From The Defense Advanced Research Projects Agency (DARPA) And The James McKelvey School of Engineering At Washington University in St. Louis: “DARPA’s military-grade ‘quantum laser’ will use entangled photons to outshine conventional laser beams”

From The Defense Advanced Research Projects Agency (DARPA)

Via

Live Science

And

The James McKelvey School of Engineering

At

Wash U Bloc

Washington University in St. Louis

6.12.24
Owen Hughes [For Live Science]

Prototype quantum photonic-dimer laser uses entanglement to bind photons and deliver a powerful beam of concentrated light that can shine through adverse weather like thick fog.

1
Chris Rogers/Getty Images

Researchers are developing a new, military-grade “quantum laser” that can cut through fog and operate across long distances.

The U.S. Defense Advanced Research Projects Agency (DARPA) has awarded a $1 million grant to scientists building a prototype “quantum photonic-dimer laser” that uses quantum entanglement to “glue” light particles together and generate a highly concentrated laser beam.

Lasers play a crucial role in military operations and are used in everything from satellite communications and targeting technology to mapping and tracking systems like lidar (light detection and ranging).

Conventional lasers work by stimulating electrons in atoms to oscillate in unison. When these electrons move from a high-energy state to a low-energy state, they release a form of light called “coherent light” — light with uniform wavelength and phase. As this light is bounced between mirrors inside the laser device, it is refined into a concentrated laser beam.

But by using entangled photons, the quantum photonic-dimer laser can maintain precision and strength over greater distances and in adverse conditions, the scientists said in a statement. Quantum lasers could therefore provide better performance for military applications like surveillance and secure communications in harsh environments.

“Photons encode information when they travel, but the travel through the atmosphere is very damaging to them,” project lead Jung-Tsung Shen, associate professor of electrical & systems engineering at Washington University in St. Louis. “When two photons are bound together, they still suffer the effects of the atmosphere, but they can protect each other so that some phase information can still be preserved.”

The two-color photonic dimer laser works by bonding pairs of photons — fundamental particles that represent the smallest building blocks of electromagnetic radiation — through a process called quantum entanglement.

Quantum entanglement is a strange and complex phenomenon in the field of quantum mechanics that occurs when two or more particles become interconnected in such a way that one particle instantly influences the state of the other ­— regardless of the distance between them.

When two photons are linked together through quantum entanglement, they create what are known as photonic dimers, the researchers said. These pairs of photons are easier to manipulate because they act as a single entity, with any change applied to one photon directly affecting the other.

This binding of light particles increases the energy and stability of the laser, making it better at performing over long distances and in adverse conditions like extreme temperatures and fog.

Previous work by Shen and his team, published in December 2020, explored how quantum photonic-dimer laser technology could be used to improve deep brain imaging. In that study, they used photonic dimers to map intricate neural structures.

The technology can also play a role in quantum computing and telecommunications, the researchers said, possibly leading to faster and more secure ways of transmitting data.

“We are trying to exploit the property of entanglement to do something innovative. The entanglement can do many things that we can only dream of — this is just the tip of the iceberg,” Shen said.

And

6.4.24
Beth Miller [For Washington University in St. Louis]

JT Shen to pioneer two-color quantum photonic laser with DARPA grant

3
Jung-Tsung Shen is developing a prototype of a quantum photonic-dimer laser with a two-year, $1 million grant from the Defense Advanced Research Projects Agency (DARPA) of the U.S. Department of Defense. With the funding, Shen will implement his lab’s two-color photonic dimer laser technology, in which carefully controlled pairs of light particles, or photonic dimers, are used to generate a powerful and concentrated beam of light, or laser. (Image credit: Jung-Tsung Shen using DALL.E and Affinity Designer)

Communications and other laser-based technologies can be hampered by adverse conditions, such as fog, extreme temperatures or long distances. An engineer in the McKelvey School of Engineering at Washington University in St. Louis is implementing quantum technology to develop ways that lasers can operate effectively in these challenging environments.

Jung-Tsung Shen, associate professor in the Preston M. Green Department of Electrical & Systems Engineering, is developing a prototype of a quantum photonic-dimer laser with a two-year, $1 million grant from the Defense Advanced Research Projects Agency (DARPA) of the U.S. Department of Defense. With the funding, Shen will implement his lab’s two-color photonic dimer laser technology, in which carefully controlled pairs of light particles, or photonic dimers, are used to generate a powerful and concentrated beam of light, or laser. Quantum photonic-dimer lasers take advantage of quantum effects to bind two photons together, increasing their energy and efficiency.

Photons, or particles that represent a quantum of light, travel very quickly and don’t carry a charge, so it is difficult to get them to interact with each other and to manipulate them. Shen’s lab found that when he “glued” two photons of different colors together to form a photonic dimer using the power of quantum mechanics, they took on the behavior of a blue photon. The entanglement between the two photons within the dimer may offer unprecedented capabilities applications in communication and imaging, Shen said.

“Photons encode information when they travel, but the travel through the atmosphere is very damaging to them,” Shen said. “When two photons are bound together, they still suffer the effects of the atmosphere, but they can protect each other so that some phase information can still be preserved.”

These two-color dimers can be tailored to the atmosphere or to the fog through a unique property of quantum mechanics known as quantum entanglement, Shen said.

“Quantum entanglement is a correlation between photons,” he said. “We are trying to exploit the property of entanglement to do something innovative. The entanglement can do many things that we can only dream of — this is just the tip of the iceberg.”

Shen previously received funding from the Chan Zuckerberg Initiative to develop the technology for deep brain imaging. Researchers can implant fluorescent molecules in the brain and use photons to excite them, which allows the photons to collect information about the brain’s structure.

Now, Shen is exploring more of that vast iceberg to move toward the realization of applications in telecommunications, quantum computing and more.

Shen’s team, which includes graduate student Qihang Liu and collaborators from Texas A&M University’s Institute for Quantum Science & Engineering, will introduce the quantum photonic-dimer laser methods that will allow them to create different states of two-color dimers at a rate of 1 million pairs per second – a rate that has never been seen before.

“The unique thing about this project is its dual focus on generating these novel strongly correlated quantum photonic states and developing the theoretical framework and advanced algorithms for their efficient detection, potentially revolutionizing quantum imaging and communication,” Shen said.

Shawn Ballard contributed to this story.

See the full DARPA article here .

See the full Washington University in St Louis article here.

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

The James McKelvey School of Engineering is a part of Washington University in St. Louis. Founded in 1854, the engineering school is a research institution occupying seven buildings on Washington University’s Danforth Campus.
The McKelvey School of Engineering promotes independent inquiry and education with an emphasis on scientific excellence, innovation and collaboration without boundaries. McKelvey Engineering has top-ranked research and graduate programs across departments, particularly in biomedical engineering, environmental engineering and computing, and has one of the most selective undergraduate programs in the country. With over 165 full-time faculty, 1,500 undergraduate students, 1,600 graduate students and 22,000 living alumni, we are working to solve some of society’s greatest challenges; to prepare students to become leaders and innovate throughout their careers; and to be a catalyst of economic development for the St. Louis region and beyond.

On January 31, 2019, the School of Engineering & Applied Science was renamed the James McKelvey School of Engineering, in honor of trustee and distinguished alumnus Jim McKelvey Jr., the co-founder of Square, after his donation of an undisclosed sum that the school’s dean, Aaron Bobick, said has been the largest in the school’s 162-year history.

Washington University finished in 2021 a $360 million campus transformation project which included the construction of two new McKelvey buildings: Henry A. and Elvira H. Jubel Hall, which houses the Department of Mechanical Engineering & Materials Science, and James M. McKelvey, Sr. Hall, which houses the Department of Computer Science & Engineering.

Wash U campus

Washington University in St. Louis is a private research university in Greater St. Louis with its main campus (Danforth) mostly in unincorporated St. Louis County, Missouri, and Clayton, Missouri. It also has a West Campus in Clayton, North Campus in the West End neighborhood of St. Louis, Missouri, and Medical Campus in the Central West End neighborhood of St. Louis, Missouri.

Founded in 1853 and named after George Washington, the university has students and faculty from all 50 U.S. states and more than 120 countries. Washington University is composed of seven graduate and undergraduate schools that encompass a broad range of academic fields. To prevent confusion over its location, the Board of Trustees added the phrase “in St. Louis” in 1976. Washington University is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”.

Nobel laureates in economics, physiology and medicine, chemistry, and physics have been affiliated with Washington University, ten having done the major part of their pioneering research at the university. Clarivate Analytics ranked Washington University among the highest in the world for most cited researchers. The university also receives a high amount of National Institutes of Health medical research grants among medical schools.

Washington University was conceived by 17 St. Louis business, political, and religious leaders concerned by the lack of institutions of higher learning in the Midwest. Missouri State Senator Wayman Crow and Unitarian minister William Greenleaf Eliot, grandfather of the poet T.S. Eliot, led the effort.

The university’s first chancellor was Joseph Gibson Hoyt. Crow secured the university charter from the Missouri General Assembly in 1853, and Eliot was named President of the Board of Trustees. Early on, Eliot solicited support from members of the local business community, including John O’Fallon, but Eliot failed to secure a permanent endowment. Washington University is unusual among major American universities in not having had a prior financial endowment. The institution had no backing of a religious organization, single wealthy patron, or earmarked government support.

During the three years following its inception, the university bore three different names. The board first approved “Eliot Seminary,” but William Eliot was uncomfortable with naming a university after himself and objected to the establishment of a seminary, which would implicitly be charged with teaching a religious faith. He favored a nonsectarian university. In 1854, the Board of Trustees changed the name to “Washington Institute” in honor of George Washington, and because the charter was coincidentally passed on Washington’s birthday, February 22. Naming the university after the nation’s first president, only seven years before the American Civil War and during a time of bitter national division, was no coincidence. During this time of conflict, Americans universally admired George Washington as the father of the United States and a symbol of national unity. The Board of Trustees believed that the university should be a force of unity in a strongly divided Missouri. In 1856, the university amended its name to “Washington University.” The university amended its name once more in 1976, when the Board of Trustees voted to add the suffix “in St. Louis” to distinguish the university from the over two dozen other universities bearing Washington’s name.

Although chartered as a university, for many years Washington University functioned primarily as a night school located on 17th Street and Washington Avenue in the heart of downtown St. Louis. Owing to limited financial resources, Washington University initially used public buildings. Classes began on October 22, 1854, at the Benton School building. At first the university paid for the evening classes, but as their popularity grew, their funding was transferred to the St. Louis Public Schools. Eventually the board secured funds for the construction of Academic Hall and a half dozen other buildings. Later the university divided into three departments: the Manual Training School, Smith Academy, and the Mary Institute.

In 1867, the university opened the first private nonsectarian law school west of the Mississippi River. By 1882, Washington University had expanded to numerous departments, which were housed in various buildings across St. Louis. Medical classes were first held at Washington University in 1891 after the St. Louis Medical College decided to affiliate with the university, establishing the School of Medicine. During the 1890s, Robert Sommers Brookings, the president of the Board of Trustees, undertook the tasks of reorganizing the university’s finances, putting them onto a sound foundation, and buying land for a new campus.

In 1896, Holmes Smith, professor of Drawing and History of Art, designed what would become the basis for the modern-day university seal. The seal is made up of elements from the Washington family coat of arms, and the symbol of Louis IX, whom the city is named after.

Washington University spent its first half century in downtown St. Louis bounded by Washington Ave., Lucas Place, and Locust Street. By the 1890s, owing to the dramatic expansion of the Medical School and a new benefactor in Robert Brookings, the university began to move west. The university board of directors began a process to find suitable ground and hired the landscape architecture firm Olmsted, Olmsted & Eliot of Boston. A committee of Robert S. Brookings, Henry Ware Eliot, and William Huse found a site of 103 acres (41.7 ha) just beyond Forest Park, located west of the city limits in St. Louis County. The elevation of the land was thought to resemble the Acropolis and inspired the nickname of “Hilltop” campus, renamed the Danforth campus in 2006 to honor former chancellor William H. Danforth.

In 1899, the university opened a national design contest for the new campus. The renowned Philadelphia firm Cope & Stewardson (same architects who designed a large part of The University of Pennsylvania and Princeton University) won unanimously with its plan for a row of Collegiate Gothic quadrangles inspired by The University of Oxford (UK) and The University of Cambridge (UK). The cornerstone of the first building, Busch Hall, was laid on October 20, 1900. The construction of Brookings Hall, Ridgley, and Cupples began shortly thereafter. The school delayed occupying these buildings until 1905 to accommodate the 1904 World’s Fair and Olympics. The delay allowed the university to construct ten buildings instead of the seven originally planned. This original cluster of buildings set a precedent for the development of the Danforth Campus; Cope & Stewardson’s original plan and its choice of building materials have, with few exceptions, guided the construction and expansion of the Danforth Campus to the present day.

By 1915, construction of a new medical complex was completed on Kingshighway in what is now St. Louis’s Central West End. Three years later, Washington University admitted its first women medical students.

In 1922, a young physics professor, Arthur Holly Compton, conducted a series of experiments in the basement of Eads Hall that demonstrated the “particle” concept of electromagnetic radiation. Compton’s discovery, known as the “Compton Effect,” earned him the Nobel Prize in physics in 1927.

During World War II, as part of the Manhattan Project, a cyclotron at Washington University was used to produce small quantities of the newly discovered element plutonium via neutron bombardment of uranium nitrate hexahydrate. The plutonium produced there in 1942 was shipped to the Metallurgical Laboratory Compton had established at The University of Chicago where Glenn Seaborg’s team used it for extraction, purification, and characterization studies of the exotic substance.

After working for many years at The University of Chicago, Arthur Holly Compton returned to St. Louis in 1946 to serve as Washington University’s ninth chancellor. Compton reestablished the Washington University football team, making the declaration that athletics were to be henceforth played on a “strictly amateur” basis with no athletic scholarships. Under Compton’s leadership, enrollment at the university grew dramatically, fueled primarily by World War II veterans’ use of their GI Bill benefits.

In 1947, Gerty Cori, a professor at School of Medicine, became the first woman to win a Nobel Prize in Physiology or Medicine.

Cray Cori II supercomputer at National Energy Research Scientific Computing Center at DOE’s Lawrence Berkeley National Laboratory, named after Gerty Cori, the first American woman to win a Nobel Prize in science.

Professors Carl and Gerty Cori became Washington University’s fifth and sixth Nobel laureates for their discovery of how glycogen is broken down and resynthesized in the body.

The process of desegregation at Washington University began in 1947 with the School of Medicine and the School of Social Work. During the mid and late 1940s, the university was the target of critical editorials in the local African American press, letter-writing campaigns by churches and the local Urban League, and legal briefs by the NAACP intended to strip its tax-exempt status. In spring 1949, a Washington University student group, the Student Committee for the Admission of Negroes (SCAN), began campaigning for full racial integration. In May 1952, the Board of Trustees passed a resolution desegregating the school’s undergraduate divisions.

During the latter half of the 20th century, Washington University transitioned from a strong regional university to a national research institution. In 1957, planning began for the construction of the “South 40,” a complex of modern residential halls which primarily house Freshmen and some Sophomore students. With the additional on-campus housing, Washington University, which had been predominantly a “streetcar college” of commuter students, began to attract a more national pool of applicants. By 1964, over two-thirds of incoming students came from outside the St. Louis area.

In 1971, the Board of Trustees appointed Chancellor William Henry Danforth, who guided the university through the social and financial crises of the 1970s and strengthened the university’s often strained relationship with the St. Louis community. During his 24-year chancellorship, Danforth significantly improved the School of Medicine, established 70 new faculty chairs, secured a $1.72 billion endowment, and tripled the amount of student scholarships.

In 1995, Mark S. Wrighton, former Provost at The Massachusetts Institute of Technology, was elected the university’s 14th chancellor. During Chancellor Wrighton’s tenure undergraduate applications to Washington University more than doubled. Since 1995, the university has added more than 190 endowed professorships, revamped its Arts & Sciences curriculum, and completed more than 30 new buildings.

The growth of Washington University’s reputation coincided with a series of record-breaking fund-raising efforts during the last three decades. From 1983 to 1987, the Alliance for Washington University campaign raised $630.5 million, which was then the most successful fund-raising effort in national history. From 1998 to 2004, the Campaign for Washington University raised $1.55 billion, which was applied to additional scholarships, professorships, and research initiatives.

In 2002, Washington University co-founded the Cortex Innovation Community in St. Louis’s Midtown neighborhood. Cortex is the largest innovation hub in the midwest, home to offices of Square, Microsoft, Aon, Boeing, and Centene. The innovation hub has generated more than 3,800 tech jobs in 14 years.

In 2005, Washington University founded the McDonnell International Scholars Academy, an international network of premier research universities, with an initial endowment gift of $10 million from John F. McDonnell. The academy, which selects scholars from 35 partner universities around the world, was created with the intent to develop a cohort of future leaders, strengthen ties with top foreign universities, and promote global awareness and social responsibility.

In 2019, Washington University unveiled a $360 million campus transformation project known as the East End Transformation. The transformation project, built on the original 1895 campus plan by Olmsted, Olmsted & Eliot, encompassed 18 acres of the Danforth Campus, adding five new buildings, expanding the university’s Mildred Lane Kemper Art Museum, relocating hundreds of surface parking spaces underground, and creating an expansive new park.

In June 2019, Andrew D. Martin, former dean of the College of Literature, Science, and the Arts at The University of Michigan, was elected the university’s 15th chancellor. On the day of his inauguration, Chancellor Martin announced the WashU Pledge, a financial aid program allowing full-time Missouri and southern Illinois students who are Pell Grant-eligible or from families with annual incomes of $75,000 or less to attend the university cost-free.

Washington University’s undergraduate program is ranked very highly in the nation in U.S. News & World Report National Universities ranking, and very highly by The Wall Street Journal. The university is ranked very highly in the world by The Academic Ranking of World Universities. Undergraduate admission to Washington University is characterized by The Carnegie Foundation and U.S. News & World Report as “most selective”. The Princeton Review, gave the university an admissions selectivity rating of 99 out of 99. Acceptance rates for the class of 2024 (those entering in the fall of 2020) was 12.8%, with students selected from more than 27,900 applications. Of students admitted, 92 percent were in the top 10 percent of their class.

The Princeton Review ranks Washington University very highly for Best College Dorms and for Best College Food, Best-Run Colleges, and Best Financial Aid. Niche lists the university very highly for architecture and college campus and college dorms in the United States. The Washington University School of Medicine was ranked very highly for research by U.S. News & World Report and has been listed among the top ten medical schools since the rankings were first published. Additionally, U.S. News & World Report ranks the university’s genetics and physical therapy very highly. QS World University Rankings ranks Washington University very highly in the world for anatomy and physiology. Olin Business School is ranked very highly in the The Poets & Quants MBA Program. Washington University is also recognized very highly as a university employer in the country by Forbes.

Washington University has been named one of the “25 New Ivies” by Newsweek and has also been called a “Hidden Ivy”.

A study ranked Washington University very highly in the country for income inequality, when measured as the ratio of number of students from the top 1% of the income scale to number of students from the bottom 60% of the income scale. About 22% of Washington University’s students came from the top 1%, while only about 6% came from the bottom 60%. In 2015, university administration announced plans to increase the number of Pell-eligible recipients on campus from 6% to 13%, and a large number of the university’s student body was eligible for Pell Grants. In October 2019, then newly inaugurated Chancellor Andrew D. Martin announced the WashU Pledge, a financial aid program that provides a free undergraduate education to all full-time Missouri and Southern Illinois students who are Pell Grant-eligible or from families with annual incomes of $75,000 or less. The university’s refusal to divest from the fossil fuel industry has drawn controversy in recent years.

Research

Virtually all faculty members at Washington University engage in academic research, offering opportunities for both undergraduate and graduate students across the university’s seven schools. Known for its interdisciplinary and departmental collaboration, many of Washington University’s research centers and institutes are collaborative efforts between many areas on campus. More than 60% of undergraduates are involved in faculty research across all areas; it is an institutional priority for undergraduates to be allowed to participate in advanced research. According to the Center for Measuring University Performance, it is considered very high among the top 10 private research universities in the nation. A dedicated Office of Undergraduate Research is located on the Danforth Campus and serves as a resource to post research opportunities, advise students in finding appropriate positions matching their interests, publish undergraduate research journals, and award research grants to make it financially possible to perform research.

According to the National Science Foundation, Washington University spends over $900 million on research and development, ranking it very highly in the nation. The university has over 150 National Institutes of Health funded inventions, with many of them licensed to private companies. Governmental agencies and non-profit foundations such as the NIH, Department of Defense, National Science Foundation, and National Aeronautics Space Agency provide the majority of research grant funding, with Washington University being among the top recipients in NIH grants from year-to-year. Nearly 80% of NIH grants to institutions in the state of Missouri go to Washington University alone. Washington University and its Medical School play a large part in the Human Genome Project, where it contributes approximately 25% of the finished sequence. The Genome Sequencing Center has decoded the genome of many animals, plants, and cellular organisms, including the platypus, chimpanzee, cat, and corn.

NASA hosts its Planetary Data System Geosciences Node on the campus of Washington University. Professors, students, and researchers have been heavily involved with many unmanned missions to Mars. Professor Raymond Arvidson has been deputy principal investigator of the Mars Exploration Rover mission and co-investigator of the Phoenix lander robotic arm.

Washington University professor Joseph Lowenstein, with the assistance of several undergraduate students, has been involved in editing, annotating, making a digital archive of the first publication of poet Edmund Spenser’s collective works in 100 years. A large grant from the National Endowment for the Humanities has been given to support this ambitious project centralized at Washington University with support from other colleges in the United States.

In 2019, Folding@Home, a distributed computing project for performing molecular dynamics simulations of protein dynamics, was moved to Washington University School of Medicine from Stanford University. It is currently housed at The University of Pennsylvania. The project uses the idle CPU time of personal computers owned by volunteers to conduct protein folding research. Folding@home’s research is primarily focused on biomedical problems such as Alzheimer’s disease, Cancer, Coronavirus disease, and Ebola virus disease. In April 2020, Folding@home became the world’s first exaFLOP computing system with a peak performance of 1.5 exaflops, making it more than seven times faster than the then world’s fastest supercomputer, Summit, and more powerful than the top 100 supercomputers in the world, combined.

ORNL OLCF IBM Q AC922 SUMMIT supercomputer, was No.1 now No. 9 on the TOP500.

The Defense Advanced Research Projects Agency (DARPA) is a research and development agency of the United States Department of Defense responsible for the development of emerging technologies for use by the military.
Originally known as the Advanced Research Projects Agency (ARPA), the agency was created on February 7, 1958, by President Dwight D. Eisenhower in response to the Soviet launching of Sputnik 1 in 1957. By collaborating with academia, industry, and government partners, DARPA formulates and executes research and development projects to expand the frontiers of technology and science, often beyond immediate U.S. military requirements.
The Economist has called DARPA the agency that shaped the modern world, with technologies like “weather satellites, GPS, drones, stealth technology, voice interfaces, the personal computer and the internet on the list of innovations for which DARPA can claim at least partial credit.” Its track record of success has inspired governments around the world to launch similar research and development agencies.
DARPA is independent of other military research and development and reports directly to senior Department of Defense management. DARPA comprises approximately 220 government employees in six technical offices, including nearly 100 program managers, who together oversee about 250 research and development programs.
The name of the organization first changed from its founding name, ARPA, to DARPA, in March 1972, changing back to ARPA in February 1993, then reverted to DARPA in March 1996.
As of 2021, their mission statement is “to make pivotal investments in breakthrough technologies for national security”
The Advanced Research Projects Agency (ARPA) was suggested by the President’s Scientific Advisory Committee to President Dwight D. Eisenhower in a meeting called after the launch of Sputnik. ARPA was formally authorized by President Eisenhower in 1958 for the purpose of forming and executing research and development projects to expand the frontiers of technology and science, and able to reach far beyond immediate military requirements. The two relevant acts are the Supplemental Military Construction Authorization (Air Force) (Public Law 85-325) and Department of Defense Directive 5105.15, in February 1958. It was placed within the Office of the Secretary of Defense (OSD) and counted approximately 150 people. Its creation was directly attributed to the launching of Sputnik and to U.S. realization that the Soviet Union had developed the capacity to rapidly exploit military technology. Initial funding of ARPA was $520 million. ARPA’s first director, Roy Johnson, left a $160,000 management job at General Electric for an $18,000 job at ARPA. Herbert York from Lawrence Livermore National Laboratory was hired as his scientific assistant.
Johnson and York were both keen on space projects, but when NASA was established later in 1958 all space projects and most of ARPA’s funding were transferred to it. Johnson resigned and ARPA was repurposed to do “high-risk”, “high-gain”, “far out” basic research, a posture that was enthusiastically embraced by the nation’s scientists and research universities. ARPA’s second director was Brigadier General Austin W. Betts, who resigned in early 1961 and was succeeded by Jack Ruina who served until 1963. Ruina, the first scientist to administer ARPA, managed to raise its budget to $250 million. It was Ruina who hired J. C. R. Licklider as the first administrator of the Information Processing Techniques Office, which played a vital role in creation of ARPANET, the basis for the future Internet.

Additionally, the political and defense communities recognized the need for a high-level Department of Defense organization to formulate and execute R&D projects that would expand the frontiers of technology beyond the immediate and specific requirements of the Military Services and their laboratories. In pursuit of this mission, DARPA has developed and transferred technology programs encompassing a wide range of scientific disciplines that address the full spectrum of national security needs.
From 1958 to 1965, ARPA’s emphasis centered on major national issues, including space, ballistic missile defense, and nuclear test detection. During 1960, all of its civilian space programs were transferred to the National Aeronautics and Space Administration (NASA) and the military space programs to the individual services.
This allowed ARPA to concentrate its efforts on the Project Defender (defense against ballistic missiles), Project Vela (nuclear test detection), and Project AGILE (counterinsurgency R&D) programs, and to begin work on computer processing, behavioral sciences, and materials sciences. The DEFENDER and AGILE programs formed the foundation of DARPA sensor, surveillance, and directed energy R&D, particularly in the study of radar, infrared sensing, and x-ray/gamma ray detection.
ARPA at this point (1959) played an early role in Transit (also called NavSat) a predecessor to the Global Positioning System (GPS). “Fast-forward to 1959 when a joint effort between DARPA and the Johns Hopkins Applied Physics Laboratory began to fine-tune the early explorers’ discoveries. TRANSIT, sponsored by the Navy and developed under the leadership of Richard Kirschner at Johns Hopkins, was the first satellite positioning system.
During the late 1960s, with the transfer of these mature programs to the Services, ARPA redefined its role and concentrated on a diverse set of relatively small, essentially exploratory research programs. The agency was renamed the Defense Advanced Research Projects Agency (DARPA) in 1972, and during the early 1970s, it emphasized direct energy programs, information processing, and tactical technologies.
Concerning information processing, DARPA made great progress, initially through its support of the development of time-sharing. All modern operating systems rely on concepts invented for the Multics system, developed by a cooperation among Bell Labs, General Electric and MIT, which DARPA supported by funding Project MAC at MIT with an initial two-million-dollar grant.
DARPA supported the evolution of the ARPANET (the first wide-area packet switching network), Packet Radio Network, Packet Satellite Network and ultimately, the Internet and research in the artificial intelligence fields of speech recognition and signal processing, including parts of Shakey the robot. DARPA also supported the early development of both hypertext and hypermedia. DARPA funded one of the first two hypertext systems, Douglas Engelbart’s NLS computer system, as well as The Mother of All Demos. DARPA later funded the development of the Aspen Movie Map, which is generally seen as the first hypermedia system and an important precursor of virtual reality.
The Mansfield Amendment of 1973 expressly limited appropriations for defense research (through ARPA/DARPA) only to projects with direct military application.
The resulting “brain drain” is credited with boosting the development of the fledgling personal computer industry. Some young computer scientists left the universities to startups and private research laboratories such as Xerox PARC.
Between 1976 and 1981, DARPA’s major projects were dominated by air, land, sea, and space technology, tactical armor and anti-armor programs, infrared sensing for space-based surveillance, high-energy laser technology for space-based missile defense, antisubmarine warfare, advanced cruise missiles, advanced aircraft, and defense applications of advanced computing.
Many of the successful programs were transitioned to the Services, such as the foundation technologies in automatic target recognition, space-based sensing, propulsion, and materials that were transferred to the Strategic Defense Initiative Organization (SDIO), later known as the Ballistic Missile Defense Organization (BMDO), now titled the Missile Defense Agency (MDA).
During the 1980s, the attention of the Agency was centered on information processing and aircraft-related programs, including the National Aerospace Plane (NASP) or Hypersonic Research Program. The Strategic Computing Program enabled DARPA to exploit advanced processing and networking technologies and to rebuild and strengthen relationships with universities after the Vietnam War. In addition, DARPA began to pursue new concepts for small, lightweight satellites (LIGHTSAT) and directed new programs regarding defense manufacturing, submarine technology, and armor/anti-armor.
In 1981, two engineers, Robert McGhee and Kenneth Waldron, started to develop the Adaptive Suspension Vehicle (ASV) nicknamed the “Walker” at the Ohio State University, under a research contract from DARPA. The vehicle was 17 feet long, 8 feet wide, and 10.5 feet high, and had six legs to support its three-ton aluminum body, in which it was designed to carry cargo over difficult terrains. However, DARPA lost interest in the ASV, after problems with cold-weather tests.
On February 4, 2004, the agency shut down its so called “LifeLog Project”. The project’s aim would have been, “to gather in a single place just about everything an individual says, sees or does”.
On October 28, 2009, the agency broke ground on a new facility in Arlington County, Virginia a few miles from The Pentagon.
In fall 2011, DARPA hosted the 100-Year Starship Symposium with the aim of getting the public to start thinking seriously about interstellar travel.
On June 5, 2016, NASA and DARPA announced that it planned to build new X-planes with NASA’s plan setting to create a whole series of X planes over the next 10 years.
Between 2014 and 2016, DARPA shepherded the first machine-to-machine computer security competition, the Cyber Grand Challenge (CGC), bringing a group of top-notch computer security experts to search for security vulnerabilities, exploit them, and create fixes that patch those vulnerabilities in a fully automated fashion. It is one of DARPA prize competitions to spur innovations.
In June 2018, DARPA leaders demonstrated a number of new technologies that were developed within the framework of the GXV-T program. The goal of this program is to create a lightly armored combat vehicle of not very large dimensions, which, due to maneuverability and other tricks, can successfully resist modern anti-tank weapon systems.
In September 2020, DARPA and the US Air Force announced that the Hypersonic Air-breathing Weapon Concept (HAWC) are ready for free-flight tests within the next year.
In recent years, DARPA officials have contracted out core functions to corporations. For example, during fiscal year 2020, Chenega ran physical security on DARPA’s premises, System High Corp. carried out program security, and Agile Defense ran unclassified IT services. General Dynamics runs classified IT services. Strategic Analysis Inc. provided support services regarding engineering, science, mathematics, and front office and administrative work.
Current program offices

DARPA has six technical offices that manage the agency’s research portfolio, and two additional offices that manage special projects. All offices report to the DARPA director, including:
• The Defense Sciences Office (DSO): DSO identifies and pursues high-risk, high-payoff research initiatives across a broad spectrum of science and engineering disciplines and transforms them into important, new game-changing technologies for U.S. national security. Current DSO themes include novel materials and structures, sensing and measurement, computation and processing, enabling operations, collective intelligence, and global change.
• The Information Innovation Office (I2O) aims to ensure U.S. technological superiority in all areas where information can provide a decisive military advantage.
• The Microsystems Technology Office (MTO) core mission is the development of high-performance, intelligent microsystems and next-generation components to ensure U.S. dominance in Command, Control, Communications, Computer, Intelligence, Surveillance, and Reconnaissance (C4ISR), Electronic Warfare (EW), and Directed Energy (DE). The effectiveness, survivability, and lethality of systems that relate to these applications depend critically on microsystems and components.
• The Strategic Technology Office (STO) mission is to focus on technologies that have a global theater-wide impact and that involve multiple Services.
• The Tactical Technology Office (TTO) engages in high-risk, high-payoff advanced military research, emphasizing the “system” and “subsystem” approach to the development of aeronautic, space, and land systems as well as embedded processors and control systems
• The Biological Technologies Office (BTO) fosters, demonstrates, and transitions breakthrough fundamental research, discoveries, and applications that integrate biology, engineering, and computer science for national security. Created in April 2014 by then Director Arati Prabhakar, taking programs from the MTO and DSO offices.
A list of DARPA’s active and archived projects is available on the agency’s website. Because of the agency’s fast pace, programs constantly start and stop based on the needs of the U.S. government. Structured information about some of the DARPA’s contracts and projects is publicly available.

Active projects
• AdvaNced airCraft Infrastructure-Less Launch And RecoverY X-Plane (ANCILLARY) (2022): The program is to develop and demonstrate a vertical takeoff and landing (VTOL) plane that can launch without the supporting infrastructure, with low-weight, high-payload, and long-endurance capabilities. In June 2023, DARPA selected nine companies to produce initial operational system and demonstration system conceptual designs for an uncrewed aerial system (UAS).
• AI Cyber Challenge (AIxCC) (2023): It is a two-year competition to identify and fix software vulnerabilities using AI in partnership with Anthropic, Google, Microsoft, and OpenAI which will provide their expertise and their platforms for this competition. There will be a semifinal phase and the final phase. Both competitions will be held at DEF CON in Las Vegas in 2024 and 2025, respectively.
• Air Combat Evolution (ACE) (2019): The goal of ACE is to automate air-to-air combat, enabling reaction times at machine speeds. By using human-machine collaborative dogfighting as its challenge problem, ACE seeks to increase trust in combat autonomy. Eight teams from academia and industry were selected in October 2019. In April 2024, DARPA and U.S. Air Force announced that ACE conducted the first-ever in-air dogfighting tests of AI algorithms autonomously flying an F-16 against a human-piloted F-16.
• Air Space Total Awareness for Rapid Tactical Execution (ASTARTE) (2020): The program is conducted in partnership with the Army and Air Force on sensors, artificial intelligence algorithms, and virtual testing environments in order to create an understandable common operating picture when troops are spread out across battlefields
• Atmospheric Water Extraction (AWE) program
• Biomanufacturing: Survival, Utility, and Reliability beyond Earth (B-SURE) (2021): This program aims to address foundational scientific questions to determine how well industrial bio-manufacturing microorganisms perform in space conditions.[70] International Space Station (ISS) announced in April 2023 that Rhodium-DARPA Biomanufacturing 01 investigation was launched on SpaceX, and ISS crew members are carrying out this project which examines gravity’s effect on production of drugs and nutrients from bacteria and yeast.
• Big Mechanism: Cancer research. (2015) The program aims to develop technology to read research abstracts and papers to extract pieces of causal mechanisms, assemble these pieces into more complete causal models, and reason over these models to produce explanations. The domain of the program is cancer biology with an emphasis on signaling pathways. It has a successor program called World Modelers.
• Binary structure inference system: extract software properties from binary code to support repository-based reverse engineering for micro-patching that minimizes lifecycle maintenance and costs (2020).
• Blackjack (2017): a program to develop and test military satellite constellation technologies with a variety of “military-unique sensors and payloads [attached to] commercial satellite buses. …as an ‘architecture demonstration intending to show the high military utility of global LEO constellations and mesh networks of lower size, weight, and cost spacecraft nodes.’ … The idea is to demonstrate that ‘good enough’ payloads in LEO can perform military missions, augment existing programs, and potentially perform ‘on par or better than currently deployed exquisite space systems.'” Blue Canyon Technologies, Raytheon, and SA Photonics Inc. were working on phases 2 and 3 as of fiscal year 2020. On June 12, 2023 DARPA launched four satellites for a technology demonstration in low Earth orbit on the SpaceX Transporter-8 rideshare.
• broadband, electro-magnetic spectrum receiver system: prototype and demonstration
• BlockADE: Rapidly constructed barrier. (2014)
• Captive Air Amphibious Transporter (CAAT)
• Causal Exploration of Complex Operational Environments (“Causal Exploration”) – computerized aid to military planning. (2018)
• Clean-Slate Design of Resilient, Adaptive, Secure Hosts (CRASH), a DARPA Transformation Convergence Technology Office (TCTO) initiative
• Collaborative Operations in Denied Environment (CODE): Modular software architecture for UAVs to pass information to each other in contested environments to identify and engage targets with limited operator direction. (2015)
• Control of Revolutionary Aircraft with Novel Effectors (CRANE) (2019): The program seeks to demonstrate an experimental aircraft design based on active flow control (AFC), which is defined as on-demand addition of energy into a boundary layer in order to maintain, recover, or improve aerodynamic performance. The aim is for CRANE to generally improve aircraft performance and reliability while reducing cost. In May 2023, DARPA designated the experimental uncrewed aircraft the X-65 which will use banks of compressed air nozzles to execute maneuvers without traditional, exterior-moving flight controls.
• Computational Weapon Optic (CWO) (2015): Computer rifle scope that combines various features into one optic.
• DARPA Triage Challenge (DTC) (2023): The DTC will use a series of challenge events to spur development of novel physiological features for medical triage. The three-year competition focuses on improving emergency medical response in military and civilian mass casualty incidents.
• DARPA XG (2005) : technology for Dynamic Spectrum Access for assured military communications.
• Demonstration Rocket for Agile Cislunar Operations (DRACO) (2021): The program is to demonstrate a nuclear thermal rocket (NTR) in orbit by 2027 in collaboration with NASA (nuclear thermal engine) and U.S. Space Force (launch).
• Detection system consisting of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based assays paired with reconfigurable point-of-need and massively multi-plexed devices for diagnostics and surveillance
• Electronics Resurgence Initiative (ERI) (2019): Started in 2019, the initiative aims at both national security capabilities and commercial economic competitiveness and sustainability. These programs emphasize forward-looking partnerships with U.S. industry, the defense industrial base, and university researchers. In 2023, DARPA expanded ERI’s focus with the announcement of ERI 2.0 seeking to reinvent domestic microelectronics manufacturing.
• Experimental Spaceplane 1 (formerly XS-1): In 2017, Boeing was selected for Phases 2 and 3 for the fabrication and flight of a reusable unmanned space transport after it completed the initial design in Phase 1 as one of the three teams. In January 2020, Boeing ended its role in the program.
• Fast Lightweight Autonomy: Software algorithms that enable small UAVs to fly fast in cluttered environments without GPS or external communications. (2014)
• Fast Network Interface Cards (FastNICs): develop and integrate new, clean-slate network subsystems in order to speed up applications, such as the distributed training of machine learning classifiers by 100x. Perspecta Labs and Raytheon BBN were working on FastNICs as of fiscal year 2020.
• Force Application and Launch from Continental United States (FALCON): a research effort to develop a small satellite launch vehicle. (2008) This vehicle is under development by AirLaunch LLC.
• Gamma Ray Inspection Technology (GRIT) program: research and develop high-intensity, tunable, and narrow-bandwidth gamma ray production in compact, transportable form. This technology can be utilized for discovering smuggled nuclear material in cargo via new inspection techniques, and enabling new medical diagnostics and therapies. RadiaBeam Technologies LLC was working on a phase 1 of the program, Laser-Compton approach, in fiscal year 2020.
• Glide Breaker program: technology for an advanced interceptor capable of engaging maneuvering hypersonic vehicles or missiles in the upper atmosphere. Northrop Grumman and Aerojet Rocketdyne were working on this program as of fiscal year 2020.
• Gremlins (2015): Air-launched and recoverable UAVs with distributed capabilities to provide low-cost flexibility over expensive multirole platforms. In October 2021, two X-61 Gremlin air vehicles were tested at the Army’s Dugway Proving Ground, Utah.
• Ground X-Vehicle Technology (GXV-T) (2015): This program aims to improve mobility, survivability, safety, and effectiveness of future combat vehicles without piling on armor.
• High Productivity Computing Systems
• High Operational Temperature Sensors (HOTS)(2023): The program is to develop sensor microelectronics consisting of transducers, signal conditioning microelectronics, and integration that operate with high bandwidth (>1 MHz) and dynamic range (>90 dB) at extreme temperatures (i.e., at least 800 °C).
• HIVE (Hierarchical Identify Verify Exploit) CPU architecture. (2017)
• Hypersonic Air-breathing Weapon Concept (HAWC). This program is a joint DARPA/U.S. Air Force effort that seeks to develop and demonstrate critical technologies to enable an effective and affordable air-launched hypersonic cruise missile.
• Hypersonic Boost Glide Systems Research
• Insect Allies (2017–2021)
• Integrated Sensor is Structure (ISIS): This was a joint DARPA and U.S. Air Force program to develop a sensor of unprecedented proportions to be fully integrated into a stratospheric airship.
• Intelligent Integration of Information (I3) in SISTO, 1994–2000 – supported database research and with ARPA CISTO and NASA funded the NSF Digital Library program, that led. a.o. to Google.
• Joint All-Domain Warfighting Software (JAWS): software suite featuring automation and predictive analytics for battle management and command & control with tactical coordination for capture (“target custody”) and kill missions. Systems & Technology Research of Woburn, Massachusetts, is working on this project, with an expected completion date of March 2022. Raytheon is also working on this project, with an expected completion date of April 2022.
• Lasers for Universal Microscale Optical Systems (LUMOS): integrate heterogeneous materials to bring high performance lasers and amplifiers to manufacturable photonics platforms. As of fiscal year 2020, the Research Foundation for the State University of New York (SUNY) was working to enable “on-chip optical gain” to integrated photonics platforms, and enable complete photonics functionality “on a single substrate for disruptive optical microsystems.”
• LongShot (2021): The program is to demonstrate an unmanned air-launched vehicle (UAV) capable of employing air-to-air weapons. Phase 1 design work started in early 2021. In June 2023, DARPA awarded a Phase 3 contract to General Atomics for the manufacturing and a flight demonstration in 2025 of an air-launched, flying and potentially recoverable missile carrier.
• Manta Ray: A 2020 DARPA program to develop a series of autonomous, large-size, unmanned underwater vehicles (UUVs) capable of long-duration missions and having large payload capacities. In December 2021, DARPA awarded Phase 2 contracts to Northrop Grumman Systems Corporation and Martin Defense Group to work on subsystem testing followed by fabrication and in-water demonstrations of full-scale integrated vehicles.
By May 2024, Manta Ray was not only the descriptor for the DARPA R&D program, but was also the name of a specific prototype UUV built by Northrup Grumman, with initial tests conducted in the Pacific Ocean during 1Q2024. Manta Ray has been designed to be broken down and fit into 5 standard shipping containers, shipped to where it will be deployed, and be reassembled in the theatre of operations where it will be used. DARPA is working with the US Navy to further test and then transition the technology.
• Media Forensics (MediFor): A project aimed at automatically spotting digital manipulation in images and videos, including Deepfakes. (2018). MediFor largely ended in 2020 and DARPA launched a follow-on program in 2021 called the semantic forensics, or SemaFor.
• MEMS Exchange: Microelectromechanical systems (MEMS) Implementation Environment (MX)
• Millimeter-wave GaN Maturation (MGM) program: develop new GaN transistor technology to attain high-speed and large voltage swing at the same time. HRL Laboratories LLC, a joint venture between Boeing and General Motors, is working on phase 2 as of fiscal year 2020.
• Modular Optical Aperture Building Blocks (MOABB) program (2015): design free-space optical components (e.g., telescope, bulk lasers with mechanical beam-steering, detectors, electronics) in a single device. Create a wafer-scale system that is one hundred times smaller and lighter than existing systems and can steer the optical beam far faster than mechanical components. Research and design electronic-photonic unit cells that can be tiled together to form large-scale planar apertures (up to 10 centimeters in diameter) that can run at 100 watts of optical power. The overall goals of such technology are (1) rapid 3D scanning using devices smaller than a cell-phone camera; (2) high-speed laser communications without mechanical steering; (3) and foliage-penetrating perimeter sensing, remote wind sensing, and long-range 3-D mapping. As of fiscal year 2020, Analog Photonics LLC of Boston, Massachusetts, was working on phase 3 of the program and is expected to finish by May 2022.
• Multi- Azimuth Defense Fast Intercept Round Engagement System (MAD-FIRES) program: develop technologies that combine advantages of a missile (guidance, precision, accuracy) with advantages of a bullet (speed, rapid-fire, large ammunition capacity) to be used on a medium-caliber guided projectile in defending ships. Raytheon is currently working on MAD-FIRES phase 3 (enhance seeker performance, and develop a functional demonstration illuminator and engagement manager to engage and defeat a representative surrogate target) and is expected to be finished by November 2022.
• Near Zero Power RF and Sensor Operations (N-ZERO): Reducing or eliminating the standby power unattended ground sensors consume. (2015)
• Neural implants for soldiers. (2014)
• Novel, nonsurgical, bi-directional brain-computer interface with high spacio-temporal resolution and low latency for potential human use.
• Open, Programmable, Secure 5G (OPS-5G) (2020): The program is to address security risks of 5G networks by pursuing research leading to the development of a portable standards-compliant network stack for 5G mobile that is open source and secure by design. OPS-5G seeks to create open source software and systems that enable secure 5G and subsequent mobile networks such as 6G.
• Operational Fires (OpFires): developing a new mobile ground-launched booster that helps hypersonic boost glide weapons penetrate enemy air defenses. As of 17 July 2020, Lockheed Martin was working on phase 3 of the program (develop propulsion components for the missile’s Stage 2 section) to be completed by January 2022. The system was successfully tested in July 2022.
• Persistent Close Air Support (PCAS): DARPA created the program in 2010 to seek to fundamentally increase Close Air Support effectiveness by enabling dismounted ground agents—Joint Terminal Attack Controllers—and combat aircrews to share real-time situational awareness and weapons systems data.
• PREventing EMerging Pathogenic Threats (PREEMPT)
• QuASAR: Quantum Assisted Sensing and Readout
• QuBE: Quantum Effects in Biological Environments
• QUEST: Quantum Entanglement Science and Technology
• Quiness: Macroscopic Quantum Communications
• QUIST: Quantum Information Science and Technology
• RADICS: Rapid Attack Detection, Isolation and Characterization Systems
• Rational Integrated Design of Energetics (RIDE): developing tools that speed up and facilitate energetics research.
• Remote-controlled insects
• Robotic Servicing of Geosynchronous Satellites program (RSGS): a telerobotic and autonomous robotic satellite-servicing project, conceived in 2017. In 2020, DARPA selected Northrop Grumman’s SpaceLogistics as its RSGS partner. The U.S. Naval Research Laboratory designed and developed the RSGS robotic arm with DARPA funding. The RSGS system is anticipated to start servicing satellites in space in 2025.
• Robotic Autonomy in Complex Environments with Resiliency (RACER) (2020): This is a four-year program and aims to make sure algorithms aren’t the limiting part of the system and that autonomous combat vehicles can meet or exceed soldier driving abilities. RACER conducted its third experiment to assess the performance of off-road unmanned vehicles March 12-27, 2023.
• SafeGenes: a synthetic biology project to program “undo” sequences into gene editing programs (2016)
• Sea Train (2019): The program goal is to develop and demonstrate ways to overcome range limitations in medium unmanned surface vessels by exploiting wave-making resistance reductions.[178][146] Applied Physical Sciences Corp. of Groton, Connecticut, is undertaking Phase 1 of the Sea Train program, with an expected completion date of March 2022. Sea Train, NOMARS and Manta Ray are the three programs that could significantly impact naval operations by extending the range and payloads for unmanned vessels on and below the surface.
• Secure Advanced Framework for Simulation & Modeling (SAFE-SiM) program: build a rapid modeling and simulation environment to enable quick analysis in support of senior-level decision-making. As of fiscal year 2020, Radiance Technologies and L3Harris were working on portions of the program, with expected completion in August and September 2021, respectively.
• Securing Information for Encrypted Verification and Evaluation (SIEVE) program: use zero knowledge proofs to enable the verification of capabilities for the US military “without revealing the sensitive details associated with those capabilities. Galois Inc. of Portland, Oregon, and Stealth Software Technologies of Los Angeles, California, are currently working on the SIEVE program, with a projected completion date of May 2024.
• Semantic Forensics (SemaFor) program: develop technologies to automatically detect, attribute, and characterize falsified media (e.g., text, audio, image, video) to defend against automated disinformation. SRI International of Menlo Park, California, and Kitware Inc. of Clifton, New York, are working on the SemaFor program, with an expected completion date of July 2024.
• Sensor plants: DARPA “is working on a plan to use plants to gather intelligence information” through DARPA’s Advanced Plant Technologies (APT) program, which aims to control the physiology of plants in order to detect chemical, biological, radiological and nuclear threats. (2017)
• Synthetic Hemo-technologIEs to Locate and Disinfect (SHIELD) (2023): The program aims to develop prophylaxes and prevent bloodstream infections (BSI) caused by bacterial/fungal agents, a threat to military and civilian populations.
• SIGMA: A network of radiological detection devices the size of smart phones that can detect small amounts of radioactive materials. The devices are paired with larger detector devices along major roads and bridges. (2016)
• SIGMA+ program (2018): by building on concepts theorized in the SIGMA program, develop new sensors and analytics to detect small traces of explosives and chemical and biological weaponry throughout any given large metropolitan area. In October 2021, SIGMA+ program, in collaboration with the Indianapolis Metropolitan Police Department (IMPD), concluded a three-month-long pilot study with new sensors to support early detection and interdictions of weapons of mass destruction (WMD) threats.
• SoSITE: System of Systems Integration Technology and Experimentation: Combinations of aircraft, weapons, sensors, and mission systems that distribute air warfare capabilities across a large number of interoperable manned and unmanned platforms. (2015)
• SSITH: System Security Integrated Through Hardware and Firmware – secure hardware platform (2017); basis for open-source, hack-proof voting system project and 2019 system prototype contract
• SXCT: Squad X Core Technologies: Digitized, integrated technologies that improve infantry squads’ awareness, precision, and influence. (2015)
• SyNAPSE: Systems of Neuromorphic Adaptive Plastic Scalable Electronics
• Tactical Boost Glide (TBG): Air-launched hypersonic boost glide missile. (2016)
• Tactically Exploited Reconnaissance Node (Tern)(2014): The program seeks to develop ship based UAS systems and technologies to enable a future air vehicle that could provide persistent ISR and strike capabilities beyond the limited range and endurance provided by existing helicopter platforms.
• TransApps (Transformative Applications), rapid development and fielding of secure mobile apps in the battlefield
• ULTRA-Vis (Urban Leader Tactical Response, Awareness and Visualization): Heads-up display for individual soldiers. (2014)
• underwater network, heterogeneous: develop concepts and reconfigurable architecture, leveraging advancement in undersea communications and autonomous ocean systems, to demonstrate utility at sea. Raytheon BBN is currently working on this program, with work expected through 4 May 2021, though if the government exercises all options on the contract then work will continue through 4 February 2024.
• Upward Falling Payloads: Payloads stored on the ocean floor that can be activated and retrieved when needed. (2014)
• Urban Reconnaissance through Supervised Autonomy (URSA) program: develop technology for use in cities to enable autonomous systems that U.S. infantry and ground forces operate to detect and identify enemies before U.S. troops come across them. Program will factor in algorithms, multiple sensors, and scientific knowledge about human behavior to determine subtle differences between hostiles and innocent civilians.[205] Soar Technology Inc. of Ann Arbor, Michigan, is currently working on pertinent vehicle autonomy technology, with work expected completed by March 2022.
• Warrior Web: Soft exosuit to alleviate musculoskeletal stress on soldiers when carrying heavy loads. (2014)
• Waste Upcycling for Defense (WUD) (2023): to turn scrap wood, cardboard, paper, and other cellulose-derived matter into sustainable materials such as building materials for re-use.

Leave a comment