From Carnegie Mellon University: “Prototype Particle Detector Project Smashes Milestone”
From Carnegie Mellon University
1.31.23
Jocelyn Duffy
Mellon College of Science
jhduffy@andrew.cmu.edu
412-268-9982
Carnegie Mellon University physicists are one step closer to a major upgrade for the Large Hadron Collider’s Compact Muon Solenoid experiment.
A team based in the Department of Physics has built and tested prototypes for the High-Granularity Calorimeter (HGC), an upgrade to the current Compact Muon Solenoid detector at CERN’s Large Hadron Collider. The team includes, from left, first row: Amy Germer, a senior in physics and mathematical sciences; Valentina Dutta, an assistant professor; second row: John Alison, an assistant professor; Sindhu Murthy, a doctoral student; Manfred Paulini, a professor of physics; third row: Eric Day, a technician; Jessica Parshook, an engineer on the project; Patrick Bryant, a research associate; and Andrew Roberts, a doctoral student. Credit: CMU.
A team led by John Alison, an assistant professor in physics, and Manfred Paulini, a professor of physics and the Mellon College of Science associate dean for faculty and graduate affairs, has successfully built and tested prototypes for the High-Granularity Calorimeter (HGC), an upgrade to the current CMS detector. On the one hand, building functional prototypes is a major milestone several years in the making. On the other hand, the milestone is the first step in a manufacturing project that will take place over the next three years.
“CMS can be thought of as a large 3D camera that records the products of the proton-proton collisions provided by the LHC,” Alison said. “For example, images collected from the detector were used to discover the Higgs boson in 2012.”
Since the discovery of the Higgs boson, a major focus of the particle physics has been in studying the properties of the Higgs boson in detail and searching for new particles not predicted by the standard model of particle physics.

European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)CMS Higgs Event May 27, 2012.
Comparing measurements to predictions will allow new theories to be tested but more data is needed.
The LHC has a 15-year program to increase the total number of proton collisions by a factor of 20. This program requires collecting more data faster and comes at a significant cost: increased radiation. In addition to producing new exotic states of matter — like the Higgs boson — LHC proton collisions produce large amounts of ionizing radiation. This radiation is similar to that produced by a nuclear reactor and is damaging to people and the instrumentation that makes up the detector.
Built almost 20 years ago, the current CMS detector was not designed to handle the amount of radiation damage anticipated during future LHC runs. New, upgraded detectors are needed both to improve the quality of the recorded images and cope with the more challenging radiation environment. This is where the High-Granularity Calorimeter upgrade comes in.
High-Granularity Calorimeter. Credit: CERN.
Big Data Gets Bigger
The HGC will replace current CMS detectors in regions that face the most radiation. A next-generation imaging calorimeter, the HGC will significantly increase the precision with which the LHC collisions are imaged. The number of individual measurements per picture will increase from about 20,000 in current detectors to about 6 million in the HGC. The measurements of individual particles will go from the handful of numbers that the current detector provides to a high-resolution 3D movie of how the particles interact when traversing the detector.
The HGC will be built in the next five years, and Carnegie Mellon is playing a leading role in its construction. The HGC will be composed of 30,000 20-centimeter hexagonal modules. The modules — essentially radiation tolerant digital cameras — will be tiled to form wheels several meters in diameter. The wheels will then be stacked to form the full 3D detector. In total, the HGC will require 600 square meters of active silicon sensors.
Alison, Paulini and Valentina Dutta, a new assistant professor in physics, will build and test 5,000 of these modules in Wean Hall laboratory with the help of engineers, technicians and students. The remaining modules will be produced by CMS collaborators at The University of California-Santa Barbara and Texas Tech University in the U.S., and by groups in China, India and Taiwan. Each module consists of a silicon sensor attached to a printed circuit board housing readout electronics and to a base plate, which provides overall stability.
Module construction will be performed with a series of automated robots that use pattern-recognition algorithms for assembly and then the required approximately 500 electrical connections per module are established. After a series of testing at CMU the modules are tiled onto wheels at Fermilab — a particle physics lab outside of Chicago — and then sent to CERN in Switzerland for installation in the CMS detector.
The production of the first working modules this fall was part of a qualifying exercise in which the various assembly centers demonstrated that they are ready and able to build the high-quality modules needed by HGC.
The CMU group established a class 1,000 clean room on the eighth floor of Wean Hall, expanding an existing space used by the medium-energy physics group. They have installed and commissioned an 8,000-pound gantry robot to attach the different module layers and an automated wire bonder to make the electrical connections within the modules. The prototype modules allowed the group to test its automated assembly procedures and exercise the full production chain.
“It is great to see our group achieving this qualification milestone,” Paulini said. “I had been working diligently for some years to bring this project to CMU since it also offers opportunities for graduate and especially undergraduate students to obtain hands-on instrumentation experience working in our lab during the semester or for summer research.”
Producing a handful of modules to specification is just the beginning. During full-scale module production — starting in 2024 — CMU will produce 12 modules per day until early 2026. A major challenge in ramping throughput will be recruiting and onboarding local talent.
“To meet production needs we have to grow the group with hiring four more full-time technicians and engineers who will work on the daily production line,” said Jessica Parshook, the lead engineer for Carnegie Mellon’s project team.
Developing and implementing reliable test procedures for quality control is another major challenge going forward. The production pipeline requires several days to build each module. Catching and fixing any flaws in production quickly will be critical. Postdoctoral fellows and graduate students will create most of the assembly and quality control procedures that will provide opportunities for a significant number of CMU undergraduates to get hands-on experience testing modern particle physics detectors.
“Our efforts here could lead to the next big discovery in physics and that excites me,” said Sindhu Murthy, a doctoral student in physics. “In these early stages of setting up production, I get to see the different aspects of an engineering project of this scale. It’s a great experience and a privilege to contribute to this upgrade. I’m always thinking about how we can optimize module assembly so that everything goes as planned.”
Alison, Dutta and Paulini said that recent advances in image processing from machine learning will be crucial in assuring quality control during production.
“This work, a mix of computer science, machine learning and robotics, is a perfect fit for CMU and we plan to tap into resources throughout the university,” Alison said.
See the full article here .
Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.
five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.
Carnegie Mellon University is a global research university with more than 12,000 students, 95,000 alumni, and 5,000 faculty and staff.
Carnegie Mellon University has been a birthplace of innovation since its founding in 1900.
Today, we are a global leader bringing groundbreaking ideas to market and creating successful startup businesses.
Our award-winning faculty members are renowned for working closely with students to solve major scientific, technological and societal challenges. We put a strong emphasis on creating things—from art to robots. Our students are recruited by some of the world’s most innovative companies.
We have campuses in Pittsburgh, Qatar and Silicon Valley, and degree-granting programs around the world, including Africa, Asia, Australia, Europe and Latin America.
The Carnegie Mellon University was established by Andrew Carnegie as the Carnegie Technical Schools, the university became the Carnegie Institute of Technology in 1912 and began granting four-year degrees. In 1967, the Carnegie Institute of Technology merged with the Mellon Institute of Industrial Research, formerly a part of the The University of Pittsburgh. Since then, the university has operated as a single institution.
The Carnegie Mellon University has seven colleges and independent schools, including the College of Engineering, College of Fine Arts, Dietrich College of Humanities and Social Sciences, Mellon College of Science, Tepper School of Business, Heinz College of Information Systems and Public Policy, and the School of Computer Science. The Carnegie Mellon University has its main campus located 3 miles (5 km) from Downtown Pittsburgh, and the university also has over a dozen degree-granting locations in six continents, including degree-granting campuses in Qatar and Silicon Valley.
Past and present faculty and alumni include 20 Nobel Prize laureates, 13 Turing Award winners, 23 Members of the American Academy of Arts and Sciences, 22 Fellows of the American Association for the Advancement of Science , 79 Members of the National Academies, 124 Emmy Award winners, 47 Tony Award laureates, and 10 Academy Award winners. Carnegie Mellon enrolls 14,799 students from 117 countries and employs 1,400 faculty members.
Research
Carnegie Mellon University is classified among “R1: Doctoral Universities – Very High Research Activity”. For the 2006 fiscal year, the Carnegie Mellon University spent $315 million on research. The primary recipients of this funding were the School of Computer Science ($100.3 million), the Software Engineering Institute ($71.7 million), the College of Engineering ($48.5 million), and the Mellon College of Science ($47.7 million). The research money comes largely from federal sources, with a federal investment of $277.6 million. The federal agencies that invest the most money are the National Science Foundation and the Department of Defense, which contribute 26% and 23.4% of the total Carnegie Mellon University research budget respectively.
The recognition of Carnegie Mellon University as one of the best research facilities in the nation has a long history—as early as the 1987 Federal budget Carnegie Mellon University was ranked as third in the amount of research dollars with $41.5 million, with only Massachusetts Institute of Technology and Johns Hopkins University receiving more research funds from the Department of Defense.
The Pittsburgh Supercomputing Center is a joint effort between Carnegie Mellon University, University of Pittsburgh, and Westinghouse Electric Company. Pittsburgh Supercomputing Center was founded in 1986 by its two scientific directors, Dr. Ralph Roskies of the University of Pittsburgh and Dr. Michael Levine of Carnegie Mellon. Pittsburgh Supercomputing Center is a leading partner in the TeraGrid, The National Science Foundation’s cyberinfrastructure program.
Scarab lunar rover is being developed by the RI.
The Robotics Institute (RI) is a division of the School of Computer Science and considered to be one of the leading centers of robotics research in the world. The Field Robotics Center (FRC) has developed a number of significant robots, including Sandstorm and H1ghlander, which finished second and third in the DARPA Grand Challenge, and Boss, which won the DARPA Urban Challenge. The Robotics Institute has partnered with a spinoff company, Astrobotic Technology Inc., to land a CMU robot on the moon by 2016 in pursuit of the Google Lunar XPrize. The robot, known as Andy, is designed to explore lunar pits, which might include entrances to caves. The RI is primarily sited at Carnegie Mellon University ‘s main campus in Newell-Simon hall.
The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University, with offices in Pittsburgh, Pennsylvania, USA; Arlington, Virginia, and Frankfurt, Germany. The SEI publishes books on software engineering for industry, government and military applications and practices. The organization is known for its Capability Maturity Model (CMM) and Capability Maturity Model Integration (CMMI), which identify essential elements of effective system and software engineering processes and can be used to rate the level of an organization’s capability for producing quality systems. The SEI is also the home of CERT/CC, the federally funded computer security organization. The CERT Program’s primary goals are to ensure that appropriate technology and systems management practices are used to resist attacks on networked systems and to limit damage and ensure continuity of critical services subsequent to attacks, accidents, or failures.
The Human–Computer Interaction Institute (HCII) is a division of the School of Computer Science and is considered one of the leading centers of human–computer interaction research, integrating computer science, design, social science, and learning science. Such interdisciplinary collaboration is the hallmark of research done throughout the university.
The Language Technologies Institute (LTI) is another unit of the School of Computer Science and is famous for being one of the leading research centers in the area of language technologies. The primary research focus of the institute is on machine translation, speech recognition, speech synthesis, information retrieval, parsing and information extraction. Until 1996, the institute existed as the Center for Machine Translation that was established in 1986. From 1996 onwards, it started awarding graduate degrees and the name was changed to Language Technologies Institute.
Carnegie Mellon is also home to the Carnegie School of management and economics. This intellectual school grew out of the Tepper School of Business in the 1950s and 1960s and focused on the intersection of behavioralism and management. Several management theories, most notably bounded rationality and the behavioral theory of the firm, were established by Carnegie School management scientists and economists.
Carnegie Mellon also develops cross-disciplinary and university-wide institutes and initiatives to take advantage of strengths in various colleges and departments and develop solutions in critical social and technical problems. To date, these have included the Cylab Security and Privacy Institute, the Wilton E. Scott Institute for Energy Innovation, the Neuroscience Institute (formerly known as BrainHub), the Simon Initiative, and the Disruptive Healthcare Technology Institute.
Carnegie Mellon has made a concerted effort to attract corporate research labs, offices, and partnerships to the Pittsburgh campus. Apple Inc., Intel, Google, Microsoft, Disney, Facebook, IBM, General Motors, Bombardier Inc., Yahoo!, Uber, Tata Consultancy Services, Ansys, Boeing, Robert Bosch GmbH, and the Rand Corporation have established a presence on or near campus. In collaboration with Intel, Carnegie Mellon has pioneered research into claytronics.
Reply