Tagged: Cornell Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:46 am on March 1, 2017 Permalink | Reply
    Tags: , , , Cornell, , , Volcanic hydrogen spurs chances of finding exoplanet life   

    From Cornell: “Volcanic hydrogen spurs chances of finding exoplanet life” 

    Cornell Bloc

    Cornell University

    February 27, 2017
    Blaine Freidlander

    1
    (Photo : Wikimedia Commons/E. Klett, U.S. Fish and Wildlife Service)

    2

    Hunting for habitable exoplanets now may be easier: Cornell astronomers report that hydrogen pouring from volcanic sources on planets throughout the universe could improve the chances of locating life in the cosmos.

    Planets located great distances from stars freeze over. “On frozen planets, any potential life would be buried under layers of ice, which would make it really hard to spot with telescopes,” said lead author Ramses Ramirez, research associate at Cornell’s Carl Sagan Institute. “But if the surface is warm enough – thanks to volcanic hydrogen and atmospheric warming – you could have life on the surface, generating a slew of detectable signatures.”

    Combining the greenhouse warming effect from hydrogen, water and carbon dioxide on planets sprinkled throughout the cosmos, distant stars could expand their habitable zones by 30 to 60 percent, according to this new research. “Where we thought you would only find icy wastelands, planets can be nice and warm – as long as volcanoes are in view,” said Lisa Kaltenegger, Cornell professor of astronomy and director of the Carl Sagan Institute.

    3
    Ramses Ramirez, research associate at Cornell’s Carl Sagan Institute, left, and Lisa Kaltenegger, professor of astronomy and director of the Sagan Institute.

    Their research, “A Volcanic Hydrogen Habitable Zone,” is published today in The Astrophysical Journal Letters.

    The idea that hydrogen can warm a planet is not new, but an Earth-like planet cannot hold onto its hydrogen for more than a few million years. Volcanoes change the concept.

    “You get a nice big warming effect from volcanic hydrogen, which is sustainable as long as the volcanoes are intense enough,” said Ramirez, who suggested the possibility that these planets may sustain detectable life on their surface.

    A very light gas, hydrogen also “puffs up” planetary atmospheres, which will likely help scientists detect signs of life. “Adding hydrogen to the air of an exoplanet is a good thing if you’re an astronomer trying to observe potential life from a telescope or a space mission. It increases your signal, making it easier to spot the makeup of the atmosphere as compared to planets without hydrogen,” said Ramirez.

    In our solar system, the habitable zone extends to 1.67 times the Earth-sun distance, just beyond the orbit of Mars. With volcanically sourced hydrogen on planets, this could extend the solar system’s habitable zone reach to 2.4 times the Earth-sun distance – about where the asteroid belt is located between Mars and Jupiter. This research places a lot of planets that scientists previously thought to be too cold to support detectable life back into play.

    “We just increased the width of the habitable zone by about half, adding a lot more planets to our ‘search here’ target list,” said Ramirez.

    3
    Stellar temperature versus distance from the star compared to Earth for the classic habitable zone (shaded blue) and the volcanic habitable zone extension (shaded red). Credit: Ramses Ramirez

    Atmospheric biosignatures, such as methane in combination with ozone – indicating life – will likely be detected by the forthcoming, next-generation James Webb Space Telescope, launching in 2018, or the approaching European Extremely Large Telescope, first light in 2024.

    NASA reported Feb. 22 finding seven Earth-like planets around the star Trappist-1. “Finding multiple planets in the habitable zone of their host star is a great discovery because it means that there can be even more potentially habitable planets per star than we thought,” said Kaltenegger. “Finding more rocky planets in the habitable zone – per star – increases our odds of finding life.”

    With this latest research, Ramirez and Kaltenegger have possibly added to that number by showing that habitats can be found, even those once thought too cold, as long as volcanoes spew enough hydrogen. Such a volcanic hydrogen habitable zone might just make the Trappist-1 system contain four habitable zone planets, instead of three. “Although uncertainties with the orbit of the outermost Trappist-1 planet ‘h’ means that we’ll have to wait and see on that one,” said Kaltenegger.

    The Simons Foundation and the Cornell Center for Astrophysics and Planetary Science funded this research.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

     
  • richardmitnick 3:14 pm on January 23, 2017 Permalink | Reply
    Tags: , Cornell, , FRET, Histone proteins, Nucleosomes   

    From Cornell: “Slo-mo unwrapping of nucleosomal DNA probes protein’s role” 

    Cornell Bloc

    Cornell University

    Jan. 11, 2017
    Tom Fleischman

    1
    Using X-rays to visualize DNA (dark gray) and fluorescence to monitor the histone proteins (yellow and cyan), Cornell researchers led by professor and director of applied and engineering physics Lois Pollack found that the release of histone proteins is guided by unwrapping DNA. Joshua Tokuda/Provided

    Nucleosomes are tightly packed bunches of DNA and protein which, when linked together as chromatin, form each of the 46 chromosomes found in human cells.

    The organization of DNA in nucleosomes is important not just for DNA packaging; it also forms the basis for the regulation of gene expression. By controlling the access to DNA, nucleosomes help facilitate all kinds of gene activity, from RNA transcription to DNA replication and repair.

    A research group led by Lois Pollack, professor of applied and engineering physics, used a combination of X-ray and fluorescence-based approaches to study how the shapes and compositions of nucleosomes change after being destabilized.

    The group’s paper, Asymmetric unwrapping of nucleosomal DNA propagates asymmetric opening and dissociation of the histone core, is published online in Proceedings of the National Academy of Sciences. Co-lead authors are postdoctoral researcher Yujie Chen and doctoral student Joshua Tokuda.

    Using FRET, small-angle X-ray scattering and other methods, the group was able to get a clear picture of the DNA activity during unwrapping of the histone core. It was found that different DNA shapes were produced during the unwrapping process, most notably a “teardrop” shape that seemed to promote protein activity.

    The histone core goes from eight protein molecules to six when the DNA unwraps into the teardrop shape. “It’s as if having the DNA in this shape is a signal to the protein: ‘Hey, now’s the time. You want to change it up? Go ahead,’” Pollack said.

    This finding suggests that the molecular transition is guided by this specific type of unwrapping. It’s a step toward better understanding of DNA access during transcription, replication and repair.

    “The reason why these structures are so important, in addition to packaging, is that it also gives cells the opportunity to control which genes are on and off,” Tokuda said.

    Tokuda adds that misregulation of chromatin remodeling is also implicated in many human diseases, from neuro-development and degenerative disorders to immunodeficiency syndromes and cancer.

    “We hope that by developing these tools to investigate the fundamental mechanism of remodeler proteins,” he said, “we may be able to provide insight that will aid in the development of new therapeutic strategies for these diseases.”

    This work was supported by grants from the National Institutes of Health.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

     
  • richardmitnick 2:46 pm on January 14, 2017 Permalink | Reply
    Tags: , , Cornell, , Julia Thom-Levy, , , Thom-Levy research group,   

    From Cornell: Women in STEM – “In Search of New Physics Phenomena” Julia Thom-Levy 

    Cornell Bloc

    Cornell University

    1.13.17
    Alexandra Chang

    1
    Julia Thom-Levy
    Associate Professor
    Physics, College of Arts and Sciences
    Expertise
    Experimental high energy physics; experimental particle physics; Large Hadron Collider, solid state detectors for particle physics

    More than 3,800 miles away and across the Atlantic Ocean from Cornell’s Physical Sciences Building is Geneva, Switzerland, the home of the European Organization for Nuclear Research (CERN) laboratory and the highest-energy particle accelerator on earth.

    CERN/LHC Map
    CERN LHC Grand Tunnel
    CERN LHC particles
    LHC at CERN

    Cornell at CERN

    Despite the distance, Cornell researchers are actively involved in the cutting-edge particle physics experiments taking place at CERN. Julia Thom-Levy, Physics, is one such professor. Thom-Levy has worked on the Compact Muon Solenoid (CMS) experiment at CERN’s Large Hadron Collider (LHC) since 2005.

    CERN/CMS Detector
    CERN/CMS Detector

    Specifically, Thom-Levy is on a collaborative team of Cornell researchers who are responsible for developing software for the CMS detector, designing upgrades to the detector, and analyzing data collected by the CMS—all in search of new physics phenomena.

    CMS is one of the two LHC detectors that led to the discovery of the Higgs boson (an elementary particle in the Standard Model of particle physics) in 2012 during the most recent LHC run. Since then, the LHC has been undergoing repairs. A second run took place during June 2015, with the LHC running at twice the energy, a major improvement that could lead to further discoveries.

    “We are in an interesting situation here: a mathematical model—The Standard Model—explains all particle observations very well,” says Thom-Levy, who played a role in confirming the Standard Model to better precision over the past 15 years.

    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.
    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    “It’s a very precise model. We know, however, that it doesn’t hold water, because we cannot explain certain important things like dark matter, or how exactly the Higgs boson ends up with the mass that we measure. There is a strange tension: on the one hand, we know what these particles do; we can predict it, but we don’t know why.”

    Supersymmetry

    Thom-Levy says that the second run of the LHC could reveal new particles, or inconsistencies in the data—“smoking guns” that will point scientists in the right direction. For example, they could find particles that might be consistent with supersymmetry, a proposed extension of the Standard Model, which could explain such mysteries as dark matter.

    Dark matter in our universe has been elusive so far to detection—it does not emit or absorb light. Thom-Levy says that the LHC might, however, be able to produce dark matter, and that it is possible to observe it through its distinctive signature in the detector, which is the signature of nothing. One possibility is that dark matter consists of the lightest supersymmetric particles, and discovering it in the next run would be a huge boon to the researchers.

    That said, Thom-Levy is cautious in her predictions. “I’m being very hypothetical,” she says. “The big glaring signature for supersymmetry did not appear in the first run. That was one of the surprises. It’s such a beautiful theory and we joke that it would be a shame if nature didn’t work that way. It’s something we will continue to look for.”

    The Big Data Element

    The Cornell CMS group—James Alexander, Richie Patterson, Anders Ryd, Peter Wittich, and Thom-Levy along with their students and postdocs—play a critical role in developing software to record and interpret the incredible amounts of data collected by the CMS.

    2
    Members of the Thom-Levy research group

    When the detector is running, it records terabytes of data every day, and that data needs to be stored and distributed to various research institutions across the world for analysis. Researchers write programs to filter through trillions of proton interactions to get to the ones that are really interesting—ones that produce a Higgs or a top quark, for example.

    “The most interesting interactions are often the most rare; they are the highest energy, highest masses, and very unlikely to be produced,” says Thom-Levy. “A lot of our field is like needle-in-the-haystack research.” Because of this, Thom-Levy says her students are exposed to “big-data,” and they learn how to handle and analyze huge volumes of data.

    Students also spend time at CERN and learn how to make the detector work. Many of the group’s students are currently in Geneva, writing software for and testing electronics on the CMS detector.

    Next-Generation Detectors

    Thom-Levy is also developing better detectors, using the latest cutting-edge materials and technologies. One challenge is that the particle’s high energies result in extremely high radiation levels, which damage the detector. As energy levels and particle density increase, the detectors need to become better at withstanding radiation, while still providing high precision measurements.

    To address that and other problems, Thom-Levy is involved in a collaborative project testing the use of three-dimensional integrated circuitry for silicon detectors. She says that it could make detectors much thinner, use less power, and make them potentially stronger against radiation. So far, her group has simulated detectors and prototyped components at the Cornell NanoScale Science and Technology Facility (CNF). The next steps would be to work with more industry and university partners to hopefully build the next generation of detectors to be used at CERN’s CMS.

    Pursuing the Universe’s Mysteries

    Thom-Levy describes her journey to CERN as a sort of odyssey following the most interesting particle physics to various places. She started at Germany’s national accelerator lab, moved on to Stanford’s Linear Accelerator Center, off to Fermilab in Illinois, until finally landing at CERN. “With each move, the energy went up,” she says with a laugh.

    When asked why she was drawn to particle physics in the first place, she gives credit to the local accelerator in her hometown. “I always knew I wanted to do sub-nuclear physics,” she says. “How does the nucleus work? What does it consist of? Can you break its constituents down, down, down? What’s the most fundamental unit in the universe?”

    These are questions that are both scientific and philosophical to Thom-Levy. “We want to get to the very essence. It’s nothing we can touch, but the shadows of the mysterious workings of tiny particles may tell us about the most fundamental truth of the world.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

     
  • richardmitnick 1:24 pm on December 14, 2016 Permalink | Reply
    Tags: , , CHESS, CLASSE, CLEO, Cornell, , , ,   

    From Cornell: “With CLEO detector gone, CHESS facility looks back, ahead” 

    Cornell Bloc

    Cornell University

    Dec. 13, 2016
    Tom Fleischman
    tjf85@cornell.edu

    1
    The 26-ton solenoidal superconducting magnet is carefully taken out of its chamber inside the CLEO detector during removal of the detector earlier this year at Wilson Synchrotron Laboratory. Rick Ryan, CLASSE/Provided

    Three months ago, without a whole lot of fanfare, an era in particle physics at Cornell came to an end.

    On Sept. 6, the 26-ton solenoidal superconducting magnet was carefully removed from the Wilson Synchrotron Laboratory. This was the last vestige of the CLEO detector, which for nearly 30 years recorded data produced from the collision of positively and negatively charged electrons that hurtled around the 840-yard subterranean collider, CESR (Cornell Electron-positron Storage Ring).

    2
    3
    Cornell Electron-positron Storage Ring

    The magnet has been sent to the Thomas Jefferson National Accelerator Facility in Newport News, Virginia, where in several years it will begin providing a magnetic field for a new experiment there. CLEO’s removal heralds a new direction for the Cornell High-Energy Synchrotron Source (CHESS), which soon will undergo a $15 million upgrade to enhance the quality of its X-ray beams.

    4
    5
    http://www.chess.cornell.edu/

    With the removal of CLEO, the path is clear for the CHESS upgrade, after which the accelerator will operate with a single beam of positrons optimized for X-ray production instead of counter-rotating electron and positron beams. This will enable all CHESS beam lines to be aligned to a single beam orbit, enhancing the X-ray beam quality for research in physics, chemistry, biology, and environmental and materials sciences.

    CLEO underwent numerous upgrades and produced a mountain of data from its completion in 1979 to its final run on March 3, 2008. The first CLEO paper listed 73 authors from eight institutions; the most authors on a paper produced there was 226.

    “That was an incredibly productive time,” said James Alexander, physics professor and former director of the Laboratory of Elementary-Particle Physics. “We published more than 500 papers – in fact, in the few years after 2008, there were still papers coming out.” The total reached 530 peer-reviewed publications.

    6
    The calorimeter, used to measure the heat produced in a chemical reaction, is taken out of the CLEO detector during removal of the detector earlier this year at Wilson Lab. Rick Ryan, CLASSE/Provided

    “In those days, we were way ahead of everybody,” said Alexander, who’s been at Cornell since 1988. “We published more papers than any other high-energy physics experiment. … everybody wanted to hear what CLEO’s latest results were.”

    CLEO carried out a broad physics program of studying the production and decay of various matter particles (bottom and charm quarks, as well as tau leptons) and searching for new phenomena beyond the Standard Model of particle physics. It was cutting-edge stuff at Wilson Lab, a facility that had gotten used to breaking new ground over the course of a half-century.

    Cornell’s involvement in nuclear physics began in 1934, when members of the physics faculty convinced M. Stanley Livingston to leave the world’s first cyclotron, which he helped build at Stanford University, to come to Ithaca and build the second.

    The CLEO era began in 1979 and over the years included 42 institutions and more than 400 physicists from around the world. CLEO’s heyday was in the 1990s, due in large part to CESR’s status as the highest-luminosity collider in the world following a couple of major upgrades in the 1980s.

    Also contributing was U.S. Congress’ decision to defund a large accelerator program in Texas [Superconducting Super Collider. Our brilliant Congress ceded HEP to CERN in Europe, which Steven Weinberg (U Texas) has never gotten completely over].

    Superconducting Super Sollider map, in the vicinity of Waxahachie, Texas.
    Superconducting Super Sollider map, in the vicinity of Waxahachie, Texas

    “When that was killed off, there were a lot of high-energy physics groups across the country that had the rug pulled out from under them, and many of them joined CLEO,” Alexander said.

    CLEO underwent five upgrades over the years, but by 2003, with new detectors springing up at Stanford and in Japan to do the same work as CLEO, “we saw the writing on the wall,” he said.

    “We all sat back here thinking, ‘They don’t know how hard it is; it’ll take them far longer than they think; we’re going to remain king of the hill for a long time to come,’” he said. “It didn’t happen – when they both turned on, it was like a rocket.”

    CLEO shifted its focus to lower-energy study of a different variety of quark, but in 2008 funding dried up, and CLEO – as well the Stanford program, called BaBar – shut off for good.

    The process of removing the CLEO detector started in the spring, and was a difficult and delicate operation involving contributors from several departments.

    “It’s been very nostalgic to see CLEO removed,” said senior physicist Brian Heltsley, who’s been at Cornell for more than 30 years. “And it’s been really impressive, with all the rigging needed to get these 30-ton hunks of metal out of the lab. I think it was an opportunity for our staff to shine; a place like this doesn’t run without electronics experts, riggers, all sorts of technicians at every level, and administrators.”

    Heltsley said that intellectual standards over the years have been “unyieldingly high” at Wilson Lab.

    “Over those years, habits become ingrained,” he said. “And that high standard of performance, of testing, of leaving nothing to chance … that permeates not only the academics but filters down all the way to every aspect of the lab. Supervisors, technicians, everyone: They will not accept a mediocre job.”

    The pending upgrade will, among other things, configure CESR for single-beam X-ray operations and optimize the experiment stations for specific measurements. “This new project,” Heltsley said, “will continue that high standard of intellectual and technical sophistication.”

    CHESS annually hosts more than 1,200 scientists and scientists-in-training. It is supported by the Division of Materials Research and the Directorates of Biology and Engineering of the National Science Foundation.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

     
  • richardmitnick 2:04 pm on December 13, 2016 Permalink | Reply
    Tags: , , Cornell, , Ubiquitination   

    From Cornell: “Human Diseases and Ubiquitination” 

    Cornell Bloc

    Cornell University

    12.7.16
    Caitlin Hayes

    1

    2
    Cornell researcher
    Yuxin Mao
    Molecular Biology and Genetics, College of Agriculture and Life Sciences/College of Arts and Sciences

    Ubiquitin is an essential amino acid protein that modifies other proteins in eukaryotes. These modifications, or ubiquitination, play an essential role in a broad number of cellular processes, including transcription, DNA repair, signal transduction, autophagy, cell cycle, immune response, and membrane trafficking. It follows that aberration in the mechanisms of ubiquitination can lead to a number of human diseases—specifically, neurodegenerative diseases and cancers.

    Yuxin Mao, Molecular Biology and Genetics, has discovered one way that bacteria target and manipulate these essential processes and is working to uncover the precise molecular mechanisms.

    Remarkably, although ubiquitin is absent in prokaryotes, bacteria can deliver certain ligases—bacterial pathogen-encoded E3 ubiquitin Ligases (BELs)—into eukaryotic host cells to manipulate the host ubiquitin system for successful infection. Mao’s lab recently discovered a novel family of BELs, named SidC, from the intracellular bacterial pathogen Legionella pneumophila. Ligases in the SidC family have a very unique sequence and structure, which raises intriguing questions: Given this structure, what is the molecular mechanism of this family of ligases? What are the specific substrates of SidC? And how does the ubiquitination of these potential host factors play a role in membrane trafficking regulation?

    Mao’s lab is working to answer these questions. The results will make significant contributions to the understanding of both the molecular mechanisms of the enzymatic cascade of ubiquitination and the role of the host ubiquitin pathway in bacterial pathogenesis. These studies will therefore forge new trails in understanding human pathogens and will help combat bacterial infectious diseases. NIH Award Number: 1R01GM116964-01A1

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

     
  • richardmitnick 1:06 pm on December 5, 2016 Permalink | Reply
    Tags: , Cornell, Gene Therapies for Fatal Diseases, , Ronald G. Crystal   

    From Cornell: “Gene Therapies for Fatal Diseases” 

    Cornell Bloc

    Cornell University

    12.5.16
    Caitlin Hayes

    Ronald Crystal is known for developing a treatment for a common, often-fatal hereditary disorder that causes emphysema and liver disease.

    1
    Ronald Crystal. No image credit.

    In the 1980s, Ronald G. Crystal, Chairman, Department of Genetic Medicine, Weill Cornell Medicine, developed a treatment for one of the most common hereditary disorders in Caucasians: Alpha-1 Antitrypsin (A1AT) Deficiency. The inability to produce normal levels of the A1AT protein makes patients susceptible to emphysema and liver disease and is often fatal. Crystal and his team were able to purify the deficient protein from normal blood samples and deliver it back to patients with the disorder. More than 6,000 people around the world are using this treatment today, but Crystal says there’s a catch.

    “Proteins have a very short half-life,” he says. “For A1AT, they last about one week, so you have to administer the therapy with intravenous infusions every week.”

    n 1989 with prompting from a former postdoctoral student and collaborator, Crystal saw an opportunity to develop a one-time treatment for A1AT deficiency. By using a virus to deliver the gene that produces the protein, researchers could in theory give a patient the lifelong machinery to make their own A1AT. “It was this eureka moment of realizing that if we had the right virus, we might be able to take a hereditary disorder and use the virus one time to cure the disease,” says Crystal. “That’s what got me started on gene therapy.”

    Gene Therapies, Licensed and Ready for Clinical Trials

    Almost 30 years and many contributions later, Crystal may finally have the gene therapy for A1AT deficiency that would require just one dose. He licensed this technology, along with two other therapies, to a startup he co-founded in 2014, Annapurna Therapeutics. Annapurna recently merged with another company to form Adverum Biotechnologies, which will independently carry out a large clinical trial of Crystal’s gene therapy for A1AT deficiency. Crystal is an advisory board member and a paid consultant for Adverum.

    The Technology—How It Works

    Crystal’s lab focuses on in vivo gene therapy, whereby genes are delivered directly to the patient. “The problem and the challenge of the technology has been how do you get genes into human cells? How do you get them to go where you want them to go?”

    The answer is viruses. Viruses have evolved to transfer their genetic material to the cell, usually to the nucleus, and they can target certain organs or tissues. Once there, “they basically hijack the cell’s genetic machinery to reproduce themselves,” Crystal explains. In the gene therapy field, researchers essentially empty these viruses of their own genetic information and replace it with genes that a patient needs expressed.

    “We use the structure of the virus like a Trojan horse,” Crystal says. “The idea is then to directly administer the virus to the brain or heart or liver, and the virus will deliver the genetic information to the nucleus of the cell. There, it uses the cell’s genetic machinery to transcribe the gene, make a protein, and then that protein either functions within the cell or is secreted.”

    A good deal of the work in Crystal’s lab therefore involves finding and modifying viruses and genes for target organs, inserting therapeutic genes into viruses, and carrying out the studies in animal models and in small clinical trials. The therapies licensed to Adverum include the A1AT deficiency therapy as well as a therapy for another genetic disorder: hereditary angioedema. In patients with hereditary angioedema, blood vessels leak fluid and cause excessive swelling, which can lead to premature death. The third treatment is a gene therapy for severe allergy such as peanut allergy. “We can cure the diseases in mouse models in one dose,” says Crystal. “Whether they’ll work in humans, of course, we don’t know—yet.”

    The Partnership of Academia and Industry for Conducting Large-Scale Clinical Trials

    When it comes to the kinds of large-scale clinical trials that are necessary for drug approval, academics often don’t have the resources, Crystal says. “In the academic world, we can carry out early phase I studies, studies in 20 or 30 patients, but we don’t have the infrastructure or the funds to carry out the large studies that are required.”

    One answer is to partner with biotech and pharmaceutical companies, Crystal continues. “In our lab, we’ve made the initial viruses, shown that they work in animal models, in some cases shown safety, in some cases not yet,” he explains. “The concept then is to partner the academic environment—with new ideas, new therapies, and early data—with industry. They will take it over and run the clinical trials, and turn it into a drug if it works.”

    To avoid conflicts, Crystal won’t be involved in the clinical trials. “I think it’s a very good paradigm, a good way that we in the academic world can get the ideas and the creativity that we have and move it towards curing patients.”

    Foresight: Linking Technologies to Clinical Problems

    As a pulmonary doctor by training, Crystal has always had an eye on clinical problems and how his research can address them. When he began working in the gene therapy field, he followed the technology to the problems that this technology could address.

    “It’s really a kind of opportunism, in terms of understanding how the technology can be married to a clinical problem,” he says. “It’s a combination of seeing the advantages and limitations to the technology and being lucky enough to have training in medicine—so we can see how to use this technology and where best to apply it.”

    While the technology has guided Crystal to certain problems, the underlying goal has always been to improve human health. At the National Institutes of Health, where he worked for 23 years before joining Weill Cornell Medicine, his group was the first to carry out a human gene therapy in vivo to treat cystic fibrosis. With his collaborators, he has also worked on therapies for cardiac ischemia, cancer, and central nervous system disorders, and he is developing vaccines for addictive substances such as cocaine as well as other projects.

    Fusing Basic Science and Clinical Medicine

    “I decided a long time ago to focus my career on that interface between basic science and clinical medicine,” Crystal says. “I think if you ask my colleagues, physician-scientists who do similar kinds of things, probably the most satisfying thing is to at least have the opportunity to develop therapies for human disease. When we can do something and play a role in its success, that’s very satisfying.”

    Weill Cornell Medicine, Crystal continues, is a great place for the kind of work that brings basic science to clinical problems. “As a clinical scientist, it’s very important to have access to individuals who are willing to participate in clinical trials, and 10 percent of the population lives within 50 miles of Weill Cornell Medicine,” he explains, “and we have Weill Cornell Medicine, The Rockefeller University, Memorial Sloan Kettering Cancer Center, Hospital for Special Surgery—it’s a very high density of clinical and scientific talent. That’s a wonderful milieu to be in.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

     
  • richardmitnick 1:13 pm on October 18, 2016 Permalink | Reply
    Tags: , Cornell, , , Perovskite oxides   

    From Cornell: “Improving Silicon for Future Electronics” 

    Cornell Bloc

    Cornell University

    10.18.16
    Daniel Hada Harianja

    To retain its mainstay status in microelectronics, silicon must undergo improvement for advanced multifunctionality in future electronic devices.

    1
    Zhe Wang

    Silicon needs an upgrade. As innovators dream of better devices, they seek more functionalities to be built into their microelectronics. Silicon, the backbone of electronics, cannot fulfill those demands alone.

    One upgrade comes in the form of perovskite oxides. Named after the specific crystalline structure of such material, perovskite oxides have for decades captivated scientists with their vast range of electrical, magnetic, and optical properties. The objective, therefore, is to build desired perovskite oxide layers on top of silicon, granting a device of multiple functionalities.

    Growing most oxides on top of silicon is difficult to do directly, because silicon is easily oxidized into amorphous forms of itself, which then cannot accommodate the functional oxides. So the scientific community is hard at work to perfect an intermediate layer between the two—something that is sufficiently compatible with silicon and able to act as a template on top of which other oxides can be built.

    The Challenge of Growing Perovskite Oxides on Silicon

    Zhe Wang, an Applied and Engineering Physics graduate student, is part of that scientific frontier. Wang works in the research group of Darrell Schlom, Materials Science and Engineering. Together with the group, Wang hopes to improve the growing method of SrTiO3­­, a perovskite and the most widely researched candidate for that middle layer. Specifically, Wang aims to enhance the crystalline quality of the SrTiO3 layer.

    “The advantage is that if we can grow these functional material on silicon, we can reach multifunctionality on silicon,” says Wang. “This can be used in future devices, such as smartphones, sensors, antennae, photovoltaic cells, and many others.”

    Unlike most oxides, SrTiO3­­ can be feasibly formed on top of silicon by adjusting the growing conditions. To act as a good template, however, on which other functional materials can be built, the SrTiO3­­ film must be formed as a single-crystal, which means the layer has a single lattice orientation throughout its crystal structure.

    Creating or depositing such a film flawlessly is challenging. “Even though we can achieve single-crystal layers, the crystalline quality is often not very good. It has many defects,” says Wang. “If we grow other functional materials on top of it, the functional materials will also not be perfect, because the underlying layer is not perfect.”

    By studying molecular beam epitaxy, one of the most advanced thin-film deposition methods available, Wang hopes to fine-tune the conditions necessary for a good film. This method subjects the deposition process to very low pressures of below 10-8 Torr, which allows for the highest possible purity of the film. To form a layer on silicon, the constituent elements of the layer are separately heated in effusion cells until they sublime into vapor. The vapors, along with a stream of oxygen, then meet on the silicon surface and react to form a film. As the deposition occurs, reflection high-energy electron diffraction is employed to evaluate the crystal growth by firing electrons on the target materials and analyzing its diffraction pattern.

    “The parameters [of the process] are complicated to get right,” Wang says. For one, the stoichiometry of the constituent elements of the film must be extremely precise. The temperature must be high enough to allow the film deposition to occur, but not too high that it oxidizes the silicon.

    Toward Success, It Takes Collaboration

    Despite the challenges, many appreciate the progress in Wang’s work. Within the past year, collaborators from Singapore, Berkeley, and the Netherlands have published separate papers on the properties of other perovskite materials that they have grown atop of Wang’s high quality SrTiO3 films on silicon, including their applications in different microelectronic devices. Wang also plans to try integrating his own perovskite oxides onto his template in the future. It depends, however, on the ability to build good films on top of silicon, and as Wang explains, good films require a good underlying SrTiO3­­ layer.

    It is not simply the cutting-edge tools that boost Wang’s research. “We have a lot of collaboration. We are making the material, but to understand the perfection, performance, and defects at the atomic level, we collaborate with other groups at Cornell.” For instance, the research team of Lena F. Kourkoutis, Applied and Engineering Physics, has used transmission electron microscopy to help with characterizing the interface structure and film quality. Kyle Shen’s research group, Physics, has integrated their angle-resolved photoemission spectroscopy (ARPES) with the molecular beam epitaxy system to study the materials being formed without exposure to air. Other collaborations include research into utilizing density functional theory to predict novel properties of materials. Like silicon, no one researcher can fulfill all those demands alone. Through collaboration, Wang achieves more.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

     
  • richardmitnick 10:31 am on October 16, 2016 Permalink | Reply
    Tags: , , Cornell, The Irving Porter Church Refractor   

    From Cornell: “The Irving Porter Church Refractor” 

    Cornell Bloc

    Cornell University

    Undated

    1

    Fuertes Observatory was completed in 1917 with a dome capable of housing a 12-inch (0.3 m) equatorial refracting telescope; however, at the time, the University had yet to acquire such a telescope. Several small “transit” telescopes used for instruction in civil engineering and geodesy were installed on piers in the eastern wing of the observatory, while a 4 1/2″ (0.11 m) equatorial telescope owned by the College of Civil Engineering was temporarily installed in place of the anticipated 12″. It is believed that this 4 1/2″ scope was piggybacked onto the main 12″ instrument, and currently serves as its finderscope. The original mounting and clock drive for the 4 1/2″ are still kept at Fuertes.


    By 1919, A pair of 12″ surplus flint and crown glass blanks was acquired from Yerkes Observatory of the University of Chicago by Irving Porter Church (’73), the retired chair of the Department of Civil Engineering at Cornell. These were delivered to the Pittsburgh firm, the John A. Brashear Co., where they were polished and figured, and delivered to Cornell in 1920, the year of Brashear’s death.

    2

    The renowned Warner and Swasey company was contracted early in 1922 to build a mounting, which was completed and installed at Cornell in October of that year. Much of the necessary funds for the mounting were obtained through donations from alumni. The dedication, held on 15 June 1923, named the telescope for Professor Church, who was then still alive.


    The telescope optics consist of a 12″ (0.3m) pair of objective lenses, ground of crown and flint glass, that form an achromatic lens with a focal length of 180″ (4.6m) and a focal ratio of f/15. Brashear-made optics commonly place the flint element of glass “forward” towards the sky, unlike most refractor designs. Such is the case for the Irving Porter Church refractor; the forward element is a negative meniscus lens made of flint glass, while the rear element is a positive biconvex lens made of crown glass.

    3

    The achromat doublet was designed for “visual” correction of colors, with the shapes of the two objective lenses calculated to produce the least amount of color fringing in the wavelengths where the eye is most sensitive — that is, the green to yellow region. As a result, bright stars exhibit a blue-violet halo from poor focus outside the eye’s most sensitive region.


    The telescope includes an auxiliary color correction lens, midway in the telescope tube, which can be inserted into the beam to change the correction of colors to produce best focus in the violet to blue section of the spectrum: this was intended to make the telescope function well with photographic plates available at the time of its construction, whose chief sensitivity was in this color range.

    4

    The telescope tracks objects in the sky using an original weight-driven clockdrive. Wound by hand once every 90 minutes while in use, the weights power a set of gears that turn the telescope at 15 degrees per hour on its equatorial axis. This allows it to compensate for the rotation of the Earth and keeps objects centered in the eyepiece for long periods of time. A flyball governor in the heart of the clockdrive regulates the exact speed at which the gears turn; it moves outwards as it spins faster due to centrifugal motion, and applies a break once it reaches a high enough, predetermined point.


    Few antique telescopes have their original, unmodified clockdrives left in operation, making the Irving Porter Church Telescope one of only a handful in its condition. The telescope is open to the public every Friday evening as part of our open house nights regardless of weather, and when clear, visitors have the opportunity to look through the nearly 100 year old refractor at the planets, stars, and galaxies.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

     
  • richardmitnick 2:58 pm on October 5, 2016 Permalink | Reply
    Tags: , , Cornell, , , , , The Space between Stars and Galaxies,   

    From Cornell: Women in STEM – “The Space between Stars and Galaxies” Rachel E. Bean 

    Cornell Bloc

    Cornell University

    10.5.16
    Jackie Swift

    1
    Rachel E. Bean

    Mystery shrouds the birth of our universe. In a fraction of a second, the universe transformed from a size smaller than a subatomic proton through expanding exponentially faster than the speed of light, according to the Big Bang theory. At the heart of this event lies the explanation for all the constituents of the cosmos today. If the moment of the Big Bang can be understood, we may finally have the theory of everything that can reconcile the quantum Standard Model of particle physics with Einstein’s general theory of relativity, which holds that gravity is a result of the curvature of space and time.

    Even the most powerful particle physics experiments on Earth don’t have enough clout to recreate the conditions in the early universe. We can find evidence of them, however, in the cosmic microwave background (CMB), which functions like a fossil remnant of that very early universe, says Rachel E. Bean, Astronomy.

    CMB per ESA/Planck
    CMB per ESA/Planck

    “The CMB was made about 400 thousand years after the start of the universe,” she says. “It’s a pristine glimpse of what the universe was like at that instant, and buried inside that signal is a signature of what happened a trillionth of a second after the Big Bang.”

    The Early Universe and the Cosmic Microwave Background

    The CMB is a faint glow in the microwave wavelength that can be seen with telescopes that detect microwave radiation in the space between stars and galaxies. It has been traveling toward us for 13 billion years carrying information about those early moments. “At that time the universe was governed by quantum physics at a level that we don’t think we fully understand,” Bean says. “As we go back in time, the universe gets smaller, hotter and denser. At its very earliest instances, it was at temperatures and densities that we can never recreate on earth.”

    In an effort to understand physics at those extreme properties, Bean looks for tiny temperature fluctuations in the CMB. These were generated a trillionth of a second after the Big Bang during a process called primordial inflation when the universe is thought to have expanded faster than the speed of light for a brief time. “We have to describe how quantum properties behave with gravity and space and time,” says Bean. “We don’t know how to do that. The only way we can try to figure this out is to look at these very early moments.” Bean hopes to connect these temperature fluctuations in the CMB to one of the potential theories—especially string theory—that are candidates to reconcile quantum mechanics and the general theory of relativity.

    The CMB can also tell scientists about the effects of gravity on objects through time.

    “The CMB has essentially seen everything that has been created since it was formed,” says Bean. “It traveled through the universe as it evolved, and as it did that it had the signatures of that history imbued upon it.”

    Massive Galaxy Clusters, Dark Matter, and Dark Energy

    Bean is interested in the information the CMB carries about its travels through the most massive objects in the universe: galaxy clusters. These are about a thousand times larger than our galaxy. As the CMB passes through a cluster, the heat of the cluster and its movement leaves a sort of Doppler shift on the frequency of the light from the CMB. “We can use the CMB as a motion detector for these clusters,” Bean explains. “We can see how fast they were moving when the CMB passed through them. This is useful because those clusters were moving because of the properties of gravity at that time.”

    Bean will also be looking for evidence of the effects of dark matter and dark energy—two components of the universe that we cannot see. They do not emit light or absorb it, and none of our instruments can detect them. Scientists think that 95 percent of the matter in the universe is dark matter and dark energy, which change the properties of how gravity behaves. The only way to learn about the properties of these components is to look at their impact on astrophysical bodies such as galaxy clusters, Bean says. “By looking at how fast the galaxy clusters were moving in the past, we can test the properties of gravity and dark matter.”

    Big Bold Telescopes, Up Soon

    Astronomers will be able to do that in unparalleled detail over the next decade when four new telescopic surveys come online. These large-scale structure surveys will look at millions to billions of galaxies. They will either take multicolor images of them, revealing through color different physical properties, or they will record the galaxies’ spectra, the emission or absorption lines of light of particular wavelengths, which pinpoint the galaxies’ positions in space. “We’re going to be able to survey out billions of light years to be able to understand the structure of our universe with unprecedented precision,” Bean says.

    Two of the telescopes will be ground-based and two will be space-based. Bean is the leader of an international collaboration of approximately 500 scientists—the LSST Dark Energy Science Collaboration—that will be using the data from one of the ground-based photometric imaging telescopes, the Large Synoptic Survey Telescope (LSST), which is an international venture led by two United States agencies, the National Science Foundation and the United States Department of Energy.

    LSST/Camera, built at SLAC
    LSST/Camera, built at SLAC
    LSST Interior
    LSST telescope, currently under construction at Cerro Pachón Chile
    LSST telescope, currently under construction at Cerro Pachón Chile

    The LSST will be commissioned in 2019 with the first surveys coming online in 2021. Bean is scrambling to prepare for the challenge of analyzing all the anticipated data. “It’s going to be like a massive gush,” Bean says. “If we’re able to analyze it properly, we will get orders of magnitude improvement in our understanding of the properties of the cosmos.”

    The LSST will share the ground-based spotlight with another state-of-the-art telescope, the Dark Energy Spectroscopic Instrument (DESI), a United States Department of Energy initiative, which will come online in 2019.

    LBL/DESI spectroscopic instrument on the Mayall 4-meter telescope at Kitt Peak National Observatory starting in 2018
    “LBL/DESI spectroscopic instrument on the Mayall 4-meter telescope at Kitt Peak National Observatory starting in 2018

    The final two telescopes, both space-based, will be launched in the next decade: the European Space Agency’s Euclid in 2021 and the National Aeronautics and Space Administration’s Wide Field Infrared Survey Telescope (WFIRST) in the mid-twenties.

    ESA/Euclid spacecraft
    ESA/Euclid spacecraft

    NASA/WFIRST
    NASA/WFIRST

    Bean plans to take the new information on the nature of galaxies provided by the four surveys and combine it with data on the motions of galaxy clusters gleaned from the CMB. Altogether they should help her and other cosmologists uncover the true properties of dark matter and dark energy, “We’ll be able to test whether general relativity holds on a cosmic scale,” Bean says. “That’s really exciting!”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

     
  • richardmitnick 9:58 am on October 4, 2016 Permalink | Reply
    Tags: , Beam acceleration, Beam transport and storage, Center for Bright Beams or CBB based at Cornell University, Cornell, Fermilab’s Intregable Optics Test Accelerator or IOTA,   

    From FNAL: “Bright beams, bright future” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    September 30, 2016
    Sam Posen
    Vladimir Shiltsev

    1
    Cornell University’s Center for Bright Beams involves almost a dozen collaborators. Image: Center for Bright Beams, Cornell University

    You may have read that the National Science Foundation recently awarded $94 million to support four new Science and Technology Centers across the United States. One of these is the Center for Bright Beams, or CBB, based at Cornell University. The center received $23 million to develop technologies for increasing particle beam brightness while decreasing the costs of these technologies. Fermilab is a key partner in this effort, participating in two research themes at the CBB.

    One is beam acceleration. Many state-of-the-art particle accelerators use superconducting radio-frequency cavities made of niobium to transfer energy to the beam. Fermilab has recently begun development of alternative materials to niobium, with a focus on a niobium-tin alloy. A niobium-tin film just a few micrometers thick has been shown to substantially improve cryogenic efficiency relative to niobium, and theoretical predictions suggest this material may also allow accelerators to reach a given energy in a shorter distance than would be possible with niobium. Our partnership with the CBB will open new opportunities for collaboration with Cornell to improve our understanding of the related materials science and superconductivity theory. Sam Posen will lead Fermilab’s efforts on beam acceleration at the CBB.

    The second theme is beam transport and storage. Fermilab’s Intregable Optics Test Accelerator, or IOTA, is a storage ring that will operate with 70-MeV/c protons and up to 150-MeV/c electrons. It is designed for testing advanced accelerator physics concepts, including novel nonlinear beam optics systems based on magnets and electron lenses. Under the framework of the CBB, Fermilab accelerator scientists will work with Cornell and the University of Chicago toward common goals in the design and construction of these systems for IOTA and development of innovative instruments and diagnostics, as well as in conducting experimental beam tests. Fermilab Chief Accelerator Officer Sergei Nagaitsev will lead the lab’s participation in this theme at the CBB.

    The goal of CBB is to be able to produce electron and proton beams up to 100 times brighter than what we can make now. High-brightness particle beams are of utmost importance for high-energy physics, especially for colliders and for Fermilab’s future accelerators for neutrino research, but they also have value for biology, chemistry and many other fields of science and technology.

    Cornell scientists J. Ritchie Patterson and Georg Hoffstaetter are heading the CBB. They lead well-established and highly regarded accelerator science programs at Cornell. Partnered with Fermilab’s forefront accelerator R&D program and nearly a dozen other institutions, the newly NSF-funded initiative promises to push the cutting edge of what we can achieve with accelerators.

    The establishment of the CBB is good news not only for high-energy physics, but also for areas such as the environment, energy conservation, industry, and medicine, all of which we’re working to advance using accelerator technology.

    Congratulations to Cornell University and all CBB collaborators, including those at Fermilab and the University of Chicago, on this wonderful development!

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: