Tagged: ZIKA Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:44 am on March 29, 2017 Permalink | Reply
    Tags: , , , , , ZIKA   

    From MIT: “Progress toward a Zika vaccine” A lot of Zika News Lately 

    MIT News

    MIT Widget

    MIT News

    March 29, 2017
    Anne Trafton

    1
    MIT researchers have devised a new vaccine candidate for the Zika virus. “It functions almost like a synthetic virus, except it’s not pathogenic and it doesn’t spread,” says postdoc Omar Khan. Image: Jose-Luis Olivares/MIT

    Researchers program RNA nanoparticles that could protect against the virus.

    Using a new strategy that can rapidly generate customized RNA vaccines, MIT researchers have devised a new vaccine candidate for the Zika virus.

    The vaccine consists of strands of genetic material known as messenger RNA, which are packaged into a nanoparticle that delivers the RNA into cells. Once inside cells, the RNA is translated into proteins that provoke an immune response from the host, but the RNA does not integrate itself into the host genome, making it potentially safer than a DNA vaccine or vaccinating with the virus itself.

    “It functions almost like a synthetic virus, except it’s not pathogenic and it doesn’t spread,” says Omar Khan, a postdoc at MIT’s Koch Institute for Integrative Cancer Research and an author of the new study. “We can control how long it’s expressed, and it’s RNA so it will never integrate into the host genome.”

    This research also yielded a new benchmark for evaluating the effectiveness of other Zika vaccine candidates, which could help others who are working toward the same goal.

    Jasdave Chahal, a postdoc at MIT’s Whitehead Institute for Biomedical Research, is the first author of the paper, which appears in Scientific Reports. The paper’s senior author is Hidde Ploegh, a former MIT biology professor and Whitehead Institute member who is now a senior investigator in the Program in Cellular and Molecular Medicine at Boston Children’s Hospital.

    Other authors of the paper are Tao Fang and Andrew Woodham, both former Whitehead Institute postdocs in the Ploegh lab; Jingjing Ling, an MIT graduate student; and Daniel Anderson, an associate professor in MIT’s Department of Chemical Engineering and a member of the Koch Institute and MIT’s Institute for Medical Engineering and Science (IMES).

    Programmable vaccines

    The MIT team first reported its new approach to programmable RNA vaccines last year. RNA vaccines are appealing because they induce host cells to produce many copies of the proteins encoded by the RNA. This provokes a stronger immune reaction than if the proteins were administered on their own. However, finding a safe and effective way to deliver these vaccines has proven challenging.

    The researchers devised an approach in which they package RNA sequences into a nanoparticle made from a branched molecule that is based on fractal-patterned dendrimers. This modified-dendrimer-RNA structure can be induced to fold over itself many times, producing a spherical particle about 150 nanometers in diameter. This is similar in size to a typical virus, allowing the particles to enter cells through the same viral entry mechanisms. In their 2016 paper, the researchers used this nanoparticle approach to generate experimental vaccines for Ebola, H1N1 influenza, and the parasite Toxoplasma gondii.

    In the new study, the researchers tackled Zika virus, which emerged as an epidemic centered in Brazil in 2015 and has since spread around the world, causing serious birth defects in babies born to infected mothers. Since the MIT method does not require working with the virus itself, the researchers believe they might be able to explore potential vaccines more rapidly than scientists pursuing a more traditional approach.

    Instead of using viral proteins or weakened forms of the virus as vaccines, which are the most common strategies, the researchers simply programmed their RNA nanoparticles with the sequences that encode Zika virus proteins. Once injected into the body, these molecules replicate themselves inside cells and instruct cells to produce the viral proteins.

    The entire process of designing, producing, and testing the vaccine in mice took less time than it took for the researchers to obtain permission to work with samples of the Zika virus, which they eventually did get.

    “That’s the beauty of it,” Chahal says. “Once we decided to do it, in two weeks we were ready to vaccinate mice. Access to virus itself was not necessary.”

    Measuring response

    When developing a vaccine, researchers usually aim to generate a response from both arms of the immune system — the adaptive arm, mediated by T cells and antibodies, and the innate arm, which is necessary to amplify the adaptive response. To measure whether an experimental vaccine has generated a strong T cell response, researchers can remove T cells from the body and then measure how they respond to fragments of the viral protein.

    Until now, researchers working on Zika vaccines have had to buy libraries of different protein fragments and then test T cells on them, which is an expensive and time-consuming process. Because the MIT researchers could generate so many T cells from their vaccinated mice, they were able to rapidly screen them against this library. They identified a sequence of eight amino acids that the activated T cells in the mouse respond to. Now that this sequence, also called an epitope, is known, other researchers can use it to test their own experimental Zika vaccines in the appropriate mouse models.

    “We can synthetically make these vaccines that are almost like infecting someone with the actual virus, and then generate an immune response and use the data from that response to help other people predict if their vaccines would work, if they bind to the same epitopes,” Khan says. The researchers hope to eventually move their Zika vaccine into tests in humans.

    “The identification and characterization of CD8 T cell epitopes in mice immunized with a Zika RNA vaccine is a very useful reference for all those working in the field of Zika vaccine development,” says Katja Fink, a principal investigator at the A*STAR Singapore Immunology Network. “RNA vaccines have received much attention in the last few years, and while the big breakthrough in humans has not been achieved yet, the technology holds promise to become a flexible platform that could provide rapid solutions for emerging viruses.”

    Fink, who was not involved in the research, added that the “initial data are promising but the Zika RNA vaccine approach described needs further testing to prove efficacy.”

    Another major area of focus for the researchers is cancer vaccines. Many scientists are working on vaccines that could program a patient’s immune system to attack tumor cells, but in order to do that, they need to know what the vaccine should target. The new MIT strategy could allow scientists to quickly generate personalized RNA vaccines based on the genetic sequence of an individual patient’s tumor cells.

    The research was funded by the National Institutes of Health, a Fujifilm/MediVector grant, the Lustgarten Foundation, a Koch Institute and Dana-Farber/Harvard Center Center Bridge Project award, the Department of Defense Office of Congressionally Directed Medical Research’s Joint Warfighter Medical Research Program, and the Cancer Center Support Grant from the National Cancer Institute.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    MIT Campus

     
  • richardmitnick 7:02 am on March 27, 2017 Permalink | Reply
    Tags: , , , ZIKA   

    From UC Riverside: “Researchers Crack Structure of Key Protein in Zika Virus” 

    UC Riverside bloc

    UC Riverside

    March 27, 2017
    Iqbal Pittalwala

    1
    The image shows the crystal structure of ZIKV NS5 protein. The regions with different colors represent individual domains or motifs of ZIKV NS5. The black circle marks the location of the potential inhibitor-binding site. Image credit: Song lab, UC Riverside.

    Zika virus (ZIKV), which causes Zika virus disease, is spread to people primarily through the bite of an infected Aedes aegypti or Aedes albopictus mosquito. An infected pregnant woman can pass ZIKV to her fetus during pregnancy or around the time of birth. Sex is yet another way for infected persons to transmit ZIKV to others.

    The genomic replication of the virus is made possible by its “NS5” protein. This function of ZIKV NS5 is unique to the virus, making it an ideal target for anti-viral drug development. Currently, there is no vaccine or medicine to fight ZIKV infection.

    In a research paper just published in Nature Communications, University of California, Riverside scientists report that they have determined the crystal structure of the entire ZIKV NS5 protein and demonstrated that NS5 is functional when purified in vitro. Knowing the structure of ZIKV NS5 helps the researchers understand how ZIKV replicates itself.

    Furthermore, the researchers’ structural analysis of ZIKV NS5 reveals a potential binding site in the protein for an inhibitor, thereby providing a strong basis for developing potential inhibitors against ZIKV NS5 to suppress ZIKV infection. The identification of the inhibitor-binding site of NS5 can now enable scientists to design potential potent drugs to fight ZIKV.

    “We started this work realizing that the full structure of ZIKV NS5 was missing,” said Jikui Song, an assistant professor of biochemistry, who co-led the research with Rong Hai, an assistant professor of plant pathology and microbiology. “The main challenge for us occurred during the protein’s purification process when ZIKV NS5 got degraded – chopped up – by bacterial enzymes.”

    Song, Hai and their colleagues overcame this challenge by developing an efficient protocol for protein purification, which in essence minimizes the purification time for NS5.

    “Our work provides a framework for future studies of ZIKV NS5 and opportunities for drug development against ZIKV based on its structural similarity to the NS5 protein of other flaviviruses, such as the dengue virus,” Hai said. “No doubt, ZIKV therapeutics can benefit from the wealth of knowledge that has already been generated in the dengue virus field.”

    Next, the researchers plan to investigate the antiviral potential on ZIKV NS5 of a chemical compound that has been shown to work effectively in inhibiting the NS5 protein in the dengue virus.

    Song and Hai were joined in the research by graduate students Boxiao Wang (first author), Xiao-Feng Tan, Stephanie Thurmond, Zhi-Min Zhang, and Asher Lin.

    The research was supported by grants to Song from the March of Dimes Foundation, the Sidney Kimmel Foundation for Cancer Research and the National Institutes of Health.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UC Riverside Campus

    The University of California, Riverside is one of 10 universities within the prestigious University of California system, and the only UC located in Inland Southern California.

    Widely recognized as one of the most ethnically diverse research universities in the nation, UCR’s current enrollment is more than 21,000 students, with a goal of 25,000 students by 2020. The campus is in the midst of a tremendous growth spurt with new and remodeled facilities coming on-line on a regular basis.

    We are located approximately 50 miles east of downtown Los Angeles. UCR is also within easy driving distance of dozens of major cultural and recreational sites, as well as desert, mountain and coastal destinations.

     
  • richardmitnick 10:39 am on December 16, 2016 Permalink | Reply
    Tags: , , , , ZIKA   

    From UCLA: “Zika-linked birth defects more extensive than previously thought, UCLA-led research finds” 

    UCLA bloc

    UCLA

    December 15, 2016
    Enrique Rivero

    New UCLA-led research finds that Zika-linked abnormalities that occur in human fetuses are more extensive — and severe — than previously thought, with 46 percent of 125 pregnancies among Zika-infected women resulting in birth defects in newborns or ending in fetal death.

    The study, published in the New England Journal of Medicine, suggests that damage during fetal development from the mosquito-borne virus can occur throughout pregnancy and that other birth defects are more common than microcephaly, when babies are born with very small heads. Further, these defects may only be detected weeks or months after the baby is born, said Dr. Karin Nielsen, the study’s senior author and a professor of clinical pediatrics in the division of pediatric infectious diseases at the David Geffen School of Medicine at UCLA and Mattel Children’s Hospital.

    1
    Dr. Karin Nielsen. UCLA

    “This means that microcephaly is not the most common congenital defect from the Zika virus,” Nielsen said. The absence of that condition does not mean the baby will be free of birth defects, she added, because “there are problems that are not apparent at birth” and such difficulties may not be evident until the age of six months.

    “These are sobering results,” Nielsen said.

    The results are a follow-up to a smaller Brazilian study published in March that used molecular testing to find an association between Zika infection in pregnant women and a series of serious outcomes that included fetal deaths (miscarriages and stillbirths), abnormal fetal growth and damage to the central nervous system. This is the largest study to date of Zika-affected pregnancies in which the women were followed from the time they were infected to the end of their pregnancies. All the women were enrolled before any abnormalities in their pregnancies had been identified.

    The new study was based on a larger sample size of 345 women in Rio de Janeiro, Brazil, who were enrolled from September 2015 through May 2016. Of those women, 182, or 53 percent, tested positive for Zika in the blood, urine or both. In addition, 42 percent of the women who did not have Zika were found to be infected with chikungunya, another mosquito-borne virus; 3 percent of Zika-positive women also had chikungunya.

    From there, the researchers evaluated 125 women infected with Zika and 61 who were not infected with the virus who had given birth by July 2016. The previous study was based mainly on prenatal ultrasound findings; by contrast, the current research evaluated infants from Zika-affected pregnancies through physical examination and brain imaging. Among the findings:

    There were nine fetal deaths among women with Zika infection during pregnancy, five of those in the first trimester.
    Fetal deaths or abnormalities in the infants were present in 46 percent of Zika-positive women, contrasted with 11.5 percent of Zika-negative women.
    Forty-two percent of infants born to the Zika-infected mothers were found to have microcephaly, brain lesions or brain calcifications seen in imaging studies, lesions in the retina, deafness, feeding difficulties and other complications.

    The risks occurred at all stages of pregnancy: 55 percent of pregnancies were affected in the first trimester, 51 percent in the second trimester and 29 percent in the third trimester.

    The researchers noted that they examined the babies during their early infancy, when “more subtle neurologic manifestations of disease are not identified.” So follow-up examinations could turn up evidence of more neurologic diseases that couldn’t be detected earlier in the babies’ lives.

    “Our data show that the risk of severe adverse pregnancy and infant outcomes after maternal Zika infection was substantial,” the authors wrote.

    Supporting the study were the Departamento de Ciência e Tecnologia do Ministério da Saúde do Brasil; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES/ 88887.116627/2016-01,) and the National Institute of Allergy and Infectious Diseases/National Institutes of Health grant AI AI28697.

    See the full article here .

    YOU CAN HELP FIND A CURE FOR THE ZIKA VIRUS.

    There is a new project at World Community Grid [WCG] called OpenZika.
    Zika
    Zika depiction. Image copyright John Liebler, http://www.ArtoftheCell.com
    Rutgers Open Zika

    WCG runs on your home computer or tablet on software from Berkeley Open Infrastructure for Network Computing [BOINC]. Many other scientific projects run on BOINC software.Visit WCG or BOINC, download and install the software, then at WCG attach to the OpenZika project. You will be joining tens of thousands of other “crunchers” processing computational data and saving the scientists literally thousands of hours of work at no real cost to you.

    This project is directed by Dr. Alexander Perryman a senior researcher in the Freundlich lab, with extensive training in developing and applying computational methods in drug discovery and in the biochemical mechanisms of multi-drug-resistance in infectious diseases. He is a member of the Center for Emerging & Re-emerging Pathogens, in the Department of Pharmacology, Physiology, and Neuroscience, at the Rutgers University, New Jersey Medical School. Previously, he was a Research Associate in Prof. Arthur J. Olson’s lab at The Scripps Research Institute (TSRI), where he ran the day-to-day operations of the FightAIDS@Home project, the largest computational drug discovery project devoted to HIV/AIDS, which also runs on WCG. While in the Olson lab, he also designed, led, and ran the largest computational drug discovery project ever performed against malaria, the GO Fight Against Malaria project, also on WCG.

    Rutgers smaller

    boincstatsimage-new

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UC LA Campus

    For nearly 100 years, UCLA has been a pioneer, persevering through impossibility, turning the futile into the attainable.

    We doubt the critics, reject the status quo and see opportunity in dissatisfaction. Our campus, faculty and students are driven by optimism. It is not naïve; it is essential. And it has fueled every accomplishment, allowing us to redefine what’s possible, time after time.

    This can-do perspective has brought us 12 Nobel Prizes, 12 Rhodes Scholarships, more NCAA titles than any university and more Olympic medals than most nations. Our faculty and alumni helped create the Internet and pioneered reverse osmosis. And more than 100 companies have been created based on technology developed at UCLA.

     
  • richardmitnick 11:07 am on December 11, 2016 Permalink | Reply
    Tags: Colombia Reports Major Rise in Birth Defect Amid Zika Crisis, , , ZIKA   

    From NYT: “Colombia Reports Major Rise in Birth Defect Amid Zika Crisis” 

    New York Times

    The New York Times

    DEC. 10, 2016
    DONALD G. McNEIL Jr.

    Colombia, which suffered a Zika epidemic that peaked in February, has reported four times as many cases of babies born with microcephaly this year as it did in 2015, providing more proof that the Zika virus causes brain damage in infants.

    Because births of microcephalic infants peaked five months after the epidemic did, at about nine times the numbers of the previous July, scientists feel sure that the greatest risk is to babies whose mothers were infected during their first trimesters or early in their second.

    The numbers were reported in a study released Friday by the Centers for Disease Control and Prevention and conducted jointly by scientists from the C.D.C. and Colombia’s national health institute.

    With 105,000 suspected Zika cases, Colombia has had the second-largest Zika epidemic after Brazil. Brazil has had proportionally many more cases of microcephaly, and the reason has remained a mystery, although its population is four times larger than Colombia’s and it experienced a much longer, more intense epidemic in 2014 and 2015, especially in the northeast.

    As of Thursday, Brazil had reported 2,211 cases of microcephaly in which Zika infection had been confirmed to the World Health Organization, while Colombia had reported only 60.

    W.H.O. reports of confirmed cases have sometimes lagged weeks behind local reports. The study released by the C.D.C. found 476 cases of microcephaly in Colombia between January and mid-November. Of those, only 147 — about 30 percent — had laboratory evidence of Zika virus infection. But many others were not tested, and the virus is not always detectable months after it damages a fetus, so the true numbers may be higher.

    About 4 percent of the fetuses tested had evidence of other infections that can cause microcephaly, such as toxoplasmosis, herpes, cytomegalovirus or syphilis. Many other fetuses were not tested or their microcephaly had no clear cause.

    Of the total, 432 of the microcephaly cases were in babies born alive, and 44 were in fetuses that were stillborn, miscarried or aborted. One theory — still unproven — is that Colombia had fewer microcephaly cases than expected because many fearful women aborted their pregnancies, legally or illegally. Abortion is much more restricted in Brazil than in Colombia.

    The number of confirmed cases of microcephaly is in line with predictions made by health officials after they declared an end to the Zika epidemic in Colombia in July. Early in the year, based on Brazil’s experience, Dr. Fernando Ruiz, the vice minister for public health, estimated that Colombia would have 700 cases of Zika-related microcephaly this year. In August, he changed that estimate to between 100 and 250.

    Although Colombia is widely believed to have a better disease-surveillance system than Brazil, it still relies on doctors to voluntarily report birth defects. They may have been underreported in 2015, before microcephaly was in the news.

    See the full article here .

    YOU CAN HELP FIND A CURE FOR THE ZIKA VIRUS.

    There is a new project at World Community Grid [WCG] called OpenZika.
    Zika
    Zika depiction. Image copyright John Liebler, http://www.ArtoftheCell.com
    Rutgers Open Zika

    WCG runs on your home computer or tablet on software from Berkeley Open Infrastructure for Network Computing [BOINC]. Many other scientific projects run on BOINC software.Visit WCG or BOINC, download and install the software, then at WCG attach to the OpenZika project. You will be joining tens of thousands of other “crunchers” processing computational data and saving the scientists literally thousands of hours of work at no real cost to you.

    This project is directed by Dr. Alexander Perryman a senior researcher in the Freundlich lab, with extensive training in developing and applying computational methods in drug discovery and in the biochemical mechanisms of multi-drug-resistance in infectious diseases. He is a member of the Center for Emerging & Re-emerging Pathogens, in the Department of Pharmacology, Physiology, and Neuroscience, at the Rutgers University, New Jersey Medical School. Previously, he was a Research Associate in Prof. Arthur J. Olson’s lab at The Scripps Research Institute (TSRI), where he ran the day-to-day operations of the FightAIDS@Home project, the largest computational drug discovery project devoted to HIV/AIDS, which also runs on WCG. While in the Olson lab, he also designed, led, and ran the largest computational drug discovery project ever performed against malaria, the GO Fight Against Malaria project, also on WCG.

    Rutgers smaller

    boincstatsimage-new

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 12:19 pm on December 5, 2016 Permalink | Reply
    Tags: , , , , ZIKA   

    From Harvard Medical School: “Zika’s Entry Points” 

    Harvard University
    Harvard University

    harvard-medical-school-bloc

    Harvard Medical School

    December 1, 2016
    HANNAH ROBBINS
    ERIC BENDER

    Fast-spreading virus can take multiple routes into the growing brain.

    1
    Zika virus (light blue) spreads through a three-dimensional model of a developing brain. Image: Max Salick and Nathaniel Kirkpatrick/Novartis

    Around the world, hundreds of women infected with the Zika virus have given birth to children suffering from microcephaly or other brain defects, as the virus attacks key cells responsible for generating neurons and building the brain as the embryo develops.

    Studies have suggested that Zika enters these cells, called neural progenitor cells or NPCs, by grabbing onto a specific protein called AXL on the cell surface. Now scientists at the Harvard Stem Cell Institute (HSCI) and Novartis have shown that this is not the only route of infection for NPCs.

    The scientists demonstrated that the Zika virus infected NPCs even when the cells did not produce the AXL surface receptor protein that is widely thought to be the main vehicle of entry for the virus.

    “Our finding really recalibrates this field of research, because it tells us we still have to go and find out how Zika is getting into these cells,” said Kevin Eggan, principal faculty member at HSCI, professor of stem cell and regenerative biology at Harvard University’s Faculty of Arts and Sciences and Harvard Medical School, and co-corresponding author on a paper reporting the research in Cell Stem Cell.

    “It’s very important for the research community to learn that targeting the AXL protein alone will not defend against Zika,” agreed Ajamete Kaykas, co-corresponding author and a senior investigator in neuroscience at the Novartis Institutes for Biomedical Research (NIBR).

    Previous studies have shown that blocking expression of the AXL receptor protein does defend against the virus in a number of human cell types. Given that the protein is highly expressed on the surface of NPCs, many labs have been working on the hypothesis that AXL is the entry point for Zika in the developing brain.

    “We were thinking that the knocked-out NPCs devoid of AXL wouldn’t get infected,” said Max Salick, a NIBR postdoctoral researcher and co-first author on the paper. “But we saw these cells getting infected just as much as normal cells.”

    Working in a facility dedicated to infectious disease research, the scientists exposed two-dimensional cell cultures of AXL-knockout human NPCs to the Zika virus. They followed up by exposing three-dimensional mini-brain “organoids” containing such NPCs to the virus. In both cases, cells clearly displayed Zika infection. This finding was supported by an earlier study that knocked out AXL in the brains of mice.

    “We knew that organoids are great models for microcephaly and other conditions that show up very early in development and have a very pronounced effect,” said Kaykas. “For the first few months, the organoids do a really good job in recapitulating normal brain development.”

    Historically, human NPCs have been difficult to study in the lab because it would be impossible to obtain samples without damaging brain tissue. With the advancements in induced pluripotent stem cell (iPS cell) technology, a cell reprogramming process that allows researchers to coax any cell in the body back into a stem cell-like state, researchers can now generate these previously inaccessible human tissues in a petri dish.

    The team was able to produce human iPS cells and then, using gene-editing technology, modify the cells to knock out AXL expression, said Michael Wells, a Harvard postdoctoral researcher in the Eggan Lab and co-first author. The scientists pushed the iPS cells to become NPCs, building the two-dimensional and three-dimensional models that were infected with Zika.

    The Harvard and NIBR collaborators started working with the virus in mid-April 2016, only six months before they published their findings. This unusual speed of research reflects the urgency of Zika’s global challenge, as the virus has spread to more than 70 countries and territories.

    “At the genesis of the project, my wife was pregnant,” Eggan remarked. “One can’t read the newspapers without being concerned.”

    The collaboration grew out of interactions at the Broad Institute of Harvard and MIT’s Stanley Center for Psychiatric Research, where Eggan directs the stem cell program. His lab already had developed cell culture systems for studying NPCs in motor neuron and psychiatric diseases. The team at Novartis had created brain organoids for research on tuberous sclerosis complex and other genetic neural disorders.

    “Zika seemed to be a big issue where we could have an impact, and we all shared that interest,” Eggan said. “It’s been great to have this public/private collaboration.”

    The researchers are studying other receptor proteins that may be open to Zika infection in hopes that their basic research eventually will help in the quest to develop vaccines or other drugs that defend against the virus.

    See the full article here .

    YOU CAN HELP FIND A CURE FOR THE ZIKA VIRUS.

    There is a new project at World Community Grid [WCG] called OpenZika.
    Zika
    Zika depiction. Image copyright John Liebler, http://www.ArtoftheCell.com
    Rutgers Open Zika

    WCG runs on your home computer or tablet on software from Berkeley Open Infrastructure for Network Computing [BOINC]. Many other scientific projects run on BOINC software.Visit WCG or BOINC, download and install the software, then at WCG attach to the OpenZika project. You will be joining tens of thousands of other “crunchers” processing computational data and saving the scientists literally thousands of hours of work at no real cost to you.

    This project is directed by Dr. Alexander Perryman a senior researcher in the Freundlich lab, with extensive training in developing and applying computational methods in drug discovery and in the biochemical mechanisms of multi-drug-resistance in infectious diseases. He is a member of the Center for Emerging & Re-emerging Pathogens, in the Department of Pharmacology, Physiology, and Neuroscience, at the Rutgers University, New Jersey Medical School. Previously, he was a Research Associate in Prof. Arthur J. Olson’s lab at The Scripps Research Institute (TSRI), where he ran the day-to-day operations of the FightAIDS@Home project, the largest computational drug discovery project devoted to HIV/AIDS, which also runs on WCG. While in the Olson lab, he also designed, led, and ran the largest computational drug discovery project ever performed against malaria, the GO Fight Against Malaria project, also on WCG.

    Rutgers smaller

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    harvard-medical-school-campus

    The Harvard Medical School community is dedicated to excellence and leadership in medicine, education, research and clinical care. To achieve our highest aspirations, and to ensure the success of all members of our community, we value and promote common ideals that center on collaboration and service, diversity, respect, integrity and accountability, lifelong learning, and wellness and balance. To be a citizen of this community means embracing a collegial spirit that fosters inclusion and promotes achievement.

    Harvard University campus

    Harvard is the oldest institution of higher education in the United States, established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. It was named after the College’s first benefactor, the young minister John Harvard of Charlestown, who upon his death in 1638 left his library and half his estate to the institution. A statue of John Harvard stands today in front of University Hall in Harvard Yard, and is perhaps the University’s best known landmark.

    Harvard University has 12 degree-granting Schools in addition to the Radcliffe Institute for Advanced Study. The University has grown from nine students with a single master to an enrollment of more than 20,000 degree candidates including undergraduate, graduate, and professional students. There are more than 360,000 living alumni in the U.S. and over 190 other countries.

     
  • richardmitnick 7:40 am on October 12, 2016 Permalink | Reply
    Tags: , , , , ZIKA   

    From SLAC: “X-rays Reveal New Path In Battle Against Mosquito-borne Illness” 


    SLAC Lab

    `
    The mosquito larvicide BinAB is composed of two proteins, BinA (yellow) and BinB (blue). Inside bacterial cells, BinAB naturally forms nanocrystals. Using these crystals and the intense X-ray pulses produced by SLAC’s Linac Coherent Light Source, scientists shed light on the three-dimensional structure of BinAB and its mode of action. (SLAC National Accelerator Laboratory)

    September 28, 2016

    SLAC’s X-ray Laser Provides Clues to Engineering a New Protein to Kill Mosquitos Carrying Dengue, Zika

    Structural biology research conducted at the U.S. Department of Energy’s SLAC National Accelerator Laboratory has uncovered how small insecticidal protein crystals that are naturally produced by bacteria might be tailored to combat dengue fever and the Zika virus.

    SLAC’s X-ray free-electron laser – the Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility – offered unprecedented views of the toxin BinAB, used as a larvicide in public health efforts against mosquito-borne diseases such as malaria, West Nile virus and viral encephalitis.

    SLAC/LCLS
    SLAC/LCLS

    The larvicide is currently ineffective against the Aedes mosquitos that transmit Zika and dengue fever, and therefore not used to combat these species of mosquitos at this time. The new information provides clues to how scientists could design a composite toxin that would work against a broader range of mosquito species, including Aedes.

    Today, Nature published the study.

    “A more detailed look at the proteins’ structure provides information fundamental to understanding how the crystals kill mosquito larvae,” said Jacques-Philippe Colletier, a scientist at the Institut de Biologie Structurale in Grenoble, France and lead author on the paper. “This is a prerequisite for modifying the toxin to adapt it to our needs.”

    Selective Mosquito Control, Courtesy of Bacteria

    The BinAB crystals are produced by Lysinibacillus sphaericus bacteria, which release the crystals along with spores at the end of their life cycle. Mosquito larvae eat the crystals along with the spores, and then die.

    BinAB is inactive in the crystalline state and does not work on contact. For the crystals to dissolve, they must be exposed to alkaline conditions, such as those in a mosquito larva’s gut. The binary protein is then activated, recognized by a specific receptor at the surface of cells and internalized.

    Because Aedes larvae can evade one of these steps of intoxication, they are resistant to BinAB. These larvae do not express the correct receptors at the surface of their intestinal cells. Many other insect species, small crustaceans and humans also lack these receptors, as well as alkaline digestive systems.

    “Part of the appeal is that the larvicide’s safe because it’s so specific, but that’s also part of its limitation,” said Michael Sawaya, a scientist at the University of California, Los Angeles-DOE Molecular Biology Institute and co-author on the paper.

    For public health officials who want to prevent mosquito-borne disease, BinAB could also offer an alternative for controlling certain species of mosquitos that have begun to show resistance to other forms of chemical control.

    Creating a Tailored Insecticide

    The research team already knew the larvicide is composed of a pair of proteins, BinA and BinB, that pair together in crystals and are later activated by larval digestive enzymes.

    In the LCLS experiments, they learned the molecular basis for how the two proteins paired with each other – each performing an important, unique function. Previous research had determined that BinA is the toxic part of the complex, while BinB is responsible for binding the toxin to the mosquito’s intestine. BinB ushers BinA into the cells; once inside, BinA kills the cell.

    The scientists also identified four “hot spots” on the proteins that are activated by the alkaline conditions in the larval gut. All together, they trigger a change from a nontoxic form of the protein to a version that is lethal to mosquito larvae.

    Using the information gathered during the crystallography study, the research team has already begun to engineer a form of the BinAB proteins that will work against more species of mosquitos. This is ongoing work at Institut de Biologie Structurale, UCLA, University of California, Riverside and SLAC.

    Solving the Structure

    Only coarse details were known about the unique three-dimensional structure and biological behavior of BinAB prior to the experiment at LCLS.

    “We chose to look at the BinAB larvicide because it is so widely used, yet the structural details were a mystery,” said Brian Federici, professor of entomology at UC Riverside.

    The small size of the crystals made them difficult to study at conventional X-ray sources. So the research team used genetic engineering techniques to increase the size of the crystals, and the bright, fast pulses of light at LCLS allowed the scientists to collect detailed structural data from the tiny crystals before X-rays damaged their samples.

    The researchers used a crystallography technique called de novo phasing. This involves tagging the crystals with heavy metal markers, collecting tens of thousands of X-ray diffraction patterns, and combining the information collected to obtain a three-dimensional map of the electron density of the protein.

    “This is the first time we’ve used de novo phasing on a crystal of great interest at an X-ray free-electron laser,” said Sebastien Boutet, SLAC scientist.

    The technique had so far only been used on test samples where the structure was already known, in order to prove that it would work.

    “The most immediate need is to now expand the spectrum of action of the BinAB toxin to counter the progression of Zika, in particular,” said Colletier. “BinAB is already effective against Culex [carrier of West Nile encephalitis] and Anopheles [carrier of malaria] mosquitos. With the results of the study, we now feel more confident that we can design the protein to target Aedes mosquitos.”

    Additional contributors to the research include scientists from the Howard Hughes Medical Institutes at UCLA, Lawrence Berkeley National Laboratory, and Stanford University. The Institut de Biologie Structurale is a research center for integrated structural biology funded by the Commissariat à l’Énergie Atomique, the Centre National de la Recherche Scientifique and the Université Grenoble Alpes. The Collaborative Innovation Award program of Howard Hughes Medical Institute (HCIA-HHMI), W.M Keck Foundation, National Institutes of Health, National Science Foundation, France Alzheimer Foundation, Agence Nationale de la Recherche, and DOE Office of Science supported the research.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.
    i1

     
  • richardmitnick 8:55 am on October 3, 2016 Permalink | Reply
    Tags: Amber Gourdine, , , , ZIKA   

    From Rutgers: SWomen in STEM: “Zika and Water Safety Education a Mission for Rutgers Alumna” Amber Gourdine 

    Rutgers University
    Rutgers University

    10.3.16
    Patti Verbanas

    1
    Amber Gourdine, shown with members of the community she served, spent hours each day walking to residences to examine filtration systems, assess residents’ knowledge about water sanitation and educate them about Zika. Photo: Courtesy Amber Gourdine

    Amber Gourdine wasn’t taking any chances.

    Braving the humid, 90-degree days in central Nicaragua, the recent Rutgers graduate donned long sleeves and tucked her pants into her socks to avoid mosquito bites. Then, she embarked on daylong hikes to rural homes to educate residents on water safety and how to protect themselves against the Zika virus, which is on the rise throughout most of the country.

    “I sprayed Permethrin and Off on my clothes and used mosquito nets, but despite my best attempts, I got bitten,” says Gourdine, who spent nine weeks this summer serving in the global health intensive program at AMOS Health and Hope, a nonprofit that works in impoverished Nicaraguan communities to improve citizens’ health through education and development projects. “That’s why education is so important – reducing mosquitos and taking precautions by eliminating standing water and proper hygiene is the best defense.”

    Although the incidence of Zika has fallen in many Central American countries, Nicaragua and Costa Rica are still reporting increases, according to the Pan American Health Organization. In August, Nicaragua confirmed its first microcephaly birth linked to Zika.

    Gourdine was part of a rapid response to the Zika outbreak by the Nicaraguan government, which relies on organizations like AMOS to teach remotely located residents how the virus spreads and ways to prevent mosquito breeding grounds.

    Gourdine, who graduated in May with a bachelor’s of science degrees in public health and in arts and sciences, learned about AMOS during an on-campus information session in New Brunswick, where she was enrolled at Douglass Residential College. “It excited me because it would allow me to put my interest in public health education into action,” she says.

    As part of AMOS’s clean water team, Gourdine’s mission was to educate the rural community on safe water practices and daily hygiene to help stem water-borne diseases. The Zika education is a new component AMOS added this year to the team’s mission.

    Joining three colleagues and a supervisor, she spent hours each day walking from their home base to residences sprinkled throughout the countryside to examine water filtration systems AMOS had installed, assess the residents’ knowledge about water sanitation and educate them about Zika.

    Zika is the latest public health threat in the communities AMOS serves, where less than 20 percent of the families have access to safe drinking water. To date, the organization has installed more than 1,000 water filters and relies on volunteers like Gourdine to make sure the residents know how to use and maintain the systems.

    “It was eye-opening how little people knew about Zika,” says Gourdine, whose Spanish studies allowed her to speak to residents without a translator. “Many knew the name and that the virus was spread by mosquitos, but few knew it could be sexually transmitted. Before I left each home, I put an informational poster on the wall.”

    Gourdine also assisted with teaching residents about water sanitation and trash disposal. “Waste management is a huge issue,” she says. “Since the houses are so spread apart, there is no trash collection. Instead of burning or burying trash, people leave it to decay in the yard, where it becomes a breeding ground for mosquitos.”

    2
    Amber Gourdine shown here demonstrating proper hygiene to community members.

    The AMOS mission was Gourdine’s second visit to the country since graduation. In late May, she joined the Rutgers Global Brigade for a week of building latrines, installing septic tanks and educating residents on healthy habits. Originally, she considered pursuing nursing, but she became intrigued with public health after taking a course sponsored by Rutgers at Academica Latinoamericana de Español in Peru in 2014 as part of her Spanish studies. While there, she researched local women’s public health issues, such as domestic violence and HIV/AIDs, and presented the report to the faculty at the school.

    Upon completing her work in Nicaragua in August, Gourdine returned to her home in Magnolia, New Jersey, where she aspires to work with Americorps as a community health coordinator and eventually apply to graduate school.

    “Public health is fascinating because you have to view a population the same as the patient: Just as a patient knows more about their bodies and themselves than a doctor, a community of people know more about their own issues in ways more than an outsider would,” she says. “I love the mutual exchange of ideas with community members to resolve health issues together.”

    See the full article here .

    YOU CAN HELP FIND A CURE FOR THE ZIKA VIRUS.

    There is a new project at World Community Grid [WCG] called OpenZika.
    Zika
    Zika depiction. Image copyright John Liebler, http://www.ArtoftheCell.com
    Rutgers Open Zika

    WCG runs on your home computer or tablet on software from Berkeley Open Infrastructure for Network Computing [BOINC]. Many other scientific projects run on BOINC software.Visit WCG or BOINC, download and install the software, then at WCG attach to the OpenZika project. You will be joining tens of thousands of other “crunchers” processing computational data and saving the scientists literally thousands of hours of work at no real cost to you.

    This project is directed by Dr. Alexander Perryman a senior researcher in the Freundlich lab, with extensive training in developing and applying computational methods in drug discovery and in the biochemical mechanisms of multi-drug-resistance in infectious diseases. He is a member of the Center for Emerging & Re-emerging Pathogens, in the Department of Pharmacology, Physiology, and Neuroscience, at the Rutgers University, New Jersey Medical School. Previously, he was a Research Associate in Prof. Arthur J. Olson’s lab at The Scripps Research Institute (TSRI), where he ran the day-to-day operations of the FightAIDS@Home project, the largest computational drug discovery project devoted to HIV/AIDS, which also runs on WCG. While in the Olson lab, he also designed, led, and ran the largest computational drug discovery project ever performed against malaria, the GO Fight Against Malaria project, also on WCG.

    Rutgers smaller

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Rutgers, The State University of New Jersey, is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

     
  • richardmitnick 9:16 am on September 10, 2016 Permalink | Reply
    Tags: , , , ZIKA   

    For WCG From Orlando Sentinel 

    New WCG Logo

    WCGLarge

    World Community Grid (WCG)

    1

    Orlando Sentinel

    9.10.16
    Kate Santich

    If you knew you could fight Zika by downloading an app, would you?

    In the battle against Zika, Danny Leoni of Casselberry has been called a superhero. Night and day, the 26-year-old is running algorithms to find the chemical compounds that could deactivate the virus and offer a cure.

    But don’t look for his name in the Nobel Prize nominations anytime soon. He is simply lending the spare capacity of his computer.

    “I figured, ‘Hey, it’s something actually useful instead of being on Netflix for eight hours at a time,'” he says.

    Leoni is a volunteer for the nonprofit Hands On Orlando, which has recruited nearly 1,000 people whose computers, tablets and phones act as a collective supercomputer for researchers around the globe.

    “The beauty of it is, you don’t have to have any particular skills. You don’t have to have any scientific background. You just have to care,” says Chris Allen, executive director of Hands On Orlando, which matches volunteers to group projects — such as sorting donations at food banks or washing dogs at pet shelters.

    But for eight years, Allen’s nonprofit organization also has enlisted participants for what he dubbed the Super Heroes team.

    Together they run scientific calculations that have led to advances in solar energy, treating childhood cancer and fighting AIDS. All volunteers need to do is download an app that allows their computers and phones to process data.

    The app comes from the World Community Grid — an award-winning philanthropic project of IBM Corporate Citizenship, the tech company’s social responsibility initiative. For anyone worried that getting involved would open their devices to hackers, IBM is quick to point out that it installs the app on its own employees’ computers.

    “As you can imagine, we take security very, very seriously,” says Juan Hindo, the World Community Grid program manager. “So we have all kinds of security measures in place. … It doesn’t touch any of the private data on your device.”

    Since the project’s launch, researchers have used the grid to run massive computer simulations involving billions of variables by breaking up the data into personal computer-sized morsels that can run in the background as long as your device is turned on and connected to the internet.

    The work, researchers report, has led to progress in fighting malaria, tuberculosis, muscular dystrophy, cancer and influenza. It has spurred the development of filtration systems for clean water and rice that has higher crop yields and more protein. And it is helping to map climate change.

    But the Super Heroes’ most recent work has been on OpenZika, a project by an international team of scientists searching for a critically needed anti-viral drug to combat the disease. Currently, there is none.

    Leoni, an aspiring web developer who joined the team a year and a half ago, says that project and another on cancer inspired him to sign up.

    “Several people in my family have had cancer,” he says. “To know I’m contributing to the research definitely makes me feel good. Although I admit — the whole thing still blows my mind a little bit.”

    Though the Super Heroes team ranks No. 224 out of nearly 32,600 teams participating worldwide, both Allen and Hindo acknowledge the potential is still largely untapped. The biggest hurdle, they say, is that most people just don’t understand it.

    “A typical researcher, if they’re lucky, might have access to a supercomputer a few weeks a year — and then they’re sharing with dozens of other researchers on campus,” Hindo says. “And because there’s a very difficult funding climate for scientific researchers, they don’t want to spend a lot of their money on computer time, so they end up scaling down the scope of their research.”

    But by distributing the load through thousands of volunteers worldwide, each researcher can have the equivalent of his or her own small supercomputer for as long as necessary, 24 hours a day, Allen says.

    More than 720,000 people around the world have joined the effort so far.

    In the Hands On office alone, 16 computers are enlisted. Kyle Trager, the community partnerships manager there, also has the app on his phone and his computer at home.

    “You don’t even know it’s running,” he says. “I just plug in my phone to charge overnight, and once it gets to 90 percent, it’ll crunch these calculations.”

    There’s never a slowdown of processing, Allen insists. And if the charity’s power bill went up as a result, it wasn’t noticeable.

    “The benefit of joining our team [handsonorlando.com/superheroes] is that you can call us and we will help you set it up,” he says. “And when scientists find a drug for Zika or a cure for cancer, you can say you helped make it happen.”

    See the full article here.

    YOU CAN HELP FIND A CURE FOR THE ZIKA VIRUS.

    There is a new project at World Community Grid [WCG] called OpenZika.
    Zika
    Zika depiction. Image copyright John Liebler, http://www.ArtoftheCell.com
    Rutgers Open Zika

    WCG runs on your home computer or tablet on software from Berkeley Open Infrastructure for Network Computing [BOINC]. Many other scientific projects run on BOINC software.Visit WCG or BOINC, download and install the software, then at WCG attach to the OpenZika project. You will be joining tens of thousands of other “crunchers” processing computational data and saving the scientists literally thousands of hours of work at no real cost to you.

    This project is directed by Dr. Alexander Perryman a senior researcher in the Freundlich lab, with extensive training in developing and applying computational methods in drug discovery and in the biochemical mechanisms of multi-drug-resistance in infectious diseases. He is a member of the Center for Emerging & Re-emerging Pathogens, in the Department of Pharmacology, Physiology, and Neuroscience, at the Rutgers University, New Jersey Medical School. Previously, he was a Research Associate in Prof. Arthur J. Olson’s lab at The Scripps Research Institute (TSRI), where he ran the day-to-day operations of the FightAIDS@Home project, the largest computational drug discovery project devoted to HIV/AIDS, which also runs on WCG. While in the Olson lab, he also designed, led, and ran the largest computational drug discovery project ever performed against malaria, the GO Fight Against Malaria project, also on WCG.

    Rutgers smaller

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    World Community Grid (WCG) brings people together from across the globe to create the largest non-profit computing grid benefiting humanity. It does this by pooling surplus computer processing power. We believe that innovation combined with visionary scientific research and large-scale volunteerism can help make the planet smarter. Our success depends on like-minded individuals – like you.”

    WCG projects run on BOINC software from UC Berkeley.
    BOINCLarge

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing.

    BOINC WallPaper

    CAN ONE PERSON MAKE A DIFFERENCE? YOU BET!!

    MyBOINC

    “Download and install secure, free software that captures your computer’s spare power when it is on, but idle. You will then be a World Community Grid volunteer. It’s that simple!” You can download the software at either WCG or BOINC.

    Please visit the project pages-

    FightAIDS@home Phase II

    FAAH Phase II
    OpenZika

    Rutgers Open Zika

    Help Stop TB
    WCG Help Stop TB
    Outsmart Ebola together

    Outsmart Ebola Together

    Mapping Cancer Markers
    mappingcancermarkers2

    Uncovering Genome Mysteries
    Uncovering Genome Mysteries

    Say No to Schistosoma

    GO Fight Against Malaria

    Drug Search for Leishmaniasis

    Computing for Clean Water

    The Clean Energy Project

    Discovering Dengue Drugs – Together

    Help Cure Muscular Dystrophy

    Help Fight Childhood Cancer

    Help Conquer Cancer

    Human Proteome Folding

    FightAIDS@Home

    World Community Grid is a social initiative of IBM Corporation
    IBM Corporation
    ibm

    IBM – Smarter Planet
    sp

     
  • richardmitnick 2:55 pm on August 29, 2016 Permalink | Reply
    Tags: , , , , ZIKA   

    From JHU: “Scientists screen existing drugs in hopes of fast-tracking Zika treatment” 

    Johns Hopkins
    Johns Hopkins University

    8.29.16
    Rachel Butch

    A specialized drug screen test using lab-grown human cells has revealed two classes of compounds already in the pharmaceutical arsenal that may work against mosquito-borne Zika virus infections, scientists say.

    1
    Zika virus infection in cell death in human forebrain organoids. Image credit: Xuyu Qian, Johns Hopkins University

    In a summary of their work, published today in Nature Medicine, the investigators say they screened 6,000 existing compounds currently in late-stage clinical trials or already approved for human use for other conditions. The screening process identified several compounds that showed the ability to hinder or halt the progress of the Zika virus in lab-grown human neural cells.

    The research collaboration includes teams from the Johns Hopkins University School of Medicine, the National Institutes of Health, and Florida State University.

    “It takes years, if not decades, to develop a new drug,” says Hongjun Song, director of the Stem Cell Biology Program in the Institute of Cell Engineering at Johns Hopkins. “In this sort of global health emergency, we don’t have that kind of time.”

    Adds Guo-li Ming, professor of neurology at JHU’s School of Medicine: “Instead of using new drugs, we chose to screen existing drugs. In this way, we hope to create a therapy much more quickly.”

    The current outbreak of Zika, which began in South America last year, is known to be responsible for an increase in cases of microcephaly—a severe birth defect in which afflicted infants are born with underdeveloped brains. In the continental United States, there have been a total of 2,260 reported cases of Zika. Though most cases are associated with travel, 43 cases of local transmission have been reported in Florida, in the Miami area. In addition, Puerto Rico has reported 7,855 locally transmitted cases, spurring the Obama administration to declare a public health emergency in the territory on Aug. 12.

    The Zika virus is commonly transmitted from mosquito bites or from an infected person to an uninfected person through sexual contact. Despite the potential effects of infection, only one in four infected people will present symptoms if Zika infection, allowing the virus to spread rapidly in areas with local transmission. Because of this, the CDC recommends all pregnant women with ongoing risk of Zika infection, including residence or frequent travel to areas with active Zika virus transmission, receive screening throughout their pregnancy.

    Many research groups are fast tracking the development of vaccines, treatments, and mosquito-control measures to combat further spread of the virus.

    The new findings are an extension of previous work by the same research team, which found that Zika mainly targets specialized stem cells that give rise to neurons in the brain’s outer layer, the cortex. The researchers observed Zika’s effects in two- and three-dimensional cell cultures called “mini-brains,” which share structures with the human brain and allow researchers to study the effects of Zika in a more accurate model for human infection.

    In the current study, the research team exposed similar cell cultures to the Zika virus and the drugs one at a time, measuring for indicators of cell death, including caspase-3 activity, a chemical marker of cell death, and ATP, a molecule whose presence is indicative of cell vitality.

    Typically, after Zika infection, the damage done to neural cells is “dramatic and irreversible,” says Hengli Tang, professor of biological sciences at Florida State University. However, some of the compounds tested allowed the cells to survive longer and, in some cases, fully recover from infections.

    Further analysis of the surviving cells, Ming says, showed that the promising drugs could be divided into two classes: neuroprotective drugs, which prevent the activation of mechanisms that cause cell death; and antiviral drugs, which slow or stop viral infection or replication.

    Overall, Song says, three drugs showed robust enough results to warrant further study:

    PHA-690509, an investigational compound with antiviral properties
    emricasan, now in clinical trials to reduce liver damage from hepatitis C virus and shown to have neuroprotective effects
    niclosamide, a drug already used in humans and livestock to combat parasitic infections, which worked as an antiviral agent in these experiments

    Song cautioned that the three drugs “are very effective against Zika in the dish, but we don’t know if they can work in humans in the same way.” For example, he says, although niclosamide can safely treat parasites in the human gastrointestinal tract, scientists have not yet determined if the drug can even penetrate the central nervous system of adults or a fetus inside a carrier’s womb to treat the brain cells targeted by Zika.

    Nor, he says, do they know if the drugs would address the wide range of effects of Zika infection, which include microcephaly in fetuses and temporary paralysis from Guillain-Barre syndrome in adults.

    “To address these questions, additional studies need to be done in animal models as well as humans to demonstrate their ability to treat Zika infection,” Ming says. “So we could still be years away from finding a treatment that works.”

    The researchers say their next steps include testing the efficacy of these drugs in animal models to see if they have the ability to combat Zika in vivo.

    See the full article here .

    YOU CAN HELP FIND A CURE FOR THE ZIKA VIRUS.

    There is a new project at World Community Grid [WCG] called OpenZika.
    Zika
    Zika depiction. Image copyright John Liebler, http://www.ArtoftheCell.com
    Rutgers Open Zika

    WCG runs on your home computer or tablet on software from Berkeley Open Infrastructure for Network Computing [BOINC]. Many other scientific projects run on BOINC software.Visit WCG or BOINC, download and install the software, then at WCG attach to the OpenZika project. You will be joining tens of thousands of other “crunchers” processing computational data and saving the scientists literally thousands of hours of work at no real cost to you.

    This project is directed by Dr. Alexander Perryman a senior researcher in the Freundlich lab, with extensive training in developing and applying computational methods in drug discovery and in the biochemical mechanisms of multi-drug-resistance in infectious diseases. He is a member of the Center for Emerging & Re-emerging Pathogens, in the Department of Pharmacology, Physiology, and Neuroscience, at the Rutgers University, New Jersey Medical School. Previously, he was a Research Associate in Prof. Arthur J. Olson’s lab at The Scripps Research Institute (TSRI), where he ran the day-to-day operations of the FightAIDS@Home project, the largest computational drug discovery project devoted to HIV/AIDS, which also runs on WCG. While in the Olson lab, he also designed, led, and ran the largest computational drug discovery project ever performed against malaria, the GO Fight Against Malaria project, also on WCG.

    Rutgers smaller

    WCGLarge
    WCG Logo New

    BOINCLarge
    BOINC WallPaper

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 10:15 am on August 26, 2016 Permalink | Reply
    Tags: , , Johns Hopkins Wilmer Zika Center, , ZIKA   

    From JHU: “Johns Hopkins launches first-known multidisciplinary Zika virus center in the world” 

    Johns Hopkins
    Johns Hopkins University

    8.24.16
    Kim Polyniak

    Center team will provide comprehensive care to patients with mosquito-borne virus, conduct research

    As the number of patients with Zika virus grows worldwide, Johns Hopkins Medicine today announced the opening of the new Johns Hopkins Wilmer Zika Center dedicated primarily to caring for patients with the mosquito-borne and sexually transmitted virus.

    The center is composed of providers and staff from departments and divisions at Johns Hopkins Medicine and the Bloomberg School of Public Health, including epidemiology, infectious diseases, maternal-fetal medicine, ophthalmology, orthopaedics, pediatrics, physiotherapy, psychiatry, and social work. Medical experts from Brazil, a country greatly affected by Zika virus, are also members of the center.

    “Patients will no longer be required to travel to multiple centers for care relating to Zika virus,” says William May, associate professor of ophthalmology at the Johns Hopkins Wilmer Eye Institute. “Physicians and staff members in various departments at Johns Hopkins will be available to provide comprehensive care to patients within one institution.”

    Infections from Zika virus have reached epidemic proportions in parts of the world in the past year, with Brazil being the epicenter of the outbreak. Several non-travel-related cases have recently been reported in Florida, suggesting local transmission there. According to the World Health Organization, Zika may be responsible for thousands of babies being born with microcephaly, a severe birth defect that affects the brain, and for some adults experiencing neurological symptoms.

    The Wilmer Eye Institute led the development of what is believed to be the first such comprehensive and multidisciplinary Zika center. In addition to microcephaly, Zika is also reported to cause eye abnormalities in up to more than half of babies infected with the illness, according to a recent study in Brazil. The Wilmer Eye Institute is able to diagnose and, in many cases, treat eye concerns associated with Zika virus—including cataracts and other vision issues—with specialized technology.

    Adult and pediatric patients worldwide can be referred to the center by outside physicians or through Johns Hopkins departments and divisions, including emergency medicine and maternal-fetal medicine. Patients can also call the Wilmer Eye Institute to schedule an appointment. A case manager will work with patients to develop a care plan and identify specialists with whom the patient should follow up.

    “When a patient, particularly a pregnant woman, contracts Zika virus, it can be a tremendously alarming experience,” says Jeanne Sheffield, director of maternal-fetal medicine for the Johns Hopkins Hospital. “Our team will be able to coordinate our efforts to determine patients’ needs and provide the best care possible.”

    The Zika center team will also be involved in research to learn more about the virus, about which many unknowns still exist.

    “Our No. 1 priority will be focused on our patients,” May says, “but our hope is that our care will also lead to many new developments in the effort to fight this potentially devastating disease.”

    See the full article here .

    YOU CAN HELP FIND A CURE FOR THE ZIKA VIRUS.

    There is a new project at World Community Grid [WCG] called OpenZika.
    Zika
    Zika depiction. Image copyright John Liebler, http://www.ArtoftheCell.com
    Rutgers Open Zika

    WCG runs on your home computer or tablet on software from Berkeley Open Infrastructure for Network Computing [BOINC]. Many other scientific projects run on BOINC software.Visit WCG or BOINC, download and install the software, then at WCG attach to the OpenZika project. You will be joining tens of thousands of other “crunchers” processing computational data and saving the scientists literally thousands of hours of work at no real cost to you.

    This project is directed by Dr. Alexander Perryman a senior researcher in the Freundlich lab, with extensive training in developing and applying computational methods in drug discovery and in the biochemical mechanisms of multi-drug-resistance in infectious diseases. He is a member of the Center for Emerging & Re-emerging Pathogens, in the Department of Pharmacology, Physiology, and Neuroscience, at the Rutgers University, New Jersey Medical School. Previously, he was a Research Associate in Prof. Arthur J. Olson’s lab at The Scripps Research Institute (TSRI), where he ran the day-to-day operations of the FightAIDS@Home project, the largest computational drug discovery project devoted to HIV/AIDS, which also runs on WCG. While in the Olson lab, he also designed, led, and ran the largest computational drug discovery project ever performed against malaria, the GO Fight Against Malaria project, also on WCG.

    Rutgers smaller

    WCGLarge
    WCG Logo New

    BOINCLarge
    BOINC WallPaper

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: