From The Lunar and Planetary Laboratory At The University of Arizona And OSIRIS-Rex : “Bennu holds the solar system’s ‘original ingredients,’ might have been part of a wet world”

From The Lunar and Planetary Laboratory

At

The University of Arizona

And

OSIRIS-Rex

National Aeronautics Space Agency UArizona OSIRIS-REx Spacecraft.

6.26.24
Media Contact
Mikayla Mace Kelley
Science Writer
mikaylamace@arizona.edu
520-621-1878

Research Contact
Dante Lauretta
Lunar and Planetary Laboratory
lauretta@lpl.arizona.edu
520-626-1138

1
A microscope image of a dark Bennu particle, about a millimeter long, with a crust of bright phosphate. To the right is a smaller fragment that broke off. From Lauretta & Connolly et al. (2024) Meteoritics & Planetary Science

A deep dive into the sample of rocks and dust returned from near-Earth asteroid Bennu by NASA’s University of Arizona-led OSIRIS-REx mission has revealed some long-awaited surprises.

Bennu contains the original ingredients that formed our solar system, the OSIRIS-REx Sample Analysis Team found. The asteroid’s dust is rich in carbon and nitrogen, as well as organic compounds, all of which are essential components for life as we know it. The sample also contains magnesium sodium phosphate, which was as a surprise to the research team, because it wasn’t seen in the remote sensing data collected by the spacecraft at Bennu. Its presence in the sample hints that the asteroid could have splintered off from a long-gone, tiny, primitive ocean world.

Launched on Sept. 8, 2016, the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer spacecraft, dubbed OSIRIS-REx, began its journey to near-Earth asteroid Bennu to collect a sample of rocks and dust from the surface. OSIRIS-REx was the first U.S. mission to collect a sample from an asteroid. The spacecraft delivered the sample, weighing 4.3 ounces, or 121.6 grams, to Earth on Sept. 24, 2023.

“Finally having the opportunity to delve into the OSIRIS-REx sample from Bennu after all these years is incredibly exciting,” said Dante Lauretta, principal investigator for OSIRIS-REx and Regents Professor of planetary sciences in the University of Arizona Lunar and Planetary Laboratory. “This breakthrough not only answers longstanding questions about the early solar system but also opens new avenues of inquiry into the formation of Earth as a habitable planet. The insights outlined in our overview paper have sparked further curiosity, driving our eagerness to explore deeper.”

Lauretta is co-lead author of a paper published in Meteoritics & Planetary Science that details the nature of the asteroid sample. The paper also serves as an introduction to the Bennu sample catalog, an online resource where information about the sample is made publicly available and where scientists can request sample material for their own research.

“The publication of the first paper led by Dr. Lauretta and Dr. Connolly describing the Bennu sample is an exciting milepost for the mission and for the Lunar and Planetary Laboratory,” said Mark Marley, director of the UArizona Lunar and Planetary Laboratory and head of the Department of Planetary Sciences. “Our faculty, scientists and students will continue to study the sample for years and decades to come. For now, we can only imagine the stories of the origins of our planet and the life upon it still to be told by the Bennu grains already in our laboratories.”

A ‘watery past’ for Bennu?

Analysis of the Bennu sample unveiled intriguing insights into the asteroid’s composition. Dominated by clay minerals, particularly serpentine, the sample mirrors the type of rock found at mid-ocean ridges on Earth, where material from the mantle, the layer beneath Earth’s crust, encounters water.

This interaction between ocean water and materials from the Earth’s mantle results in clay formation and gives rise to a variety of minerals including carbonates, iron oxides and iron sulfides. But the most unexpected discovery in the Bennu sample is the presence of water-soluble phosphates, Lauretta said. These compounds are components of biochemistry for all known life on Earth today.

A similar phosphate was found in the asteroid Ryugu sample delivered by the Japan Aerospace Exploration Agency’s Hayabusa2 mission in 2020. But the magnesium sodium phosphate detected in the Bennu sample stands out for the lack of inclusions, which are like little bubbles of other minerals trapped within the rock, and the size of its grains, unprecedented in any meteorite sample, Lauretta said.

The finding of magnesium sodium phosphates in the Bennu sample raises questions about the geochemical processes that brought these elements together, and provides valuable clues about Bennu’s historic conditions.

“The presence and state of phosphates, along with other elements and compounds on Bennu, suggest a watery past for the asteroid,” Lauretta said. “Bennu potentially could have once been part of a wetter world. Although, this hypothesis requires further investigation.”

From a young solar system

Despite its possible history of interaction with water, Bennu remains a chemically primitive asteroid, with elemental proportions closely resembling those of the sun.

“The sample we returned is the largest reservoir of unaltered asteroid material on Earth right now,” Lauretta said.

The asteroid’s composition offers a glimpse into the early days of our solar system, over 4.5 billion years ago. The rocks have retained their original state, having neither melted nor resolidified since their creation, affirming their pristine nature and ancient origins.

Hints at life’s building blocks

The team has also confirmed the asteroid is rich in carbon and nitrogen. These elements are crucial in understanding the environments from which Bennu’s materials originated and the chemical processes that transformed simple elements into complex molecules, potentially laying the groundwork for life on Earth.

“These findings underscore the importance of collecting and studying material from asteroids like Bennu – especially low-density material that would typically burn up upon entering Earth’s atmosphere,” said Lauretta. “This material holds the key to unraveling the intricate processes of solar system formation and the prebiotic chemistry that could have contributed to life emerging on Earth.”

What’s next

Dozens more labs in the United States and around the world will receive portions of the Bennu sample from NASA’s Johnson Space Center in Houston in the coming months, and many more scientific papers describing the Bennu sample are expected in the next few years from the OSIRIS-REx Sample Analysis Team.

“The Bennu samples are tantalizingly beautiful extraterrestrial rocks,” said the paper’s co-lead author, Harold Connolly, the mission sample scientist who leads the Sample Analysis Team, professor at Rowan University in Glassboro, New Jersey, and a visiting research scientist at UArizona. “Each week, analysis by the OSIRIS-REx Sample Analysis Team provides new and sometimes surprising findings that are helping place important constraints on the origin and evolution of Earthlike planets.”

See the full article here .

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.


five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.

Stem Education Coalition

The OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer) is a NASA asteroid study and sample-return mission. The mission’s main goal is to obtain a sample of at least 60 grams (2.1 oz) from 101955 Bennu, a carbonaceous near-Earth asteroid, and return the sample to Earth for a detailed analysis. The material returned is expected to enable scientists to learn more about the formation and evolution of the Solar System, its initial stages of planet formation, and the source of organic compounds that led to the formation of life on Earth. If successful, OSIRIS-REx will be the first U.S. spacecraft to return samples from an asteroid. The Lidar instrument used aboard the OSIRIS-REx was built by Lockheed Martin, in conjunction with the Canadian Space Agency.
OSIRIS-REx was launched on 8 September 2016, flew past Earth on 22 September 2017, and reached the proximity of Bennu on 3 December 2018, where it began analyzing its surface for a target sample area over the next several months. It is expected to return with its sample to Earth on 24 September 2023.
The cost of the mission is approximately US$800 million not including the Atlas V launch vehicle, which is about US$183.5 million. It is the third planetary science mission selected in the New Frontiers program, after Juno and New Horizons. The principal investigator is Dante Lauretta from the University of Arizona.

2

The National Aeronautics and Space Administration is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab Orbital Workshop, and later the Space Shuttle.

Skylab Orbital Workshop.
Space Shuttle.

Currently, NASA is supporting the International Space Station .

International Space Station.

NASA is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles.

Orion Spacecraft depiction.

The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

It is impossible to place a value on the work accomplished by the great Observatories:

Hubble Space Telescope with instruments annotated. Click on the image for a readable version.
The National Aeronautics and Space Administration Chandra X-ray telescope.
National Aeronautics and Space AdministrationSpitzer Infrared Space Telescope no longer in service. Launched in 2003 and retired on 30 January 2020.

The addition of the Webb Infrared observatory has proven to be immeasurably valuable. Webb has taken Man further back to the origins of the first stars and galaxies than we could have ever imagined.

National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) Webb Infrared Space Telescope annotated, finally launched December 25, 2021, ten years late. Click for more readable view.

And now NASA’s PACE spacecraft will help us better understand our ocean and atmosphere by measuring key variables associated with cloud formation, particles and pollutants in the air, and microscopic, floating marine life (phytoplankton). These observations will help us better monitor ocean health, air quality, and climate change.

NASA PACE spacecraft.

NASA Science Fleet. Click for readable view.

NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program.

NASA shares data with various national and international organizations such as The Japan Aerospace Exploration Agency [国立研究開発法人宇宙航空研究開発機構](JP) and The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganization](EU).

The Lunar and Planetary Laboratory is a research center for planetary science located in Tucson, Arizona. It is also a graduate school, constituting the Department of Planetary Sciences at the University of Arizona. The Lunar and Planetary Laboratory is one of the world’s largest programs dedicated exclusively to planetary science in a university setting. The Lunar and Planetary Lab collection is held at the University of Arizona Special Collections Library.

The Lunar and Planetary Laboratory was founded in 1960 by astronomer Gerard Kuiper. Kuiper had long been a pioneer in observing the Solar System, especially the Moon, at a time when this was unfashionable among astronomers. Among his contributions are the discovery of Miranda and Nereid, the detection of carbon dioxide on Mars and of methane on Titan, and the prediction of the Kuiper Belt.

Kuiper Belt. Minor Planet Center.

Kuiper came to Tucson looking for greater independence than he had enjoyed at The University of Chicago, the chance to build a community dedicated to solar system studies, and also to be closer to southern Arizona’s many potential sites for world-class observatories, such as Kitt Peak National Observatory (founded in 1958) [below]. LPL was established under the auspices of the University of Arizona, with Kuiper serving as director until his death.

The Lunar and Planetary Laboratory’s endeavors are truly interdisciplinary. The accumulated knowledge and techniques of astronomy, physics, chemistry, geology, geophysics, geochemistry, atmospheric science, and engineering are all brought to bear upon the single goal of studying planetary systems. Many students come to The Lunar and Planetary Laboratory having studied only one or two of these subjects in detail, so a broad-based curriculum is essential.

In 1973, the university established a graduate Department of Planetary Sciences, operating continuously with The Lunar and Planetary Laboratory. This provided an administrative framework for The Lunar and Planetary Laboratory to admit graduate students and take a greater role in teaching. The Lunar and Planetary Laboratory’s chief officer is simultaneously “head” of the department and “director” of the laboratory.

The University of Arizona enrolls over 49,000 students in 19 separate colleges/schools, including The University of Arizona College of Medicine in Tucson and Phoenix and the James E. Rogers College of Law, and is affiliated with two academic medical centers (Banner – University Medical Center Tucson and Banner – University Medical Center Phoenix). The University of Arizona is one of three universities governed by the Arizona Board of Regents. The university is part of the Association of American Universities and is the only member from Arizona, and also part of the Universities Research Association.

Known as the Arizona Wildcats (often shortened to “Cats”), The University of Arizona’s intercollegiate athletic teams are members of the Pac-12 Conference of the NCAA. The University of Arizona athletes have won national titles in several sports, most notably men’s basketball, baseball, and softball. The official colors of the university and its athletic teams are cardinal red and navy blue.

After the passage of the Morrill Land-Grant Act of 1862, the push for a university in Arizona grew. The Arizona Territory’s “Thieving Thirteenth” Legislature approved The University of Arizona in 1885 and selected the city of Tucson to receive the appropriation to build the university. Tucson hoped to receive the appropriation for the territory’s mental hospital, which carried a $100,000 allocation instead of the $25,000 allotted to the territory’s only university Arizona State University was also chartered in 1885, but it was created as Arizona’s normal school, and not a university). Flooding on the Salt River delayed Tucson’s legislators, and by the time they reached Prescott, back-room deals allocating the most desirable territorial institutions had been made. Tucson was largely disappointed with receiving what was viewed as an inferior prize.

With no parties willing to provide land for the new institution, the citizens of Tucson prepared to return the money to the Territorial Legislature until two gamblers and a saloon keeper decided to donate the land to build the school. Construction of Old Main, the first building on campus, began on October 27, 1887, and classes met for the first time in 1891 with 32 students in Old Main, which is still in use today. Because there were no high schools in Arizona Territory, the university maintained separate preparatory classes for the first 23 years of operation.

Research

The University of Arizona is classified among “R1: Doctoral Universities – Very high research activity”. UArizona is the fourth most awarded public university by National Aeronautics and Space Administration for research. The University of Arizona was awarded over $300 million for its Lunar and Planetary Laboratory (LPL) to lead NASA’s 2007–08 mission to Mars to explore the Martian Arctic, and $800 million for its OSIRIS-REx mission, the first in U.S. history to sample an asteroid.

National Aeronautics Space Agency UArizona OSIRIS-REx Spacecraft.

The LPL’s work in the Cassini spacecraft orbit around Saturn is larger than any other university globally.

National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganization](EU)/ASI Italian Space Agency [Agenzia Spaziale Italiana](IT) Cassini Spacecraft.

The University of Arizona laboratory designed and operated the atmospheric radiation investigations and imaging on the probe. The University of Arizona operates the HiRISE camera, a part of the Mars Reconnaissance Orbiter.

U Arizona NASA Mars Reconnaisance HiRISE Camera.
NASA Mars Reconnaissance Orbiter.

While using the HiRISE camera in 2011, University of Arizona alumnus Lujendra Ojha and his team discovered proof of liquid water on the surface of Mars—a discovery confirmed by NASA in 2015.

The University of Arizona receives more NASA grants annually than the next nine top NASA/JPL-Caltech-funded universities combined. The University of Arizona’s Lunar and Planetary Laboratory is actively involved in ten spacecraft missions: Cassini VIMS; Grail; the HiRISE camera orbiting Mars; the Juno mission orbiting Jupiter; Lunar Reconnaissance Orbiter (LRO); Maven, which will explore Mars’ upper atmosphere and interactions with the sun; Solar Probe Plus, a historic mission into the Sun’s atmosphere for the first time; Rosetta’s VIRTIS; WISE; and OSIRIS-REx, the first U.S. sample-return mission to a near-earth asteroid, which launched on September 8, 2016.

NASA – GRAIL [Gravity Recovery and Interior Laboratory] Flying in Formation. Artist’s Concept. Credit: NASA.
National Aeronautics Space Agency Juno at Jupiter.
NASA Lunar Reconnaissance Orbiter.
NASA Mars MAVEN.
NASA/Mars MAVEN
NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker. The Johns Hopkins University Applied Physics Lab.
NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker. The Johns Hopkins University Applied Physics Lab annotated.
National Aeronautics and Space Administration Wise/NEOWISE Telescope.

The University of Arizona students have been selected as Truman, Rhodes, Goldwater, and Fulbright Scholars. According to The Chronicle of Higher Education, UArizona is among the top producers of Fulbright awards.

The University of Arizona is a member of the Association of Universities for Research in Astronomy , a consortium of institutions pursuing research in astronomy. The association operates observatories and telescopes, notably Kitt Peak National Observatory just outside Tucson.

NSF NOIRLab NOAO Kitt Peak National Observatory on Kitt Peak in the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers (55 mi) west-southwest of Tucson, Altitude 2,096 m (6,877 ft) annotated. Click on image for readable view.

Led by Roger Angel, researchers in the Steward Observatory Mirror Lab at The University of Arizona are working in concert to build the world’s most advanced telescope. Known as the Giant Magellan Telescope (CL), it will produce images 10 times sharper than those from the Earth-orbiting Hubble Telescope.

GMT
Gregorian Optical Giant Magellan Telescope(CL) 21 meters, to be at the Carnegie Institution for Science’s Las Campanas Observatory(CL) some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high. Credit: Giant Magellan Telescope–GMTO Corporation.

GMT will ultimately cost $1 billion. Researchers from at least nine institutions are working to secure the funding for the project. The telescope will include seven 18-ton mirrors capable of providing clear images of volcanoes and riverbeds on Mars and mountains on the moon at a rate 40 times faster than the world’s current large telescopes. The mirrors of the Giant Magellan Telescope will be built at The University of Arizona and transported to a permanent mountaintop site in the Chilean Andes where the telescope will be constructed.

Reaching Mars in March 2006, the Mars Reconnaissance Orbiter contained the HiRISE camera, with Principal Investigator Alfred McEwen as the lead on the project. This National Aeronautics and Space Agency mission to Mars carrying the UArizona-designed camera is capturing the highest-resolution images of the planet ever seen. The journey of the orbiter was 300 million miles. In August 2007, The University of Arizona, under the charge of Scientist Peter Smith, led the Phoenix Mars Mission, the first mission completely controlled by a university. Reaching the planet’s surface in May 2008, the mission’s purpose was to improve knowledge of the Martian Arctic. The Arizona Radio Observatory , a part of The University of Arizona Department of Astronomy Steward Observatory , operates the Submillimeter Telescope on Mount Graham.

U Arizona Submillimeter Telescope located on Mt. Graham near Safford, Arizona, Altitude 3,191 m (10,469 ft)
NRAO 12m Arizona Radio Telescope, at U Arizona Department of Astronomy and Steward Observatory at Kitt Peak National Observatory, In the Sonoran Desert on the Tohono O’odham Nation Arizona USA, Altitude 1,914 m (6,280 ft).
U Arizona Steward Observatory at NSF’s NOIRLab NOAO Kitt Peak National Observatory in the Arizona-Sonoran Desert 88 kilometers 55 mi west-southwest of Tucson, Arizona in the Quinlan Mountains of the Tohono O’odham Nation, altitude 2,096 m (6,877 ft).

The National Science Foundation funds the iPlant Collaborative in with a $50 million grant. In 2013, iPlant Collaborative received a $50 million renewal grant. Rebranded in late 2015 as “CyVerse”, the collaborative cloud-based data management platform is moving beyond life sciences to provide cloud-computing access across all scientific disciplines.

In June 2011, the university announced it would assume full ownership of the Biosphere 2 scientific research facility in Oracle, Arizona, north of Tucson, effective July 1. Biosphere 2 was constructed by private developers (funded mainly by Texas businessman and philanthropist Ed Bass) with its first closed system experiment commencing in 1991. The university had been the official management partner of the facility for research purposes since 2007.

University of Arizona mirror lab. Where else in the world can you find an astronomical observatory mirror lab under a football stadium?
University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why the UA is a university unlike any other.
University of Arizona Landscape Evolution Observatory at Biosphere 2

Leave a comment