From Rochester: “Are we alone? Setting some limits to our uniqueness”

U Rochester bloc

University of Rochester

April 26, 2016
Leonor Sierra

Are humans unique and alone in the vast universe? This question–summed up in the famous Drake equation–has for a half-century been one of the most intractable and uncertain in science.

But a new paper shows that the recent discoveries of exoplanets combined with a broader approach to the question makes it possible to assign a new empirically valid probability to whether any other advanced technological civilizations have ever existed.

And it shows that unless the odds of advanced life evolving on a habitable planet are astonishingly low, then human kind is not the universe’s first technological, or advanced, civilization.

The paper*, published in Astrobiology, also shows for the first time just what “pessimism” or “optimism” mean when it comes to estimating the likelihood of advanced extraterrestrial life.

“The question of whether advanced civilizations exist elsewhere in the universe has always been vexed with three large uncertainties in the Drake equation,” said Adam Frank, professor of physics and astronomy at the University of Rochester and co-author of the paper. “We’ve known for a long time approximately how many stars exist. We didn’t know how many of those stars had planets that could potentially harbor life, how often life might evolve and lead to intelligent beings, and how long any civilizations might last before becoming extinct.”

__________________________________________________________________________________________________

Select A Region:
Our local neighborhood in the galaxy (a cube with sides of 1,000ly)
Milky Way galaxy
Observable Universe
Select A Probability:
10-24 (About as likely that you’d be hit by lightning four times in one year)
10-18 (About one in a billion billion)
3 x 10-9 (About as likely you will win the powerball)
10-4 (About one in 10,000)
INTERACTIVE: Life on other planets? What are the odds?

How likely is it that we are the first advanced civilization? Use this graphic to find out.

Choose a cosmic “neighborhood” to play in: just our own local corner, the whole Milky Way, or the whole observable universe
Choose your probability factor: how optimistic or pessimistic are you that advanced life can evolve on other habitable planets?

__________________________________________________________________________________________________

“Thanks to NASA’s Kepler satellite and other searches, we now know that roughly one-fifth of stars have planets in “habitable zones,” where temperatures could support life as we know it.

NASA/Kepler Telescope
NASA/Kepler Telescope

So one of the three big uncertainties has now been constrained.”

Frank said that the third big question–how long civilizations might survive–is still completely unknown. “The fact that humans have had rudimentary technology for roughly ten thousand years doesn’t really tell us if other societies would last that long or perhaps much longer,” he explained.

But Frank and his coauthor, Woodruff Sullivan of the astronomy department and astrobiology program at the University of Washington, found they could eliminate that term altogether by simply expanding the question.

“Rather than asking how many civilizations may exist now, we ask ‘Are we the only technological species that has ever arisen?” said Sullivan. “This shifted focus eliminates the uncertainty of the civilization lifetime question and allows us to address what we call the ‘cosmic archaeological question’—how often in the history of the universe has life evolved to an advanced state?”

That still leaves huge uncertainties in calculating the probability for advanced life to evolve on habitable planets. It’s here that Frank and Sullivan flip the question around. Rather than guessing at the odds of advanced life developing, they calculate the odds against it occurring in order for humanity to be the only advanced civilization in the entire history of the observable universe. With that, Frank and Sullivan then calculated the line between a Universe where humanity has been the sole experiment in civilization and one where others have come before us.

“Of course, we have no idea how likely it is that an intelligent technological species will evolve on a given habitable planet,” says Frank. But using our method we can tell exactly how low that probability would have to be for us to be the ONLY civilization the Universe has produced. We call that the pessimism line. If the actual probability is greater than the pessimism line, then a technological species and civilization has likely happened before.”

Using this approach, Frank and Sullivan calculate how unlikely advanced life must be if there has never been another example among the universe’s ten billion trillion stars, or even among our own Milky Way galaxy’s hundred billion.

The result? By applying the new exoplanet data to the universe’s 2 x 10 to the 22nd power stars, Frank and Sullivan find that human civilization is likely to be unique in the cosmos only if the odds of a civilization developing on a habitable planet are less than about one in 10 billion trillion, or one part in 10 to the 22th power.

“One in 10 billion trillion is incredibly small,” says Frank. “To me, this implies that other intelligent, technology producing species very likely have evolved before us. Think of it this way. Before our result you’d be considered a pessimist if you imagined the probability of evolving a civilization on a habitable planet were, say, one in a trillion. But even that guess, one chance in a trillion, implies that what has happened here on Earth with humanity has in fact happened about a 10 billion other times over cosmic history!”

For smaller volumes the numbers are less extreme. For example, another technological species likely has evolved on a habitable planet in our own Milky Way galaxy if the odds against it evolving on any one habitable planet are better than one chance in 60 billion.

But if those numbers seem to give ammunition to the “optimists” about the existence of alien civilizations, Sullivan points out that the full Drake equation—which calculates the odds that other civilizations are around today—may give solace to the pessimists.

2

In 1961, astrophysicist Frank Drake developed an equation to estimate the number of advanced civilizations likely to exist in the Milky Way galaxy. The Drake equation (top row) has proven to be a durable framework for research, and space technology has advanced scientists’ knowledge of several variables. But it is impossible to do anything more than guess at variables such as L, the probably longevity of other advanced civilizations.

In new research, Adam Frank and Woodruff Sullivan offer a new equation (bottom row) to address a slightly different question: What is the number of advanced civilizations likely to have developed over the history of the observable universe? Frank and Sullivan’s equation draws on Drake’s, but eliminates the need for L.

Their argument hinges upon the recent discovery of how many planets exist and how many of those lie in what scientists call the “habitable zone” – planets in which liquid water, and therefore life, could exist. This allows Frank and Sullivan to define a number they call Nast. Nast is the product of N*, the total number of stars; fp, the fraction of those stars that form planets; and np, the average number of those planets in the habitable zones of their stars.

They then set out what they call the “Archaelogical-form” of the Drake equation, which defines A as the “number of technological species that have ever formed over the history of the observable Universe.”

Their equation, A=Nast*fbt, describes A as the product of Nast – the number of habitable planets in a given volume of the Universe – multiplied by fbt – the likelihood of a technological species arising on one of these planets. The volume considered could be, for example, the entire Universe, or just our Galaxy.

“The universe is more than 13 billion years old,” said Sullivan. “That means that even if there have been a thousand civilizations in our own galaxy, if they live only as long as we have been around—roughly ten thousand years—then all of them are likely already extinct. And others won’t evolve until we are long gone. For us to have much chance of success in finding another “contemporary” active technological civilization, on average they must last much longer than our present lifetime.”

“Given the vast distances between stars and the fixed speed of light we might never really be able to have a conversation with another civilization anyway,” said Frank. “If they were 20,000 light years away then every exchange would take 40,000 years to go back and forth.”

But, as Frank and Sullivan point out, even if there aren’t other civilizations in our galaxy to communicate with now, the new result still has a profound scientific and philosophical importance. “From a fundamental perspective the question is ‘has it ever happened anywhere before?’” said Frank. Our result is the first time anyone has been able to set any empirical answer for that question and it is astonishingly likely that we are not the only time and place that an advance civilization has evolved.”

According to Frank and Sullivan their result has a practical application as well. As humanity faces its crisis in sustainability and climate change we can wonder if other civilization-building species on other planets have gone through a similar bottleneck and made it to the other side. As Frank puts it “We don’t even know if it’s possible to have a high-tech civilization that lasts more than a few centuries.” With Frank and Sullivan’s new result, scientists can begin using everything they know about planets and climate to begin modeling the interactions of an energy-intensive species with their home world knowing that a large sample of such cases has already existed in the cosmos. “Our results imply that our evolution has not been unique and has probably happened many times before. The other cases are likely to include many energy intensive civilizations dealing with their feedbacks onto their planets as their civilizations grow. That means we can begin exploring the problem using simulations to get a sense of what leads to long lived civilizations and what doesn’t.”

*Science paper:
A New Empirical Constraint on the Prevalence of Technological Species in the Universe

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

U Rochester Campus

The University of Rochester is one of the country’s top-tier research universities. Our 158 buildings house more than 200 academic majors, more than 2,000 faculty and instructional staff, and some 10,500 students—approximately half of whom are women.

Learning at the University of Rochester is also on a very personal scale. Rochester remains one of the smallest and most collegiate among top research universities, with smaller classes, a low 10:1 student to teacher ratio, and increased interactions with faculty.

From Rochester: “Scientists Discover Stem Cells Capable of Repairing Skull, Face Bones”

U Rochester bloc

University of Rochester

February 01, 2016
Media Contact
Leslie Orr
(585) 275-5774

A team of Rochester scientists has, for the first time, identified and isolated a stem cell population capable of skull formation and craniofacial bone repair in mice—achieving an important step toward using stem cells for bone reconstruction of the face and head in the future, according to a new paper in Nature Communications.

stem cells
The photo shows a blue-stained stem cell and a red-stained stem cell that each generated new bones cells after transplantation

Senior author Wei Hsu, Ph.D., dean’s professor of Biomedical Genetics and a scientist at the Eastman Institute for Oral Health at theUniversity of Rochester Medical Center, said the goal is to better understand and find stem-cell therapy for a condition known as craniosynostosis, a skull deformity in infants. Craniosynostosis often leads to developmental delays and life-threatening elevated pressure in the brain.

Hsu believes his findings contribute to an emerging field involving tissue engineering that uses stem cells and other materials to invent superior ways to replace damaged craniofacial bones in humans due to congenital disease, trauma, or cancer surgery.

For years Hsu’s lab, including the study’s lead author, Takamitsu Maruyama, Ph.D., focused on the function of the Axin2 gene and a mutation that causes craniosynostosis in mice. Because of a unique expression pattern of the Axin2 gene in the skull, the lab then began investigating the activity of Axin2-expressing cells and their role in bone formation, repair and regeneration. Their latest evidence shows that stem cells central to skull formation are contained within Axin2 cell populations, comprising about 1 percent—and that the lab tests used to uncover the skeletal stem cells might also be useful to find bone diseases caused by stem cell abnormalities.

The team also confirmed that this population of stem cells is unique to bones of the head, and that separate and distinct stem cells are responsible for formation of long bones in the legs and other parts of the body, for example.

The National Institutes of Health and NYSTEM funded the research.

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

U Rochester Campus

The University of Rochester is one of the country’s top-tier research universities. Our 158 buildings house more than 200 academic majors, more than 2,000 faculty and instructional staff, and some 10,500 students—approximately half of whom are women.

Learning at the University of Rochester is also on a very personal scale. Rochester remains one of the smallest and most collegiate among top research universities, with smaller classes, a low 10:1 student to teacher ratio, and increased interactions with faculty.

From U Rochester: “Gigantic ring system around J1407b much larger, heavier than Saturn’s”

U Rochester bloc

University of Rochester

January 26, 2015
Leonor Sierra 585-276-6264
lsierra@ur.rochester.edu
@leonor_sierra

1
Artist’s conception of the extrasolar ring system circling the young giant planet or brown dwarf J1407b. The rings are shown eclipsing the young sun-like star J1407, as they would have appeared in early 2007. Credit: Ron Miller

Astronomers at the Leiden Observatory, The Netherlands, and the University of Rochester, USA, have discovered that the ring system that they see eclipse the very young Sun-like star J1407 is of enormous proportions, much larger and heavier than the ring system of Saturn. The ring system – the first of its kind to be found outside our solar system – was discovered in 2012 by a team led by Rochester’s Eric Mamajek.

Leiden Observatory
Leiden Observatory

A new analysis of the data, led by Leiden’s Matthew Kenworthy, shows that the ring system consists of over 30 rings, each of them tens of millions of kilometers in diameter. Furthermore, they found gaps in the rings, which indicate that satellites (“exomoons”) may have formed. The result has been accepted for publication in the Astrophysical Journal.

“The details that we see in the light curve are incredible. The eclipse lasted for several weeks, but you see rapid changes on time scales of tens of minutes as a result of fine structures in the rings,” says Kenworthy. “The star is much too far away to observe the rings directly, but we could make a detailed model based on the rapid brightness variations in the star light passing through the ring system. If we could replace Saturn’s rings with the rings around J1407b, they would be easily visible at night and be many times larger than the full moon.”

“This planet is much larger than Jupiter or Saturn, and its ring system is roughly 200 times larger than Saturn’s rings are today,” said co-author Mamajek, professor of physics and astronomy at the University of Rochester. “You could think of it as kind of a super Saturn.”

The astronomers analyzed data from the SuperWASP project – a survey that is designed to detect gas giants that move in front of their parent star. In 2012, Mamajek and colleagues at the University of Rochester reported the discovery of the young star J1407 and the unusual eclipses, and proposed that they were caused by a moon-forming disk around a young giant planet or brown dwarf.

SuperWASP telescope
SuperWASP telescope

In a third, more recent study also led by Kenworthy, adaptive optics and Doppler spectroscopy were used to estimate the mass of the ringed object. Their conclusions based on these and previous papers on the intriguing system J1407 is that the companion is likely to be a giant planet – not yet seen – with a gigantic ring system responsible for the repeated dimming of J1407’s light.

The light curve tells astronomers that the diameter of the ring system is nearly 120 million kilometers, more than two hundred times as large as the rings of Saturn. The ring system likely contains roughly an Earth’s worth of mass in light-obscuring dust particles.

Mamajek puts into context how much material is contained in these disks and rings. “If you were to grind up the four large Galilean moons of Jupiter into dust and ice and spread out the material over their orbits in a ring around Jupiter, the ring would be so opaque to light that a distant observer that saw the ring pass in front of the sun would see a very deep, multi-day eclipse,” Mamajek says. “In the case of J1407, we see the rings blocking as much as 95 percent of the light of this young Sun-like star for days, so there is a lot of material there that could then form satellites.”

In the data the astronomers found at least one clean gap in the ring structure, which is more clearly defined in the new model. “One obvious explanation is that a satellite formed and carved out this gap,” says Kenworthy. “The mass of the satellite could be between that of Earth and Mars. The satellite would have an orbital period of approximately two years around J1407b.”

Astronomers expect that the rings will become thinner in the next several million years and eventually disappear as satellites form from the material in the disks.

“The planetary science community has theorized for decades that planets like Jupiter and Saturn would have had, at an early stage, disks around them that then led to the formation of satellites,” Mamajek explains. “However, until we discovered this object in 2012, no-one had seen such a ring system. This is the first snapshot of satellite formation on million-kilometer scales around a substellar object.”

Astronomers estimate that the ringed companion J1407b has an orbital period roughly a decade in length. The mass of J1407b has been difficult to constrain, but it is most likely in the range of about 10 to 40 Jupiter masses.

The researchers encourage amateur astronomers to help monitor J1407, which would help detect the next eclipse of the rings, and constrain the period and mass of the ringed companion. Observations of J1407 can be reported to the American Association of Variable Star Observers (AAVSO). In the meantime the astronomers are searching other photometric surveys looking for eclipses by yet undiscovered ring systems.

Kenworthy adds that finding eclipses from more objects like J1407’s companion “is the only feasible way we have of observing the early conditions of satellite formation for the near future. J1407’s eclipses will allow us to study the physical and chemical properties of satellite-spawning circumplanetary disks.”

See the full article here.

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

U Rochester Campus

The University of Rochester is one of the country’s top-tier research universities. Our 158 buildings house more than 200 academic majors, more than 2,000 faculty and instructional staff, and some 10,500 students—approximately half of whom are women.

Learning at the University of Rochester is also on a very personal scale. Rochester remains one of the smallest and most collegiate among top research universities, with smaller classes, a low 10:1 student to teacher ratio, and increased interactions with faculty.

From U Rochester: “Laser-generated surface structures create extremely water-repellent metals”

U Rochester bloc

University of Rochester

January 20, 2015
Leonor Sierra

1
Professor Chunlei Guo has developed a technique that uses lasers to render materials hydrophobic, illustrated in this image of a water droplet bouncing off a treated sample. Photo by J. Adam Fenster / University of Rochester.

Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals

Scientists at the University of Rochester have used lasers to transform metals into extremely water repellent, or super-hydrophobic, materials without the need for temporary coatings.

Super-hydrophobic materials are desirable for a number of applications such as rust prevention, anti-icing, or even in sanitation uses. However, as Rochester’s Chunlei Guo explains, most current hydrophobic materials rely on chemical coatings.

In a paper published today in the Journal of Applied Physics, Guo and his colleague at the University’s Institute of Optics, Anatoliy Vorobyev, describe a powerful and precise laser-patterning technique that creates an intricate pattern of micro- and nanoscale structures to give the metals their new properties. This work builds on earlier research by the team in which they used a similar laser-patterning technique that turned metals black. Guo states that using this technique they can create multifunctional surfaces that are not only super-hydrophobic but also highly-absorbent optically.

Guo adds that one of the big advantages of his team’s process is that “the structures created by our laser on the metals are intrinsically part of the material surface.” That means they won’t rub off. And it is these patterns that make the metals repel water.

“The material is so strongly water-repellent, the water actually gets bounced off. Then it lands on the surface again, gets bounced off again, and then it will just roll off from the surface,” said Guo, professor of optics at the University of Rochester. That whole process takes less than a second.

The materials Guo has created are much more slippery than Teflon—a common hydrophobic material that often coats nonstick frying pans. Unlike Guo’s laser-treated metals, the Teflon kitchen tools are not super-hydrophobic. The difference is that to make water to roll-off a Teflon coated material, you need to tilt the surface to nearly a 70-degree angle before the water begins to slide off. You can make water roll off Guo’s metals by tilting them less than five degrees.

As the water bounces off the super-hydrophobic surfaces, it also collects dust particles and takes them along for the ride. To test this self-cleaning property, Guo and his team took ordinary dust from a vacuum cleaner and dumped it onto the treated surface. Roughly half of the dust particles were removed with just three drops of water. It took only a dozen drops to leave the surface spotless. Better yet, it remains completely dry.

Guo is excited by potential applications of super-hydrophobic materials in developing countries. It is this potential that has piqued the interest of the Bill and Melinda Gates Foundation, which has supported the work.

“In these regions, collecting rain water is vital and using super-hydrophobic materials could increase the efficiency without the need to use large funnels with high-pitched angles to prevent water from sticking to the surface,” says Guo. “A second application could be creating latrines that are cleaner and healthier to use.”

Latrines are a challenge to keep clean in places with little water. By incorporating super-hydrophobic materials, a latrine could remain clean without the need for water flushing.

2
3
Professor Chunlei Guo has developed a technique that uses lasers to render materials hydrophobic, illustrated in these images of water droplets bouncing off a treated sample. // Photos by J. Adam Fenster / University of Rochester

But challenges still remain to be addressed before these applications can become a reality, Guo states. It currently takes an hour to pattern a 1 inch by 1 inch metal sample, and scaling up this process would be necessary before it can be deployed in developing countries. The researchers are also looking into ways of applying the technique to other, non-metal materials.

Guo and Vorobyev use extremely powerful, but ultra-short, laser pulses to change the surface of the metals. A femtosecond laser pulse lasts on the order of a quadrillionth of a second but reaches a peak power equivalent to that of the entire power grid of North America during its short burst.

Guo is keen to stress that this same technique can give rise to multifunctional metals. Metals are naturally excellent reflectors of light. That’s why they appear to have a shiny luster. Turning them black can therefore make them very efficient at absorbing light. The combination of light-absorbing properties with making metals water repellent could lead to more efficient solar absorbers – solar absorbers that don’t rust and do not need much cleaning.

Guo’s team had previously blasted materials with the lasers and turned them hydrophilic, meaning they attract water. In fact, the materials were so hydrophilic that putting them in contact with a drop of water made water run “uphill.”

Guo’s team is now planning on focusing on increasing the speed of patterning the surfaces with the laser, as well as studying how to expand this technique to other materials such as semiconductors or dielectrics, opening up the possibility of water repellent electronics.

Funding was provided by the Bill & Melinda Gates Foundation and the United States Air Force Office of Scientific Research.

The article, Multifunctional surfaces produced by femtosecond laser pulses, was published in the Journal of Applied Physics on January 20, 2015 (DOI: 10.1063/1.4905616). It can be accessed at: http://scitation.aip.org/content/aip/journal/jap/117/3/10.1063/1.4905616

See the full article here.

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

U Rochester Campus

The University of Rochester is one of the country’s top-tier research universities. Our 158 buildings house more than 200 academic majors, more than 2,000 faculty and instructional staff, and some 10,500 students—approximately half of whom are women.

Learning at the University of Rochester is also on a very personal scale. Rochester remains one of the smallest and most collegiate among top research universities, with smaller classes, a low 10:1 student to teacher ratio, and increased interactions with faculty.

From U Rochester: “Researchers show neutrinos can deliver not only full-on hits but also ‘glancing blows’”

U Rochester bloc

University of Rochester

December 30, 2014
Leonor Sierra and Peter Iglinski
585-276-6264
lsierra@ur.rochester.edu
@leonor_sierra

In what they call a “weird little corner” of the already weird world of neutrinos, physicists have found evidence that these tiny particles might be involved in a surprising reaction.

Neutrinos are famous for almost never interacting. As an example, ten trillion neutrinos pass through your hand every second, and fewer than one actually interacts with any of the atoms that make up your hand. However, when neutrinos do interact with another particle, it happens at very close distances and involves a high-momentum transfer.

And yet a new paper, published in Physical Review Letters this week, shows that neutrinos sometimes can also interact with a nucleus but leave it basically untouched – inflicting no more than a “glancing blow” – resulting in a particle being created out of a vacuum.

Professor Kevin McFarland is a scientific co-spokesperson with the international MINERvA collaboration, which carries out neutrino scattering experiments at Fermilab. McFarland, who also heads up the Rochester team that was primarily responsible for the analysis of the results, compares neutrino interactions to the firing of a bullet at a bubble, only to find the bubble was left intact.

f
from Fermilab Today: This MINERvA event display shows a coherent pion production candidate interaction. The neutrino enters the detector from the left and interacts with a nucleus, producing a muon and a pion. The colors indicate the amount of energy deposited at that point.

“The bubble – a carbon nucleus in the experiment – deflects the neutrino ‘bullet’ by creating a particle from the vacuum,” McFarland explains. “This effectively shields the bubble from getting blasted apart and instead the bullet only delivers a gentle bump to the bubble.”

Producing an entirely new particle – in this case a charged pion – requires much more energy than it would take to blast the nucleus apart – which is why the physicists are always surprised that the reaction happens as often as it does. McFarland adds that even painstakingly detailed theoretical calculations for this reaction “have been all over the map.”

“The production of pions from this reaction had not been observed consistently in other experiments,” McFarland said. By using a new technique, they were able to measure how much momentum and energy were transferred to the carbon nucleus – showing that it remained undisturbed – and the distribution of the pions that were created.

“After analyzing the results, we now have overwhelming evidence for the process,” McFarland says.

The two members of the collaboration who were primarily responsible for analyzing the results were Aaron Higuera, at the time a postdoc at Rochester and now at the University of Houston, and Aaron Mislivec, one of McFarland’s doctoral students.

Working with Higuera, Mislivec wrote the computer code that allowed them to sift through the results and get a picture of the reaction. “Our detector gave us access to the full information of exactly what was happening in this reaction,” Mislivec explains. “Our data was consistent with the unique fingerprint of this reaction and determined how these interactions happen and how often.” The key to identifying the reaction was finding undisturbed carbon nuclei and then studying the two resulting particles – the pion, which is responsible for shielding the nucleus, and the muon.

Understanding this reaction, McFarland states, “is not going to make a better mousetrap, but it is exciting to learn that this weird reaction really does take place.”

Researchers in the MINERvA collaboration measure low energy neutrino interactions both to support neutrino oscillation experiments and study the strong dynamics of the nucleon and nucleus that affect the interactions.

The work is funded by the Department of Energy, the National Science Foundation, and partnering scientific agencies in Brazil, Chile, Mexico, Switzerland, Peru and Russia.

See the full article here.

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

U Rochester Campus

The University of Rochester is one of the country’s top-tier research universities. Our 158 buildings house more than 200 academic majors, more than 2,000 faculty and instructional staff, and some 10,500 students—approximately half of whom are women.

Learning at the University of Rochester is also on a very personal scale. Rochester remains one of the smallest and most collegiate among top research universities, with smaller classes, a low 10:1 student to teacher ratio, and increased interactions with faculty.