctic peninsula. Note Larsen A and B have largely disappeared. AJ Cook & DG Vaughan, 2014, CC BY-SA

    Back in the 1890s, a Norwegian explorer named Carl Anton Larsen sailed south down the Antarctic Peninsula, a 1,000km long branch of the continent that points towards South America. Along the east coast he discovered the huge ice shelf which took his name.

    For the following century, the shelf, or what we now know to be a set of distinct shelves – Larsen A, B, C and D – remained fairly stable. However the sudden disintegrations [Science] of Larsen A and B in 1995 and 2002 respectively, and the ongoing speed-up [Geophysical Research Letters] of glaciers which fed them, focused scientific interest on their much larger neighbour, Larsen C, the fourth biggest ice shelf in Antarctica.

    This is why colleagues and I set out in 2014 to study the role of surface melt [Cambridge Core] on the stability of this ice shelf. Not long into the project, the discovery by our colleague, Daniela Jansen, of [The Cryosphere]a rift growing rapidly through Larsen C, immediately gave us something equally significant to investigate.

    Nature at work

    The development of rifts and the calving of icebergs is part of the natural cycle of an ice shelf. What makes this iceberg unusual is its size – at around 5,800 km² it’s the size of a small US state. There is also the concern that what remains of Larsen C will be susceptible to the same fate as Larsen B, and collapse almost entirely.

    3
    Larsen B once extended hundreds of kilometres over the ocean. Today, one of its glaciers runs straight into the sea. Armin Rose / shutterstock

    Our work has highlighted significant similarities [Nature Communications] between the previous behaviour of Larsen B and current developments at Larsen C, and we have shown that stability may be compromised. Others, however, are confident that Larsen C will remain stable [Nature Climate Change].

    What is not disputed by scientists is that it will take many years to know what will happen to the remainder of Larsen C as it begins to adapt to its new shape, and as the iceberg gradually drifts away and breaks up [The Conversation]. There will certainly be no imminent collapse, and unquestionably no direct effect on sea level because the iceberg is already afloat and displacing its own weight in seawater.

    This means that, despite much speculation [On The Verge], we would have to look years into the future for ice from Larsen C to contribute significantly to sea level rise. In 1995 Larsen B underwenta similar calving event [Nature Communications]. However, it took a further seven years of gradual erosion of the ice-front before the ice shelf became unstable enough to collapse, and glaciers held back by it were able to speed up [Geophysical Research Letters], and even then the collapse process may have depended on the presence of surface melt ponds [Geophysical Research Letters].

    Even if the remaining part of Larsen C were to eventually collapse, many years into the future, the potential sea level rise is quite modest [Journal of Geophysical Research]. Taking into account only the catchments of glaciers flowing into Larsen C, the total, even after decades, will probably be less than a centimetre.

    Is this a climate change signal?

    This event has also been widely but over-simplistically linked to climate change [The Guardian]. This is not surprising because notable changes in the earth’s glaciers and ice sheets are normally associated with rising environmental temperatures. The collapses of Larsen A and B have previously been linked to regional warming [Letters to Nature], and the iceberg calving will leave Larsen C at its most retreated position in records going back over a hundred years.

    However, in satellite images from the 1980s, the rift was already clearly a long-established feature, and there is no direct evidence to link its recent growth to either atmospheric warming, which is not felt deep enough within the ice shelf, or ocean warming, which is an unlikely source of change given that most of Larsen C has recently been thickening [Science]. It is probably too early to blame this event directly on human-generated climate change.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 11:41 am on June 20, 2017 Permalink | Reply
    Tags: Amazon River Basin, Amazonia's Future Will Be Jeopardized by Dams, , DEVI - Dam Environmental Vulnerability Index, Earth Observation, The 428 current and proposed dams will have environmental impact throughout the entire system, The Amazon is the most important river basin on the planet   

    From U Arizona: “Amazonia’s Future Will Be Jeopardized by Dams” 

    U Arizona bloc

    University of Arizona

    June 14, 2017
    Mari N. Jensen

    1
    The Amazon River and its watershed — the largest river system on Earth — cover 2.4 million square miles. No image credit.

    Building the hundreds of hydroelectric dams proposed for the Amazon River Basin will cause massive environmental damage all the way from the eastern slopes of the Andes to the Atlantic Ocean, according to new findings by an international team of researchers that includes a University of Arizona hydrologist.

    The Amazon River and its watershed — the largest river system on Earth — cover 6.1 million square kilometers (2.4 million square miles) and include nine countries.

    “The Amazon is the most important river basin on the planet. It’s a microcosm of our issues of today involving environment, energy and health of the planet,” said co-author Victor R. Baker, University of Arizona Regents’ Professor of Hydrology and Atmospheric Sciences.

    The 428 current and proposed dams will have environmental impact throughout the entire system, the team reports in the June 15 issue of the journal Nature. About one-third of the 428 dams are built or are under construction.

    While these hydroelectric dams have been justified for providing renewable energy and avoiding carbon emissions, little attention has been paid to the major disturbances dams present to the Amazon floodplains, rainforests, the northeast coast of South America and the regional climate, the researchers write.

    Generally, only the local environmental impact of a dam is considered, not the regional or systemwide effect.

    “The river and its individual pieces cannot be separated out. That an individual dam assessment can be separated from the rest of the system isn’t scientifically valid,” said Baker, who is also a UA professor of planetary sciences and of geosciences.

    The research team conducted a large-scale assessment of how the current and future dams will affect the entire Amazon Basin. The researchers developed a Dam Environmental Vulnerability Index to quantify their assessment. The DEVI ranges from one to 100, with 100 being the most vulnerable.

    The DEVI incorporates overall changes to the river systems from dams, including the potential land use changes, erosion, runoff, changes in sediment deposition, the effects on the region’s rich biodiversity and impact to the regional food supply.

    The researchers found the watershed of the Madeira River, the largest Amazon tributary, will sustain the greatest negative impact from the current and future dams. The team assigned that region a DEVI above 80.

    Lead author Edgardo Latrubesse, a geography and the environment professor at the University of Texas, Austin, said, “The impacts can be not only regional, but also on an interhemispheric scale. If all the planned dams in the basin are constructed, their cumulative effect will trigger a change in sediment flowing into the Atlantic Ocean that may hinder the regional climate.”

    The paper by Latrubesse, Baker and their 14 colleagues is titled, Damming the Rivers of the Amazon Basin. The National Science Foundation, NASA, the National Geographic Society, LLILAS-Mellon, the Brazilian Council for Scientific and Technological Development-CNPq and CAPES Foundation funded the research.

    Rivers in the Amazon Basin move like a dance, exchanging sediments across continental distances to deliver nutrients to a mosaic of wetlands, Latrubesse said.

    Sediment transported by rivers provides nutrients that sustain wildlife, contribute to the regional food supplies and modulate river dynamics that result in high habitat and biotic diversity for both aquatic and nonaquatic organisms.

    Many current and proposed dams are located far upstream in the Andean region. Research indicates that the Andes provide more than 90 percent of the sediment to the entire Amazon Basin. Dams trap the nutrient-rich sediment and prevent it from moving downstream.

    The Madeira River is home to the most diverse fish population in the Amazon. Since the huge Santo Antônio and Jiaru dams were constructed on the Madeira, the river’s average sediment concentration decreased by 20 percent. Researchers expect the 25 dams planned for further upstream will trap additional nutrient-rich sediment behind them.

    The largest preserved mangrove region of South America is along the coastline of northeast Brazil and the three Guianas and needs sediment from the Amazon, Latrubesse said.

    Baker added that the cumulative impact from the dams affects rainfall and storm patterns from the Amazon Basin to the Gulf of Mexico. In addition to changes in sediment flow, the impact includes the storage of water behind the dams, the water flows and the timing of flows to the mouth of the river.

    The study’s authors conclude: “Citizens of the Amazon Basin countries will ultimately have to decide whether hydropower generation is worth the price of causing profound damage to the most diverse and productive river system in the world. If those decisions are made within the context of a comprehensive understanding of the fluvial system as a whole, the many benefits the rivers provide to humans and the environment could be retained.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U Arizona campus

    The University of Arizona (UA) is a place without limits-where teaching, research, service and innovation merge to improve lives in Arizona and beyond. We aren’t afraid to ask big questions, and find even better answers.

    In 1885, establishing Arizona’s first university in the middle of the Sonoran Desert was a bold move. But our founders were fearless, and we have never lost that spirit. To this day, we’re revolutionizing the fields of space sciences, optics, biosciences, medicine, arts and humanities, business, technology transfer and many others. Since it was founded, the UA has grown to cover more than 380 acres in central Tucson, a rich breeding ground for discovery.

    Where else in the world can you find an astronomical observatory mirror lab under a football stadium? An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why the UA is a university unlike any other.

     
  • richardmitnick 3:45 pm on June 19, 2017 Permalink | Reply
    Tags: , Earth Observation, The end Triassic mass extinction which set the scene for the rise and age of the dinosaurs new Oxford University research has found, The Triassic extinction took place approximately 200 million years ago and was proceeded by the dinosaur era, , Volcanoes and the dinosaurs   

    From Oxford: “Volcanic eruptions triggered dawn of the dinosaurs” 

    U Oxford bloc

    Oxford University

    19 Jun 2017

    1
    No image caption or credit.

    2
    Image of fossilized dinosaur eggs found in India, currently displayed at Indroda Fossil Park, Gandhinagar, Gujarat INDIA. Image credit: Wikimedia Commons

    Huge pulses of volcanic activity are likely to have played a key role in triggering the end Triassic mass extinction, which set the scene for the rise and age of the dinosaurs, new Oxford University research has found.

    Researchers from the Oxford University Department of Earth Science worked in collaboration with the Universities of Exeter and Southampton to trace the global impact of major volcanic gas emissions and their link to the end of the Triassic period. The findings link volcanism to the previously observed repeated large emissions of carbon dioxide that had a profound impact on the global climate, causing the mass extinction at the end of the Triassic Period, as well as slowing the recovery of animal life afterwards.

    The Triassic extinction took place approximately 200 million years ago, and was proceeded by the dinosaur era [This is confusing. Was it the beginning or the end?] One of the largest mass extinctions of animal life on record, the casualty list includes large crocodile-like reptiles and several marine invertebrates. The event also caused huge changes in land vegetation, and while it remains a mystery why the dinosaurs survived this event, they went on to fill the vacancies left by the now extinct wildlife species, alongside early mammals and amphibians. This mass extinction has long been linked to a large and abrupt release of carbon dioxide into the atmosphere, but the exact source of this emission has been unknown.

    ________________________________________________________________________

    “This research strengthens the link between the Triassic mass extinction and volcanic emissions of CO2. Showing episodic volcanic CO2 emissions as the likely driver of the extinction, enhances our understanding of this event, and potentially of other climate change episodes in Earth’s history.”

    Lawrence Percival, Lead author and Geochemistry Graduate student at Oxford University

    ________________________________________________________________________

    Following the discovery of volcanic rocks of the same age as the extinction, volcanic carbon dioxide (CO2) emissions had previously been suggested as an important contributor to this extinction event. Previous studies have also shown that this volcanism might have occurred in pulses, but the global extent and potential impact of these volcanic episodes has remained unknown. These volcanic rocks covered a huge area, across four continents, representing the Central Atlantic Magmatic Province (CAMP).

    By investigating the mercury content of sedimentary rocks deposited during the extinction, the study findings revealed clear links in the timing of CAMP volcanism and the end-Triassic extinction. Volcanoes give off mercury gas emissions, which spread globally through the atmosphere, before being deposited in sediments. Any sediments left during a large volcanic event would therefore be expected to have unusually high mercury content.

    The team sourced six sediment deposits were sourced from the UK, Austria, Argentina, Greenland, Canada and Morocco, and their mercury levels analysed. Five of the six records showed a large increase in mercury content beginning at the end-Triassic extinction horizon, with other peaks observed between the extinction horizon and the Triassic–Jurassic boundary, which occurred approximately 200 thousand years later.

    Elevated mercury emissions also coincided with previously established increases in atmospheric CO2 concentrations, indicating CO2 release from volcanic degassing.

    Lawrence Percival, Lead author and Geochemistry Graduate student at Oxford University, said: ‘These results strongly support repeated episodes of volcanic activity at the end of the Triassic, with the onset of volcanism during the end-Triassic extinction.

    ‘This research greatly strengthens the link between the Triassic mass extinction and volcanic emissions of CO2. This, further evidence of episodic emissions of volcanic CO2 as the likely driver of the extinction, enhances our understanding of this event, and potentially of other climate change episodes in Earth’s history.’

    More information: Lawrence M. E. Percival el al., “Mercury evidence for pulsed volcanism during the end-Triassic mass extinction,” PNAS (2017). http://www.pnas.org/cgi/doi/10.1073/pnas.1705378114

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U Oxford campus

    Oxford is a collegiate university, consisting of the central University and colleges. The central University is composed of academic departments and research centres, administrative departments, libraries and museums. The 38 colleges are self-governing and financially independent institutions, which are related to the central University in a federal system. There are also six permanent private halls, which were founded by different Christian denominations and which still retain their Christian character.

    The different roles of the colleges and the University have evolved over time.

     
  • richardmitnick 4:54 pm on June 16, 2017 Permalink | Reply
    Tags: Earth Observation, , , M=6.3 earthquake in the Aegean Sea near the Greece-Turkey border causes injuries and damage,   

    From temblor: “M=6.3 earthquake in the Aegean Sea near the Greece-Turkey border causes injuries and damage” 

    1

    temblor

    1
    Vatera, in southern Lesbos experienced strong shaking from today’s M=6.3 earthquake. Numerous reports of damage have come in from this tourist hotspot in the eastern Aegean Sea. (Photo from: villapouloudia.gr)

    At 3:28 p.m. local time, a M=6.3 earthquake struck just south of the Greek Island of Lesbos (Lesvos), near the international border with Turkey. So far, there have been 33 aftershocks in close proximity to the mainshock, with the largest being a M=4.9. According to the USGS, severe shaking was felt close to the epicenter, and there are numerous reports of damage on Lesbos, a popular tourist hotspot (see video below). Based on the USGS PAGER system, fatalities are unlikely, while economic losses are estimated to be between $10-100 million.

    2
    This Temblor map shows the location of today’s M=6.3 earthquake south of Greek island of Lesbos. The faults on Lesbos’ southern coastline have been added to this map as they are the closest mapped active faults to today’s epicenter. Having said that, today’s quake, which was extensional in nature, likely occurred on a different structure.

    The Greek island of Lesbos, is home to approximately 87,000 people, making it the most populated in the Eastern Aegean. The tectonic activity in the area is associated with the broader evolution of the Aegean Sea. Along Lesbos’ southern coastline, and extending offshore are several active faults with components of both left-lateral strike-slip and extensional motion. The main faults, which have been added to the Temblor map above are the Polichnitos-Plomari and Aghios Isidoros-Cape Magiras faults. The Polichnitos-Plomari Fault is primarily extensional, though it also has a strike-slip component. Activity along it is related to theremal activity from the nearby Polichnitos geothermal field. The Aghios Isidoros-Cape Magiras Fault on the other hand is primarily extensional with a small amount of strike-slip motion. While these faults are close to the epicenter of today’s quake, based on the strike of the event, which was almost purely extensional it likely occurred on an additional, unmapped structure within the Aegean Sea.

    Due to the quake’s moderate magnitude, and shallow (9 km) depth, shaking was widely felt across the region, including in Athens, the Turkish Cities of Izmir and Istanbul, and Sofia, the capital of Bulgaria. Based on the USGS Shakemap and felt reports from the European-Mediterranean Seismological Centre, over 50 million people were exposed to some degree of shaking. However, damage appears to be isolated to the island of Lesbos, where building facades have come down, and 10 people have been injured.

    The video below shows damage sustained on Lesbos in today’s M=6.3 earthquake

    In addition to the M=6.3 mainshock, and the 33 aftershocks in close proximity, there also may have been two remote, dynamically-triggered aftershocks, up to 75 km away. One of these, a M=3.3 10 minutes after the mainshock was less than 15 km from Izmir. While it is possible that these quakes are incorrectly located, it is possible that they are remote aftershocks.

    Based on the Global Earthquake Activity Rate (GEAR) model, which is available in Temblor, today’s M=6.3 earthquake should not be considered surprising. This model, which uses global strain rates and seismicity since 1977 forecasts what the likely earthquake magnitude is in your lifetime anywhere on earth. From the Temblor map below, one can see that in the location of today’s quake, a M=6.5+ is possible. Therefore, while this earthquake was damaging and caused injuries, a larger quake in the region could happen, resulting in more extreme damage.

    3
    This Temblor map shows the Global Earthquake Activity Rate (GEAR) model for much of the area around the Aegean Sea. From this map, one can see that in the area around today’s M=6.3 earthquake, a M=6.5+ quake is possible. This map also shows a possible remote aftershock and the cities of Athens, Izmir, Istanbul, and Sofia, where shaking from today’s quake was felt.

    References
    European-Mediterranean Seismological Centre (EMSC)
    Chatzipetros, A., Kiratzi, A., Sboras, S., Zouros, N., Pavlides, S., Active Faulting in the nore-eastern Aegean Sea Islands, Tectonophysics 597-598 (2013) 106-122
    USGS

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    You can help many citizen scientists in detecting earthquakes and getting the data to emergency services people in affected area.
    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    BOINCLarge

    BOINC WallPaper

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: