Tagged: X-ray Technology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:35 am on June 11, 2021 Permalink | Reply
    Tags: "Lighting Up Ultrafast Magnetism in a Metal Oxide", , , , , Understanding how magnetic correlations change on ultrafast timescales is the first step in being able to control magnetism in application-oriented ways., X-ray Technology   

    From DOE’s Brookhaven National Laboratory (US) : “Lighting Up Ultrafast Magnetism in a Metal Oxide” 

    From DOE’s Brookhaven National Laboratory (US)

    June 7, 2021

    Ariana Manglaviti
    amanglaviti@bnl.gov
    (631) 344-2347

    Peter Genzer
    genzer@bnl.gov
    (631) 344-3174

    Understanding how magnetic correlations change over very short timescales could be harnessed to control magnetism for applications including data storage and superconductivity.

    1
    Scientists struck a crystalline material with ultrafast pulses of laser light and then used x-rays to probe how its magnetic order changes. Image credit: Cameron Dashwood, University College London (UK).

    What happens when very short pulses of laser light strike a magnetic material? A large international collaboration led by the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory set out to answer this very question. As they just reported in the PNAS, the laser suppressed magnetic order across the entire material for several picoseconds, or trillionths of a second. Understanding how magnetic correlations change on ultrafast timescales is the first step in being able to control magnetism in application-oriented ways. For example, with such control, we may be able to more quickly write data to memory devices or enhance superconductivity (the phenomenon in which a material conducts electricity without energy loss), which often competes with other states like magnetism.

    The material studied was strontium iridium oxide (Sr3Ir2O7), an antiferromagnet with a bilayer crystal structure and a large magnetic anisotropy. In an antiferromagnet, the magnetic moments, or electron spins, align in opposite directions to neighboring spins. Anisotropy means the spins need to pay an energetic cost to rotate in any random direction; they really want to sit pointing upwards or downwards in the crystal structure. The X-ray Scattering Group of Brookhaven Lab’s Condensed Matter Physics and Materials Science (CMPMS) Division has previously studied this material (and a single-layer sister compound, Sr2IrO4), so they entered this study with a good understanding of its equilibrium state.

    “The very short laser pulses disturb the system, destroying its magnetic order,” said first author Daniel Mazzone, former group member and now an instrument scientist at the Continuous Angle Multiple Energy Analysis (CAMEA) spectrometer at the Paul Scherrer Institute [Paul Scherrer Institut](PSI) (CH). “In this study, we were interested in seeing how the system relaxes back to its normal state. We knew the relaxation occurs on a very fast timescale, and to take a picture of something that moves very fast, we need very short pulses of illumination. With an x-ray free-electron laser source, we can generate pulses short enough to see the movement of atoms and molecules. Such sources only exist at five places around the world—in the United States, Japan, Korea, Germany, and Switzerland.”

    2
    A schematic of the resonant inelastic x-ray scattering (RIXS) and resonant elastic x-ray scattering (REXS) setups. The square in the middle represents the sample, which is struck with a laser (pump) and then x-rays (probe) almost immediately after. For the RIXS experiments, the team built a motorized x-ray spectrometer (copper-colored circle) to see how spins are behaving locally.

    In this study, the team ran experiments at two of the five facilities. At the SPring-8 Angstrom Compact free-electron Laser (SACLA) in Japan, they conducted time-resolved resonant elastic x-ray scattering (tr-REXS).

    At the x-ray pump-probe instrument of the Linac Coherent Light Source—a DOE Office of Science User Facility at SLAC National Accelerator Laboratory—the scientists performed time-resolved resonant inelastic x-ray scattering (tr-RIXS).

    In both scattering techniques, x-rays (probe) strike the material almost immediately after the laser pulse (pump). By measuring the energy and angle of scattered particles of light (photons), scientists can determine the material’s electronic structure and thus magnetic configuration. In this case, the x-ray energy was tuned to be sensitive to the electrons around iridium atoms, which drive magnetism in this material. While tr-REXS can reveal the degree of long-range magnetic order, tr-RIXS can provide a picture of local magnetic interactions.

    “In order to observe the detailed behavior of spins, we need to measure the energy change of the x-rays with very high precision,” explained co-corresponding author Mark Dean, a physicist in the CMPMS Division X-ray Scattering Group. “To do so, we built and installed a motorized x-ray spectrometer at SLAC.”

    Their data revealed how magnetic interactions are suppressed not just locally but everywhere. This suppression persists for picoseconds before the magnetic order returns to its initial antiferromagnetic state.

    “The bilayer system does not have energetically low-cost ways to deform the magnetic state,” explained Dean. “It gets stuck in this bottleneck where the magnetism is out of equilibrium and is not recovering, at least not as quickly as in the monolayer system.”

    “For most applications, such as data storage, you want fast magnetic switching,” added Mazzone. “Our research suggests systems where spins can point whichever direction are better for manipulating magnetism.”

    Next, the team plans to look at related materials and hopes to manipulate magnetism in more targeted ways—for example, changing how strongly two neighboring spins “talk to” each other.

    “If we can change the distance between two spins and see how that affects their interaction, that would be really cool,” said Mazzone. “With an understanding of how magnetism evolves, we could tweak it, maybe generating new states.”

    The complexity of setting up and operating the spectrometer required a large collaboration including former and current Brookhaven X-ray Scattering Group members Daniel Mazzone, Derek Meyers, Yue Cao, Jiaqi Lin, Vivek Thampy, Hu Miao, Tadesse Assefa, John Hill, Ian Robinson, and Xuerong Liu. James Vale, Cameron Dashwood, and Desmond McMorrow of University College London; Diego Casa and Jungho Kim of DOE’s Argonne National Laboratory (US); laser experts Alan Johnson and Roman Mankowsky of the Paul Scherrer Institut, Michael Först of the MPG Institute for the Structure and Dynamics of Matter [MPG Institut für Struktur und Dynamik der Materie] (DE), and Simon Wall of Aarhus University [Aarhus Universitet] (DK); and the beamline teams from SLAC and SACLA were also crucial to the success of the experiments. Theoretical collaborations included Robert Konik of Brookhaven and Neil Robinson and Andrew James, both formerly at Brookhaven.

    The other collaborating institutions are Oklahoma State University (US), Chinese Academy of Sciences [中国科学院](CN), The Open University (UK), University of Amsterdam [Universiteit van Amsterdam] (NL), ShanghaiTech University [上海科技大学] (CN), Riken [理研](JP), Barcelona Institute of Science and Technology [Instituto de Ciencia y Tecnología de Barcelona](ES), and University of Tennessee (US).

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI) (US), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.


    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 (mission need) from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.
    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.
    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years.[19] NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.
    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.
    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University.
    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).


    It is currently operating at CERN near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory (US), Tennessee.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

     
  • richardmitnick 10:25 pm on May 2, 2021 Permalink | Reply
    Tags: "Nanoscale defects could boost energy storage materials", , Argonne Labs Advancd Photo Source, , , , Virginia Tech (US), X-ray Technology   

    From Cornell Chronicle (US) : “Nanoscale defects could boost energy storage materials” 

    From Cornell Chronicle (US)

    April 30, 2021
    David Nutt
    cunews@cornell.edu

    Some imperfections pay big dividends.

    A Cornell-led collaboration used X-ray nanoimaging to gain an unprecedented view into solid-state electrolytes, revealing previously undetected crystal defects and dislocations that may now be leveraged to create superior energy storage materials.

    The group’s paper is published April 29 in Nano Letters, a publication of the American Chemical Society. The paper’s lead author is doctoral student Yifei Sun.

    1
    The Singer Group is leveraging defects and dislocations in solid-state electrolytes to create superior energy storage materials. American Chemical Society/Provided.

    For a half-century, materials scientists have been investigating the effects of tiny defects in metals. The evolution of imaging tools has now created opportunities for exploring similar phenomena in other materials, most notably those used for energy storage.

    A group led by Andrej Singer, assistant professor and David Croll Sesquicentennial Faculty Fellow in the Department of Materials Science and Engineering, uses synchrotron radiation to uncover atomic-scale defects in battery materials that conventional approaches, such as electron microscopy, have failed to find.

    The Singer Group is particularly interested in solid-state electrolytes because they could potentially be used to replace the liquid and polymer electrolytes in lithium-ion batteries. One of the major drawbacks of liquid electrolytes is they are susceptible to the formation of spiky dendrites between the anode and cathode, which short out the battery or, even worse, cause it to explode.

    Solid-state electrolytes have the virtue of not being flammable, but they present challenges of their own. They don’t conduct lithium ions as strongly or quickly as fluids, and maintaining contact between the anode and cathode can be difficult. Solid-state electrolytes also need to be extremely thin; otherwise, the battery would be too bulky and any gain in capacity would be negated.

    The one thing that could make solid-state electrolytes viable? Tiny defects, Singer said.

    “These defects might facilitate ionic diffusion, so they might allow the ions to go faster. That’s something that’s known to happen in metals,” he said. “Also like in metals, having defects is better in terms of preventing fracture. So they might make the material less prone to breaking.”

    Singer’s group collaborated with Nikolaos Bouklas, assistant professor in the Sibley School of Mechanical and Aerospace Engineering and a co-author of the paper, who helped them understand how defects and dislocations might impact the mechanical properties of solid-state electrolytes.

    The Cornell team then partnered with researchers at Virginia Tech (US) – led by Feng Lin, the paper’s co-senior author – who synthesized the sample: a garnet crystal structure, lithium lanthanum zirconium oxide (LLZO), with various concentrations of aluminum added in a process called doping.

    Using the Advanced Photon Source (US) at the DOE’s Argonne National Laboratory, they employed a technique called Bragg Coherent Diffractive Imaging in which a pure, columnated X-ray beam is focused – much like a laser pointer – on a single micron-sized grain of LLZO. Electrolytes consist of millions of these grains.

    The beam created a 3D image that ultimately revealed the material’s morphology and atomic displacements.

    “These electrolytes were assumed to be perfect crystals,” Sun said. “But what we find are defects such as dislocations and grain boundaries that haven’t been reported before. Without our 3D imaging, which is extremely sensitive to defects, it would be likely impossible to see those dislocations because the dislocation density is so low.”

    The researchers now plan to conduct a study that measures how the defects impact the performance of solid-state electrolytes in an actual battery.

    “Now that we know exactly what we’re looking for, we want to find these defects and look at them as we operate the battery,” Singer said. “We are still far away from it, but we may be at the beginning of a new development where we can design these defects on purpose to make better energy storage materials.”

    Co-authors include postdoctoral fellow Oleg Gorobstov and doctoral students Daniel Weinstock and Ryan Bouck, from the Singer lab; and researchers at Virginia Tech and Argonne National Laboratory.

    The research was supported by the National Science Foundation (US).

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University (US) represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.
    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

    Cornell University(US) is a private, statutory, Ivy League and land-grant research university in Ithaca, New York. Founded in 1865 by Ezra Cornell and Andrew Dickson White, the university was intended to teach and make contributions in all fields of knowledge—from the classics to the sciences, and from the theoretical to the applied. These ideals, unconventional for the time, are captured in Cornell’s founding principle, a popular 1868 quotation from founder Ezra Cornell: “I would found an institution where any person can find instruction in any study.”

    The university is broadly organized into seven undergraduate colleges and seven graduate divisions at its main Ithaca campus, with each college and division defining its specific admission standards and academic programs in near autonomy. The university also administers two satellite medical campuses, one in New York City and one in Education City, Qatar, and Jacobs Technion-Cornell Institute(US) in New York City, a graduate program that incorporates technology, business, and creative thinking. The program moved from Google’s Chelsea Building in New York City to its permanent campus on Roosevelt Island in September 2017.

    Cornell is one of the few private land grant universities in the United States. Of its seven undergraduate colleges, three are state-supported statutory or contract colleges through the State University of New York(US) (SUNY) system, including its Agricultural and Human Ecology colleges as well as its Industrial Labor Relations school. Of Cornell’s graduate schools, only the veterinary college is state-supported. As a land grant college, Cornell operates a cooperative extension outreach program in every county of New York and receives annual funding from the State of New York for certain educational missions. The Cornell University Ithaca Campus comprises 745 acres, but is much larger when the Cornell Botanic Gardens (more than 4,300 acres) and the numerous university-owned lands in New York City are considered.

    Alumni and affiliates of Cornell have reached many notable and influential positions in politics, media, and science. As of January 2021, 61 Nobel laureates, four Turing Award winners and one Fields Medalist have been affiliated with Cornell. Cornell counts more than 250,000 living alumni, and its former and present faculty and alumni include 34 Marshall Scholars, 33 Rhodes Scholars, 29 Truman Scholars, 7 Gates Scholars, 55 Olympic Medalists, 10 current Fortune 500 CEOs, and 35 billionaire alumni. Since its founding, Cornell has been a co-educational, non-sectarian institution where admission has not been restricted by religion or race. The student body consists of more than 15,000 undergraduate and 9,000 graduate students from all 50 American states and 119 countries.

    History

    Cornell University was founded on April 27, 1865; the New York State (NYS) Senate authorized the university as the state’s land grant institution. Senator Ezra Cornell offered his farm in Ithaca, New York, as a site and $500,000 of his personal fortune as an initial endowment. Fellow senator and educator Andrew Dickson White agreed to be the first president. During the next three years, White oversaw the construction of the first two buildings and traveled to attract students and faculty. The university was inaugurated on October 7, 1868, and 412 men were enrolled the next day.

    Cornell developed as a technologically innovative institution, applying its research to its own campus and to outreach efforts. For example, in 1883 it was one of the first university campuses to use electricity from a water-powered dynamo to light the grounds. Since 1894, Cornell has included colleges that are state funded and fulfill statutory requirements; it has also administered research and extension activities that have been jointly funded by state and federal matching programs.

    Cornell has had active alumni since its earliest classes. It was one of the first universities to include alumni-elected representatives on its Board of Trustees. Cornell was also among the Ivies that had heightened student activism during the 1960s related to cultural issues; civil rights; and opposition to the Vietnam War, with protests and occupations resulting in the resignation of Cornell’s president and the restructuring of university governance. Today the university has more than 4,000 courses. Cornell is also known for the Residential Club Fire of 1967, a fire in the Residential Club building that killed eight students and one professor.

    Since 2000, Cornell has been expanding its international programs. In 2004, the university opened the Weill Cornell Medical College in Qatar. It has partnerships with institutions in India, Singapore, and the People’s Republic of China. Former president Jeffrey S. Lehman described the university, with its high international profile, a “transnational university”. On March 9, 2004, Cornell and Stanford University(US) laid the cornerstone for a new ‘Bridging the Rift Center’ to be built and jointly operated for education on the Israel–Jordan border.

    Research

    Cornell, a research university, is ranked fourth in the world in producing the largest number of graduates who go on to pursue PhDs in engineering or the natural sciences at American institutions, and fifth in the world in producing graduates who pursue PhDs at American institutions in any field. Research is a central element of the university’s mission; in 2009 Cornell spent $671 million on science and engineering research and development, the 16th highest in the United States. Cornell is classified among “R1: Doctoral Universities – Very high research activity”.

    For the 2016–17 fiscal year, the university spent $984.5 million on research. Federal sources constitute the largest source of research funding, with total federal investment of $438.2 million. The agencies contributing the largest share of that investment are the Department of Health and Human Services and the National Science Foundation(US), accounting for 49.6% and 24.4% of all federal investment, respectively. Cornell was on the top-ten list of U.S. universities receiving the most patents in 2003, and was one of the nation’s top five institutions in forming start-up companies. In 2004–05, Cornell received 200 invention disclosures; filed 203 U.S. patent applications; completed 77 commercial license agreements; and distributed royalties of more than $4.1 million to Cornell units and inventors.

    Since 1962, Cornell has been involved in unmanned missions to Mars. In the 21st century, Cornell had a hand in the Mars Exploration Rover Mission. Cornell’s Steve Squyres, Principal Investigator for the Athena Science Payload, led the selection of the landing zones and requested data collection features for the Spirit and Opportunity rovers. NASA-JPL/Caltech(US) engineers took those requests and designed the rovers to meet them. The rovers, both of which have operated long past their original life expectancies, are responsible for the discoveries that were awarded 2004 Breakthrough of the Year honors by Science. Control of the Mars rovers has shifted between National Aeronautics and Space Administration(US)’s Jet Propulsion Laboratory at Caltech and Cornell’s Space Sciences Building. Further, Cornell researchers discovered the rings around the planet Uranus, and Cornell built and operated the telescope at Arecibo Observatory located in Arecibo, Puerto Rico(US) until 2011, when they transferred the operations to SRI International, the Universities Space Research Association and the Metropolitan University of Puerto Rico [Universidad Metropolitana de Puerto Rico](US).

    The Automotive Crash Injury Research Project was begun in 1952. It pioneered the use of crash testing, originally using corpses rather than dummies. The project discovered that improved door locks; energy-absorbing steering wheels; padded dashboards; and seat belts could prevent an extraordinary percentage of injuries.

    In the early 1980s, Cornell deployed the first IBM 3090-400VF and coupled two IBM 3090-600E systems to investigate coarse-grained parallel computing. In 1984, the National Science Foundation began work on establishing five new supercomputer centers, including the Cornell Center for Advanced Computing, to provide high-speed computing resources for research within the United States. As an NSF center, Cornell deployed the first IBM Scalable Parallel supercomputer. In the 1990s, Cornell developed scheduling software and deployed the first supercomputer built by Dell. Most recently, Cornell deployed Red Cloud, one of the first cloud computing services designed specifically for research. Today, the center is a partner on the National Science Foundation XSEDE-Extreme Science Eniginnering Discovery Environment supercomputing program, providing coordination for XSEDE architecture and design, systems reliability testing, and online training using the Cornell Virtual Workshop learning platform.

    Cornell scientists have researched the fundamental particles of nature for more than 70 years. Cornell physicists, such as Hans Bethe, contributed not only to the foundations of nuclear physics but also participated in the Manhattan Project. In the 1930s, Cornell built the second cyclotron in the United States. In the 1950s, Cornell physicists became the first to study synchrotron radiation. During the 1990s, the Cornell Electron Storage Ring, located beneath Alumni Field, was the world’s highest-luminosity electron-positron collider. After building the synchrotron at Cornell, Robert R. Wilson took a leave of absence to become the founding director of Fermi National Accelerator Laboratory(US), which involved designing and building the largest accelerator in the United States. Cornell’s accelerator and high-energy physics groups are involved in the design of the proposed ILC-International Linear Collider(JP) and plan to participate in its construction and operation. The International Linear Collider(JP), to be completed in the late 2010s, will complement the CERN Large Hadron Collider(CH) and shed light on questions such as the identity of dark matter and the existence of extra dimensions.

    As part of its research work, Cornell has established several research collaborations with universities around the globe. For example, a partnership with the University of Sussex(UK) (including the Institute of Development Studies at Sussex) allows research and teaching collaboration between the two institutions.

     
  • richardmitnick 7:53 pm on April 21, 2021 Permalink | Reply
    Tags: , , , , PDW's-pair density waves, , RSXS-resonant soft X-ray scattering, , , The existence of the PDW phase in high-temperature superconductors was proposed more than a decade ago and it’s become an exciting area of research., X-ray Technology   

    From DOE’s SLAC National Accelerator Laboratory (US): “Scientists glimpse signs of a puzzling state of matter in a superconductor with SSRL” 

    From DOE’s SLAC National Accelerator Laboratory (US)

    April 21, 2021
    Glennda Chui

    1
    SLAC scientists used an improved X-ray technique to explore exotic states of matter in an unconventional superconductor that conducts electricity with 100% efficiency at relatively high temperatures. They glimpsed the signature of a state known as pair density waves (PDW), and confirmed that it intertwines with another phase known as charge density wave (CDW) stripes – wavelike patterns of higher and lower electron density in the material. CDWs, in turn, are created when spin density waves (SDWs) emerge and intertwine. Credit: Jun-Sik Lee/SLAC National Accelerator Laboratory.

    Known as “pair-density waves,” it may be key to understanding how superconductivity can exist at relatively high temperatures.

    Unconventional superconductors contain a number of exotic phases of matter that are thought to play a role, for better or worse, in their ability to conduct electricity with 100% efficiency at much higher temperatures than scientists had thought possible – although still far short of the temperatures that would allow their wide deployment in perfectly efficient power lines, maglev trains and so on.

    Now scientists at the Department of Energy’s SLAC National Accelerator Laboratory have glimpsed the signature of one of those phases, known as pair-density waves or PDW, and confirmed that it’s intertwined with another phase known as charge density wave (CDW) stripes – wavelike patterns of higher and lower electron density in the material.

    Observing and understanding PDW and its correlations with other phases may be essential for understanding how superconductivity emerges in these materials, allowing electrons to pair up and travel with no resistance, said Jun-Sik Lee, a SLAC staff scientist who led the research at the lab’s Stanford Synchrotron Radiation Lightsource (SSRL).

    Even indirect evidence of the PDW phase intertwined with charge stripes, he said, is an important step on the long road toward understanding the mechanism behind unconventional superconductivity, which has eluded scientists over more than 30 years of research.

    Lee added that the method his team used to make this observation, which involved dramatically increasing the sensitivity of a standard X-ray technique known as resonant soft X-ray scattering (RSXS) so it could see the extremely faint signals given off by these phenomena, has potential for directly sighting both the PDW signature and its correlations with other phases in future experiments. That’s what they plan to work on next.

    The scientists described their findings today in Physical Review Letters.

    Untangling superconductor secrets

    The existence of the PDW phase in high-temperature superconductors was proposed more than a decade ago and it’s become an exciting area of research, with theorists developing models to explain how it works and experimentalists searching for it in a variety of materials.

    In this study, the researchers went looking for it in a copper oxide, or cuprate, material known as LSCFO for the elements it contains ­– lanthanum, strontium, copper, iron and oxygen. It’s thought to host two other phases that may intertwine with PDW: charge density wave stripes and spin density wave stripes.

    The nature and behavior of charge and spin stripes have been explored in a number of studies, but there had been only a few indirect glimpses of PDW – much like identifying an animal from its tracks – and none made with X-ray scattering techniques. Because X-ray scattering reveals the behavior of an entire sample at once, it’s thought to be the most promising way to clarify whether PDW exists and how it relates to other key phases in cuprates, Lee said.

    Over the past few years, the SSRL team has worked on increasing the sensitivity of RSXS so it could capture the signals they were looking for.

    Postdoctoral researcher Hai Huang and SLAC staff engineer Sang-Jun Lee used the improved technique in this study. They scattered X-rays off LSCFO and into a detector, forming patterns that revealed what was going on inside the material. As they dropped the temperature of the material toward its superconducting range, spin stripes appeared and intertwined to form charge stripes, and those charge stripes were then associated with the emergence of two-dimensional fluctuations that are the hallmark of PDW.

    The researchers said these results not only demonstrate the value of the new RSXS approach, but also support the possibility that the PDW is present not just in this material, but in all of the superconducting cuprates.

    A research team led by Masaki Fujita at Tohoku University (東北大学, Tōhoku daigaku) (JP) in Japan grew the high-quality LSCFO crystal used in the experiment and conducted preliminary tests on it there. The research was funded by the DOE Office of Science. SSRL is a DOE Office of Science user facility.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    SLAC National Accelerator Laboratory (US) originally named Stanford Linear Accelerator Center, is a United States Department of Energy National Laboratory operated by Stanford University under the programmatic direction of the U.S. Department of Energy Office of Science and located in Menlo Park, California. It is the site of the Stanford Linear Accelerator, a 3.2 kilometer (2-mile) linear accelerator constructed in 1966 and shut down in the 2000s, which could accelerate electrons to energies of 50 GeV.

    Today SLAC research centers on a broad program in atomic and solid-state physics, chemistry, biology, and medicine using X-rays from synchrotron radiation and a free-electron laser as well as experimental and theoretical research in elementary particle physics, astroparticle physics, and cosmology.

    Founded in 1962 as the Stanford Linear Accelerator Center, the facility is located on 172 hectares (426 acres) of Stanford University-owned land on Sand Hill Road in Menlo Park, California—just west of the University’s main campus. The main accelerator is 3.2 kilometers (2 mi) long—the longest linear accelerator in the world—and has been operational since 1966.

    Research at SLAC has produced three Nobel Prizes in Physics

    1976: The charm quark—see J/ψ meson
    1990: Quark structure inside protons and neutrons
    1995: The tau lepton

    SLAC’s meeting facilities also provided a venue for the Homebrew Computer Club and other pioneers of the home computer revolution of the late 1970s and early 1980s.

    In 1984 the laboratory was named an ASME National Historic Engineering Landmark and an IEEE Milestone.

    SLAC developed and, in December 1991, began hosting the first World Wide Web server outside of Europe.

    In the early-to-mid 1990s, the Stanford Linear Collider (SLC) investigated the properties of the Z boson using the Stanford Large Detector.

    As of 2005, SLAC employed over 1,000 people, some 150 of whom were physicists with doctorate degrees, and served over 3,000 visiting researchers yearly, operating particle accelerators for high-energy physics and the Stanford Synchrotron Radiation Laboratory (SSRL) for synchrotron light radiation research, which was “indispensable” in the research leading to the 2006 Nobel Prize in Chemistry awarded to Stanford Professor Roger D. Kornberg.

    In October 2008, the Department of Energy announced that the center’s name would be changed to SLAC National Accelerator Laboratory. The reasons given include a better representation of the new direction of the lab and the ability to trademark the laboratory’s name. Stanford University had legally opposed the Department of Energy’s attempt to trademark “Stanford Linear Accelerator Center”.

    In March 2009, it was announced that the SLAC National Accelerator Laboratory was to receive $68.3 million in Recovery Act Funding to be disbursed by Department of Energy’s Office of Science.

    In October 2016, Bits and Watts launched as a collaboration between SLAC and Stanford University to design “better, greener electric grids”. SLAC later pulled out over concerns about an industry partner, the state-owned Chinese electric utility.

    Accelerator

    The main accelerator was an RF linear accelerator that accelerated electrons and positrons up to 50 GeV. At 3.2 km (2.0 mi) long, the accelerator was the longest linear accelerator in the world, and was claimed to be “the world’s most straight object.” until 2017 when the European x-ray free electron laser opened. The main accelerator is buried 9 m (30 ft) below ground and passes underneath Interstate Highway 280. The above-ground klystron gallery atop the beamline, was the longest building in the United States until the LIGO project’s twin interferometers were completed in 1999. It is easily distinguishable from the air and is marked as a visual waypoint on aeronautical charts.

    A portion of the original linear accelerator is now part of the Linac Coherent Light Source [below].

    Stanford Linear Collider

    The Stanford Linear Collider was a linear accelerator that collided electrons and positrons at SLAC. The center of mass energy was about 90 GeV, equal to the mass of the Z boson, which the accelerator was designed to study. Grad student Barrett D. Milliken discovered the first Z event on 12 April 1989 while poring over the previous day’s computer data from the Mark II detector. The bulk of the data was collected by the SLAC Large Detector, which came online in 1991. Although largely overshadowed by the Large Electron–Positron Collider at CERN, which began running in 1989, the highly polarized electron beam at SLC (close to 80%) made certain unique measurements possible, such as parity violation in Z Boson-b quark coupling.

    Presently no beam enters the south and north arcs in the machine, which leads to the Final Focus, therefore this section is mothballed to run beam into the PEP2 section from the beam switchyard.

    The SLAC Large Detector (SLD) was the main detector for the Stanford Linear Collider. It was designed primarily to detect Z bosons produced by the accelerator’s electron-positron collisions. Built in 1991, the SLD operated from 1992 to 1998.

    PEP

    PEP (Positron-Electron Project) began operation in 1980, with center-of-mass energies up to 29 GeV. At its apex, PEP had five large particle detectors in operation, as well as a sixth smaller detector. About 300 researchers made used of PEP. PEP stopped operating in 1990, and PEP-II began construction in 1994.

    PEP-II

    From 1999 to 2008, the main purpose of the linear accelerator was to inject electrons and positrons into the PEP-II accelerator, an electron-positron collider with a pair of storage rings 2.2 km (1.4 mi) in circumference. PEP-II was host to the BaBar experiment, one of the so-called B-Factory experiments studying charge-parity symmetry.

    Fermi Gamma-ray Space Telescope

    SLAC plays a primary role in the mission and operation of the Fermi Gamma-ray Space Telescope, launched in August 2008. The principal scientific objectives of this mission are:

    To understand the mechanisms of particle acceleration in AGNs, pulsars, and SNRs.
    To resolve the gamma-ray sky: unidentified sources and diffuse emission.
    To determine the high-energy behavior of gamma-ray bursts and transients.
    To probe dark matter and fundamental physics.


    KIPAC

    The Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) is partially housed on the grounds of SLAC, in addition to its presence on the main Stanford campus.

    [/caption]

    The Stanford PULSE Institute (PULSE) is a Stanford Independent Laboratory located in the Central Laboratory at SLAC. PULSE was created by Stanford in 2005 to help Stanford faculty and SLAC scientists develop ultrafast x-ray research at LCLS.

    The Linac Coherent Light Source (LCLS)[below] is a free electron laser facility located at SLAC. The LCLS is partially a reconstruction of the last 1/3 of the original linear accelerator at SLAC, and can deliver extremely intense x-ray radiation for research in a number of areas. It achieved first lasing in April 2009.

    The laser produces hard X-rays, 10^9 times the relative brightness of traditional synchrotron sources and is the most powerful x-ray source in the world. LCLS enables a variety of new experiments and provides enhancements for existing experimental methods. Often, x-rays are used to take “snapshots” of objects at the atomic level before obliterating samples. The laser’s wavelength, ranging from 6.2 to 0.13 nm (200 to 9500 electron volts (eV)) is similar to the width of an atom, providing extremely detailed information that was previously unattainable. Additionally, the laser is capable of capturing images with a “shutter speed” measured in femtoseconds, or million-billionths of a second, necessary because the intensity of the beam is often high enough so that the sample explodes on the femtosecond timescale.

    The LCLS-II [below] project is to provide a major upgrade to LCLS by adding two new X-ray laser beams. The new system will utilize the 500 m (1,600 ft) of existing tunnel to add a new superconducting accelerator at 4 GeV and two new sets of undulators that will increase the available energy range of LCLS. The advancement from the discoveries using this new capabilities may include new drugs, next-generation computers, and new materials.

    FACET

    In 2012, the first two-thirds (~2 km) of the original SLAC LINAC were recommissioned for a new user facility, the Facility for Advanced Accelerator Experimental Tests (FACET). This facility was capable of delivering 20 GeV, 3 nC electron (and positron) beams with short bunch lengths and small spot sizes, ideal for beam-driven plasma acceleration studies. The facility ended operations in 2016 for the constructions of LCLS-II which will occupy the first third of the SLAC LINAC. The FACET-II project will re-establish electron and positron beams in the middle third of the LINAC for the continuation of beam-driven plasma acceleration studies in 2019.

    SLAC National Accelerator Laboratory(US) FACET-II upgrading its Facility for Advanced Accelerator Experimental Tests (FACET) – a test bed for new technologies that could revolutionize the way we build particle accelerators.

    The Next Linear Collider Test Accelerator (NLCTA) is a 60-120 MeV high-brightness electron beam linear accelerator used for experiments on advanced beam manipulation and acceleration techniques. It is located at SLAC’s end station B

    DOE’s SLAC National Accelerator Laboratory(US) LCLS-II Undulators The Linac Coherent Light Source’s new undulators each use an intricately tuned series of magnets to convert electron energy into intense bursts of X-rays. The “soft” X-ray undulator stretches for 100 meters on the left side of this hall, with the “hard” x-ray undulator on the right. Credit: Alberto Gamazo/SLAC National Accelerator Laboratory(US).

    SSRL and LCLS are DOE Office of Science user facilities.

    Stanford University (US)

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members.

    Stanford University, officially Leland Stanford Junior University, is a private research university located in Stanford, California. Stanford was founded in 1885 by Leland and Jane Stanford in memory of their only child, Leland Stanford Jr., who had died of typhoid fever at age 15 the previous year. Stanford is consistently ranked as among the most prestigious and top universities in the world by major education publications. It is also one of the top fundraising institutions in the country, becoming the first school to raise more than a billion dollars in a year.

    Leland Stanford was a U.S. senator and former governor of California who made his fortune as a railroad tycoon. The school admitted its first students on October 1, 1891, as a coeducational and non-denominational institution. Stanford University struggled financially after the death of Leland Stanford in 1893 and again after much of the campus was damaged by the 1906 San Francisco earthquake. Following World War II, provost Frederick Terman supported faculty and graduates’ entrepreneurialism to build self-sufficient local industry in what would later be known as Silicon Valley.

    The university is organized around seven schools: three schools consisting of 40 academic departments at the undergraduate level as well as four professional schools that focus on graduate programs in law, medicine, education, and business. All schools are on the same campus. Students compete in 36 varsity sports, and the university is one of two private institutions in the Division I FBS Pac-12 Conference. It has gained 126 NCAA team championships, and Stanford has won the NACDA Directors’ Cup for 24 consecutive years, beginning in 1994–1995. In addition, Stanford students and alumni have won 270 Olympic medals including 139 gold medals.

    As of October 2020, 84 Nobel laureates, 28 Turing Award laureates, and eight Fields Medalists have been affiliated with Stanford as students, alumni, faculty, or staff. In addition, Stanford is particularly noted for its entrepreneurship and is one of the most successful universities in attracting funding for start-ups. Stanford alumni have founded numerous companies, which combined produce more than $2.7 trillion in annual revenue, roughly equivalent to the 7th largest economy in the world (as of 2020). Stanford is the alma mater of one president of the United States (Herbert Hoover), 74 living billionaires, and 17 astronauts. It is also one of the leading producers of Fulbright Scholars, Marshall Scholars, Rhodes Scholars, and members of the United States Congress.

    Stanford University was founded in 1885 by Leland and Jane Stanford, dedicated to Leland Stanford Jr, their only child. The institution opened in 1891 on Stanford’s previous Palo Alto farm.

    Jane and Leland Stanford modeled their university after the great eastern universities, most specifically Cornell University. Stanford opened being called the “Cornell of the West” in 1891 due to faculty being former Cornell affiliates (either professors, alumni, or both) including its first president, David Starr Jordan, and second president, John Casper Branner. Both Cornell and Stanford were among the first to have higher education be accessible, nonsectarian, and open to women as well as to men. Cornell is credited as one of the first American universities to adopt this radical departure from traditional education, and Stanford became an early adopter as well.

    Despite being impacted by earthquakes in both 1906 and 1989, the campus was rebuilt each time. In 1919, The Hoover Institution on War, Revolution and Peace was started by Herbert Hoover to preserve artifacts related to World War I. The Stanford Medical Center, completed in 1959, is a teaching hospital with over 800 beds. The DOE’s SLAC National Accelerator Laboratory(US)(originally named the Stanford Linear Accelerator Center), established in 1962, performs research in particle physics.

    Land

    Most of Stanford is on an 8,180-acre (12.8 sq mi; 33.1 km^2) campus, one of the largest in the United States. It is located on the San Francisco Peninsula, in the northwest part of the Santa Clara Valley (Silicon Valley) approximately 37 miles (60 km) southeast of San Francisco and approximately 20 miles (30 km) northwest of San Jose. In 2008, 60% of this land remained undeveloped.

    Stanford’s main campus includes a census-designated place within unincorporated Santa Clara County, although some of the university land (such as the Stanford Shopping Center and the Stanford Research Park) is within the city limits of Palo Alto. The campus also includes much land in unincorporated San Mateo County (including the SLAC National Accelerator Laboratory and the Jasper Ridge Biological Preserve), as well as in the city limits of Menlo Park (Stanford Hills neighborhood), Woodside, and Portola Valley.

    Non-central campus

    Stanford currently operates in various locations outside of its central campus.

    On the founding grant:

    Jasper Ridge Biological Preserve is a 1,200-acre (490 ha) natural reserve south of the central campus owned by the university and used by wildlife biologists for research.
    SLAC National Accelerator Laboratory is a facility west of the central campus operated by the university for the Department of Energy. It contains the longest linear particle accelerator in the world, 2 miles (3.2 km) on 426 acres (172 ha) of land.
    Golf course and a seasonal lake: The university also has its own golf course and a seasonal lake (Lake Lagunita, actually an irrigation reservoir), both home to the vulnerable California tiger salamander. As of 2012 Lake Lagunita was often dry and the university had no plans to artificially fill it.

    Off the founding grant:

    Hopkins Marine Station, in Pacific Grove, California, is a marine biology research center owned by the university since 1892.
    Study abroad locations: unlike typical study abroad programs, Stanford itself operates in several locations around the world; thus, each location has Stanford faculty-in-residence and staff in addition to students, creating a “mini-Stanford”.

    Redwood City campus for many of the university’s administrative offices located in Redwood City, California, a few miles north of the main campus. In 2005, the university purchased a small, 35-acre (14 ha) campus in Midpoint Technology Park intended for staff offices; development was delayed by The Great Recession. In 2015 the university announced a development plan and the Redwood City campus opened in March 2019.

    The Bass Center in Washington, DC provides a base, including housing, for the Stanford in Washington program for undergraduates. It includes a small art gallery open to the public.

    China: Stanford Center at Peking University, housed in the Lee Jung Sen Building, is a small center for researchers and students in collaboration with Beijing University [北京大学](CN) (Kavli Institute for Astronomy and Astrophysics at Peking University(CN) (KIAA-PKU).

    Administration and organization

    Stanford is a private, non-profit university that is administered as a corporate trust governed by a privately appointed board of trustees with a maximum membership of 38. Trustees serve five-year terms (not more than two consecutive terms) and meet five times annually.[83] A new trustee is chosen by the current trustees by ballot. The Stanford trustees also oversee the Stanford Research Park, the Stanford Shopping Center, the Cantor Center for Visual Arts, Stanford University Medical Center, and many associated medical facilities (including the Lucile Packard Children’s Hospital).

    The board appoints a president to serve as the chief executive officer of the university, to prescribe the duties of professors and course of study, to manage financial and business affairs, and to appoint nine vice presidents. The provost is the chief academic and budget officer, to whom the deans of each of the seven schools report. Persis Drell became the 13th provost in February 2017.

    As of 2018, the university was organized into seven academic schools. The schools of Humanities and Sciences (27 departments), Engineering (nine departments), and Earth, Energy & Environmental Sciences (four departments) have both graduate and undergraduate programs while the Schools of Law, Medicine, Education and Business have graduate programs only. The powers and authority of the faculty are vested in the Academic Council, which is made up of tenure and non-tenure line faculty, research faculty, senior fellows in some policy centers and institutes, the president of the university, and some other academic administrators, but most matters are handled by the Faculty Senate, made up of 55 elected representatives of the faculty.

    The Associated Students of Stanford University (ASSU) is the student government for Stanford and all registered students are members. Its elected leadership consists of the Undergraduate Senate elected by the undergraduate students, the Graduate Student Council elected by the graduate students, and the President and Vice President elected as a ticket by the entire student body.

    Stanford is the beneficiary of a special clause in the California Constitution, which explicitly exempts Stanford property from taxation so long as the property is used for educational purposes.

    Endowment and donations

    The university’s endowment, managed by the Stanford Management Company, was valued at $27.7 billion as of August 31, 2019. Payouts from the Stanford endowment covered approximately 21.8% of university expenses in the 2019 fiscal year. In the 2018 NACUBO-TIAA survey of colleges and universities in the United States and Canada, only Harvard University(US), the University of Texas System(US), and Yale University(US) had larger endowments than Stanford.

    In 2006, President John L. Hennessy launched a five-year campaign called the Stanford Challenge, which reached its $4.3 billion fundraising goal in 2009, two years ahead of time, but continued fundraising for the duration of the campaign. It concluded on December 31, 2011, having raised a total of $6.23 billion and breaking the previous campaign fundraising record of $3.88 billion held by Yale. Specifically, the campaign raised $253.7 million for undergraduate financial aid, as well as $2.33 billion for its initiative in “Seeking Solutions” to global problems, $1.61 billion for “Educating Leaders” by improving K-12 education, and $2.11 billion for “Foundation of Excellence” aimed at providing academic support for Stanford students and faculty. Funds supported 366 new fellowships for graduate students, 139 new endowed chairs for faculty, and 38 new or renovated buildings. The new funding also enabled the construction of a facility for stem cell research; a new campus for the business school; an expansion of the law school; a new Engineering Quad; a new art and art history building; an on-campus concert hall; a new art museum; and a planned expansion of the medical school, among other things. In 2012, the university raised $1.035 billion, becoming the first school to raise more than a billion dollars in a year.

    Research centers and institutes

    DOE’s SLAC National Accelerator Laboratory(US)
    Stanford Research Institute, a center of innovation to support economic development in the region.
    Hoover Institution, a conservative American public policy institution and research institution that promotes personal and economic liberty, free enterprise, and limited government.
    Hasso Plattner Institute of Design, a multidisciplinary design school in cooperation with the Hasso Plattner Institute of University of Potsdam [Universität Potsdam](DE) that integrates product design, engineering, and business management education).
    Martin Luther King Jr. Research and Education Institute, which grew out of and still contains the Martin Luther King Jr. Papers Project.
    John S. Knight Fellowship for Professional Journalists
    Center for Ocean Solutions
    Together with UC Berkeley(US) and UC San Francisco(US), Stanford is part of the Biohub, a new medical science research center founded in 2016 by a $600 million commitment from Facebook CEO and founder Mark Zuckerberg and pediatrician Priscilla Chan.

    Discoveries and innovation

    Natural sciences

    Biological synthesis of deoxyribonucleic acid (DNA) – Arthur Kornberg synthesized DNA material and won the Nobel Prize in Physiology or Medicine 1959 for his work at Stanford.
    First Transgenic organism – Stanley Cohen and Herbert Boyer were the first scientists to transplant genes from one living organism to another, a fundamental discovery for genetic engineering. Thousands of products have been developed on the basis of their work, including human growth hormone and hepatitis B vaccine.
    Laser – Arthur Leonard Schawlow shared the 1981 Nobel Prize in Physics with Nicolaas Bloembergen and Kai Siegbahn for his work on lasers.
    Nuclear magnetic resonance – Felix Bloch developed new methods for nuclear magnetic precision measurements, which are the underlying principles of the MRI.

    Computer and applied sciences

    ARPANETStanford Research Institute, formerly part of Stanford but on a separate campus, was the site of one of the four original ARPANET nodes.

    Internet—Stanford was the site where the original design of the Internet was undertaken. Vint Cerf led a research group to elaborate the design of the Transmission Control Protocol (TCP/IP) that he originally co-created with Robert E. Kahn (Bob Kahn) in 1973 and which formed the basis for the architecture of the Internet.

    Frequency modulation synthesis – John Chowning of the Music department invented the FM music synthesis algorithm in 1967, and Stanford later licensed it to Yamaha Corporation.

    Google – Google began in January 1996 as a research project by Larry Page and Sergey Brin when they were both PhD students at Stanford. They were working on the Stanford Digital Library Project (SDLP). The SDLP’s goal was “to develop the enabling technologies for a single, integrated and universal digital library” and it was funded through the National Science Foundation, among other federal agencies.

    Klystron tube – invented by the brothers Russell and Sigurd Varian at Stanford. Their prototype was completed and demonstrated successfully on August 30, 1937. Upon publication in 1939, news of the klystron immediately influenced the work of U.S. and UK researchers working on radar equipment.

    RISCARPA funded VLSI project of microprocessor design. Stanford and UC Berkeley are most associated with the popularization of this concept. The Stanford MIPS would go on to be commercialized as the successful MIPS architecture, while Berkeley RISC gave its name to the entire concept, commercialized as the SPARC. Another success from this era were IBM’s efforts that eventually led to the IBM POWER instruction set architecture, PowerPC, and Power ISA. As these projects matured, a wide variety of similar designs flourished in the late 1980s and especially the early 1990s, representing a major force in the Unix workstation market as well as embedded processors in laser printers, routers and similar products.
    SUN workstation – Andy Bechtolsheim designed the SUN workstation for the Stanford University Network communications project as a personal CAD workstation, which led to Sun Microsystems.

    Businesses and entrepreneurship

    Stanford is one of the most successful universities in creating companies and licensing its inventions to existing companies; it is often held up as a model for technology transfer. Stanford’s Office of Technology Licensing is responsible for commercializing university research, intellectual property, and university-developed projects.

    The university is described as having a strong venture culture in which students are encouraged, and often funded, to launch their own companies.

    Companies founded by Stanford alumni generate more than $2.7 trillion in annual revenue, equivalent to the 10th-largest economy in the world.

    Some companies closely associated with Stanford and their connections include:

    Hewlett-Packard, 1939, co-founders William R. Hewlett (B.S, PhD) and David Packard (M.S).
    Silicon Graphics, 1981, co-founders James H. Clark (Associate Professor) and several of his grad students.
    Sun Microsystems, 1982, co-founders Vinod Khosla (M.B.A), Andy Bechtolsheim (PhD) and Scott McNealy (M.B.A).
    Cisco, 1984, founders Leonard Bosack (M.S) and Sandy Lerner (M.S) who were in charge of Stanford Computer Science and Graduate School of Business computer operations groups respectively when the hardware was developed.[163]
    Yahoo!, 1994, co-founders Jerry Yang (B.S, M.S) and David Filo (M.S).
    Google, 1998, co-founders Larry Page (M.S) and Sergey Brin (M.S).
    LinkedIn, 2002, co-founders Reid Hoffman (B.S), Konstantin Guericke (B.S, M.S), Eric Lee (B.S), and Alan Liu (B.S).
    Instagram, 2010, co-founders Kevin Systrom (B.S) and Mike Krieger (B.S).
    Snapchat, 2011, co-founders Evan Spiegel and Bobby Murphy (B.S).
    Coursera, 2012, co-founders Andrew Ng (Associate Professor) and Daphne Koller (Professor, PhD).

    Student body

    Stanford enrolled 6,996 undergraduate and 10,253 graduate students as of the 2019–2020 school year. Women comprised 50.4% of undergraduates and 41.5% of graduate students. In the same academic year, the freshman retention rate was 99%.

    Stanford awarded 1,819 undergraduate degrees, 2,393 master’s degrees, 770 doctoral degrees, and 3270 professional degrees in the 2018–2019 school year. The four-year graduation rate for the class of 2017 cohort was 72.9%, and the six-year rate was 94.4%. The relatively low four-year graduation rate is a function of the university’s coterminal degree (or “coterm”) program, which allows students to earn a master’s degree as a 1-to-2-year extension of their undergraduate program.

    As of 2010, fifteen percent of undergraduates were first-generation students.

    Athletics

    As of 2016 Stanford had 16 male varsity sports and 20 female varsity sports, 19 club sports and about 27 intramural sports. In 1930, following a unanimous vote by the Executive Committee for the Associated Students, the athletic department adopted the mascot “Indian.” The Indian symbol and name were dropped by President Richard Lyman in 1972, after objections from Native American students and a vote by the student senate. The sports teams are now officially referred to as the “Stanford Cardinal,” referring to the deep red color, not the cardinal bird. Stanford is a member of the Pac-12 Conference in most sports, the Mountain Pacific Sports Federation in several other sports, and the America East Conference in field hockey with the participation in the inter-collegiate NCAA’s Division I FBS.

    Its traditional sports rival is the University of California, Berkeley, the neighbor to the north in the East Bay. The winner of the annual “Big Game” between the Cal and Cardinal football teams gains custody of the Stanford Axe.

    Stanford has had at least one NCAA team champion every year since the 1976–77 school year and has earned 126 NCAA national team titles since its establishment, the most among universities, and Stanford has won 522 individual national championships, the most by any university. Stanford has won the award for the top-ranked Division 1 athletic program—the NACDA Directors’ Cup, formerly known as the Sears Cup—annually for the past twenty-four straight years. Stanford athletes have won medals in every Olympic Games since 1912, winning 270 Olympic medals total, 139 of them gold. In the 2008 Summer Olympics, and 2016 Summer Olympics, Stanford won more Olympic medals than any other university in the United States. Stanford athletes won 16 medals at the 2012 Summer Olympics (12 gold, two silver and two bronze), and 27 medals at the 2016 Summer Olympics.

    Traditions

    The unofficial motto of Stanford, selected by President Jordan, is Die Luft der Freiheit weht. Translated from the German language, this quotation from Ulrich von Hutten means, “The wind of freedom blows.” The motto was controversial during World War I, when anything in German was suspect; at that time the university disavowed that this motto was official.
    Hail, Stanford, Hail! is the Stanford Hymn sometimes sung at ceremonies or adapted by the various University singing groups. It was written in 1892 by mechanical engineering professor Albert W. Smith and his wife, Mary Roberts Smith (in 1896 she earned the first Stanford doctorate in Economics and later became associate professor of Sociology), but was not officially adopted until after a performance on campus in March 1902 by the Mormon Tabernacle Choir.
    “Uncommon Man/Uncommon Woman”: Stanford does not award honorary degrees, but in 1953 the degree of “Uncommon Man/Uncommon Woman” was created to recognize individuals who give rare and extraordinary service to the University. Technically, this degree is awarded by the Stanford Associates, a voluntary group that is part of the university’s alumni association. As Stanford’s highest honor, it is not conferred at prescribed intervals, but only when appropriate to recognize extraordinary service. Recipients include Herbert Hoover, Bill Hewlett, Dave Packard, Lucile Packard, and John Gardner.
    Big Game events: The events in the week leading up to the Big Game vs. UC Berkeley, including Gaieties (a musical written, composed, produced, and performed by the students of Ram’s Head Theatrical Society).
    “Viennese Ball”: a formal ball with waltzes that was initially started in the 1970s by students returning from the now-closed Stanford in Vienna overseas program. It is now open to all students.
    “Full Moon on the Quad”: An annual event at Main Quad, where students gather to kiss one another starting at midnight. Typically organized by the Junior class cabinet, the festivities include live entertainment, such as music and dance performances.
    “Band Run”: An annual festivity at the beginning of the school year, where the band picks up freshmen from dorms across campus while stopping to perform at each location, culminating in a finale performance at Main Quad.
    “Mausoleum Party”: An annual Halloween Party at the Stanford Mausoleum, the final resting place of Leland Stanford Jr. and his parents. A 20-year tradition, the “Mausoleum Party” was on hiatus from 2002 to 2005 due to a lack of funding, but was revived in 2006. In 2008, it was hosted in Old Union rather than at the actual Mausoleum, because rain prohibited generators from being rented. In 2009, after fundraising efforts by the Junior Class Presidents and the ASSU Executive, the event was able to return to the Mausoleum despite facing budget cuts earlier in the year.
    Former campus traditions include the “Big Game bonfire” on Lake Lagunita (a seasonal lake usually dry in the fall), which was formally ended in 1997 because of the presence of endangered salamanders in the lake bed.

    Award laureates and scholars

    Stanford’s current community of scholars includes:

    19 Nobel Prize laureates (as of October 2020, 85 affiliates in total)
    171 members of the National Academy of Sciences
    109 members of National Academy of Engineering
    76 members of National Academy of Medicine
    288 members of the American Academy of Arts and Sciences
    19 recipients of the National Medal of Science
    1 recipient of the National Medal of Technology
    4 recipients of the National Humanities Medal
    49 members of American Philosophical Society
    56 fellows of the American Physics Society (since 1995)
    4 Pulitzer Prize winners
    31 MacArthur Fellows
    4 Wolf Foundation Prize winners
    2 ACL Lifetime Achievement Award winners
    14 AAAI fellows
    2 Presidential Medal of Freedom winners

    Stanford University Seal

     
  • richardmitnick 11:11 am on April 16, 2021 Permalink | Reply
    Tags: "Berkeley Lab Advanced Light Source Upgrade Project Achieves Major Milestone", ALS is a type of particle accelerator known as a synchrotron that generates extremely bright beams of light ranging from infrared through X-rays., , DOE Critical Decision 2 or CD-2, , The ALS Upgrade (ALS-U) project will enable the ALS to deliver light with a more ordered “coherent” structure., X-ray Technology   

    From DOE’s Lawrence Berkeley National Laboratory (US) : “Berkeley Lab Advanced Light Source Upgrade Project Achieves Major Milestone” 

    From DOE’s Lawrence Berkeley National Laboratory (US)

    April 16, 2021

    Theresa Duque
    tnduque@lbl.gov
    (510) 495-2418

    Berkeley Lab’s biggest project in 30 years one step closer to start of construction; upgrade could help advance next-gen technologies for clean energy, the environment, and health.


    VIDEO: The new swap-out injection system will be implemented as part of the $590 million Advanced Light Source Upgrade (ALS-U) project. This unique feature, developed by Berkeley Lab scientists, is a critical component of the upgrade that will enable the ALS to produce brighter beams with a more ordered structure, better revealing nanoscale details in complex chemical reactions and in new materials. Credit: Berkeley Lab.

    The LBNL Advanced Light Source (US)(ALS), a scientific user facility at the Department of Energy’s (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab), has received federal approval for the budget, schedule, and technical scope for a major upgrade project that will boost the brightness of its X-ray beams at least a hundredfold.

    In addition to brighter X-ray beams, the ALS Upgrade (ALS-U) project will enable the ALS to deliver light with a more ordered “coherent” structure – like evenly spaced ripples in a pond – that will better reveal nanoscale (billionths of a meter) details in complex chemical reactions and in new materials.

    “For nearly three decades, the ALS has developed innovative X-ray tools and used these to support a world-renowned portfolio of user science and collaboration,” said ALS Director Steve Kevan. “The ALS upgrade will allow us to vastly sharpen our tools and to accelerate that work for several more decades as we learn to design chemical, material, and biological systems that will solve the pressing energy and environmental challenges we face.”

    1
    This cutaway rendering of the Advanced Light Source dome shows the layout of three electron-accelerating rings with beamlines. A new approval step in the ALS Upgrade project will allow the installation of the middle ring, known as the accumulator ring. Credit: Berkeley Lab.

    This latest approval by Department of Energy(US), known as Critical Decision 2 or CD-2, marks the completion of the preliminary design stage of the project. It also authorizes a $590 million budget and funding profile for the project, and outlines the scope and schedule.

    “I am proud of the talented engineers, scientists, technicians, and support staff who helped the Lab achieve CD-2 approval for the Advanced Light Source Upgrade project during these challenging times. This upgrade will make it possible for Berkeley Lab to continue its leadership in soft X-ray research for another 30 years – but none of that could happen without the ALS-U team’s hard work and continued commitment to the Lab mission,” said Berkeley Lab Director Mike Witherell.

    Probing new materials at the nanoscale with brighter, more focused light.

    The ALS is a type of particle accelerator known as a synchrotron that generates extremely bright beams of light ranging from infrared through X-rays. There are only a few dozen synchrotron light sources worldwide.

    The ALS’ light is directed through 40 highly specialized instruments called beamlines to experimental endstations, where scientists from around the world conduct simultaneous studies in fields ranging from materials science and biology to physics and chemistry. The facility is optimized for science conducted with lower-energy “soft” X-rays that have the ideal energy range to probe the chemical, electronic, and magnetic properties of materials.

    2
    A top view of the ALS storage ring, showing the new equipment that will be installed during the upgrade. Credit: Berkeley Lab.

    For many experiments, the quality of the data collected depends on the number and regularity of light particles – known as photons – that can be concentrated in a small spot. The upgrade currently underway is intended to make the ALS the brightest storage ring-based source of soft X-rays in the world.

    The ALS-U project will replace the electron storage ring, the part of the accelerator where light is produced. The ALS’ X-rays are produced by electrons that race around a ring 200 meters (600 feet) in circumference at nearly the speed of light. Along the way, powerful magnets steer and focus the electron beam to keep it on its circular orbit, while additional magnets bend the beam, generating a broad spectrum of light that’s guided through beamlines. Better focus of the electron beam translates to better focus of the light produced and higher-quality data about the samples being studied.

    3
    CAD model of a storage ring integrated raft assembly (there are 48 rafts total for the storage ring). This design allows integrated assembly and testing of magnets, vacuum, supports and utilities prior to final installation in the ALS tunnel. Credit: Berkeley Lab.

    The new electron storage ring will leverage a next-generation magnet technology known as multibend achromats. Whereas today each one of the 12 arcs that make up the accelerator ring includes three bending magnets, after the upgrade each arc will include nine bending magnets, allowing for more precise steering and tighter focusing of the electrons.

    As a result, X-ray beams that today are about 100 microns (thousandths of a millimeter) across – smaller than the diameter of a human hair – will be squeezed down to just a few microns after the upgrade.

    These more precise beams will make possible many applications including the study of magnetic properties in multilayer data-storage materials at smaller scales and the observation of battery chemistry and other reactions as they occur. The increase in brightness will be akin to the crisp, clear resolution that comes from taking a photograph in vivid daylight versus the fuzzy image that results when the lighting is dim.

    4
    The beam profile of Berkeley Lab’s Advanced Light Source today (left), compared to the highly focused beam (right) that is possible with an upgrade known as ALS-U. Credit: Berkeley Lab.

    A particularly challenging feat of the upgrade will be building a second concentric ring, called an “accumulator,” inside the already-cramped concrete tunnels that house the storage ring. This unique feature, developed by Berkeley Lab scientists, is another critical aspect for better focusing the electron beam. It enables a technique called “on-axis, swap-out injection,” which allows the electron beam to be injected into the storage ring with minimal perturbation.

    Whereas in today’s ALS the electron beam is injected from an initial accelerating ring called the “booster” directly into the storage ring, the upgraded ALS will use the accumulator ring as an intermediary between the booster and storage rings, squeezing the electron beam and preparing it to be injected into an extremely confined space while preserving its tight focus and coherence. In late 2019, the project received approval for the early procurement, construction, and installation of the accumulator ring so this critical piece of the project could be installed and commissioned before the facility is shut down for a year to replace the storage ring.

    5
    The new coordinate measuring machine in the ALS-U project’s Magnet Measurement Facility. The device will take precise measurements of the new accumulator magnets and prototype storage ring magnets prior to mounting and aligning them in preparation to be installed. The blue magnet shown is a prototype magnet for the storage ring. Credit: Steve Virostek/Berkeley Lab.

    In addition to the replacement of the storage ring and construction of the accumulator ring, the ALS-U project will upgrade two existing beamlines and build two new beamlines with features optimized to take full advantage of the upgraded beam. The project will also provide for the realignment of existing beamlines and a seismic and shielding upgrade of the storage ring tunnel – all while leveraging approximately half a billion dollars in existing infrastructure.

    ALS-U is the biggest construction project Berkeley Lab has undertaken in more than 30 years – the last being the construction of the ALS itself under the leadership of former Berkeley Lab Directors David Shirley and Charles Shank. Shirley served as Berkeley Lab Director from 1980 through 1989; Shank, from 1989 through 2004

    “This is a big deal,” said ALS-U Project Director David Robin. “Having federal CD-2 approval during uncertain times is a major step.”

    Progress under “new normal”

    Last year, Berkeley Lab, like much of the world, was thrown into uncertainty when word of a deadly new coronavirus was gaining ground. When California Bay Area counties issued a stay-at-home order to slow the spread of COVID-19 on March 17, 2020, Berkeley Lab quickly transitioned to minimal staffing for essential services and curtailed operations at its scientific user facilities – including the Advanced Light Source.

    6
    Marc Allaire, pictured in June 2020, setting up one of the Advanced Light Source’s crystallography beamlines for a COVID-19 research project. When California Bay Area counties issued a stay-at-home order to slow the spread of COVID-19 on March 17, 2020, Berkeley Lab quickly transitioned to minimal staffing for essential services and curtailed operations at its scientific user facilities – including the Advanced Light Source. Credit: Marilyn Sargent/Berkeley Lab.

    Under this “new normal,” Robin said that he and Project Manager Roberta Leftwich-Vann decided that the No. 1 priority should be doing the best they could under the unusual circumstances of a pandemic to keep the project on track toward CD-2 review and approval – which, like all things in the times of COVID, wasn’t easy. Robin credits the project’s 100-person team of engineers, scientists, technicians, and support staff for the outstanding job they did in accomplishing all of this under very challenging circumstances.

    When California’s stay-at-home orders extended into the summer, the ALS-U project team encountered yet another wrench thrown into their plans: The synchrotron’s summer shutdown – a scheduled “dark” period in preparation for the ALS upgrade project – was shortened, pushing some work into the future, creating a domino effect on the project’s schedule.

    “As we approached CD-2, one of the tricky things we needed to get right was developing an informed estimate of potential cost-and-schedule risks represented by the COVID-19 pandemic,” Leftwich-Vann said. “This was new territory, of course, but the team came up with a good solution that helped us solidify our CD-2 cost and schedule: an estimate of future COVID risks based on our experience to date and incorporating likely outcomes based on the best available information.”

    Robin said that the ALS-U design is slated for completion in 2022. After that, Berkeley Lab will apply for the next stage of the project: federal “CD-3” approval to start construction on the storage ring replacement, beamline upgrades, realignment, and construction, and begin the seismic and shielding upgrade of the concrete tunnel that houses the storage ring and the accumulator.

    The iconic dome of the building that houses the ALS – which was designed in the 1930s by Arthur Brown Jr., the architect for the San Francisco landmark Coit Tower – will be preserved in the upgrade project. The dome originally housed an accelerator known as the 184-inch cyclotron.

    “The upgrade will enable the Department of Energy to provide a research tool at Berkeley Lab that is really unique: highly coherent, bright beams of soft X-ray light to probe functional materials for new applications in energy, the environment, and health that isn’t yet possible,” said Robin. “It’s very exciting to think about how this upgrade could help researchers develop new materials and technologies that improve our way of life.”

    The Advanced Light Source is a DOE Office of Science User Facility.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LBNL campus

    LBNL Molecular Foundry

    Bringing Science Solutions to the World

    In the world of science, Lawrence Berkeley National Laboratory (Berkeley Lab) (US) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the National Academy of Sciences (NAS), one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the National Academy of Engineering, and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California(UC) and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the UC Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California, Berkeley(US) physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    History

    1931–1941

    The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California, Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

    LBNL 88 inch cyclotron.

    LBNL 88 inch cyclotron.

    Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded DOE’s Los Alamos Laboratory(US), and Robert Wilson founded Fermi National Accelerator Laboratory(US).

    1942–1950

    Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.

    1951–2018

    After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now Department of Energy(US). The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now the Lawrence Livermore National Laboratory(US)) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

    Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

    The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

    The lab remains owned by the Department of Energy(US), with management from the University of California(US). Companies such as Intel were funding the lab’s research into computing chips.

    Science mission

    From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

    The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

    Berkeley Lab operates five major National User Facilities for the DOE Office of Science(US):

    The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.

    LBNL/ALS

    LBNL/ALS .

    The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

    The Joint Genome Institute (JGI) supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, Lawrence Livermore National Lab (LLNL), DOE’s Oak Ridge National Laboratory(US)(ORNL), DOE’s Pacific Northwest National Laboratory(US) (PNNL), and the HudsonAlpha Institute for Biotechnology(US). The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

    The LBNL Molecular Foundry(US) [above] is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

    The DOE’s NERSC National Energy Research Scientific Computing Center(US) is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

    National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory

    NERSC Cray Cori II supercomputer, named after Gerty Cori, the first American woman to win a Nobel Prize in science.

    NERSC Hopper Cray XE6 supercomputer, named after Grace Hopper, One of the first programmers of the Harvard Mark I computer.

    NERSC Cray XC30 Edison supercomputer.

    NERSC GPFS for Life Sciences.


    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    NERSC PDSF computer cluster in 2003.

    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    Future:

    Cray Shasta Perlmutter SC18 AMD Epyc Nvidia pre-exascale supeercomputer

    NERSC is a DOE Office of Science User Facility.

    The DOE’s Energy Science Network(US) is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

    Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute(US) (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory(US), the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science(US), and DOE’s Lawrence Livermore National Laboratory(US) (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

    Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology(US) and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory(US) leads JCESR and Berkeley Lab is a major partner.

    Operations and governance

    The University of California(US) operates Lawrence Berkeley National Laboratory under a contract with the US Department of Energy. The site consists of 76 buildings (owned by the U.S. Department of Energy) located on 200 acres (0.81 km^2) owned by the university in the Berkeley Hills. Altogether, the Lab has some 4,000 UC employees, of whom about 800 are students or postdocs, and each year it hosts more than 3,000 participating guest scientists. There are approximately two dozen DOE employees stationed at the laboratory to provide federal oversight of Berkeley Lab’s work for the DOE. Although Berkeley Lab is governed by UC independently of the Berkeley campus, the two entities are closely interconnected: more than 200 Berkeley Lab researchers hold joint appointments as UC Berkeley faculty.
    The Lab’s budget for the fiscal year 2019 was US$1.1 billion dollars.

    Scientific achievements, inventions, and discoveries

    Notable scientific accomplishments at the Lab since World War II include the observation of the antiproton, the discovery of several transuranic elements, and the discovery of the accelerating universe.

    Since its inception, 13 researchers associated with Berkeley Lab (Ernest Lawrence, Glenn T. Seaborg, Edwin M. McMillan, Owen Chamberlain, Emilio G. Segrè, Donald A. Glaser, Melvin Calvin, Luis W. Alvarez, Yuan T. Lee, Steven Chu, George F. Smoot, Saul Perlmutter, and Jennifer Doudna) have been awarded either the Nobel Prize in Physics or the Nobel Prize in Chemistry.

    In addition, twenty-three Berkeley Lab employees, as contributors to the Intergovernmental Panel on Climate Change, shared the 2007 Nobel Peace Prize with former Vice President Al Gore.

    Seventy Berkeley Lab scientists are members of the U.S. National Academy of Sciences(US) (NAS), one of the highest honors for a scientist in the United States. Thirteen Berkeley Lab scientists have won the National Medal of Science, the nation’s highest award for lifetime achievement in fields of scientific research. Eighteen Berkeley Lab engineers have been elected to the National Academy of Engineering, and three Berkeley Lab scientists have been elected into the National Academy of Medicine. Nature Index rates the Lab sixth in the world among government research organizations; it is the only one of the top six that is a single laboratory, rather than a system of laboratories.

    Elements discovered by Berkeley Lab physicists include astatine; neptunium; plutonium; curium; americium; berkelium*; californium*; einsteinium; fermium; mendelevium; nobelium; lawrencium*; dubnium; and seaborgium*. Those elements listed with asterisks (*) are named after the University Professors Lawrence and Seaborg. Seaborg was the principal scientist involved in their discovery. The element technetium was discovered after Ernest Lawrence gave Emilio Segrè a molybdenum strip from the Berkeley Lab cyclotron. The fabricated evidence used to claim the creation of oganesson and livermorium by Victor Ninov, a researcher employed at Berkeley Lab, led to the retraction of two articles.

    Inventions and discoveries to come out of Berkeley Lab include: “smart” windows with embedded electrodes that enable window glass to respond to changes in sunlight; synthetic genes for antimalaria and anti-AIDS superdrugs based on breakthroughs in synthetic biology; electronic ballasts for more efficient lighting; Home Energy Saver; the web’s first do-it-yourself home energy audit tool; a pocket-sized DNA sampler called the PhyloChip; and the Berkeley Darfur Stove which uses one-quarter as much firewood as traditional cook stoves. One of Berkeley Lab’s most notable breakthroughs is the discovery of Dark Energy. During the 1980s and 1990s Berkeley Lab physicists and astronomers formed the Supernova Cosmology Project (SCP), using Type Ia supernovae as “standard candles” to measure the expansion rate of the universe. Their successful methods inspired competition, with the result that early in 1998 both the SCP and the Harvard Cosmology with Supernovae: The High-Z Supernova Search High-Z SN(US) announced the surprising discovery that expansion is accelerating; the cause was soon named Dark Energy.

    Arthur Rosenfeld, a senior scientist at Berkeley Lab, was the nation’s leading advocate for energy efficiency from 1975 until his death in 2017. He led efforts at the Lab that produced several technologies that radically improved efficiency: compact fluorescent lamps; low-energy refrigerators; and windows that trap heat. He established the Center for Building Science at the Lab, which developed into the Building Technology and Urban Systems Division. He developed the first energy-efficiency standards for buildings and appliances in California, which helped the state to sustain constant electricity use per capita, a phenomenon called the Rosenfeld effect. The Energy Efficiency and Environmental Impacts Division continues to set the research foundation for the national energy efficiency standards and works with China, India, and other countries to help develop their standards.

    Carl Haber and Vitaliy Fadeyev of Berkeley Lab developed the IRENE system for optical scanning of audio discs and cylinders.
    In December 2018, researchers at Intel Corp. and the Lawrence Berkeley National Laboratory published a paper in Nature, which outlined a chip “made with quantum materials called magnetoelectric multiferroics instead of the conventional silicon,” to allow for increased processing and reduced energy consumption to support technology such as artificial intelligence.

    A U.S. Department of Energy National Laboratory Operated by the University of California.

    University of California Seal

     
  • richardmitnick 12:18 pm on March 20, 2021 Permalink | Reply
    Tags: "Expanding horizons with a new instrument", , , , The new SXP instrument, X-ray Technology   

    From European XFEL: “Expanding horizons with a new instrument” 

    XFEL bloc

    European XFEL

    From European XFEL

    2021/03/16

    The SXP instrument will allow users to bring in their own experiment stations to European XFEL

    1
    Panorama view of the SASE3 beamline, which feeds SQS and SCS, and will now include SXP. Photograph by Dirk Nolle (Copyright: DESY German Electron Synchrotron [Deütsches Elektronen-Synchrotron](DE))

    Work is on full swing to construct the new European XFEL instrument SXP. Manuel Izquierdo, who is the Group Leader for SXP since December 2020, gave insights into how the instrument will expand the European XFEL portfolio, when it is set to begin operations and what his vision is for the instrument at this stage.

    How would you describe the SXP instrument?

    SXP stands for “Soft X-ray Port”. This name was chosen in keeping with the core idea of the project, that is, to provide the users an FEL beamline where they can temporarily set up their own experiment stations. And, this is what makes the instrument unique: users can bring and operate their own experiment stations. This will allow many techniques and experiments to be implemented. The successful proposals would be those that cannot be performed at the two soft X-ray instruments SCS or SQS. So basically, the idea is that the SXP instrument will expand the portfolio of techniques available to users at European XFEL.

    What kind of experiments will be performed at SXP?

    In principle it is up to the user community to suggest. So far, three communities have contributed to the project. One community aims to use European XFEL as a laboratory for astrophysics, atomic physics, and fundamental research investigating highly charged ions. A second community proposed studies on chemical bond activation in biological reactions and inorganic catalysts. The third and biggest community aims to perform time and angle-resolved photoelectron spectroscopy experiments in solids. This technique will allow understanding the atomic structure, chemical, electronic and magnetic properties of materials. The counter part for atoms, molecules and clusters can be done at the SQS instrument.

    How will the experiments being planned for SXP address some societal challenges?

    All these directions follow the grand challenges that European XFEL is trying to address. For example, some proposed studies will allow us to investigate materials with applications in information storage, quantum computing or energy conversion. Catalytic studies will contribute to reducing the environmental damage of car exhaust gases and improving the petrochemical industry. Studies on highly charged ions will allow understanding atmospheric processes that heavily influence our environment, global warming and climate changes.

    When was the decision taken to install the instrument? When do you see operations beginning?

    The decision to realise the project was taken by the Council in June 2020. Because a lot of work is already done, also with participation of the tr-XPES User Consortium, we are now in a position to start implementation soon after the civil and infrastructure construction. I can proudly say that the SXP project is already in an advanced stage. Together with the contributions from the time-resolved photoelectron spectroscopy (tr-XPES) and now with SXP, we are aiming to have the first X-ray photons in the second half of 2022 and hopefully users can start work at SXP in 2023. Time and angle resolved photoemission technique will be the first technique to be implemented. The decision follows the SAC recommendation to prioritize the implementation of this technique at SXP.

    As the group leader, what future directions do see for SXP? How would you like to shape its programmes?

    The shaping of the future programme is priority for me and I would like to do it in synergy with the user community. Afterall, SXP is an “Open Port”! And I see many possibilities indeed. SXP will provide one of the few implementations of angle resolved photoemission with femtosecond soft X-ray pulses worldwide. I hope we will be able to go beyond the limits and study solid-liquid interfaces, catalytic reactions, bio-objects, and more. I would also like to be able to combine techniques since the laser and X-ray interaction with matter produces many signals that are not currently detected in a single experiment.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    XFEL Campus

    The European XFEL(EU) is an X-ray research laser facility commissioned during 2017. The first laser pulses were produced in May 2017 and the facility started user operation in September 2017. The international project with twelve participating countries; nine shareholders at the time of commissioning (Denmark, France, Germany, Hungary, Poland, Russia, Slovakia, Sweden and Switzerland), later joined by three other partners (Italy, Spain and the United Kingdom), is located in the German federal states of Hamburg and Schleswig-Holstein. A free-electron laser generates high-intensity electromagnetic radiation by accelerating electrons to relativistic speeds and directing them through special magnetic structures. The European XFEL is constructed such that the electrons produce X-ray light in synchronisation, resulting in high-intensity X-ray pulses with the properties of laser light and at intensities much brighter than those produced by conventional synchrotron light sources.

    XFEL Tunnel

    XFEL Gun

    European XFEL (DE) Spectroscopy and Coherent Scattering (SCS) instrument.

    European XFEL (DE) Small Quantum Systems (SQS) instrument.

    The Hamburg area will soon boast a research facility of superlatives: The European XFEL (DE)) will generate ultrashort X-ray flashes—27 000 times per second and with a brilliance that is a billion times higher than that of the best conventional X-ray radiation sources.

    The outstanding characteristics of the facility are unique worldwide. Started in 2017, it will open up completely new research opportunities for scientists and industrial users.

     
  • richardmitnick 9:56 pm on March 3, 2021 Permalink | Reply
    Tags: "Breakthrough greatly enhances ultrafast resolution achievable with X-ray free-electron lasers", , Auger decay-an X-ray pulse catapults atomic core electrons out of their place inducing the emission of another electron known as an Auger electron radiation causing damage., , , , , , Millions of a billionth of a second (femtoseconds), One of the most promising applications of XFELs has been in the biological sciences., , , , X-ray Technology   

    From DOE’s Argonne National Laboratory(US) via phys.org: “Breakthrough greatly enhances ultrafast resolution achievable with X-ray free-electron lasers” 

    Argonne Lab
    From DOE’s Argonne National Laboratory(US)

    via


    From phys.org

    March 3, 2021
    Joseph E. Harmon, Argonne National Laboratory

    1
    Artistic depiction of XFEL measurement with neon gas. The inherent delay between the emission of photoelectrons and Auger electrons leads to a characteristic ellipse in the analyzed data. In principle, the position of individual data points around the ellipse can be read like the hands of a clock to reveal the precise timing of decay processes. Credit: Daniel Haynes and Jörg Harms/MPG Institute for the Structure and Dynamics of Matter.

    A large international team of scientists from various research organizations, including the U.S. Department of Energy’s (DOE) Argonne National Laboratory, has developed a method that dramatically improves the already ultrafast time resolution achievable with X-ray free-electron lasers (XFELs). It could lead to breakthroughs on how to design new materials and more efficient chemical processes.

    An XFEL device is a powerful combination of particle accelerator and laser technology producing extremely brilliant and ultrashort pulses of X-rays for scientific research. “With this technology, scientists can now track processes that occur within millions of a billionth of a second (femtoseconds) at sizes down to the atomic scale,” said Gilles Doumy, a physicist in Argonne’s Chemical Sciences and Engineering division. “Our method makes it possible to do this for even faster times.”

    One of the most promising applications of XFELs has been in the biological sciences. In such research, scientists can capture how biological processes fundamental to life change over time, even before the radiation from the laser’s X-rays destroys the samples. In physics and chemistry, these X-rays can also shed light on the fastest processes occurring in nature with a shutter speed lasting only a femtosecond. Such processes include the making and breaking of chemical bonds and the vibrations of atoms on thin film surfaces.

    For over a decade XFELs have delivered intense, femtosecond X-ray pulses, with recent forays into the sub-femtosecond regime (attosecond). However, on these miniscule time scales, it is difficult to synchronize the X-ray pulse that sparks a reaction in the sample and the laser pulse that “observes” it. This problem is called timing jitter.

    Lead author Dan Haynes, a doctoral student at the MPG Institute for the Structure and Dynamics of Matter, said, “It’s like trying to photograph the end of a race when the camera shutter might activate at any moment in the final ten seconds.”

    To circumvent the jitter problem, the research team came up with a pioneering, highly precise approach dubbed “self-referenced attosecond streaking.” The team demonstrated their method by measuring a fundamental decay process in neon gas at the Linac Coherent Light Source [LCLS], a DOE Office of Science User Facility at SLAC National Accelerator Laboratory.

    Doumy and his advisor at the time, Ohio State University Professor Louis DiMauro, had first proposed the measurement in 2012.

    In the decay process, called Auger decay, an X-ray pulse catapults atomic core electrons in the sample out of their place. This leads to their replacement by electrons in outer atomic shells. As these outer electrons relax, they release energy. That process can induce the emission of another electron, known as an Auger electron. Radiation damage occurs due to both the intense X-rays and the continued emission of Auger electrons, which can rapidly degrade the sample. Upon X-ray exposure, the neon atoms also emit electrons, called photoelectrons.

    After exposing both types of electrons to an external “streaking” laser pulse, the researchers determined their final energy in each of tens of thousands of individual measurements.

    “From those measurements, we can follow Auger decay in time with sub-femtosecond precision, even though the timing jitter was a hundred-times larger,” said Doumy. “The technique relies on the fact that Auger electrons are emitted slightly later than the photoelectrons and thus interact with a different part of the streaking laser pulse.”

    This factor forms the foundation of the technique. By combining so many individual observations, the team was able to construct a detailed map of the physical decay process. From that information, they could determine the characteristic time delay between the photoelectron and Auger electron emission.

    The researchers are hopeful that self-referenced streaking will have a broad impact in the field of ultrafast science. Essentially, the technique enables traditional attosecond streaking spectroscopy to be extended to XFELs worldwide as they approach the attosecond frontier. In this way, self-referenced streaking may facilitate a new class of experiments benefitting from the flexibility and extreme intensity of XFELs without compromising on time resolution.

    Science paper:
    Clocking Auger electrons
    Nature Physics

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    DOE’s Argonne National Laboratory(US) seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their is a science and engineering research national laboratory operated by UChicago Argonne LLC for the United States Department of Energy. The facility is located in Lemont, Illinois, outside of Chicago, and is the largest national laboratory by size and scope in the Midwest.

    Argonne had its beginnings in the Metallurgical Laboratory of the University of Chicago, formed in part to carry out Enrico Fermi’s work on nuclear reactors for the Manhattan Project during World War II. After the war, it was designated as the first national laboratory in the United States on July 1, 1946. In the post-war era the lab focused primarily on non-weapon related nuclear physics, designing and building the first power-producing nuclear reactors, helping design the reactors used by the United States’ nuclear navy, and a wide variety of similar projects. In 1994, the lab’s nuclear mission ended, and today it maintains a broad portfolio in basic science research, energy storage and renewable energy, environmental sustainability, supercomputing, and national security.

    UChicago Argonne, LLC, the operator of the laboratory, “brings together the expertise of the University of Chicago (the sole member of the LLC) with Jacobs Engineering Group Inc.” Argonne is a part of the expanding Illinois Technology and Research Corridor. Argonne formerly ran a smaller facility called Argonne National Laboratory-West (or simply Argonne-West) in Idaho next to the Idaho National Engineering and Environmental Laboratory. In 2005, the two Idaho-based laboratories merged to become the DOE’s Idaho National Laboratory.

    What would become Argonne began in 1942 as the Metallurgical Laboratory at the University of Chicago, which had become part of the Manhattan Project. The Met Lab built Chicago Pile-1, the world’s first nuclear reactor, under the stands of the University of Chicago sports stadium. Considered unsafe, in 1943, CP-1 was reconstructed as CP-2, in what is today known as Red Gate Woods but was then the Argonne Forest of the Cook County Forest Preserve District near Palos Hills. The lab was named after the surrounding forest, which in turn was named after the Forest of Argonne in France where U.S. troops fought in World War I. Fermi’s pile was originally going to be constructed in the Argonne forest, and construction plans were set in motion, but a labor dispute brought the project to a halt. Since speed was paramount, the project was moved to the squash court under Stagg Field, the football stadium on the campus of the University of Chicago. Fermi told them that he was sure of his calculations, which said that it would not lead to a runaway reaction, which would have contaminated the city.

    Other activities were added to Argonne over the next five years. On July 1, 1946, the “Metallurgical Laboratory” was formally re-chartered as Argonne National Laboratory for “cooperative research in nucleonics.” At the request of the U.S. Atomic Energy Commission, it began developing nuclear reactors for the nation’s peaceful nuclear energy program. In the late 1940s and early 1950s, the laboratory moved to a larger location in unincorporated DuPage County, Illinois and established a remote location in Idaho, called “Argonne-West,” to conduct further nuclear research.

    In quick succession, the laboratory designed and built Chicago Pile 3 (1944), the world’s first heavy-water moderated reactor, and the Experimental Breeder Reactor I (Chicago Pile 4), built-in Idaho, which lit a string of four light bulbs with the world’s first nuclear-generated electricity in 1951. A complete list of the reactors designed and, in most cases, built and operated by Argonne can be viewed in the, Reactors Designed by Argonne page. The knowledge gained from the Argonne experiments conducted with these reactors 1) formed the foundation for the designs of most of the commercial reactors currently used throughout the world for electric power generation and 2) inform the current evolving designs of liquid-metal reactors for future commercial power stations.

    Conducting classified research, the laboratory was heavily secured; all employees and visitors needed badges to pass a checkpoint, many of the buildings were classified, and the laboratory itself was fenced and guarded. Such alluring secrecy drew visitors both authorized—including King Leopold III of Belgium and Queen Frederica of Greece—and unauthorized. Shortly past 1 a.m. on February 6, 1951, Argonne guards discovered reporter Paul Harvey near the 10-foot (3.0 m) perimeter fence, his coat tangled in the barbed wire. Searching his car, guards found a previously prepared four-page broadcast detailing the saga of his unauthorized entrance into a classified “hot zone”. He was brought before a federal grand jury on charges of conspiracy to obtain information on national security and transmit it to the public, but was not indicted.

    Not all nuclear technology went into developing reactors, however. While designing a scanner for reactor fuel elements in 1957, Argonne physicist William Nelson Beck put his own arm inside the scanner and obtained one of the first ultrasound images of the human body. Remote manipulators designed to handle radioactive materials laid the groundwork for more complex machines used to clean up contaminated areas, sealed laboratories or caves. In 1964, the “Janus” reactor opened to study the effects of neutron radiation on biological life, providing research for guidelines on safe exposure levels for workers at power plants, laboratories and hospitals. Scientists at Argonne pioneered a technique to analyze the moon’s surface using alpha radiation, which launched aboard the Surveyor 5 in 1967 and later analyzed lunar samples from the Apollo 11 mission.

    In addition to nuclear work, the laboratory maintained a strong presence in the basic research of physics and chemistry. In 1955, Argonne chemists co-discovered the elements einsteinium and fermium, elements 99 and 100 in the periodic table. In 1962, laboratory chemists produced the first compound of the inert noble gas xenon, opening up a new field of chemical bonding research. In 1963, they discovered the hydrated electron.

    High-energy physics made a leap forward when Argonne was chosen as the site of the 12.5 GeV Zero Gradient Synchrotron, a proton accelerator that opened in 1963. A bubble chamber allowed scientists to track the motions of subatomic particles as they zipped through the chamber; in 1970, they observed the neutrino in a hydrogen bubble chamber for the first time.

    Meanwhile, the laboratory was also helping to design the reactor for the world’s first nuclear-powered submarine, the U.S.S. Nautilus, which steamed for more than 513,550 nautical miles (951,090 km). The next nuclear reactor model was Experimental Boiling Water Reactor, the forerunner of many modern nuclear plants, and Experimental Breeder Reactor II (EBR-II), which was sodium-cooled, and included a fuel recycling facility. EBR-II was later modified to test other reactor designs, including a fast-neutron reactor and, in 1982, the Integral Fast Reactor concept—a revolutionary design that reprocessed its own fuel, reduced its atomic waste and withstood safety tests of the same failures that triggered the Chernobyl and Three Mile Island disasters. In 1994, however, the U.S. Congress terminated funding for the bulk of Argonne’s nuclear programs.

    Argonne moved to specialize in other areas, while capitalizing on its experience in physics, chemical sciences and metallurgy. In 1987, the laboratory was the first to successfully demonstrate a pioneering technique called plasma wakefield acceleration, which accelerates particles in much shorter distances than conventional accelerators.[18] It also cultivated a strong battery research program.

    Following a major push by then-director Alan Schriesheim, the laboratory was chosen as the site of the Advanced Photon Source, a major X-ray facility which was completed in 1995 and produced the brightest X-rays in the world at the time of its construction.

    On 19 March 2019, it was reported in the Chicago Tribune that the laboratory was constructing the world’s most powerful supercomputer. Costing $500 million it will have the processing power of 1 quintillion flops. Applications will include the analysis of stars and improvements in the power grid.

    With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    About the Advanced Photon Source

    The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

    With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    About the Advanced Photon Source

    The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

    Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science

    Argonne Lab Campus

     
  • richardmitnick 12:53 pm on March 3, 2021 Permalink | Reply
    Tags: "A COSMIC Approach to Nanoscale Science", ALS Upgrade (ALS-U), , , COSMIC = coherent scattering and microscopy, , , , , X-ray Technology   

    From DOE’s Lawrence Berkeley National Laboratory(US): “A COSMIC Approach to Nanoscale Science” 

    From DOE’s Lawrence Berkeley National Laboratory(US)

    March 3, 2021
    Glenn Roberts Jr.
    geroberts@lbl.gov
    (510) 520-0843

    Instrument at Berkeley Lab’s Advanced Light Source achieves world-leading resolution of nanomaterials.

    1
    A conceptual drawing of the COSMIC microscope, with X-rays shown in purple. All equipment is mounted to a central cylinder. The zone plate, a type of X-ray optic, is scanned relative to this cylinder while the sample is held stationary. The instrument allows for rapid switching between conventional microscopy and an enhanced imaging technique called ptychography. Credit: Berkeley Lab.

    COSMIC, a multipurpose X-ray instrument at Lawrence Berkeley National Laboratory’s (Berkeley Lab’s) Advanced Light Source (ALS) [below], has made headway in the scientific community since its launch less than 2 years ago, with groundbreaking contributions in fields ranging from batteries to biominerals.

    COSMIC is the brightest X-ray beamline at the ALS, a synchrotron that generates intense light – from infrared to X-rays – and delivers it to dozens of beamlines to carry out a range of simultaneous science experiments. COSMIC’s name is derived from coherent scattering and microscopy, which are two overarching X-ray techniques it is designed to carry out.

    Its capabilities include world-leading soft X-ray microscopy resolution below 10 nanometers (billionths of a meter), extreme chemical sensitivity, ultrafast scanning speed as well as the ability to measure nanoscale chemical changes in samples in real time, and to facilitate the exploration of samples with a combination of X-ray and electron microscopy. Soft X-rays represent a low range in X-ray energies, while hard X-rays are higher in energy. Each type can address a different range of experiments.

    COSMIC is setting the stage for a long-term project to upgrade the decades-old ALS. The effort, known as the ALS Upgrade (ALS-U), will replace most of the existing accelerator components with state-of-the-art technology, ensuring capabilities that will enable world-leading soft X-ray science for years to come. The upgrade will also further enhance COSMIC’s ability to capture nanoscale details in the structure and chemistry of a broad range of samples.

    The expected 100-fold increase in X-ray brightness that ALS-U will deliver will provide a similar increase in imaging speed at COSMIC, and a more than threefold improvement in imaging resolution, enabling microscopy with single-nanometer resolution. Further, the technologies being developed now at COSMIC will be deployed at other beamlines at the upgraded ALS, making possible microscopy with higher X-ray energies for many more experiments. The instrument is one of many highly specialized resources available to scientists from around the world for free through a peer-reviewed proposal process.

    A journal article, published Dec. 16, 2020, in Science Advances, highlights some of COSMIC’s existing capabilities and those that are on the way. The paper offers examples of 8-nanometer resolution achieved in imaging magnetic nanoparticles, the high-resolution chemical mapping of a battery cathode material during heating, and the high-resolution imaging of a frozen-hydrated yeast cell at COSMIC. (A cathode is one type of battery electrode, a component through which current flows.) These results serve as demonstration cases, revealing critical information about the structure and inner workings of these materials and opening the door for further insights across many fields of science.

    3
    Ptychography polarization-dependent imaging contrast (PIC) map of three aragonite coral-skeleton particles in color (top row) and black and white (lower row), produced at the COSMIC beamline. The images show crystal orientations. Credit: Berkeley Lab, PNAS Jan. 19, 2021.

    Another journal article, published Jan. 19, 2021, in PNAS, demonstrated the first-ever use of X-ray linear dichroic ptychography, a specialized high-resolution imaging technique available at COSMIC, to map the orientations of a crystal known as aragonite that is present in coral skeletons at 35-nanometer resolution. The technique shows promise for mapping other biomineral samples at high resolution and in 3D, which will provide new insights into their unique attributes and how to mimic and control them. Some biominerals have inspired humanmade materials and nanomaterials due to their strength, resilience, and other desirable properties.

    “We use this user-friendly, unique platform for materials characterization to demonstrate world-leading spatial resolution, in conjunction with operando and cryogenic microscopy,” said David Shapiro, the paper’s lead author and the lead scientist for COSMIC’s microscopy experiments. He also leads the ALS Microscopy Program. “Operando” describes the ability to measure changes in samples as they are occurring.

    “There’s no other instrument that has these capabilities co-located for X-ray microscopy at this resolution,” Shapiro said. COSMIC can provide new clues to the nanoscale inner workings of materials, even as they actively function, that will lead to a deeper understanding and better designs – for batteries, catalysts, or biological materials. Equipping COSMIC with such a diversity of capabilities required an equally broad collaboration across scientific disciplines, he noted.

    COSMIC contributors included members of Berkeley Lab’s CAMERA (Center for Advanced Mathematics for Energy Research Applications) team, which includes computer scientists, software engineers, applied mathematicians, and others; information technology experts; detector specialists; engineers; scientists at the Molecular Foundry’s National Center for Electron Microscopy; ALS scientists; and outside collaborators from the National Science Foundation’s STROBE Science and Technology Center and Stanford University(US).

    Several advanced technologies developed by different groups were integrated into this one instrument. Key to the demonstrations at COSMIC reported in the paper is the implementation of X-ray ptychography, which is a computer-aided image reconstruction technique that can exceed the resolution of conventional techniques by up to about 10 times.

    With traditional methods, spatial resolution – the ability to distinguish tiny features in samples – is limited by the quality of the X-ray optics and their ability to focus the X-ray beam into a tiny spot. But conventional X-ray optics, which are the instruments used to manipulate X-ray light to see samples more clearly, are difficult to make, inefficient, and have short focal lengths.

    Instead of relying on imperfect optics, ptychography records a large number of physically overlapping diffraction patterns – which are images produced as X-ray light scatters from the sample – each offering a small piece of the full picture. Rather than being limited by optics quality, the ptychography technique is limited by the brightness of the X-ray source – precisely the parameter that ALS-U is expected to improve a hundredfold. To capture and process the enormous amount of data and reconstruct the final image requires data processing facilities, computer algorithms, and specialized fast pixel detectors like those developed at Berkeley Lab.

    “X-ray ptychography is a detector-enabled technique – first deployed with hard (high-energy) X-rays using hybrid pixel detectors, and then at the ALS with the FastCCD we developed,” said Peter Denes, the ALS detector program lead who worked with lead engineer John Joseph on the implementation at COSMIC. “Much of the COSMIC technology benefited from the Laboratory Directed Research and Development (LDRD) Program, as did the FastCCD, which translated tools for cosmology into COSMIC observations.” Berkeley Lab’s LDRD Program supports innovative research activities that keep the Lab at the forefront of science and technology.

    Ptychography utilizes a sequence of scattering patterns, produced as X-ray light scatters from a sample. These scattering patterns are analyzed by a computer running high-performance algorithms, which convert them into a high-resolution image.

    5
    These images show chemical changes to nanoparticles at the COSMIC beamline using a technique called operando spectromicroscopy. The sample of LixFePO4 particles is shown before heating, left, and after heating to 300 degrees Celsius, right. FePO4 chemical components are shown in red, and LiFePO4 components are shown in green. The scale bar is one micron and the pixel size is five nanometers. Credit: Berkeley Lab, Science Advances, Dec. 16, 2020.

    In the Dec. 16, 2020, paper, researchers highlighted how ptychographic images made it possible to see the high-resolution chemical distribution in microscopic particles of a lithium iron phosphate battery cathode material (Li0.5FePo4). The ptychographic images showed nanoscale chemical features in the interior of the particles that were not visible using the conventional form of the imaging technique, called spectromicroscopy.

    In a separate demonstration of ptychography at COSMIC, researchers noted chemical changes in a collection of LixFePO4 nanoparticles when subjected to heating.

    Ptychography is also a source of COSMIC’s heavy data demands. The beamline can produce several terabytes of data per day, or enough to fill a few laptop computers. The intensive computations required for COSMIC’s imaging necessitate a dedicated cluster of GPUs (graphical processing units), which are specialized computer processors.

    The ALS Upgrade will further drive its data demands up to an expected 100 terabytes per day, Shapiro noted. Plans are already being discussed for using more resources at Berkeley Lab’s National Energy Research Scientific Computing Center (NERSC) to accommodate this pending ramp-up in data.

    National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory

    NERSC Cray Cori II supercomputer, named after Gerty Cori, the first American woman to win a Nobel Prize in science.

    NERSC Hopper Cray XE6 supercomputer, named after Grace Hopper, One of the first programmers of the Harvard Mark I computer.

    NERSC Cray XC30 Edison supercomputer.

    NERSC GPFS for Life Sciences.


    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    NERSC PDSF computer cluster in 2003.

    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    Future:

    Cray Shasta Perlmutter SC18 AMD Epyc Nvidia pre-exascale supeercomputer

    NERSC is a DOE Office of Science User Facility.

    COSMIC is a stellar example of Berkeley Lab’s Superfacility Project, which is designed to link light sources like the ALS and cutting-edge instrumentation including microscopes and telescopes with data and high-performance computing resources in real time, said Bjoern Enders, a data science workflows architect in NERSC’s Data Science Engagement Group.

    “We love data and computing challenges from instruments like COSMIC that venture beyond facility borders,” Enders said. “We are working toward a future where it will be as easy as a button click to use NERSC’s resources from a beamline.” The addition of the new Perlmutter supercomputer [above] at NERSC, he added, “will be an ideal partner for COSMIC in team science.”

    6
    At the COSMIC Microscopy beamline, researchers probed the oxidation state of the chemical element cerium using scanning transmission X-ray microscopy (STXM) under operando conditions. It was a first demonstration of this capability at COSMIC. The results confirmed how cerium particles dictated the size and locations of the reaction sites of platinum particles. In this artistic depiction, hybrid CeOX-TiO2 nanoparticles (silver spheres) are shown evenly covered with platinum and cerium pairs (yellow and blue) while conventional titanium dioxide particles are shown less densely covered with larger platinum clusters (gold). (Credit: Chungnam National University [충남대학교](KR)).

    COSMIC started up in commissioning mode in March 2017, and opened to general scientific experiments about 2 years ago. Since this time, instrument staff have launched the operando capabilities that measure active chemical processes, for example, and rolled out linear and circular dichroic microscopy and tomography capabilities that further extend COSMIC’s range of imaging experiments.

    Its coherent scattering branch is now undergoing testing and is not yet available to external users. Work is also in progress to correlate its X-ray microscopy results with electron microscopy results for active processes, and to further develop its cryogenic capabilities, which will allow biological samples and other soft materials to be protected from damage by the ultrabright X-ray beam while they are being imaged. The combination of X-ray and electron microscopy can provide a powerful tool for gathering detailed chemical and structural information on samples, as demonstrated in an experiment involving COSMIC that was highlighted in the journal Science Advances.

    Shapiro noted that there are plans to introduce a new experimental station to the beamline, timed with ALS-U, to accommodate more experiments.

    One secret to COSMIC’s success is that the instrument is designed for compatibility with standard sample-handling components. Shapiro said this user-friendly approach “has been really important for us,” and makes it easier for researchers from academia and industry to design COSMIC-compatible experiments. “Users can just show up and plug (the samples) in. It increases our reach, scientifically,” he said.

    While COSMIC is loaded with features, it isn’t bulky, and Shapiro described it as “streamlined in size and cost.” He said he hopes it will be a model for future beamlines, both at ALS-U and at other synchrotron facilities.

    “I think what is really attractive about it is that it is a very compact instrument. It is high-performance and very stable,” he said. “It is very manageable and not very expensive. In that sense it should be very attractive for synchrotrons.”

    The ALS, Molecular Foundry, and NERSC are all U.S. DOE Office of Science user facilities.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LBNL campus

    LBNL Molecular Foundry

    Bringing Science Solutions to the World
    In the world of science, Lawrence Berkeley National Laboratory (Berkeley Lab)(US) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the National Academy of Sciences (NAS), one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the National Academy of Engineering, and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California (UC) and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the UC Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a UC Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    History

    1931–1941

    The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California, Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

    LBNL 88 inch cyclotron.

    Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded DOE’s Los Alamos Laboratory(US), and Robert Wilson founded Fermi National Accelerator Laboratory(US).

    1942–1950

    Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.

    1951–2018

    After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now Department of Energy(US), DOE). The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now the Lawrence Livermore National Laboratory(US)) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

    Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

    The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

    The lab remains owned by the U.S. Department of Energy, with management from the University of California(US). Companies such as Intel were funding the lab’s research into computing chips.

    Science mission

    From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

    The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences, Physical Sciences, Earth and Environmental Sciences, Biosciences, Energy Sciences, and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science, integrative biological and environmental system science, advanced computing for science impact, discovering the fundamental properties of matter and energy, accelerators for the future, and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

    Berkeley Lab operates five major National User Facilities for the DOE Office of Science:

    The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.

    LBNL/ALS .

    The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

    The Joint Genome Institute (JGI) supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, Lawrence Livermore National Lab (LLNL), DOE’s Oak Ridge National Laboratory(US)(ORNL), DOE’s Pacific Northwest National Laboratory(US) (PNNL), and the HudsonAlpha Institute for Biotechnology(US). The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

    The LBNL Molecular Foundry(US) [below] is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures, Nanofabrication, Theory of Nanostructured Materials, Inorganic Nanostructures, Biological Nanostructures, Organic and Macromolecular Synthesis, and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

    The DOE’s NERSC National Energy Research Scientific Computing Center(US) is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

    The DOE’s Energy Science Network(US) is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

    Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute(US) (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory(US), the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science(US), and DOE’s Lawrence Livermore National Laboratory(US) (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

    Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology(US) and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory(US) leads JCESR and Berkeley Lab is a major partner.

    Operations and governance

    The University of California(US) operates Lawrence Berkeley National Laboratory under a contract with the US Department of Energy. The site consists of 76 buildings (owned by the U.S. Department of Energy) located on 200 acres (0.81 km^2) owned by the university in the Berkeley Hills. Altogether, the Lab has some 4,000 UC employees, of whom about 800 are students or postdocs, and each year it hosts more than 3,000 participating guest scientists. There are approximately two dozen DOE employees stationed at the laboratory to provide federal oversight of Berkeley Lab’s work for the DOE. Although Berkeley Lab is governed by UC independently of the Berkeley campus, the two entities are closely interconnected: more than 200 Berkeley Lab researchers hold joint appointments as UC Berkeley faculty.

    The Lab’s budget for the fiscal year 2019 was US$1.1 billion dollars.

    Scientific achievements, inventions, and discoveries

    Notable scientific accomplishments at the Lab since World War II include the observation of the antiproton, the discovery of several transuranic elements, and the discovery of the accelerating universe.

    Since its inception, 13 researchers associated with Berkeley Lab (Ernest Lawrence, Glenn T. Seaborg, Edwin M. McMillan, Owen Chamberlain, Emilio G. Segrè, Donald A. Glaser, Melvin Calvin, Luis W. Alvarez, Yuan T. Lee, Steven Chu, George F. Smoot, Saul Perlmutter, and Jennifer Doudna) have been awarded either the Nobel Prize in Physics or the Nobel Prize in Chemistry. In addition, twenty-three Berkeley Lab employees, as contributors to the Intergovernmental Panel on Climate Change, shared the 2007 Nobel Peace Prize with former Vice President Al Gore.

    Seventy Berkeley Lab scientists are members of the U.S. National Academy of Sciences (NAS), one of the highest honors for a scientist in the United States. Thirteen Berkeley Lab scientists have won the National Medal of Science, the nation’s highest award for lifetime achievement in fields of scientific research. Eighteen Berkeley Lab engineers have been elected to the National Academy of Engineering, and three Berkeley Lab scientists have been elected into the National Academy of Medicine. Nature Index rates the Lab sixth in the world among government research organizations; it is the only one of the top six that is a single laboratory, rather than a system of laboratories.

    Elements discovered by Berkeley Lab physicists include astatine, neptunium, plutonium, curium, americium, berkelium*, californium*, einsteinium, fermium, mendelevium, nobelium, lawrencium*, dubnium, and seaborgium*. Those elements listed with asterisks (*) are named after the University Professors Lawrence and Seaborg. Seaborg was the principal scientist involved in their discovery. The element technetium was discovered after Ernest Lawrence gave Emilio Segrè a molybdenum strip from the Berkeley Lab cyclotron. The fabricated evidence used to claim the creation of oganesson and livermorium by Victor Ninov, a researcher employed at Berkeley Lab, led to the retraction of two articles.

    Inventions and discoveries to come out of Berkeley Lab include: “smart” windows with embedded electrodes that enable window glass to respond to changes in sunlight, synthetic genes for antimalaria and anti-AIDS superdrugs based on breakthroughs in synthetic biology, electronic ballasts for more efficient lighting, Home Energy Saver, the web’s first do-it-yourself home energy audit tool, a pocket-sized DNA sampler called the PhyloChip, and the Berkeley Darfur Stove, which uses one-quarter as much firewood as traditional cook stoves. One of Berkeley Lab’s most notable breakthroughs is the discovery of Dark Energy. During the 1980s and 1990s Berkeley Lab physicists and astronomers formed the Supernova Cosmology Project (SCP), using Type Ia supernovae as “standard candles” to measure the expansion rate of the universe. Their successful methods inspired competition, with the result that early in 1998 both the SCP and the Harvard Cosmology with Supernovae: The High-Z Supernova Search High-Z SN(US) announced the surprising discovery that expansion is accelerating; the cause was soon named Dark Energy.

    Arthur Rosenfeld, a senior scientist at Berkeley Lab, was the nation’s leading advocate for energy efficiency from 1975 until his death in 2017. He led efforts at the Lab that produced several technologies that radically improved efficiency: compact fluorescent lamps, low-energy refrigerators, and windows that trap heat. He established the Center for Building Science at the Lab, which developed into the Building Technology and Urban Systems Division. He developed the first energy-efficiency standards for buildings and appliances in California, which helped the state to sustain constant electricity use per capita, a phenomenon called the Rosenfeld effect. The Energy Efficiency and Environmental Impacts Division continues to set the research foundation for the national energy efficiency standards and works with China, India, and other countries to help develop their standards.

    Carl Haber and Vitaliy Fadeyev of Berkeley Lab developed the IRENE system for optical scanning of audio discs and cylinders.

    In December 2018, researchers at Intel Corp. and the Lawrence Berkeley National Laboratory published a paper in Nature, which outlined a chip “made with quantum materials called magnetoelectric multiferroics instead of the conventional silicon,” to allow for increased processing and reduced energy consumption to support technology such as artificial intelligence.

    A U.S. Department of Energy National Laboratory Operated by the University of California.

    University of California Seal

     
  • richardmitnick 10:36 am on March 1, 2021 Permalink | Reply
    Tags: "Researchers capture how materials break apart following an extreme shock", , , , , X-ray Technology   

    From DOE’s SLAC National Accelerator Laboratory(US): “Researchers capture how materials break apart following an extreme shock” 

    From DOE’s SLAC National Accelerator Laboratory(US)

    February 23, 2021
    Ali Sundermier

    A better understanding of the failure process will help researchers design new materials that can better withstand intense events such as high-velocity impacts.

    Understanding how materials deform and catastrophically fail when impacted by a powerful shock is crucial in a wide range of fields, including astrophysics, materials science and aerospace engineering. But until recently, the role of voids, or tiny pores, in such a rapid process could not be determined, requiring measurements to be taken at millionths of a billionth of a second.

    Now an international research team has used ultrabright X-rays to make the first observations of how these voids evolve and contribute to damage in copper following impact by an extreme shock. The team, including scientists from the University of Miami(US), the Department of Energy’s SLAC National Accelerator Laboratory and DOE’s Argonne National Laboratory(US), Imperial College London(UK) and the universities of Oxford(UK) and York(UK) published their results in Science Advances.

    “Whether these materials are in a satellite hit by a micrometeorite, a spacecraft entering the atmosphere at hypersonic speed or a jet engine exploding, they have to fully absorb all that energy without catastrophically failing,” says lead author James Coakley, an assistant professor of mechanical and aerospace engineering at the University of Miami. “We’re trying to understand what happens in a material during this type of extremely rapid failure. This experiment is the first round of attempting to do that, by looking at how the material compresses and expands during deformation before it eventually breaks apart.”

    Swiss cheese

    In the experiment, the researchers shocked a copper sample with laser pulses, then scattered X-rays from SLAC’s Linac Coherent Light Source (LCLS) X-ray free-electron laser [below] through the material to track its deformation. From the patterns the scattered X-rays made in two detectors, they were able to see how the shock compressed and then expanded the material’s atomic lattice in one detector while simultaneously observing void evolution in the second detector.

    1
    To see how materials respond to intense stress, researchers shocked a copper sample with picosecond laser pulses and used X-ray laser pulses to track the copper’s deformation. They captured how the material’s atomic lattice first compressed and subsequently expanded,, creating pores, or voids, that grew, coalesced, and eventually fractured the material. Credit: Greg Stewart/SLAC National Accelerator Laboratory.

    The initial squeeze closed preexisting voids in the material, Coakley says. As the material expanded again, “You get more and more of these little voids nucleating and growing as the damage spreads through the material, like a slice of swiss cheese. At a certain point, they begin to join together until eventually you’re left with large pores that cause ultimate failure.”

    The researchers also discovered that the material’s strength, or ability to resist damage, depended on how fast the external stress was applied and released.

    “The brightness of the X-rays and the time scales we were able to look at were crucial to the success of this experiment,” says SLAC Director of Strategic Planning Despina Milathianaki, who conceived and oversaw the LCLS experiment. “This combination of factors allowed us to track exactly what happened within the sample as it broke apart at time and length scales that previously could only be simulated, offering insight into the underlying defects that caused material failure.”

    Surviving the shock

    This experiment focused on demonstrating how the technique can be used to understand ultrafast material deformation. The researchers plan to do future experiments on more advanced materials and under experimental conditions that more closely match real-world applications.

    “It was exciting to be able to visualize and understand the full life cycle of a material,” Milathianaki says. “It’s a great demonstration of what can be done at LCLS to understand material failure more broadly. The end goal is to fully understand how materials fail so you can design new materials that can better withstand these intense conditions.”

    The investigation was supported and performed as part of in-house research of LCLS. Parts of the research were performed at the Advanced Photon Source (APS) at Argonne National Laboratory(US).


    ANL Advanced Photon Source.

    LCLS and APS are DOE Office of Science(US) user facilities. This research was supported in part by the DOE Office of Science and the Engineering and Physical Sciences Research Council(UK).

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    SLAC National Accelerator Laboratory(US) originally named Stanford Linear Accelerator Center, is a United States Department of Energy National Laboratory operated by Stanford University(US) under the programmatic direction of the U.S. Department of Energy Office of Science and located in Menlo Park, California. It is the site of the Stanford Linear Accelerator, a 3.2 kilometer (2-mile) linear accelerator constructed in 1966 and shut down in the 2000s, which could accelerate electrons to energies of 50 GeV.

    Today SLAC research centers on a broad program in atomic and solid-state physics, chemistry, biology, and medicine using X-rays from synchrotron radiation and a free-electron laser as well as experimental and theoretical research in elementary particle physics, astroparticle physics, and cosmology.

    Founded in 1962 as the Stanford Linear Accelerator Center, the facility is located on 172 hectares (426 acres) of Stanford University-owned land on Sand Hill Road in Menlo Park, California—just west of the University’s main campus. The main accelerator is 3.2 kilometers (2 mi) long—the longest linear accelerator in the world—and has been operational since 1966.

    Research at SLAC has produced three Nobel Prizes in Physics

    1976: The charm quark—see J/ψ meson
    1990: Quark structure inside protons and neutrons
    1995: The tau lepton

    SLAC’s meeting facilities also provided a venue for the Homebrew Computer Club and other pioneers of the home computer revolution of the late 1970s and early 1980s.

    In 1984 the laboratory was named an ASME National Historic Engineering Landmark and an IEEE Milestone.

    SLAC developed and, in December 1991, began hosting the first World Wide Web server outside of Europe.

    In the early-to-mid 1990s, the Stanford Linear Collider (SLC) investigated the properties of the Z boson using the Stanford Large Detector.

    As of 2005, SLAC employed over 1,000 people, some 150 of whom were physicists with doctorate degrees, and served over 3,000 visiting researchers yearly, operating particle accelerators for high-energy physics and the Stanford Synchrotron Radiation Laboratory (SSRL)[below] for synchrotron light radiation research, which was “indispensable” in the research leading to the 2006 Nobel Prize in Chemistry awarded to Stanford Professor Roger D. Kornberg.

    In October 2008, the Department of Energy announced that the center’s name would be changed to SLAC National Accelerator Laboratory. The reasons given include a better representation of the new direction of the lab and the ability to trademark the laboratory’s name. Stanford University had legally opposed the Department of Energy’s attempt to trademark “Stanford Linear Accelerator Center”.

    In March 2009, it was announced that the SLAC National Accelerator Laboratory was to receive $68.3 million in Recovery Act Funding to be disbursed by Department of Energy’s Office of Science.

    In October 2016, Bits and Watts launched as a collaboration between SLAC and Stanford University to design “better, greener electric grids”. SLAC later pulled out over concerns about an industry partner, the state-owned Chinese electric utility.

    Accelerator

    The main accelerator was an RF linear accelerator that accelerated electrons and positrons up to 50 GeV. At 3.2 km (2.0 mi) long, the accelerator was the longest linear accelerator in the world, and was claimed to be “the world’s most straight object.” until 2017 when the European x-ray free electron laser opened. The main accelerator is buried 9 m (30 ft) below ground and passes underneath Interstate Highway 280. The above-ground klystron gallery atop the beamline, was the longest building in the United States until the LIGO project’s twin interferometers were completed in 1999. It is easily distinguishable from the air and is marked as a visual waypoint on aeronautical charts.

    A portion of the original linear accelerator is now part of the Linac Coherent Light Source [below].

    Stanford Linear Collider

    The Stanford Linear Collider was a linear accelerator that collided electrons and positrons at SLAC. The center of mass energy was about 90 GeV, equal to the mass of the Z boson, which the accelerator was designed to study. Grad student Barrett D. Milliken discovered the first Z event on 12 April 1989 while poring over the previous day’s computer data from the Mark II detector. The bulk of the data was collected by the SLAC Large Detector, which came online in 1991. Although largely overshadowed by the Large Electron–Positron Collider at CERN, which began running in 1989, the highly polarized electron beam at SLC (close to 80%) made certain unique measurements possible, such as parity violation in Z Boson-b quark coupling.

    CERN LEP Collider.

    Presently no beam enters the south and north arcs in the machine, which leads to the Final Focus, therefore this section is mothballed to run beam into the PEP2 section from the beam switchyard.

    SLAC Large Detector

    The SLAC Large Detector (SLD) was the main detector for the Stanford Linear Collider. It was designed primarily to detect Z bosons produced by the accelerator’s electron-positron collisions. Built in 1991, the SLD operated from 1992 to 1998.

    SLAC Large Detector

    PEP

    PEP (Positron-Electron Project) began operation in 1980, with center-of-mass energies up to 29 GeV. At its apex, PEP had five large particle detectors in operation, as well as a sixth smaller detector. About 300 researchers made used of PEP. PEP stopped operating in 1990, and PEP-II began construction in 1994.

    PEP-II

    From 1999 to 2008, the main purpose of the linear accelerator was to inject electrons and positrons into the PEP-II accelerator, an electron-positron collider with a pair of storage rings 2.2 km (1.4 mi) in circumference. PEP-II was host to the BaBar experiment, one of the so-called B-Factory experiments studying charge-parity symmetry.

    SLAC BaBar

    Stanford Synchrotron Radiation Lightsource [SSRL]

    SLAC/SSRL.

    Fermi Gamma-ray Space Telescope

    SLAC plays a primary role in the mission and operation of the Fermi Gamma-ray Space Telescope, launched in August 2008. The principal scientific objectives of this mission are:

    To understand the mechanisms of particle acceleration in AGNs, pulsars, and SNRs.
    To resolve the gamma-ray sky: unidentified sources and diffuse emission.
    To determine the high-energy behavior of gamma-ray bursts and transients.
    To probe dark matter and fundamental physics.

    NASA/Fermi LAT.


    NASA/Fermi Gamma Ray Space Telescope.

    KIPAC

    The Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) is partially housed on the grounds of SLAC, in addition to its presence on the main Stanford campus.


    KIPAC campus

    PULSE

    The Stanford PULSE Institute (PULSE) is a Stanford Independent Laboratory located in the Central Laboratory at SLAC. PULSE was created by Stanford in 2005 to help Stanford faculty and SLAC scientists develop ultrafast x-ray research at LCLS.

    LCLS

    The Linac Coherent Light Source (LCLS)[below] is a free electron laser facility located at SLAC. The LCLS is partially a reconstruction of the last 1/3 of the original linear accelerator at SLAC, and can deliver extremely intense x-ray radiation for research in a number of areas. It achieved first lasing in April 2009.

    The laser produces hard X-rays, 10^9 times the relative brightness of traditional synchrotron sources and is the most powerful x-ray source in the world. LCLS enables a variety of new experiments and provides enhancements for existing experimental methods. Often, x-rays are used to take “snapshots” of objects at the atomic level before obliterating samples. The laser’s wavelength, ranging from 6.2 to 0.13 nm (200 to 9500 electron volts (eV)) is similar to the width of an atom, providing extremely detailed information that was previously unattainable. Additionally, the laser is capable of capturing images with a “shutter speed” measured in femtoseconds, or million-billionths of a second, necessary because the intensity of the beam is often high enough so that the sample explodes on the femtosecond timescale.

    LCLS-II

    The LCLS-II [below] project is to provide a major upgrade to LCLS by adding two new X-ray laser beams. The new system will utilize the 500 m (1,600 ft) of existing tunnel to add a new superconducting accelerator at 4 GeV and two new sets of undulators that will increase the available energy range of LCLS. The advancement from the discoveries using this new capabilities may include new drugs, next-generation computers, and new materials.

    FACET

    In 2012, the first two-thirds (~2 km) of the original SLAC LINAC were recommissioned for a new user facility, the Facility for Advanced Accelerator Experimental Tests (FACET). This facility was capable of delivering 20 GeV, 3 nC electron (and positron) beams with short bunch lengths and small spot sizes, ideal for beam-driven plasma acceleration studies. The facility ended operations in 2016 for the constructions of LCLS-II which will occupy the first third of the SLAC LINAC. The FACET-II project will re-establish electron and positron beams in the middle third of the LINAC for the continuation of beam-driven plasma acceleration studies in 2019.

    SLAC FACET

    SLAC FACET-II upgrading its Facility for Advanced Accelerator Experimental Tests (FACET) – a test bed for new technologies that could revolutionize the way we build particle accelerators.

    The Next Linear Collider Test Accelerator (NLCTA) is a 60-120 MeV high-brightness electron beam linear accelerator used for experiments on advanced beam manipulation and acceleration techniques. It is located at SLAC’s end station B

    SLAC Next Linear Collider Test Accelerator (NLCTA).

    SLAC National Accelerator Lab

    SLAC/LCLS

    SLAC/LCLS II projected view

    SLAC LCLS-II Undulators The Linac Coherent Light Source’s new undulators each use an intricately tuned series of magnets to convert electron energy into intense bursts of X-rays. The “soft” X-ray undulator stretches for 100 meters on the left side of this hall, with the “hard” x-ray undulator on the right. Credit: Alberto Gamazo/SLAC National Accelerator Laboratory.

    SSRL and LCLS are DOE Office of Science user facilities.

     
  • richardmitnick 3:13 pm on February 25, 2021 Permalink | Reply
    Tags: "A tabletop waveguide delivers focused x rays", , Bright X-ray beams that are emitted in a single direction onto the target of interest are difficult to come by in a laboratory setting., , , University of Göttingen [Georg-August-Universität Göttingen](DE) has now developed and demonstrated an approach for generating the radiation directly within a waveguide structure., X-ray Technology   

    From Physics Today: “A tabletop waveguide delivers focused x rays” 

    Physics Today bloc

    From Physics Today(US)

    25 Feb 2021
    Rachel Berkowitz

    By simultaneously generating and guiding beams, the layered anode emits x rays in one direction without the need for mirrors or large-scale accelerators.

    1
    Credit: University of Göttingen [Georg-August-Universität Göttingen](DE)/Julius Hilbig.

    Despite the widespread use of x rays as a fundamental tool for visualizing interior features of solid objects, bright X-ray beams that are emitted in a single direction onto the target of interest are difficult to come by in a laboratory setting. Unlike large-scale accelerators, which emit highly collimated beams, conventional small-scale sources generate x-ray radiation in all directions. Once they’re emitted, x rays cannot easily be manipulated with mirrors or lenses.

    To obtain bright x rays in a clearly defined path, Malte Vassholz and Tim Salditt of the University of Göttingen [Georg-August-Universität Göttingen](DE) have now developed and demonstrated an approach for generating the radiation directly within a waveguide structure. The layered material that makes up the waveguide emits x rays within a nanometers-wide channel, and the resulting beam’s brilliance exceeds that of a conventional µ-focus x-ray tube by two orders of magnitude. The method could lead to a tool for soft-matter imaging and coherent scattering experiments in laboratories.

    Laboratory-scale sources produce x rays by hitting a metal anode with electrons accelerated by a high voltage. Radiation is emitted at all angles when the atoms in the metal deflect and slow those electrons as well as when the electrons excite the metal atoms. To better control the angles at which a metal emits x rays, Vassholz and Salditt built a sandwich-like structure, illustrated in the figure, that was made up of a fluorescent metal layer embedded between guiding and cladding layers. Using a high-energy electron beam that was generated by an instrument adapted from an x-ray tube, the researchers excited the central metal layer, which caused it to emit x rays that were funneled into the guiding layers. Those beams traveled through the guiding layers and were emitted through the waveguide exit. A detector placed across from the exit showed sharp emission peaks corresponding to the waveguide modes, indicating that the device had effectively channeled x rays of up to 35 keV onto a target.

    Additional experiments and calculations suggested that the brightness of the emitted x rays could be further enhanced by using different metals or by varying the thickness of the layers. The researchers propose that the design could enable benchtop measurements of microscale structures that until now have only been accessible using synchrotron radiation. (M. Vassholz, T. Salditt, Sci. Adv. 7, eabd5677, 2021.)

    Science paper:
    Observation of electron-induced characteristic x-ray and bremsstrahlung radiation from a waveguide cavity
    Science Advances

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    “Our mission

    The mission of Physics Today(US) is to be a unifying influence for the diverse areas of physics and the physics-related sciences.

    It does that in three ways:

    • by providing authoritative, engaging coverage of physical science research and its applications without regard to disciplinary boundaries;
    • by providing authoritative, engaging coverage of the often complex interactions of the physical sciences with each other and with other spheres of human endeavor; and
    • by providing a forum for the exchange of ideas within the scientific community.”

     
  • richardmitnick 11:58 pm on February 24, 2021 Permalink | Reply
    Tags: "Accelerator physics- Experiment reveals new options for synchrotron light sources", "Steady-State Microbunching" (SSMB) by leading accelerator theorist Alexander Chao and his PhD student Daniel Ratner at Stanford University(US)., An international team has shown through a sensational experiment how diverse the possibilities for employing synchrotron light sources are., , Filling a gap in the arsenal of available light sources and offer a prototype for industrial applications., Helmholtz Center for Materials and Energy [Helmholtz-Zentrum Berlin für Materialien und Energie](DE), , , The mechanism should also make it possible for storage rings to generate light pulses not only at a high repetition rate but also as coherent radiation like a laser., Tsinghua University [清华大学](CN), Using a laser to manipulate electron bunches., X-ray Technology   

    From Helmholtz Center for Materials and Energy [Helmholtz-Zentrum Berlin für Materialien und Energie](DE): “Accelerator physics- Experiment reveals new options for synchrotron light sources” 

    From Helmholtz Center for Materials and Energy [Helmholtz-Zentrum Berlin für Materialien und Energie](DE)

    24.02.2021
    Dr. Jörg Feikes
    (030) 8062 – 17970
    (030) 8062 – 15073
    joerg.feikes@helmholtz-berlin.de

    Dr. Markus Ries
    (030) 8062 – 17915
    markus.ries@helmholtz-berlin.de

    Press Officer:
    Dr. Antonia Rötger
    TEL (030) 8062 – 43733
    Fax (030) 8062 – 42998
    antonia.roetger@helmholtz-berlin.de

    1
    © Tsinghua University.

    An international team has shown through a sensational experiment how diverse the possibilities for employing synchrotron light sources are. Accelerator experts from the Helmholtz Center for Materials and Energy [Helmholtz-Zentrum Berlin für Materialien und Energie](DE), the National Metrology Institute of the Federal Republic of Germany [Physikalisch-Technische Bundesanstalt], and Tsinghua University [清华大学](CN) have used a laser to manipulate electron bunches at PTB’s Metrology Light Source so that they emitted intense light pulses having a laser-like character. Using this method, specialised synchrotron radiation sources would potentially be able to fill a gap in the arsenal of available light sources and offer a prototype for industrial applications. The work was published on 24 February 2021 in the leading scientific publication Nature.

    The most modern light sources for research are based on particle accelerators. These are large facilities in which electrons are accelerated to almost the speed of light, and then emit light pulses of a special character. In storage-ring-based synchrotron radiation sources, the electron bunches travel in the ring for billions of revolutions, then generate a rapid succession of very bright light pulses in the deflecting magnets. In contrast, the electron bunches in free-electron lasers (FELs) are accelerated linearly and then emit a single super-bright flash of laser-like light. Storage ring sources as well as FEL sources have facilitated advances in many fields in recent years, from deep insights into biological and medical questions to materials research, technology development, and quantum physics.

    2
    Experimental set-up. The stored electron bunches are modulated by a laser in an undulator. They become microbunched after one complete revolution in the storage ring and produce coherent radiation. © PTB/HZB.

    Combining the virtues of both systems

    Now a Sino-German team has shown that a pattern of pulses can be generated in a synchrotron radiation source that combines the advantages of both systems. The synchrotron source delivers short, intense microbunches of electrons that produce radiation pulses having a laser-like character (as with FELs), but which can also follow each other closely in sequence (as with synchrotron light sources).

    From the idea to the experiment

    The idea was developed about ten years ago under the catchphrase “Steady-State Microbunching” (SSMB) by leading accelerator theorist Alexander Chao and his PhD student Daniel Ratner at Stanford University(US). The mechanism should also make it possible for storage rings to generate light pulses not only at a high repetition rate, but also as coherent radiation like a laser. The young physicist Xiujie Deng from Tsinghua University, Beijing, took up these ideas in his doctoral work and investigated them further theoretically. Chao established contact with the accelerator physicists at HZB in 2017 who operate the Metrology Light Source (MLS) at PTB in addition to the soft X-ray source BESSY II at HZB. The MLS is the first light source in the world to be optimised by design for operation in what is known as “low alpha mode”. The electron bunches can be greatly shortened in this mode. The researchers there have been constantly developing this special mode of operation for more than 10 years. “As a result of this development work, we were now able to meet the challenging physical requirements for empirically confirming the SSMB principle at the MLS”, explains Markus Ries, accelerator expert at HZB.

    New pulse pattern at MLS detected

    “The theory group within the SSMB team had defined the physical boundary conditions for achieving optimal performance of the machine during the preparatory phase. This allowed us to generate the novel machine states with the MLS and adjust them enough together with Deng until we were able to detect the pulse patterns we were looking for”, reports Jörg Feikes, accelerator physicist at HZB.

    Creation of microbunches

    The HZB and PTB experts used an optical laser whose light wave was coupled in precise spatial and temporal synchronisation with the electron bunches in the MLS. This modulated the energies of the electrons in the bunches. “That causes the electron bunches, which are a few millimetres long, to split into microbunches (only 1 µm long) after exactly one revolution in the storage ring, and then to emit light pulses that coherently amplify each other like in a laser”, explains Jörg Feikes. “The empirical detection of the coherent radiation was anything but easy, but our PTB colleagues developed an innovative optical detection unit with which the detection was successful.”

    Industrial applications

    “The highlight future SSMB sources is that they generate laser-like radiation also beyond the visible spectrum of “light”, in the extreme ultraviolet (EUV) range, for example”, comments Prof. Mathias Richter, head of department at PTB. And Ries emphasises: “In the final stage, an SSMB source could provide radiation of a new character. The pulses are intense, focused, and narrow-band. They combine the advantages of synchrotron light with the advantages of FEL pulses, so to speak.” Feikes adds: “This radiation is potentially suitable for industrial applications. The first light source based on SSMB specifically for application in EUV lithography is already in the planning stage near Beijing.”

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Helmholtz-Zentrum Berlin für Materialien und Energie (Helmholtz Center for Materials and Energy, HZB) is part of the Helmholtz Association of German Research Centres [Helmholtz-Gemeinschaft Deutscher Forschungszentren] (DE). The institute studies the structure and dynamics of materials and investigates solar cell technology. It also runs the third-generation BESSY II synchrotron in Adlershof. Until the end of 2019 it ran the 10 megawatt BER II nuclear research reactor at the Lise Meitner campus in Wannsee.

    The Helmholtz-Zentrum Berlin was created on 1 January 2009 by the merger of Hahn-Meitner-Institut Berlin (HMI) and Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung (BESSY), thus bringing BESSY into the Helmholtz Association.[4]

    The Hahn-Meitner-Institut Berlin (HMI), named after Otto Hahn and Lise Meitner, was founded 14 March 1959 in Berlin-Wannsee to operate the BER I research reactor that began operation with 50 kW on 24 July 1958. Research originally focused on radiochemistry. In 1971, the federal government took over a 90% share in the HMI.

    The Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung (BESSY) was founded in 1979. The first synchrotron BESSY I in Berlin-Wilmersdorf began operations in 1982.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: