Tagged: CERN LHC Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:02 am on March 14, 2017 Permalink | Reply
    Tags: , , CERN LHC, , Vector boson plus jet event   

    From ALCF: “High-precision calculations help reveal the physics of the universe” 

    Argonne Lab
    News from Argonne National Laboratory

    ANL Cray Aurora supercomputer
    Cray Aurora supercomputer at the Argonne Leadership Computing Facility

    MIRA IBM Blue Gene Q supercomputer at the Argonne Leadership Computing Facility
    MIRA IBM Blue Gene Q supercomputer at the Argonne Leadership Computing Facility


    March 9, 2017
    Joan Koka

    With the theoretical framework developed at Argonne, researchers can more precisely predict particle interactions such as this simulation of a vector boson plus jet event. Credit: Taylor Childers, Argonne National Laboratory

    On their quest to uncover what the universe is made of, researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory are harnessing the power of supercomputers to make predictions about particle interactions that are more precise than ever before.

    Argonne researchers have developed a new theoretical approach, ideally suited for high-performance computing systems, that is capable of making predictive calculations about particle interactions that conform almost exactly to experimental data. This new approach could give scientists a valuable tool for describing new physics and particles beyond those currently identified.

    The framework makes predictions based on the Standard Model, the theory that describes the physics of the universe to the best of our knowledge. Researchers are now able to compare experimental data with predictions generated through this framework, to potentially uncover discrepancies that could indicate the existence of new physics beyond the Standard Model. Such a discovery would revolutionize our understanding of nature at the smallest measurable length scales.

    “So far, the Standard Model of particle physics has been very successful in describing the particle interactions we have seen experimentally, but we know that there are things that this model doesn’t describe completely.

    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    We don’t know the full theory,” said Argonne theorist Radja Boughezal, who developed the framework with her team.

    “The first step in discovering the full theory and new models involves looking for deviations with respect to the physics we know right now. Our hope is that there is deviation, because it would mean that there is something that we don’t understand out there,” she said.

    The theoretical method developed by the Argonne team is currently being deployed on Mira, one of the fastest supercomputers in the world, which is housed at the Argonne Leadership Computing Facility, a DOE Office of Science User Facility.

    Using Mira, researchers are applying the new framework to analyze the production of missing energy in association with a jet, a particle interaction of particular interest to researchers at the Large Hadron Collider (LHC) in Switzerland.

    LHC at CERN

    Physicists at the LHC are attempting to produce new particles that are known to exist in the universe but have yet to be seen in the laboratory, such as the dark matter that comprises a quarter of the mass and energy of the universe.

    Dark matter cosmic web and the large-scale structure it forms The Millenium Simulation, V. Springel et al

    Although scientists have no way today of observing dark matter directly — hence its name — they believe that dark matter could leave a “missing energy footprint” in the wake of a collision that could indicate the presence of new particles not included in the Standard Model. These particles would interact very weakly and therefore escape detection at the LHC. The presence of a “jet”, a spray of Standard Model particles arising from the break-up of the protons colliding at the LHC, would tag the presence of the otherwise invisible dark matter.

    In the LHC detectors, however, the production of a particular kind of interaction — called the Z-boson plus jet process — can mimic the same signature as the potential signal that would arise from as-yet-unknown dark matter particles. Boughezal and her colleagues are using their new framework to help LHC physicists distinguish between the Z-boson plus jet signature predicted in the Standard Model from other potential signals.

    Previous attempts using less precise calculations to distinguish the two processes had so much uncertainty that they were simply not useful for being able to draw the fine mathematical distinctions that could potentially identify a new dark matter signal.

    “It is only by calculating the Z-boson plus jet process very precisely that we can determine whether the signature is indeed what the Standard Model predicts, or whether the data indicates the presence of something new,” said Frank Petriello, another Argonne theorist who helped develop the framework. “This new framework opens the door to using Z-boson plus jet production as a tool to discover new particles beyond the Standard Model.”

    Applications for this method go well beyond studies of the Z-boson plus jet. The framework will impact not only research at the LHC, but also studies at future colliders which will have increasingly precise, high-quality data, Boughezal and Petriello said.

    “These experiments have gotten so precise, and experimentalists are now able to measure things so well, that it’s become necessary to have these types of high-precision tools in order to understand what’s going on in these collisions,” Boughezal said.

    “We’re also so lucky to have supercomputers like Mira because now is the moment when we need these powerful machines to achieve the level of precision we’re looking for; without them, this work would not be possible.”

    Funding and resources for this work was previously allocated through the Argonne Leadership Computing Facility’s (ALCF’s) Director’s Discretionary program; the ALCF is supported by the DOE’s Office of Science’s Advanced Scientific Computing Research program. Support for this work will continue through allocations coming from the Innovation and Novel Computational Impact on Theory and Experiment (INCITE) program.

    The INCITE program promotes transformational advances in science and technology through large allocations of time on state-of-the-art supercomputers.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

    Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    About ALCF

    The Argonne Leadership Computing Facility’s (ALCF) mission is to accelerate major scientific discoveries and engineering breakthroughs for humanity by designing and providing world-leading computing facilities in partnership with the computational science community.

    We help researchers solve some of the world’s largest and most complex problems with our unique combination of supercomputing resources and expertise.

    ALCF projects cover many scientific disciplines, ranging from chemistry and biology to physics and materials science. Examples include modeling and simulation efforts to:

    Discover new materials for batteries
    Predict the impacts of global climate change
    Unravel the origins of the universe
    Develop renewable energy technologies

    Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science

    Argonne Lab Campus

  • richardmitnick 8:51 pm on March 10, 2017 Permalink | Reply
    Tags: , , , CERN LHC, , , , , , The strong force (strong interaction)   

    From Symmetry: “A strength test for the strong force [strong interaction]” 

    Symmetry Mag


    Sarah Charley

    Science Saturday

    New research could tell us about particle interactions in the early universe and even hint at new physics.

    Much of the matter in the universe is made up of tiny particles called quarks. Normally it’s impossible to see a quark on its own because they are always bound tightly together in groups. Quarks only separate in extreme conditions, such as immediately after the Big Bang or in the center of stars or during high-energy particle collisions generated in particle colliders.

    Scientists at Louisiana Tech University are working on a study of quarks and the force that binds them by analyzing data from the ATLAS experiment at the LHC. Their measurements could tell us more about the conditions of the early universe and could even hint at new, undiscovered principles of physics.

    ATLAS at the LHC

    The particles that stick quarks together are aptly named “gluons.” Gluons carry the strong force, one of four fundamental forces in the universe that govern how particles interact and behave. The strong force binds quarks into particles such as protons, neutrons and atomic nuclei.

    As its name suggests, the strong force [strong interaction] is the strongest—it’s 100 times stronger than the electromagnetic force (which binds electrons into atoms), 10,000 times stronger than the weak force (which governs radioactive decay), and a hundred million million million million million million (1039) times stronger than gravity (which attracts you to the Earth and the Earth to the sun).

    But this ratio shifts when the particles are pumped full of energy. Just as real glue loses its stickiness when overheated, the strong force carried by gluons becomes weaker at higher energies.

    “Particles play by an evolving set of rules,” says Markus Wobisch from Louisiana Tech University. “The strength of the forces and their influence within the subatomic world changes as the particles’ energies increase. This is a fundamental parameter in our understanding of matter, yet has not been fully investigated by scientists at high energies.”

    Characterizing the cohesiveness of the strong force is one of the key ingredients to understanding the formation of particles after the Big Bang and could even provide hints of new physics, such as hidden extra dimensions.

    “Extra dimensions could help explain why the fundamental forces vary dramatically in strength,” says Lee Sawyer, a professor at Louisiana Tech University. “For instance, some of the fundamental forces could only appear weak because they live in hidden extra dimensions and we can’t measure their full strength. If the strong force is weaker or stronger than expected at high energies, this tells us that there’s something missing from our basic model of the universe.”

    By studying the high-energy collisions produced by the LHC, the research team at Louisiana Tech University is characterizing how the strong force pulls energetic quarks into encumbered particles. The challenge they face is that quarks are rambunctious and caper around inside the particle detectors. This subatomic soirée involves hundreds of particles, often arising from about 20 proton-proton collisions happening simultaneously. It leaves a messy signal, which scientists must then reconstruct and categorize.

    Wobisch and his colleagues innovated a new method to study these rowdy groups of quarks called jets. By measuring the angles and orientations of the jets, he and his colleagues are learning important new information about what transpired during the collisions—more than what they can deduce by simple counting the jets.

    The average number of jets produced by proton-proton collisions directly corresponds to the strength of the strong force in the LHC’s energetic environment.

    “If the strong force is stronger than predicted, then we should see an increase in the number of proton-protons collisions that generate three jets. But if the strong force is actually weaker than predicted, then we’d expect to see relatively more collisions that produce only two jets. The ratio between these two possible outcomes is the key to understanding the strong force.”

    After turning on the LHC, scientists doubled their energy reach and have now determined the strength of the strong force up to 1.5 trillion electronvolts, which is roughly the average energy of every particle in the universe just after the Big Bang. Wobisch and his team are hoping to double this number again with more data.

    “So far, all our measurements confirm our predictions,” Wobisch says. “More data will help us look at the strong force at even higher energies, giving us a glimpse as to how the first particles formed and the microscopic structure of space-time.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.

  • richardmitnick 10:17 am on February 16, 2017 Permalink | Reply
    Tags: , , , CERN LHC, , , , SCOAP³,   

    From The Conversation: “How the insights of the Large Hadron Collider are being made open to everyone” 

    The Conversation

    January 12, 2017 [Just appeared in social media.]
    Virginia Barbour

    CERN CMS Higgs Event
    CERN CMS Higgs Event

    If you visit the Large Hadron Collider (LHC) exhibition, now at the Queensland Museum, you’ll see the recreation of a moment when the scientist who saw the first results indicating discovery of the Higgs boson laments she can’t yet tell anyone.

    It’s a transitory problem for her, lasting as long as it takes for the result to be thoroughly cross-checked. But it illustrates a key concept in science: it’s not enough to do it; it must be communicated.

    That’s what is behind one of the lesser known initiatives of CERN (European Organization for Nuclear Research): an ambitious plan to make all its research in particle physics available to everyone, with a big global collaboration inspired by the way scientists came together to make discoveries at the LHC.

    This initiative is called SCOAP³, the Sponsoring Consortium for Open Access in Particle Physics Publishing, and is now about to enter its fourth year of operation. It’s a worldwide collaboration of more than 3,000 libraries (including six in Australia), key funding agencies and research centres in 44 countries, together with three intergovernmental organisations.

    It aims to make work previously only available to paying subscribers of academic journals freely and immediately available to everyone. In its first three years it has made more than 13,000 articles available.

    Not only are these articles free for anyone to read, but because they are published under a Creative Commons attribution license (CCBY), they are also available for anyone to use in anyway they wish, such as to illustrate a talk, pass onto a class of school children, or feed to an artificial intelligence program to extract information from. And these usage rights are enshrined forever.

    The concept of sharing research is not new in physics. Open access to research is now a growing worldwide initiative, including in Australasia. CERN, which runs the LHC, was also where the world wide web was invented in 1989 by Tim Berners-Lee, a British computer scientist at CERN.

    The main purpose of the web was to enable researchers contributing to CERN from all over the world share documents, including scientific drafts, no matter what computer systems they were using.

    Before the web, physicists had been sharing paper drafts by post for decades, so they were one of the first groups to really embrace the new online opportunities for sharing early research. Today, the pre-press site arxiv.org has more than a million free article drafts covering physics, mathematics, astronomy and more.

    But, with such a specialised field, do these “open access” papers really matter? The short answer is “yes”. Downloads have doubled to journals participating in SCOAP³.

    With millions of open access articles now being downloaded across all specialities, there is enormous opportunity for new ideas and collaborations to spring from chance readership. This is an important trend: the concept of serendipity enabled by open access was explored in 2015 in an episode of ABC RN’s Future Tense program.

    Greater than the sum of the parts

    There’s also a bigger picture to SCOAP³’s open access model. Not long ago, the research literature was fragmented. Individual papers and the connections between them were only as good as the physical library, with its paper journals, that academics had access to.

    Now we can do searches in much less time than we spend thinking of the search question, and the results we are presented with are crucially dependent on how easily available the findings themselves are. And availability is not just a function of whether an article is free or not but whether it is truly open, i.e. connected and reusable.

    One concept is whether research is “FAIR”, or Findable, Accessible, Interoperable and Reusable. In short, can anyone find, read, use and reuse the work?

    The principle is most advanced for data, but in Australia work is ongoing to apply it to all research outputs. This approach was also proposed at the November 2016 meeting of the G20 Science, Technology and Innovation Ministers Meeting. Research findings that are not FAIR can, effectively, be invisible. It’s a huge waste of millions of taxpayer dollars to fund research that won’t be seen.

    There is an even bigger picture that research and research publications have to fit into: that of science in society.

    Across the world we see politicians challenging accepted scientific norms. Is the fact that most academic research remains available only to those who can pay to see it contributing to an acceptance of such misinformed views?

    If one role for science is to inform public debate, then restricting access to that science will necessarily hinder any informed public debate. Although no one suggests that most readers of news sites will regularly want to delve into the details of papers in high energy physics, open access papers are 47% more likely to end up being cited in Wikipedia, which is a source that many non-scientists do turn to.

    Even worse, work that is not available openly now may not even be available in perpetuity, something that is being discussed by scientists in the USA.

    So in the same way that CERN itself is an example of the power of international collaboration to ask some of the fundamental scientific questions of our time, SCOAP³ provides a way to ensure that the answers, whatever they are, are available to everyone, forever.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Conversation US launched as a pilot project in October 2014. It is an independent source of news and views from the academic and research community, delivered direct to the public.
    Our team of professional editors work with university and research institute experts to unlock their knowledge for use by the wider public.
    Access to independent, high quality, authenticated, explanatory journalism underpins a functioning democracy. Our aim is to promote better understanding of current affairs and complex issues. And hopefully allow for a better quality of public discourse and conversation.

  • richardmitnick 2:36 pm on February 10, 2017 Permalink | Reply
    Tags: , , , CERN LHC, Electron-Ion Collider possibly opening a new frontier in nuclear physics., Exploring the Matter that Filled the Early Universe, , , , Quark Matter 2017 conference (QM17), , Ultrarelativistic heavy-ion collisions   

    From BNL: “Exploring the Matter that Filled the Early Universe” 

    Brookhaven Lab

    February 6, 2017
    Karen McNulty Walsh

    (631) 344-8350
    Peter Genzer
    (631) 344-3174

    Credit for conference logo design: Anjali Chandrashekar, student, Pratt Institute

    Theorists and scientists conducting experiments that recreate matter as it existed in the very early universe are gathered in Chicago this week to present and discuss their latest results. These experiments, conducted at the world’s premier particle colliders — the Relativistic Heavy Ion Collider (RHIC) at the U.S. Department of Energy’s Brookhaven National Laboratory, and the Large Hadron Collider (LHC) at the European Center for Nuclear Research (CERN) — are revealing intriguing information about the building blocks of visible matter and the force that holds them together in the universe today.

    BNL RHIC Campus
    BNL/RHIC Star Detector
    RHIC map and STAR detector

    CERN/LHC Map
    CERN LHC Grand TunnelCERN LHC particles
    LHC at CERN

    The Quark Matter 2017 conference (QM17) will feature new results describing the particles created as atomic nuclei smash into one another at nearly the speed of light at RHIC and the LHC. These “ultrarelativistic heavy-ion collisions” melt ordinary protons and neutrons, momentarily setting free their inner constituents — quarks and gluons — so scientists can study their behavior and interactions. The physicists want to sort out the detailed properties of the hot “quark-gluon plasma” (QGP), and understand what happens as this primordial soup cools and coalesces to form the more familiar matter of today’s world.

    The two scientific collaborations conducting nuclear physics research at RHIC—STAR and PHENIX, named for their house-sized detectors—will present findings that build on earlier discoveries at this DOE Office of Science User Facility.

    Brookhaven Phenix
    Brookhaven Phenix

    The two collaborations perform cross-checking analyses to verify results, while also exploiting each detector’s unique capabilities and strengths for independent explorations. The QM17 presentations will showcase precision measurements made possible by recent detector upgrades.

    “These results illustrate how a global community of dedicated scientists is taking full advantage of RHIC’s remarkable versatility to explore in depth the structure of nuclear matter over a wide range of temperatures and densities to better understand the dynamic behavior of quarks and gluons and the strong nuclear force,” said Berndt Mueller, Associate Laboratory Director for Nuclear and Particle Physics at Brookhaven Lab. “The latest RHIC findings indicate that RHIC sits at the ‘sweet spot’ for probing the most interesting questions about the quark-gluon plasma and its transition to matter as we know it.”

    The meeting will also feature talks on the planned upgrade of the PHENIX experiment to a new RHIC detector known as sPHENIX, which will have greatly increased capabilities for tracking subatomic interactions.

    The solenoid magnet that will form the core of the sPHENIX detector. No image credit

    In addition, at least one talk will focus on the scientific rationale for building an Electron-Ion Collider, a proposed future facility that would enable an in-depth exploration of gluons in protons and other nuclei, opening a new frontier in nuclear physics.

    In addition, at least one talk will focus on the scientific rationale for building an Electron-Ion Collider, a proposed future facility that would enable an in-depth exploration of gluons in protons and other nuclei, opening a new frontier in nuclear physics.

    Select QM 2017 Highlights from RHIC

    Does size really matter?

    Before RHIC began operations in 2000, nuclear physicists suspected it would take collisions of large nuclei such as gold to produce enough heat to create quark-gluon plasma. Since then, RHIC’s gold-gold smashups (and later collisions of lead nuclei at the LHC) have reliably recreated a soup of quarks and gluons that flows like a nearly “perfect” liquid with extraordinarily low viscosity. Scientists detect the flow by observing correlations in certain characteristics of particles streaming from the collisions even when they are relatively far apart. More recently, smashups of smaller nuclei such as helium and even single protons with the large nuclei have produced correlation patterns that suggest that smaller drops of QGP might be possible. The latest results, to be presented by PHENIX, come from collisions of protons with aluminum nuclei, and also from deuteron-gold collisions over a range of collision energies. Lowering the energy changes how long the QGP phase lasts, which should change the strength of the correlations. The new results also include the first analysis of particles emerging closest to the colliding beams in the forward and rearward directions, as tracked by the recently installed Forward Silicon Vertex Tracker. Adding this tracker to detector components picking up particles emerging more centrally, perpendicular to the colliding beams, gives the physicists a way to test in three dimensions how the correlations vary with the pressure gradients created by the asymmetrical collisions.

    Discerning differences among heavy quarks

    A virtual tour of the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC).

    PHENIX’s Central Barrel and Forward Silicon Vertex Tracker and STAR’s high precision Heavy Flavor Tracker (HFT) give RHIC physicists access to studying the behavior of so-called heavy quarks, which go by the exotic names of “charm” and “bottom.” These particles, produced in the QGP, start to decay into other particles a short distance from the collision zone, but those decay products eventually strike the trackers. By tracing their tracks, scientists can identify precisely where the decay took place. And since charm and bottom quarks have slightly different lifetimes before decaying, and therefore different travel distances, this method gives the scientists a way to tell them apart.

    Going with the flow

    One way scientists will use this data is to see how heavy quarks are affected by the QGP, and whether there are differences among them. Earlier indirect findings by PHENIX, later confirmed by STAR, already indicated that heavy quarks get swept up in the flow of the QGP, somewhat like a rock getting pulled along by a stream instead of sinking to the bottom. These observations formed part of the motivation for the construction of the STAR HFT. New data from the HFT to be presented by STAR provide the first direct evidence of heavy quark flow, and show that the interactions of these heavy particles with the QGP medium are strong. STAR’s HFT is the first application of the silicon based Monolithic Active Pixel Sensor technology in a collider environment. The measurements show that the flow of a type of heavy particles called D0s, which contain a charm quark, follows the same trend as seen for lighter particles and can be described by the same viscous hydrodynamics. The unprecedented precision in this measurement will pave the path towards precisely determining one of the intrinsic transport properties of the QGP and tell us how quarks interact with it.

    PHENIX will present precision results from its Central Barrel Vertex Detector showing that some heavy quarks are more affected by the QGP than others. The results show that charm quarks lose more energy in the QGP than heavier bottom quarks. With this high statistics data set, PHENIX will now be able to study how the energy-loss is affected by how central, or head-on, the collisions are. PHENIX will also present its first heavy-quark result from the Forward Silicon Vertex Tracker, measuring the total cross section of bottom quarks emerging in the forward and rearward directions in collisions between copper and gold ions.

    Learning how particles grow

    A virtual tour of the STAR detector at the Relativistic Heavy Ion Collider (RHIC).

    The STAR HFT has also made it possible to make the first measurements of a particle called Lambda c emerging from RHIC collisions. Lambda c is made of three quarks—just like protons and neutrons—but with one of the three being a heavy quark. These Lambda c particles are extremely difficult to tease out from the data. But because they can only be created in energetic particle collisions, they carry unique information about the conditions within. Studying this “sentry” information carried by the Lambda c should help scientists learn how relatively “free” quarks that populate the early-stage QGP eventually coalesce and combine to form the more familiar composite particles of ordinary matter.

    Tracking high-momentum jets

    Observing how jets of particles springing from individual quarks or gluons lose energy, or get “quenched,” as they interact with the medium has been one major sign that RHIC’s energetic collisions of gold on gold were forming QGP. STAR will present several new jet studies that provide further insights into both how this quenching occurs and how the lost energy re-emerges, In addition, PHENIX will present new results exploring the question of whether collisions of smaller particles with gold, which appear to create the flow patterns of QGP, also show evidence of jet quenching. Their results include data on jet energy loss in a variety of collision systems, both large and small. The method uses photons emitted opposite the jet to calibrate how much energy the jet should have to determine whether or not there was quenching. The data show some modifications to the jet structure and the yield of high-momentum particles inside the jets, but it is not yet clear how to interpret these results.

    Taking the QGP’s temperature

    Tracking heavy quarks and particles made from them gives RHIC physicists a new way to zero in on a more precise temperature of the QGP—already known to be more than 250,000 times hotter than the center of the sun. The new precision comes from measuring how different bound states of heavy quark-antiquark pairs, held together with different amounts of energy, melt in the plasma. STAR counts up different types of these particles (for example, Upsilons, pairs of bottom and anti-bottom quarks, that come in several binding varieties) using another recently upgraded detector component called the Muon Telescope Detector. Muons are the decay products of the Upsilons. STAR uses these counts to look for a deficit of one type of Upsilon relative to another to set boundaries on the QGP temperature. The physicists are eager to compare their results with those from the LHC, where with higher collision energies, they expect to see higher temperatures.

    PHENIX’s measurements of temperature have relied on tracking photons, particles of light, emitted from the hot matter (think of the glow of an iron bar in a blacksmith’s fire, where the color of the light is related to how hot the iron is). But PHENIX’s photon data have uncovered something unusual: While collisions initially emit photons equally in all directions, fractions of a second later the emitted photons appear to have a directional preference that resembles the elliptical flow pattern of the perfect liquid QGP. This is intriguing because photons shouldn’t interact with the matter—or even be produced in such measurable quantities as the matter produced in the collisions cools and expands. To explore this mystery, PHENIX measured thermal direct photons at different gold-gold collision energies (39, 62, and 200 billion electron volts, or GeV), as well as in the smaller collision system. The results they present will shed light on the sources of these direct photons.

    Disentangling the effects of cold nuclear matter

    RHIC physicists are also learning more about “cold” nuclear matter—the state of the nucleus, filled with a field of gluons, before it collides—and how to account for its effects when studying the hot QGP. In order to disentangle the effects of cold nuclear matter, PHENIX is comparing the suppression of the excited state of the bound charm-anti-charm particle known as Psi to its ground state. They are studying collisions of protons and helium with gold or aluminum—small systems where cold nuclear matter predominates—and will use these as a baseline for better understanding the sequential melting of the bound states in the hot QGP. Their findings indicate that the less tightly bound version of the Psi is more than twice as susceptible to the effects of cold nuclear matter than the more tightly bound version. This effect must be accounted for in analyzing the data from QGP-creating collisions where the presence of both cold and hot nuclear matter influences the results.

    New way to turn down the energy

    STAR has exploited RHIC’s ability to collide nuclei over a wide range of collision energies, conducting a Beam Energy Scan to explore the creation of QGP and its transition to ordinary nuclear matter over a wide range of conditions. At QM17 they’ll present data from collisions at the lowest energy yet. Instead of colliding one beam into the beam coming into the detector from the opposite direction, as occurs in most RHIC experiments, STAR placed a stationary target (a foil of gold) within the beam pipe inside STAR and aimed just one beam at the target. Like a collision in which one moving car crashes into one that is parked, this fixed-target collision lowered the impact compared to what would occur if both beams (or cars) were moving and colliding head on. Data from these low energy collisions will be an integral part of phase two of the Beam Energy Scan, which is enabled by improvements to the RHIC accelerator complex that allow for higher collision rates.

    Research at RHIC is funded primarily by the U.S. Department of Energy’s Office of Science and by these agencies and organizations.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    BNL Campus

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world.Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

  • richardmitnick 2:31 pm on February 5, 2017 Permalink | Reply
    Tags: , , CERN LHC, , , , ,   

    From CERN via futurism: “Scientists May Have Solved the Biggest Mystery of the Big Bang” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead




    February 2, 2017
    Chelsea Gohd

    The Unanswered Question

    The European Council for Nuclear Research (CERN) works to help us better understand what comprises the fabric of our universe. At this French association, engineers and physicists use particle accelerators and detectors to gain insight into the fundamental properties of matter and the laws of nature. Now, CERN scientists may have found an answer to one of the most pressing mysteries in the Standard Model of Physics, and their research can be found in Nature Physics.

    According to the Big Bang Theory, the universe began with the production of equal amounts of matter and antimatter. Since matter and antimatter cancel each other out, releasing light as they destroy each other, only a minuscule number of particles (mostly just radiation) should exist in the universe. But, clearly, we have more than just a few particles in our universe. So, what is the missing piece? Why is the amount of matter and the amount of antimatter so unbalanced?

    Access mp4 video here .

    The Standard Model of particle physics does account for a small percentage of this asymmetry, but the majority of the matter produced during the Big Bang remains unexplained.

    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.
    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    Noticing this serious gap in information, scientists theorized that the laws of physics are not the same for matter and antimatter (or particles and antiparticles). But how do they differ? Where do these laws separate?

    This separation, known as charge-parity (CP) violation, has been seen in hadronic subatomic particles (mesons), but the particles in question are baryons. Finding evidence of CP violation in these particles would allow scientists to calculate the amount of matter in the universe, and answer the question of why we have an asymmetric universe. After decades of effort, the scientists at CERN think they’ve done just that.

    Using a Large Hadron Collider (LHC) detector, CERN scientists were able to witness CP violation in baryon particles. When smashed together, the matter (Λb0) and antimatter (Λb0-bar) versions of the particles decayed into different components with a significant difference in the quantities of the matter and antimatter baryons. According to the team’s report, “The LHCb data revealed a significant level of asymmetries in those CP-violation-sensitive quantities for the Λb0 and Λb0-bar baryon decays, with differences in some cases as large as 20 percent.”

    Access mp4 video here .

    What Does This Mean?

    This discovery isn’t yet statistically significant enough to claim that it is definitive proof of a CP variation, but most believe that it is only a matter of time. “Particle physics results are dragged, kicking and screaming, out of the noise via careful statistical analysis; no discovery is complete until the chance of it being a fluke is below one in a million. This result isn’t there yet (it’s at about the one-in-a-thousand level),” says scientist Chris Lee. “The asymmetry will either be quickly strengthened or it will disappear entirely. However, given that the result for mesons is well and truly confirmed, it would be really strange for this result to turn out to be wrong.”

    This borderline discovery is one huge leap forward in fully understanding what happened before, during, and after the Big Bang. While developments in physics like this may seem, from the outside, to be technical achievements exciting only to scientists, this new information could be the key to unlocking one of the biggest mysteries in modern physics. If the scientists at CERN are able to prove that matter and antimatter do, in fact, obey separate laws of physics, science as we know it would change and we’ll need to reevaluate our understanding of our physical world.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier



    CERN CMS New

    CERN LHCb New II


    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    Quantum Diaries

  • richardmitnick 1:12 pm on January 31, 2017 Permalink | Reply
    Tags: , , , CERN LHC, , , ,   

    From Symmetry: “Sign of a long-sought asymmetry” 

    Symmetry Mag

    Sarah Charley

    A result from the LHCb experiment shows what could be the first evidence of matter and antimatter baryons behaving differently.

    Simona Lippi


    A new result from the LHCb experiment at CERN could help explain why our universe is made of matter and not antimatter.

    Matter particles, such as protons and electrons, all have an antimatter twin. These antimatter twins appear identical in nearly every respect except that their electric and magnetic properties are opposite.

    Cosmologists predict that the Big Bang produced an equal amount of matter and antimatter, which is a conundrum because matter and antimatter annihilate into pure energy when they come into contact. Particle physicists are looking for any minuscule differences between matter and antimatter, which might explain why our universe contains planets and stars and not a sizzling broth of light and energy instead.

    The Large Hadron Collider doesn’t just generate Higgs bosons during its high-energy proton collisions—it also produces antimatter. By comparing the decay patterns of matter particles with their antimatter twins, the LHCb experiment is looking for miniscule differences in how these rival particles behave.

    “Many antimatter experiments study particles in a very confined and controlled environment,” says Nicola Neri, a researcher at Italian research institute INFN and one of the leaders of the study. “In our experiment, the antiparticles flow and decay, so we can examine other properties, such as the momenta and trajectories of their decay products.”

    The result, published today in Nature Physics, examined the decay products of matter and antimatter baryons (a particles containing three quarks) and looked at the spatial distribution of the resulting daughter particles within the detector. Specifically, Neri and his colleagues looked for a very rare decay of the lambda-b particle (which contains an up quark, down quark and bottom quark) into a proton and three pions (which contain an up quark and anti-down quark).

    Based on data from 6000 decays, Neri and his team found a difference in the spatial orientation of the daughter particles of the matter and antimatter lambda-bs.

    “This is the first time we’ve seen evidence of matter and antimatter baryons behaving differently,” Neri says. “But we need more data before we can make a definitive claim.”

    Statistically, the result has a significant of 3.3 sigma, which means its chances of being a just a statistical fluctuation (and not a new property of nature) is one out of a thousand. The traditional threshold for discovery is 5 sigma, which equates to odds of one out of more than a million.

    For Neri, this result is more than early evidence of a never before seen process—it is a key that opens new research opportunities for LHCb physicists.

    “We proved that we are there,” Neri says, “Our experiment is so sensitive that we can start systematically looking for this matter-antimatter asymmetry in heavy baryons at LHCb. We have this capability, and we will be able to do even more after the detector is upgraded next year.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.

  • richardmitnick 3:11 pm on January 26, 2017 Permalink | Reply
    Tags: , CERN LHC, CERN Robots, , TIM - Train Inspection Monorail   

    From Symmetry: “The robots of CERN” 

    Symmetry Mag


    Sarah Charley

    Mario di Castro, CERN
    TIM and other mechanical friends tackle jobs humans shouldn’t.

    The Large Hadron Collider is the world’s most powerful particle accelerator. Buried in the bedrock beneath the Franco-Swiss boarder, it whips protons through its nearly 2000 magnets 11,000 times every second.

    CERN/LHC Map
    CERN LHC Grand Tunnel
    CERN LHC particles
    LHC at CERN

    As you might expect, the subterranean tunnel which houses the LHC is not always the friendliest place for human visitors.

    “The LHC contains 120 tons of liquid helium kept at 1.9 Kelvin,” says Ron Suykerbuyk, an LHC operator. “This cooling system is used to keep the electromagnets in super conducting state capable of carrying up to 13,000 Amps of current through its wires. Even with all the safety systems we have in place, we prefer to limit our underground access when the cryogenic systems are on”.

    But as with any machine, sometimes the LHC needs attention: inspections, repairs, tuning. The LHC is so secure that even with perfect conditions, it takes 30 minutes after the beam is shut off for the first humans to even arrive at the entrance to the tunnel.

    But the robotics team at CERN asks: Why do we need humans for this job anyway?

    Enter TIM—the Train Inspection Monorail. TIM is a chain of wagons, sensors and cameras that snake along a track bolted to the LHC tunnel’s ceiling. In the 1990s, the track held a cable car that transported machinery and people around the Large Electron-Position Collider, the first inhabitant of the tunnel.

    CERN LEP Collider
    CERN LEP Collider

    With the installation of the LHC, there was no longer room for both accelerator and the cable car, so the monorail was reconfigured for the sleeker TIM robots.

    There are currently two TIM robots and plans to install two more in the next couple of years. These four TIM robots will patrol the different quadrants of the LHC, enabling operators to reach any part of the 17-mile tunnel within 20 minutes. As TIM slithers along the ceiling, an automated eye keeps watch for any changes in the tunnel and a robotic arm drops down to measure radiation. Other sensors measure the temperature, oxygen level and cell phone reception.

    “In addition to performing environmental measurements, TIM is a safety system which can be the eyes and ears for members of the CERN Fire Brigade and operations team,” says Mario Di Castro, the leader of CERN’s robotics team. “Eventually we’d like to equip TIM with a fire extinguisher and other physical operations so that it can be the first responder in case of a crisis.”

    TIM isn’t alone in its mission to provide a safer environment for its human coworkers. CERN also has three teleoperated robots that can assess troublesome areas, provide assessments of hazards and carry tools.

    The main role of these three robots is to access radioactive areas.

    Radiation is a type of energy carried by free-moving subatomic particles. As protons race around CERN’s accelerator complex, special equipment called collimators constrict their passage and absorb particles that have wondered away from the center of the beam pipe. This trimming process ensures that the proton stream is compact and tidy.

    After a couple weeks of operation, the collimators have absorbed so many particles that they will reemit their energy—even after the beam is shut off. There is no radiation hazard to humans unless they are within a few meters of the collimators, and because the machine is fully automated, humans rarely need to perform check-ups. But occasionally, material in these restricted areas required attention.

    By replacing humans with robots, engineers can quickly fix small problems without needing to wait long periods of time for the radiation to dissipate or sending personnel into potentially unsafe environments.

    “CERN robots help perform repetitive and dangerous tasks that humans either prefer to avoid or are unable to do because of hazards, size constraints or the extreme environments in which they take place, such CERN experimental areas,” Di Castro says.

    About half the time, these tasks are very simple, such as performing a visual assessment of the area or taking measurements. “Robots can replace humans for these simple tasks and improve the quality and timeliness of work,” he says.

    Last year the SPS accelerator (which starts the acceleration process for particles that eventually move to the LHC) needed an oil refill to keep its parts running smoothly.
    But the accelerator itself was too radioactive for humans to visit, so one of the CERN robotics team’s robots rolled in gripping an oil can in its flexible arm.

    In June 2016, scientists needed to dispose of radioactive Cobalt, Cesium and Americium they had used to calibrate radiation sensors. Two CERN robots cycled in with several tools, extracted the radioactive sources and packed them in thick protective containers for removal.

    Over the last two years, these two robots have performed more than 30 interventions, saving humans both time and radiation doses.

    As the LHC increases the power and particle collisions over the next decade, Di Castro and his team are preening these robot companions to increase their capabilities. “We are putting a strong commitment to adapt and develop existing robotic solutions to fit CERN’s evolving needs,” Di Castro says.

    Access mp4 video here .

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.

  • richardmitnick 2:46 pm on January 14, 2017 Permalink | Reply
    Tags: , CERN LHC, , , Julia Thom-Levy, , , Thom-Levy research group,   

    From Cornell: Women in STEM – “In Search of New Physics Phenomena” Julia Thom-Levy 

    Cornell Bloc

    Cornell University

    Alexandra Chang

    Julia Thom-Levy
    Associate Professor
    Physics, College of Arts and Sciences
    Experimental high energy physics; experimental particle physics; Large Hadron Collider, solid state detectors for particle physics

    More than 3,800 miles away and across the Atlantic Ocean from Cornell’s Physical Sciences Building is Geneva, Switzerland, the home of the European Organization for Nuclear Research (CERN) laboratory and the highest-energy particle accelerator on earth.

    CERN/LHC Map
    CERN LHC Grand Tunnel
    CERN LHC particles
    LHC at CERN

    Cornell at CERN

    Despite the distance, Cornell researchers are actively involved in the cutting-edge particle physics experiments taking place at CERN. Julia Thom-Levy, Physics, is one such professor. Thom-Levy has worked on the Compact Muon Solenoid (CMS) experiment at CERN’s Large Hadron Collider (LHC) since 2005.

    CERN/CMS Detector
    CERN/CMS Detector

    Specifically, Thom-Levy is on a collaborative team of Cornell researchers who are responsible for developing software for the CMS detector, designing upgrades to the detector, and analyzing data collected by the CMS—all in search of new physics phenomena.

    CMS is one of the two LHC detectors that led to the discovery of the Higgs boson (an elementary particle in the Standard Model of particle physics) in 2012 during the most recent LHC run. Since then, the LHC has been undergoing repairs. A second run took place during June 2015, with the LHC running at twice the energy, a major improvement that could lead to further discoveries.

    “We are in an interesting situation here: a mathematical model—The Standard Model—explains all particle observations very well,” says Thom-Levy, who played a role in confirming the Standard Model to better precision over the past 15 years.

    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.
    The Standard Model of elementary particles (more schematic depiction), with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    “It’s a very precise model. We know, however, that it doesn’t hold water, because we cannot explain certain important things like dark matter, or how exactly the Higgs boson ends up with the mass that we measure. There is a strange tension: on the one hand, we know what these particles do; we can predict it, but we don’t know why.”


    Thom-Levy says that the second run of the LHC could reveal new particles, or inconsistencies in the data—“smoking guns” that will point scientists in the right direction. For example, they could find particles that might be consistent with supersymmetry, a proposed extension of the Standard Model, which could explain such mysteries as dark matter.

    Dark matter in our universe has been elusive so far to detection—it does not emit or absorb light. Thom-Levy says that the LHC might, however, be able to produce dark matter, and that it is possible to observe it through its distinctive signature in the detector, which is the signature of nothing. One possibility is that dark matter consists of the lightest supersymmetric particles, and discovering it in the next run would be a huge boon to the researchers.

    That said, Thom-Levy is cautious in her predictions. “I’m being very hypothetical,” she says. “The big glaring signature for supersymmetry did not appear in the first run. That was one of the surprises. It’s such a beautiful theory and we joke that it would be a shame if nature didn’t work that way. It’s something we will continue to look for.”

    The Big Data Element

    The Cornell CMS group—James Alexander, Richie Patterson, Anders Ryd, Peter Wittich, and Thom-Levy along with their students and postdocs—play a critical role in developing software to record and interpret the incredible amounts of data collected by the CMS.

    Members of the Thom-Levy research group

    When the detector is running, it records terabytes of data every day, and that data needs to be stored and distributed to various research institutions across the world for analysis. Researchers write programs to filter through trillions of proton interactions to get to the ones that are really interesting—ones that produce a Higgs or a top quark, for example.

    “The most interesting interactions are often the most rare; they are the highest energy, highest masses, and very unlikely to be produced,” says Thom-Levy. “A lot of our field is like needle-in-the-haystack research.” Because of this, Thom-Levy says her students are exposed to “big-data,” and they learn how to handle and analyze huge volumes of data.

    Students also spend time at CERN and learn how to make the detector work. Many of the group’s students are currently in Geneva, writing software for and testing electronics on the CMS detector.

    Next-Generation Detectors

    Thom-Levy is also developing better detectors, using the latest cutting-edge materials and technologies. One challenge is that the particle’s high energies result in extremely high radiation levels, which damage the detector. As energy levels and particle density increase, the detectors need to become better at withstanding radiation, while still providing high precision measurements.

    To address that and other problems, Thom-Levy is involved in a collaborative project testing the use of three-dimensional integrated circuitry for silicon detectors. She says that it could make detectors much thinner, use less power, and make them potentially stronger against radiation. So far, her group has simulated detectors and prototyped components at the Cornell NanoScale Science and Technology Facility (CNF). The next steps would be to work with more industry and university partners to hopefully build the next generation of detectors to be used at CERN’s CMS.

    Pursuing the Universe’s Mysteries

    Thom-Levy describes her journey to CERN as a sort of odyssey following the most interesting particle physics to various places. She started at Germany’s national accelerator lab, moved on to Stanford’s Linear Accelerator Center, off to Fermilab in Illinois, until finally landing at CERN. “With each move, the energy went up,” she says with a laugh.

    When asked why she was drawn to particle physics in the first place, she gives credit to the local accelerator in her hometown. “I always knew I wanted to do sub-nuclear physics,” she says. “How does the nucleus work? What does it consist of? Can you break its constituents down, down, down? What’s the most fundamental unit in the universe?”

    These are questions that are both scientific and philosophical to Thom-Levy. “We want to get to the very essence. It’s nothing we can touch, but the shadows of the mysterious workings of tiny particles may tell us about the most fundamental truth of the world.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

  • richardmitnick 2:48 pm on January 5, 2017 Permalink | Reply
    Tags: , , , CERN LHC, , , , ,   

    From Symmetry: “Anything to declare?” A Really Cool Article by Sarah Charley 

    Symmetry Mag

    Sarah Charley

    A scientist at CERN removes a delicate half-disk of pixels from its custom-made box. The box was designed to fit snugly in an airplane seat. Photo courtesy of John Conway

    John Conway knows the exact width of airplane aisles (15 inches). He also personally knows the Transportation Security Administration operations manager at Chicago’s O’Hare Airport. That’s because Conway has spent the last decade transporting extremely sensitive detector equipment in commercial airline cabins.

    “We have a long history of shipping particle detectors through commercial carriers and having them arrive broken,” says Conway, who is a physicist at the University of California, Davis. “So in 2007 we decided to start carrying them ourselves. Our equipment is our baby, so who better to transport it than the people whose work depends on it?”

    Their instrument isn’t musical, but it’s just as fragile and irreplaceable as a vintage Italian cello, and it travels the same way. Members of the collaboration for the CMS experiment at CERN research center tested different approaches for shipping the instrument by embedding accelerometers in the packages. Their best method for safety and cost-effectiveness? Reserving a seat on the plane for the delicate cargo.

    CERN CMS Higgs Event
    CERN/CMS Detector
    CMS at CERN

    In November Conway accompanied parts of the new CMS pixel detector from the Department of Energy’s Fermi National Accelerator Laboratory [FNAL] in Chicago to CERN in Geneva. The pixels are very thin silicon chips mounted inside a long cylindrical tube. This new part will sit in the heart of the CMS experiment and record data from the high-energy particle collisions generated by the Large Hadron Collider [LHC].

    CERN/LHC Map
    CERN LHC Grand Tunnel
    CERN LHC particles
    LHC at CERN

    “It functions like the sensor inside a digital camera,” Conway said, “except it has 45 megapixels and takes 40 million pictures every second.”

    Scientists and engineers assembled and tested these delicate silicon disks at Fermilab before Conway and two colleagues escorted them to Geneva. The development and construction of the component pieces took place at Fermilab and universities around the United States.

    Conway and his colleagues reserved each custom-made container its own economy seat and then accompanied these precious packages through check-in, security and all the way to their final destination at CERN. And although these packages did not leave Fermilab through the shipping department, each carried its own official paperwork.

    “We’d get a lot of weird looks when rolling them onto the airplane,” Conway says. “One time the flight crew kept joking that we were transporting dinosaur eggs.”

    After four trips by three people across the Atlantic, all 12 components of the US-built pixel detectors are at CERN and ready for integration with their European counterparts. This winter the completed new pixel detector will replace its time-worn predecessor currently inside the CMS detector.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.

  • richardmitnick 9:53 pm on December 14, 2016 Permalink | Reply
    Tags: , , CERN LHC, , , , , , ,   

    From SA: “It’s Time for Particle Physics to go Back to the Future” 

    Scientific American

    Scientific American

    December 14, 2016
    Savas Dimopoulos

    M. Stanley Livingston (left) and Ernest O. Lawrence in front of 27-inch cyclotron at the old Radiation Laboratory at the University of California, Berkeley. Credit: U.S. Department of Energy; Public Domain

    he old radiation Laboratory on the UC Campus. No image credit.

    Particle physics is incredible—an awe-inspiring combination of ambitious research and technical skill. Theorists have built a picture of our universe at the smallest scale, and experimentalists have devised the most ambitious experiments to probe this infinitesimal world.

    Their successes have led to the Standard Model, a staggeringly successful theory and the most complete understanding of nature we have, which explains almost everything we observe in terms of a handful of numbers, particles, and forces.

    Modern particle physics is a triumph of humanity’s best qualities: creativity, curiosity, and collaboration.

    The field’s crowning achievement, the Large Hadron Collider at CERN, is the biggest, most complex terrestrial experiment in history.

    CERN/LHC Map
    CERN LHC Grand Tunnel
    CERN LHC particles
    LHC at CERN

    It cost $10 billion to build, is 17 miles in circumference, and straddles two countries. Its superconducting magnets, proton beam, and sheer power are engineering marvels. There are as many as 13,000 brilliant people working at CERN on any given day.

    Without question, the LHC is the signature scientific machine for particle physics of my generation. The discovery of the Higgs boson—a particle predicted by theory a half-century earlier—was one of history’s great scientific achievements.

    CERN CMS Higgs Event
    CERN CMS Higgs Event
    CERN/CMS Detector
    CERN/CMS Detector

    CERN ATLAS Higgs Event
    CERN ATLAS Higgs Event
    CERN/ATLAS detector
    CERN/ATLAS detector

    But there is a problem. The LHC is reaching its energy limits, and it will take roughly 30 years to build the next great collider. That number is conservative, given the enormous complexities and costs involved. It also happens to be the approximate lifespan of an academic career.

    Can we really expect an entire generation of young minds to sit on the sidelines waiting for the next experiment to be built? More importantly, should we?

    For a decade, particle physicists have thought about what comes next. How we should address the many gaps in our knowledge? What is the nature of dark matter? What is our universe really made of and how does it work? Why is the universe so large? Why is gravity so weak? Physics is far from finished.

    I think we should look to our past for the answer.

    The first particle accelerators were built in the early 1930s. John Cockroft and Ernest Walton used a 200-kilovolt transformer to accelerate protons down a tube just eight feet long. Ernest Lawrence realized that if the tube were made circular, and particles were kept moving, they would accelerate to much higher energies. His first “cyclotron” was four-and-a-half inches in diameter.

    First cyclotron built by E.O. Lawrence at UC Berkeley, 1930

    In its early days, particle physics was a dynamic, fast-moving interaction of theory, inspiration, calculation, engineering, and tinkering. Everything went into the mix, and each spectacular success built support for the next leap forward, further galvanizing public support for big science in the 20th century.

    The age of accelerators was enormously successful, and I believe it will be again, but in the interim we should return to our roots.

    Over the last 40 years, a number of well-motivated, important theoretical ideas have developed, but have not yet been tested experimentally—not because they are unworthy, but because we have focused on high energy experiments. These ideas imply the existence of new dimensions of space, new forces in nature, and new fundamental constituents of matter. They are ideas of great importance that cannot be tested by simply going to higher and higher energies.

    While we have focused on supersized particle accelerators, modern technology has opened a new frontier, heralding the era of high-precision particle physics. These technologies can be employed in small, precise experiments that can look for a broad range of new phenomena. These experiments can fit on a table top, require 10 people rather than 10,000, and cost a few hundred thousand dollars, rather than the billions required for a supercollider like the LHC.

    We are on the verge of a renaissance in table-top particle physics experiments.

    Over the last decade or so, a number of smart, ambitious young theorists have begun to think seriously about applying new technologies to previously overlooked areas.

    Three of them—former students of mine, I am very proud to say—have just been awarded the prestigious Breakthrough New Horizons Prize: Asimina Arvanitaki (The Stavros Niarchos Foundation Aristarchus Chair at Canada’s Perimeter Institute), Peter Graham (Assistant Professor at Stanford University) and Surjeet Rajendran (The Henry Shenker Assistant Professor at UC Berkeley).

    I see the award as further validation that these young scientists are pushing the field in important new directions.

    As a former teacher of these brilliant young people, I am brimming with pride. As a theorist who waited decades to test my work at the LHC, I see three bright lights who can help us avoid a “lost generation” in particle physics.

    I hope that this newly awarded research is further embraced with the same excitement and dynamism that characterized the early days of particle physics.

    If this comes to pass, the coming decades will be an exciting time to be a particle physicist—and, by extension, an exciting time for human inquiry into the nature of it all.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Scientific American, the oldest continuously published magazine in the U.S., has been bringing its readers unique insights about developments in science and technology for more than 160 years.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: