From The Dunlap Institute for Astronomy and Astrophysics (CA) At The University of Toronto (CA): “Mysterious Origins: Polarized Light Transforms Our Understanding of Fast Radio Bursts”

From The Dunlap Institute for Astronomy and Astrophysics (CA)

At

The University of Toronto (CA)

Via

SciTechDaily

6.11.24

1
Artist’s rendition of how the angle of polarized light from an FRB changes as it journeys through space. Credit: CHIME, Dunlap Institute [below]

A study analyzing the properties of polarized light from 128 non-repeating FRBs reveals mysterious cosmic explosions originate in far-away galaxies like our own Milky Way.

New research from the University of Toronto utilizing data from the Canadian Hydrogen Intensity Mapping Experiment [CHIME] reveals that the majority of Fast Radio Bursts (FRBs) likely originate from environments similar to our Milky Way, with modest densities and magnetic fields. This finding contrasts with earlier studies which suggested that repeating FRBs come from highly magnetized areas.

Fast Radio Burst Research Advancements

What scientists previously thought about where Fast Radio Bursts (FRBs) come from is just the tip of the iceberg, according to new research led by astronomers at the University of Toronto. The mysteries of the millisecond-long cosmic explosions are unfolding with a new way of analyzing data from the Canadian Hydrogen Intensity Mapping Experiment (CHIME).

Published today (June 11) in The Astrophysical Journal, the study details the properties of polarized light from 128 non-repeating FRBs — those from sources that have only produced a single burst to date. It finds that they appear to come from galaxies like our own Milky Way with modest densities and modest magnetic fields.

Contrasting FRB Sources

Previous studies of FRBs have focused on much smaller samples of hyperactive repeating sources that, in contrast, appear to originate in dense, extremely magnetized environments. Only about 3 percent of known FRBs repeat, coming from a source that has produced multiple bursts since being found.

Most radio telescopes can only see small points in the sky, making it easier to focus on repeating FRBs with known positions. CHIME can survey an extremely large area of the sky to detect both repeating and non-repeating FRBs.

New Analytical Techniques for FRBs

“This was the first look at the other 97 percent,” says lead author Ayush Pandhi, a PhD student at the Dunlap Institute for Astronomy & Astrophysics and the David A. Dunlap Department of Astronomy & Astrophysics at the University of Toronto. “It allows us to reconsider what we think FRBs are and see how repeating and non-repeating FRBs may be different.”

First detected in 2007, FRBs are extremely energetic flashes from distant sources across the universe. While over 1,000 FRBs have been cataloged since then, scientists do not yet know exactly where or how they are produced. They have also questioned whether repeating and non-repeating FRBs originate in similar environments.

Understanding FRB Light Properties

“This is a new way to analyze the data we have on FRBs. Instead of just looking at how bright something is, we’re also looking at the angle of the light’s vibrating electromagnetic waves,” says Pandhi. “It gives you additional information about how and where that light is produced, and what it has passed through on its journey to us over many millions of light years.”

All light travels as waves that we interpret as different colors depending on the lengths between its peaks and valleys. Much of the light in the universe travels in wavelengths that the human eye cannot see, including light from FRBs, but radio telescopes like CHIME can.

Polarized light is made up of waves that vibrate in a single plane—vertically, horizontally, or another angle in between. The direction that light from FRBs is polarized was seen to change in two ways: with time and with the color of the light. These changes can explain how an FRB might have been produced and what kind of material it passes through on its journey to Earth.

Studying how the direction of polarization changes for different colors of the light can tell us about the local density of where an FRB is produced and the strength of the magnetism that is present within it.

Conclusions on FRB Origins

To determine what FRBs are and how they are produced, scientists need to understand their local environments. This study concludes that most FRBs, those that do not repeat, are not like the few repeating sources that have been previously studied. It suggests that this sample is either a separate population or more evolved versions of the same population that originate in a less extreme environment with a lower burst rate.

Collaborating institutions include the Dunlap Institute at the University of Toronto, the University of California Santa Cruz, University of Amsterdam, and McGill University.

The CHIME project is co-led by the University of British Columbia, McGill University, University of Toronto and the Dominion Radio Astrophysical Observatory with collaborating institutions across North America. It is located at the Dominion Radio Astrophysical Observatory, a national facility for astronomy operated by the National Research Council of Canada, on the traditional, ancestral, and unceded territory of the Syilx/Okanagan people.

See the full article here .

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.


five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

Dunlap Institute campus

The Dunlap Institute for Astronomy & Astrophysics (CA) at the University of Toronto (CA) is an endowed research institute with nearly 70 faculty, postdocs, students and staff, dedicated to innovative technology, ground-breaking research, world-class training, and public engagement. The research themes of its faculty and Dunlap Fellows span the Universe and include: optical, infrared and radio instrumentation; Dark Energy; large-scale structure; the Cosmic Microwave Background; the interstellar medium; galaxy evolution; cosmic magnetism; and time-domain science.

The Dunlap Institute (CA), Department of Astronomy & Astrophysics (CA), Canadian Institute for Theoretical Astrophysics (CA), and Centre for Planetary Sciences (CA) comprise the leading centres for astronomical research in Canada, at the leading research university in the country, the University of Toronto (CA).

The Dunlap Institute (CA) is committed to making its science, training and public outreach activities productive and enjoyable for everyone, regardless of gender, sexual orientation, disability, physical appearance, body size, race, nationality or religion.

Our work is greatly enhanced through collaborations with The Department of Astronomy & Astrophysics (CA), Canadian Institute for Theoretical Astrophysics (CA), David Dunlap Observatory (CA), Ontario Science Centre (CA), Royal Astronomical Society of Canada (CA), the Toronto Public Library (CA), and many other partners.

The University of Toronto participates in the CHIME Canadian Hydrogen Intensity Mapping Experiment at The Canada NRCC Dominion Radio Astrophysical Observatory in Penticton, British Columbia (CA) Altitude 545 m (1,788 ft).

CHIME Canadian Hydrogen Intensity Mapping Experiment-A partnership between The University of British Columbia (CA), The University of Toronto (CA), McGill University [Université McGill](CA), Yale University, and The National Research Council Canada [Conseil national de recherches Canada](CA) at The Canada NRCC Dominion Radio Astrophysical Observatory in Penticton, British Columbia(CA) Altitude 545 m (1,788 ft).

U Toronto Dunlap Dragonfly telescope Array (CA) with its team at its home at high-altitude observing location New Mexico Skies hosting facility at 7300′ altitude.

NIROSETI team from left to right Rem Stone UCO Lick Observatory Dan Werthimer, UC Berkeley; Jérôme Maire, U Toronto; Shelley Wright, UCSD; Patrick Dorval, U Toronto; Richard Treffers, Starman Systems. (Image by Laurie Hatch).

The University of Toronto (CA) is a public research university in Toronto, Ontario, Canada, located on the grounds that surround Queen’s Park. It was founded by royal charter in 1827 as King’s College, the oldest university in the province of Ontario.

Originally controlled by the Church of England, the university assumed its present name in 1850 upon becoming a secular institution.

As a collegiate university, it comprises eleven colleges each with substantial autonomy on financial and institutional affairs and significant differences in character and history. The university also operates two satellite campuses located in Scarborough and Mississauga.

The University of Toronto has evolved into Canada’s leading institution of learning, discovery and knowledge creation. We are proud to be one of the world’s top research-intensive universities, driven to invent and innovate.

Our students have the opportunity to learn from and work with preeminent thought leaders through our multidisciplinary network of teaching and research faculty, alumni and partners.

The ideas, innovations and actions of more than 600,000 graduates continue to have a positive impact on the world.

Academically, The University of Toronto is noted for movements and curricula in literary criticism and communication theory, known collectively as the “Toronto School”.

The university was the birthplace of insulin and stem cell research, and was the site of the first electron microscope in North America; the identification of the first black hole Cygnus X-1; multi-touch technology, and the development of the theory of NP-completeness.

The university was one of several universities involved in early research of deep learning. It receives the most annual scientific research funding of any Canadian university and is one of two members of the Association of American Universities outside the United States, the other being McGill University [Université McGill] (CA) .

The Varsity Blues are the athletic teams that represent the university in intercollegiate league matches, with ties to gridiron football, rowing and ice hockey. The earliest recorded instance of gridiron football occurred at University of Toronto’s University College in November 1861.

The university’s Hart House is an early example of the North American student centre, simultaneously serving cultural, intellectual, and recreational interests within its large Gothic-revival complex.

The University of Toronto has educated Governors General of Canada, Prime Ministers of Canada, foreign leaders, and Justices of the Supreme Court. Nobel laureates, Turing Award winners, Rhodes Scholars, and Fields Medalists have been affiliated with the university.

Early history

The founding of a colonial college had long been the desire of John Graves Simcoe, the first Lieutenant-Governor of Upper Canada and founder of York, the colonial capital. As a University of Oxford (UK)-educated military commander who had fought in the American Revolutionary War, Simcoe believed a college was needed to counter the spread of republicanism from the United States. The Upper Canada Executive Committee recommended in 1798 that a college be established in York.

On March 15, 1827, a royal charter was formally issued by King George IV, proclaiming “from this time one College, with the style and privileges of a University … for the education of youth in the principles of the Christian Religion, and for their instruction in the various branches of Science and Literature … to continue forever, to be called King’s College.” The granting of the charter was largely the result of intense lobbying by John Strachan, the influential Anglican Bishop of Toronto who took office as the college’s first president. The original three-story Greek Revival school building was built on the present site of Queen’s Park.

Under Strachan’s stewardship, King’s College was a religious institution closely aligned with the Church of England and the British colonial elite, known as the “Family Compact”. Reformist politicians opposed the clergy’s control over colonial institutions and fought to have the college secularized. In 1849, after a lengthy and heated debate, the newly elected responsible government of the Province of Canada voted to rename King’s College as the University of Toronto and severed the school’s ties with the church. Having anticipated this decision, the enraged Strachan had resigned a year earlier to open Trinity College as a private Anglican seminary. University College was created as the nondenominational teaching branch of the University of Toronto. During the American Civil War, the threat of Union blockade on British North America prompted the creation of the University Rifle Corps which saw battle in resisting the Fenian raids on the Niagara border in 1866. The Corps was part of the Reserve Militia lead by Professor Henry Croft.

Established in 1878, the School of Practical Science was the precursor to the Faculty of Applied Science and Engineering which has been nicknamed “Skule” since its earliest days. While the Faculty of Medicine opened in 1843 medical teaching was conducted by proprietary schools from 1853 until 1887 when the faculty absorbed the Toronto School of Medicine. Meanwhile the university continued to set examinations and confer medical degrees. The university opened the Faculty of Law in 1887, followed by the Faculty of Dentistry in 1888 when the Royal College of Dental Surgeons became an affiliate. Women were first admitted to the university in 1884.
A devastating fire in 1890 gutted the interior of University College and destroyed 33,000 volumes from the library but the university restored the building and replenished its library within two years. Over the next two decades a collegiate system took shape as the university arranged federation with several ecclesiastical colleges including Strachan’s Trinity College in 1904. The university operated the Royal Conservatory of Music from 1896 to 1991 and the Royal Ontario Museum from 1912 to 1968; both still retain close ties with the university as independent institutions. The University of Toronto Press was founded in 1901 as Canada’s first academic publishing house. The Faculty of Forestry founded in 1907 with Bernhard Fernow as dean was Canada’s first university faculty devoted to forest science. In 1910, the Faculty of Education opened its laboratory school, the University of Toronto Schools.

World wars and post-war years

The First and Second World Wars curtailed some university activities as undergraduate and graduate men eagerly enlisted. Intercollegiate athletic competitions and the Hart House Debates were suspended although exhibition and interfaculty games were still held. The David Dunlap Observatory in Richmond Hill opened in 1935 followed by the University of Toronto Institute for Aerospace Studies in 1949. The university opened satellite campuses in Scarborough in 1964 and in Mississauga in 1967. The university’s former affiliated schools at the Ontario Agricultural College and Glendon Hall became fully independent of the University of Toronto and became part of University of Guelph (CA) in 1964 and York University (CA) in 1965 respectively. Beginning in the 1980s reductions in government funding prompted more rigorous fundraising efforts.

Since 2000

In 2000 Kin-Yip Chun was reinstated as a professor of the university after he launched an unsuccessful lawsuit against the university alleging racial discrimination. In 2017 a human rights application was filed against the University by one of its students for allegedly delaying the investigation of sexual assault and being dismissive of their concerns. In 2018 the university cleared one of its professors of allegations of discrimination and antisemitism in an internal investigation after a complaint was filed by one of its students.

The University of Toronto was the first Canadian university to amass a financial endowment greater than C$1 billion in 2007. On September 24, 2020 the university announced a C$250 million gift to the Faculty of Medicine from businessman and philanthropist James C. Temerty- the largest single philanthropic donation in Canadian history. This broke the previous record for the school set in 2019 when Gerry Schwartz and Heather Reisman jointly donated C$100 million for the creation of a 750,000-square foot innovation and artificial intelligence centre.

Research

Since 1926 the University of Toronto has been a member of the Association of American Universities a consortium of the leading North American research universities. The university manages by far the largest annual research budget of any university in Canada with sponsored direct-cost expenditures of over C$900 million. In 2018 the University of Toronto was named the top research university in Canada by Research Infosource with annual sponsored research income (external sources of funding) of C$1,200 million. The university’s faculty averaged a sponsored research income of C$500,000 while graduate students averaged a sponsored research income of C$64,000. The federal government was the largest source of funding with grants from the Canadian Institutes of Health Research; the Natural Sciences and Engineering Research Council; and the Social Sciences and Humanities Research Council amounting to about one-third of the research budget. About eight percent of research funding came from corporations- mostly in the healthcare industry.

The first practical electron microscope was built by the physics department in 1938. During World War II the university developed the G-suit- a life-saving garment worn by Allied fighter plane pilots later adopted for use by astronauts. Development of the infrared chemiluminescence technique improved analyses of energy behaviors in chemical reactions. In 1963 the asteroid 2104 Toronto was discovered in the David Dunlap Observatory (CA) in Richmond Hill and is named after the university. In 1972 studies on Cygnus X-1 led to the publication of the first observational evidence proving the existence of black holes. Toronto astronomers have also discovered the Uranian moons of Caliban and Sycorax; the dwarf galaxies of Andromeda I, II and III; and the supernova SN 1987A. A pioneer in computing technology the university designed and built UTEC- one of the world’s first operational computers- and later purchased Ferut- the second commercial computer after UNIVAC I. Multi-touch technology was developed at Toronto with applications ranging from handheld devices to collaboration walls. The AeroVelo Atlas which won the Igor I. Sikorsky Human Powered Helicopter Competition in 2013 was developed by the university’s team of students and graduates and was tested in Vaughan.

The discovery of insulin at The University of Toronto in 1921 is considered among the most significant events in the history of medicine. The stem cell was discovered at the university in 1963 forming the basis for bone marrow transplantation and all subsequent research on adult and embryonic stem cells. This was the first of many findings at Toronto relating to stem cells including the identification of pancreatic and retinal stem cells. The cancer stem cell was first identified in 1997 by Toronto researchers who have since found stem cell associations in leukemia, brain tumors, and colorectal cancer. Medical inventions developed at Toronto include the glycaemic index, the infant cereal Pablum, the use of protective hypothermia in open heart surgery and the first artificial cardiac pacemaker. The first successful single-lung transplant was performed at Toronto in 1981 followed by the first nerve transplant in 1988 and the first double-lung transplant in 1989. Researchers identified the maturation promoting factor that regulates cell division and discovered the T-cell receptor which triggers responses of the immune system. The university is credited with isolating the genes that cause Fanconi anemia, cystic fibrosis and early-onset Alzheimer’s disease among numerous other diseases. Between 1914 and 1972 the university operated the Connaught Medical Research Laboratories- now part of the pharmaceutical corporation Sanofi-Aventis. Among the research conducted at the laboratory was the development of gel electrophoresis.

The University of Toronto is the primary research presence that supports one of the world’s largest concentrations of biotechnology firms. More than 5,000 principal investigators reside within 2 kilometres (1.2 mi) from the university grounds in Toronto’s Discovery District conducting C$1 billion of medical research annually. MaRS Discovery District is a research park that serves commercial enterprises and the university’s technology transfer ventures. In 2008, the university disclosed 159 inventions and had 114 active start-up companies. Its SciNet Consortium operates the most powerful supercomputer in Canada.

Leave a comment